
“An Enhanced Debugger for Real-Time Fault Injection on Microprocessor Systems” 

André V. Fidalgo, Gustavo R. Alves, José M. Ferreira

 

Abstract 

As electronic devices get smaller and more complex, dependability assurance is becoming fundamental for 

many mission critical computer based systems. This paper presents a case study on the possibility of using the 

on-chip debug infrastructures present in most current microprocessors to execute real time fault injection 

campaigns. The proposed methodology is based on a debugger, customized for fault injection and designed 

for maximum flexibility,  and consists on injecting bit-flip type faults on memory elements without 

modifying or halting the target application. The proposed solution is easily portable and applicable to different 

architectures, providing a flexible and efficient mechanism for verifying and validating fault tolerant 

components. 

1 Introduction 

Today, most safety-critical applications require the use of some type of computer-based device, causing their 

implantation to grow and expand into new areas like the automotive and biomedical fields. However, as 

electronic systems increase in complexity and decrease in size their correct operating behavior is becoming 

harder to guarantee [1]. Circuits are getting more sensitive to noise and to other factors, with the appearance of 

soft errors becoming a real possibility even for devices used in non-hostile environments, making dependability 

a necessity for a much broader area of applications. Dependable systems are designed to handle errors that 

originate from software or hardware faults and to recover from them, while maintaining acceptable operating 

conditions. The possibly destructive nature of a failure and the long error latencies impair identifying the cause 

of failures in field operation and in the normal time that it takes for a failure to occur. To identify and 

understand potential errors, it is desirable to experiment on an actual device as to better study and improve its 

dependability. This approach can be applied either on the development phase, where models or prototypes are 

used, or on the deployment phase if faults can be deliberately injected in useful time without damaging the 

equipment. This experiment-based approach requires knowledge of the system architecture and behavior, and 

especially of the mechanisms implemented to provide tolerance to faults, errors or failures, i.e. the events 

leading to a service failure on microprocessor based systems [2]. Specific instruments and tools must be used to 

induce these hazards and monitor their effects and in the case of microprocessor systems, access to the internal 



resources is of utmost importance. Many of today’s microprocessors provide such access through dedicated 

built-in debug circuitry, often designated as on-chip debug (OCD). The use of these OCD infrastructures for 

fault injection purposes is an efficient solution for verifying and validating fault tolerant designs. This paper 

describes recent research on real time fault injection on such devices based on the development and use of a 

debugger optimized for fault injection. The rest of the paper is organized as follows: the next section gives an 

overview of fault injection methodologies used on microprocessor systems and previous work on this area; 

section 3 presents the system used as a case study, the fault injection oriented debugger and some proposals for 

enhanced fault injection support; section 4 presents the experimental results obtained so far and finally section 

5 discusses these results and lays the basis for future work.  

2 Fault Injection on Microprocessors 

2.1 Overview 
 
In microprocessor systems, the most common methodology to achieve dependability is the use of fault-tolerant 

components both in hardware and software. The correct behavior of such components must be tested and fault 

injection can be used to (1) identify design or implementation faults, (2) verify & validate fault tolerance 

capabilities and (3) estimate how often failures will occur and evaluate the consequences of such failures. 

Fault injection is normally structured in campaigns, each being composed of a series of experiments during 

which the target system runs (a specific application is executed) and a specific fault (or set of faults) is inserted 

at specific trigger conditions. The target system behavior is monitored and information is recorded as 

comprehensively as necessary and possible, to later understand and evaluate the effects of the inserted faults. 

Existent microprocessor fault injection techniques are commonly classified in three broad groups, namely (1) 

simulation based fault injection, (2) software based fault injection (SWIFI), and (3) physical fault injection. 

Simulation based fault injection is mostly used in the early phases of a design when the target system exists 

only in model format. This technique requires a model of the target itself, (normally in some HDL format), the 

necessary simulation tools to insert faults and adequate processing capabilities to run the simulation [3].  

Software based fault injection consists of reproducing at a logical level the errors originated by physical faults 

using software commands already available on the target device. This allows the injection of errors on all 

resources accessible by software, like registers, program and data memory, most peripherals and some timers 

[4]. Physical fault injection is a more realistic approach in the sense that it tries to replicate real world faults. 

All physical techniques perform an actual fault insertion on the circuit or emulate their immediate 



consequences (errors) through internal or external action. Access to the circuit elements is usually performed 

either through specific hardware equipment [5] or using debug and test infrastructures included on the target 

chip [6]. Physical fault injection may also be performed without a direct connection between the fault injector 

and the system under test, either through laser [7], heavy-ion radiation or electromagnetic fields [8]. 

The hardest part of microprocessor fault injection is how to access those internal elements where faults are 

more probable, generally the memory elements and communication buses, without disturbing the running 

applications. OCD infrastructures provide access to internal resources in parallel with the target hardware and 

running software, being an excellent mechanism for modifying register and / or memory values (i.e. insert 

faults) and subsequently retrieve the data necessary for result analysis. 

The on-chip debug facilities implemented by different families of processors share some common 

characteristics that form a core feature set, which usually includes run-control, breakpoint support and memory 

and register access. Some devices include more advanced features like watchpoints, program trace and real 

time debugging capabilities. In general, an OCD is a combination of hardware and software on the 

microprocessor chip that requires some external hardware to be used, the basic requirement being some kind of 

communication link between the chip and a debugger host. The access to the OCD infrastructure is made 

through an interface port usually requiring an external debugger or emulator in between.  

The use of OCD infrastructures for fault injection can overcome some of the limitations present on other 

approaches. For instance, simulation techniques are often time-consuming and may lead to erroneous results as 

they are intrinsically dependant on the quality of the available model. SWIFI techniques require modifications 

to the running code, which in fact modifies the target system, and coverage is limited to the resources 

accessible by software. Most physical fault injection techniques are expensive and precise control of the instant 

and location of a fault is often very difficult or even impossible. In most cases, OCD fault injection techniques 

rely on halting the processor, either by the use of control signals or breakpoints, and subsequently modifying 

the targeted registers or memory locations to insert the intended faults. When available, trace capabilities 

provide an efficient mean to monitor fault propagation and effects. 

2.2 Real Time Fault Injection experiences 

As a technological solution, a major problem with OCD is the lack of a consistent set of capabilities and a 

standard communications interface across processor architectures. An industry consortium has been working on 

the establishment of a standard for OCD, which is still on proposal phase and is formally designated as “IEEE-



ISTO 5001, The Nexus 5001 Forum Standard for a Global Embedded Processor Debug Interface” [9]. If widely 

adopted, it may be possible to employ the same debugger to access the core of multiple processor architectures 

and to use a similar set of debugging features for all. Additionally, the feature set that this standard proposes for 

the higher classes of compliance includes real time access to memory and on-the-fly program and data trace, 

providing a set of tools for real time fault injection. 

Experimental work has been done in our research group and in the DISCA-UPV [10] to evaluate the 

possibilities of executing real-time fault injection on a NEXUS compliant microprocessor. The target system 

used were based on a Motorola MPC565 CPU [11] which is a commercial 32 bit microcontroller with 

widespread use on the automotive industry. The OCD infrastructure available on the MPC565 devices is 

NEXUS Class 2+ compliant and includes run control, watchpoint and breakpoint support, real time access to 

memory (RAM only), access to all memory space and registers on DEBUG mode (i.e. execution is halted). 

Trace support is very flexible, being possible to log program and/or data accesses and start the trace process on 

specific conditions, similar to those available for breakpoint detection. The debugger used was an iSystems 

IC3000 [12] (PowerTrace Pro version) and its integrated debugging software Winidea 2005. This software 

allows direct control of the debugger and the use of scripts (running on the host machine) to automate the 

debugging tasks. The fault injection environment is presented in Figure 1. 

 
Figure 1 – Fault Injection on a MPC565 microprocessor 

 
The fault campaigns were manually generated and translated into Winidea scripts. A typical fault injection 

operation would require the microprocessor to run until the triggering condition was met at which time the host 

would access the target memory in order to inject the intended fault. Two triggering options are available as the 

direct use of a watchpoint signal is not possible on the Winidea environment, namely (1) injecting the fault 

after a specific period of time, as measured by the host clock or (2) use the start of the trace data recording to 

trigger the fault injection process. 



The actual fault injection consists of reading the target memory cell content, modifying it and then writing the 

faulty value on the same cell. If the value of the target cell at the fault triggering instant can de determined 

beforehand the read operation can be bypassed and the faulty value written immediately. 

The obtained results confirmed most of the expected potentialities and simultaneously identified some 

shortcomings both in fault triggering and performance. It proved possible to insert faults in memory space on-

the-fly and then use the trace information gathered as an effective mean to analyze program flow, before and 

after the actual fault activation. However, as all NEXUS compliant debuggers currently communicate with the 

host PC through Ethernet or USB connections, and as the fault campaigns must be run on the host, this imposes 

a bottleneck on the time required for an actual memory access. This fact causes the time interval required for 

reading a memory cell contents and writing back a modified value to be measured in milliseconds. This delay 

allows the initial data to be overwritten by the application running on the target system, the magnitude of the 

problem depending of the running application and memory position targeted. An additional problem is the 

triggering of a fault. Even using the trace data without halting the processor the required information is not 

readily available, as it must reach the host machine before it can be acted upon. This additional delay is also in 

the range of milliseconds, limiting the practicability of its use for triggering. 

Both the described problems are not directly related with the OCD capabilities but rather with the available 

tools, which lack some features that, not being necessary for debug, would be very useful for fault injection. 

The probability of the running application overwriting the targeted cell during the fault injection process can be 

minimized by reducing the writing delay of the fault injection process. The triggering delay problem can be 

solved by adding reactive behavior to the debugger so that it can perform a write operation on the detection of a 

specific signal or message from the target system. Both these solutions can be addressed by a debugger with the 

required capabilities. 

3 Case Study 

3.1 Target System 

The use of a NEXUS compliant debugger benefits from the useful features defined in this standard and 

increases the area of immediate applicability of the developed concepts and solutions. As neither the actual 

compatible CPUs nor the commercial debuggers are easily modifiable, the reported case study requires (1) an 

alternative microprocessor core where a compliant OCD infrastructure could be implemented and (2) a 

customized debugger, as specific libraries are required for each target. The OCD and the debugger itself were 



developed as VHDL modules, aiming to keep them simple and easily portable to maintain a high level of 

compatibility with different target architectures. In this way a complete proof-of-concept solution was tested 

and the requirements for its migration to existent systems (or under development) were evaluated.   

The cpugenerator [13] building tool was selected to create the microprocessor targets. It is publicly available 

through opencores [14] and allows the automatic creation of 4, 8, 16 or 32 bit RISC microprocessor cores, 

being possible to configure several parameters like bus type, interrupt support and memory configuration.  

The OCD version implemented on the target system is NEXUS Class 2 compliant and provides some 

customization features, to be compatible with different CPU configurations with only minor adjustments. It is 

possible to define the data bus width (input and output) and the internal FIFOs used to store data prior to its 

decoding or communication. These parameters are very important as they may constrain the capabilities of the 

OCD in terms of trace and real time access. On the other hand, the use of larger buses can significantly increase 

the logic overhead imposed by the OCD infrastructure. 

The target application for testing is a matrix_addFT program, which is a fault tolerant version of a matrix 

adder. The fault tolerance is achieved by duplicating each arithmetic operation and then comparing the obtained 

results, with any difference triggering an error detection routine. Although not as powerful as hardware fault 

tolerance, this solution allows for some degree of dependability without modifications to the hardware, at the 

cost of memory space and some performance penalty.  

The NEXUS standard defines a minimum set of debugging features, the interface port and the communication 

protocol. The implemented features include all common OCD features plus real time access to memory. The 

interface with the outside world is made using the AUX port option, which provides two message data buses 

for OCD data input and output along with independent clock and control signals. Two additional event pins 

allow halting the processor and exact timing for watchpoint / breakpoint signaling.  The communication 

protocol was implemented as defined in the standard, with all mandatory messages being implemented and two 

additional optional messages added for internal register access and OCD configuration. 

3.2 Fault Injection Environment 

The selected fault model is the one used in most common fault scenarios for microprocessor based critical 

systems [15] and consists of single bit-flip faults in random memory elements at also random moments during 

the application execution. The actual fault trigger can be any instruction occurrence of the running application, 



covering the entire execution time. The fault location can be any resource accessible for writing through the 

OCD, including memory and internal registers. 

All experiments are structured into fault injection campaigns, each one defining a set of fault injection 

operations where specific fault coordinates (location x value) and trigger condition are selected. In each such 

operation the processor is reset and the application runs from start. Each campaign is generated by an external 

tool and then described as a script with the necessary messages to be sent to the OCD infrastructure, both for 

configuration and data collection. Initialization is performed by loading the application into memory and setting 

up the OCD infrastructure as required by the specific operation. The target memory value at the moment of the 

injection must be determined beforehand, using either the knowledge of the running application code or a prior 

faultless execution up to the fault triggering instant and then using the OCD to read the relevant memory cell 

contents. In this manner it is possible to determine the value that should be stored so that a single bit-flip is 

caused on the target with a single write operation. The fault trigger condition is selected from the executed 

application code and can be any event that triggers a watchpoint, like an instruction execution or a data access.  

The normal fault injection scenario consists of the NEXUS compliant target microprocessor, a host machine 

running the fault injection campaigns and a debugger connecting both. This is represented in Figure 2. 

Debugger
(Fault Injector)

Campaign 
Data CPU

OCDNEXUS
PORT

ROM

RAM

I/O
Target System

Data Link

Trace Data
 

Figure 2 – Fault Injection Environment  

As shown on Figure 2, the main advantage of this fault injection solution is the debugger capability to manage 

the entire fault injection process. Although, the host PC is responsible for downloading the fault campaign data 

to the debugger and uploading the trace data after the fault campaign execution, the entire fault campaign is 

executed autonomously by the debugger. Additionally, if the target system is implemented on a FPGA device it 

is possible to add the debugger (and all relevant fault campaign data) as a module implemented on the same 

device, with the inherent advantages in terms of performance and cost. 

Each fault injection operation consists of loading the debugger input memory with a series of instructions 

describing the steps required for its execution. After the initial set up is completed the debugger waits for the 



triggering condition to be met, which will be signaled by a watchpoint hit signal or by a breakpoint hit message. 

When either of these events occurs the debugger sends a message to the OCD instructing it to write into the 

target memory position the intended faulty value. Although the debugger allows an instantaneous reaction, the 

actual fault insertion requires the transmission and decoding (by the OCD) of at least one complete message 

(the write command and data). During the entire operation the output memory records the trace messages that 

are sent by the OCD, to allow a posterior program flow reconstruction and fault effect analysis. From these 

messages it is possible to diagnose fault effects verifying if the fault was acknowledged by the error detection 

routine, and after the application runs its course it is possible to use the OCD to check if all final results are 

correct. All set-up steps can be done with the target processor running normally, but the fault activation may 

only take place after this set up is performed. The program trace is not affected and operates normally before, 

during and after the fault injection process, reacting exactly as if a “real” fault occurred.  

3.3 Debugger 
 

The debugger is presented on Figure 3 and consists of a debugger core connected to two memory banks (input 

and output) and to a NEXUS debug port. The debugger was designed to optimize the execution of fault 

injection operations with emphasis on execution speed. 

 

Figure 3 – Debugger 

The debugger core is a simple processor type device that fetches commands from the input memory, controls 

execution and manages the data flow and possible error conditions. Direct control is possible through specific 

signals (DLINK) and those may replace either the input or output memories (or both) as source of commands 

and destination of data. The access to the input memory for reading is controlled by the debugger core and 

executed sequentially. Table 1 displays a list of available commands and their additional parameters (when 

applicable): 



Table 1 – Debugger Commands and Parameters 
TYPE MNEMONIC PARAM DESCRIPTION 

HALT None Halts the target microprocessor execution and 
enters DEBUG mode. 

RUN None Starts the target microprocessor execution. RUN-CONTROL 

RESET None Resets the target microprocessor. 

DRESET None Resets the debugger, restarting command fetch 
from the initial input memory position. DEBUGGER 

CONFIGURATION DCONFIG <code> Configures the debugger according to the <code> 
parameter. 

WAIT <time> Waits for a number of clock cycles defined by the 
<time> parameter. 

SYNCHRONIZATION 
WAITFOR <event> 

<time> 

Waits for a specific message or a watchpoint hit 
signal from the target OCD, during a specific 
period of time. The messages can be any response 
or trace message. 

READRAM <address> Reads the contents of the memory cell at the 
specified address. 

WRITERAM <address> 
<data> 

Writes a byte of data to the memory cell at the 
specified address. 

READREG <address> Reads the contents of a register at the specified 
address. 

DATA ACCESS 

WRITEREG <address> 
<data> 

Writes a byte of data to the register at the 
specified address. 

The output memory is used to store data for subsequent program flow analysis. The type of information stored 

can be selected by configuring the debugger and depends on the task at hand and available memory. The 

NEXUS port is managed by a communication controller responsible for translating commands into messages to 

be sent and retrieving the messages received from the OCD. The width of the data buses defines the duration of 

the transmission required by each message.   

3.4 Performance Improvements  
 
The fault injection procedure described on the previous sections was planed with the objective of improving the 

performance, maintaining the highest level of compatibility with different target microprocessor architectures. 

It is possible to improve performance even further by modifying the OCD infrastructure present on the target 

microprocessor. Two approaches requiring modifications to the OCD were tested, namely (1) the simplification 

of the communication between the debugger and the OCD and (2) the migration of the reactive behavior to the 

inside of the OCD infrastructure. The first approach implies modification to both the OCD and the debugger 

and consists of replacing the communication port with direct access to the OCD signals. The same debugger 

core can be used removing the communications controller and adding some extra logic. The effect is the 

elimination of the coding and decoding of the NEXUS messages and the inherent delay induced by those steps. 

The second approach is described in more detail in [16] and consists of adding an extra module to the OCD 

infrastructure in order to allow it to control part of the fault injection process. In this alternative the debugger is 

unchanged, the differences being in the sequence of commands used for each fault injection operation as the 

actual triggering of the fault and memory writing is executed by the enhanced OCD itself.  



4 Experimental Results 

The target system, the debugger, the fault injection module and the different memories were designed as VHDL 

models using the ISE 7.1i development environment [17] and simulated using the Modelsim 6.0a simulation 

engine. Four different CPU and OCD combinations were used, as summarized in Table 2. The MPC565 is 

included for comparison purposes, the values representing the best possible configuration. The CPU 

configurations differ only in terms of bus width. The OCD configurations vary in terms of port width and on 

the size of the internal message buffers, with MDI being the Message Data In bus and MDO the Message Data 

Out bus. 

Table 2 – Target System Configurations 

# BUS 
(bits)

CLK 
(MHz)

MDI 
(bits)

MDO 
(bits)

CPU8a 8 bits 100 1 bit 1 bit 
CPU8b 8 bits 100 2 bits 4 bits 
CPU32a 32 bits 25 2 bits 8 bits 
CPU32b 32 bits 25 4 bits 8 bits 
MPC565 32 bits 40 2 bits 8 bits 

Configurations CPU8a and CPU8b represent the minimal and recommended configurations for 8 bit 

microprocessors, while configuration CPU32a represents a configuration equivalent to the best available for the 

MPC565 microprocessor and CPU32b represents an improved configuration for faster memory writing. All 

configurations include separate ROM and RAM banks on the target system, the first for storing the program 

code and the later for application data. The fault campaigns were structured as follows: 

 The OCD is configured once at the beginning of the campaign, with the configuration depending on the 

fault injection target (memory or registers). Each campaign is loaded into memory and the experiments are 

executed sequentially with the target CPU being RESET between experiments. 

 The instruction address that triggers each fault injection is randomly generated from the actually executed 

ROM space and the target memory position is randomly selected from the actually used RAM space. 

 The results are retrieved after all the experiments are complete and their analysis is performed externally 

with each experiment being diagnosed, to check if the final results are correct and if the fault was detected 

by the fault tolerance routine. 

The simulation of about 100 fault campaigns repeated for each configuration returned the results presented in 

Table 3. In this table, (1) OCD errors represents the fault campaigns that were impossible to terminate due to 

trace overflow errors, (2) inconclusive results represents experiments that had to be discarded due to 



incongruent trace data, and (3) fault injection delay represents the time interval between the meeting of the 

trigger condition and the actual insertion of the faulty value as obtained from the simulation waveforms. 

Table 3 –Fault Injection Results 
Configuration CPU8a CPU8b CPU32a CPU32b 

1 OCD Errors 88% 0 0 0 
2 Inconclusive Results 0 2% 4% 3% 

3 Fault Injection Delay 
(In Clock Cycles) 25 14 24 21 

Some conclusions, relative to the fault injection process, are also possible: 

 It wouldn’t be possible to execute the same fault campaigns, on real time, on a system using an MPC565 

and a commercial controller as the actual total execution time is less than the interval required for injecting 

a single fault. 

 Using configuration CPU8a causes a very high number of OCD trace overflow errors due to the reduced 

MDO bandwidth, making it impracticable to use this configuration for fault injection. 

 When targeting memory in real time, some experiments return inconclusive results because the CPU writes 

on the memory cell being targeted before the fault is inserted.  

 The width of the communication channel between debugger and OCD affects visibly the performance of 

the fault injection process, with the use of larger buses reducing the occurrence of inconclusive results. 

The number of equivalent gates for each module and each target configuration is given by Table 4.  

Table 4 – Area Overhead 
CPU8a CPU8b CPU32a CPU32b Module # Equivalent Gates 

CPU core 9166 9166 53717 53717 
OCD 6217 6985 17601 18801 

Debugger 
(except RAM) 766 766 1079 1079 

 
From the above values it is possible to confirm that a simple debugger (tasked only with fault injection 

campaigns management and results storage) requires comparatively little space on a programmable device.  

 
5 Conclusions and Future Work 

Dependability evaluation efforts sometimes neglect the possibilities of powerful OCD infrastructures present on 

the target device, even knowing that as a mean to execute non-intrusive real-time fault injection campaigns the 

use of OCD infrastructures is often the best solution in terms of performance and capabilities. The reasons 

behind this are sometimes lack of appropriate tools or inadequate documentation. The diversity of 

methodologies, feature implementation and interface ports is also an downside. Our case study shows that the 

use of an optimized debugger and an OCD with real time access capabilities allows the execution of fault 



campaigns on the target memory space with full coverage of the application execution and used resources. The 

possibilities in terms of fault triggering and fault injection delay are dependent on the OCD capabilities, mainly 

in terms of communication speed. The use of larger communications port allows faster operation and therefore 

minimizes the risk of the running application interfering with the process. The migration of some features to the 

inside of the OCD allow even better performance at the cost of a minimum logic overhead on the target OCD 

circuitry. The standardization of OCD capabilities and access ports would also benefit the reusability of this 

fault injection approach. 

Ongoing work is aimed at applying the proposed solutions to different target architectures and fault tolerant 

techniques. Simultaneously, means to further improve performance and coverage are being studied.  

References  

[1] “Coping with SEUs/SETs in microprocessors by means of low-cost solutions: A comparison study”; M. Rebaudengo, M. S. 

Reorda, M. Violante, B. Nicolescu, R. Velazco;  IEEE Transactions on Nuclear Science, Vol 49, No 3; June 2002 

[2] “Basic concepts and taxonomy of dependable and secure computing”; A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr; IEEE 

Transactions on Dependable and Secure Computing, Volume 1,  Issue 1;  Jan 2004. 

[3] “Comparison and application of different VHDL-based fault injection techniques”; J. Gracia, J.C. Baraza, D. Gil, P.J. Gil; IEEE 

International Symposium on Defect and Fault Tolerance in VLSI Systems; San Francisco, USA; Oct 2001.  

[4] “Experimental evaluation of a COTS system for space applications”; H. Madeira, R. R. Some, F. Moreira, D. Costa, D. Rennels; 

International Conference on Dependable Systems and Networks; Bethesda, USA; June 2002. 

[5] “Experimental Validation of High-Speed Fault-Tolerant Systems Using Physical Fault Injection”; R. J. Martínez, P. J. Gil, G. 

Martín, C. Pérez, J. J. Serrano; Seventh IFIP Working Conf. Dependable Computing for Critical Applications: DCCA-7; San Jose, 

USA; Jan. 1999. 

[6] “Evaluation of the Thor Microprocessor Using Scan-chain-Based and Simulation Based Fault-Injection”; P. Folkesson, S. 

Svensson, J. Karlsson; 8th European Workshop on Dependable Computing (EWDC-8); Goteborg, Sweden; April 1997. 

[7] “A Technique for Automated Validation of Fault Tolerant Designs Using Laser Fault Injection (LFI)”; J. R. Samson , W. A. 

Moreno, F. J. Falquez; 28th Annual International Symposium on Fault-Tolerant Computing; Munich, Germany; June 1998. 

[8] “Application of Three Physical Fault Injection Techniques to the Experimental Assessment of the MARS Architecture”; J. 

Karlsson, P. Folkesson, J. Arlat, Y. Crouzet, G. Leber and J. Reisinger; 5th IFIP Working Conference on Dependable Computing 

for Critical Applications; Urbana-Champaign, USA; September 1995. 

[9] “The Nexus 5001 Forum Standard for a Global Embedded Processor Interface version 2.0”, IEEE-ISTO 5001 2003. 

[10] “INERTE: Integrated NExus-Based Real-Time Fault Injection Tool for Embedded Systems”; Yuste P., de Andrés D.,  Lemus L., 

Serrano J. J., Gil P. J.; The International Conference on Dependable Systems and Networks; San Francisco, USA;  June 2003. 

[11] Phytec ou MPC 565 

[12] www.isystem.com/Products/Emulators/iC3000/ 

[13] Giovanni Ferrante, “CPUGEN 2.00”, 2003. 

[14] www.opencores.org 

[15] “How to characterize the problem of SEU in processors & representative errors observed on flight”; R. Velazco, R. Ecoffet, F. 

Faure; 11th IEEE International On-Line Testing Symposium; Saint Raphael, France;  July 2005. 

[16] “A Modified Debugging Infrastructure to Assist Real Time Fault Injection Campaigns”; A. Fidalgo, G. Alves, J. Ferreira; 9th 

IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems (in press); Prague, Czech Republic; April 2006. 

[17]  www.xilinx.com 

 

http://www.isystem.com/Products/Emulators/iC3000/
http://www.opencores.org/
http://www.xilinx.com/

	Introduction
	Fault Injection on Microprocessors
	Overview
	Real Time Fault Injection experiences

	Case Study
	Target System
	Fault Injection Environment
	Debugger
	Performance Improvements

	Experimental Results
	Conclusions and Future Work

