

A Remote Verification Framework to
Assess the Robustness of Circuits to Soft Faults

Gustavo R. Alves, Manuel G. Gericota, André V. Fidalgo

Dep. of Electrical Engineering — ISEP\LABORIS
Rua Dr. Antonio Bernardino de Almeida, 431

4200-072 Porto - PORTUGAL
{gca, mgg, anf}@isep.ipp.pt

Abstract — The growing number of circuits implemented in Field
Programmable Gate Arrays (FPGAs) and the increased
susceptibility, due to higher integration levels, of these devices to
soft faults caused by radiation at ground level is leading the
scientific and technical community to the study of new fault
tolerant designs and solutions, and how they can be verified and
validated. Using fault injection techniques and enhanced debug
tools to inject faults in a circuit and observing its behaviour in the
presence of such faults, respectively, is a proven solution for the
previous verification and validation problem. This paper presents
the underlying concepts for a remote verification framework to
assess the robustness of circuits to soft faults. It comprises a
verification platform and a set of verification services that can be
used in a remote or local fashions.

I. INTRODUCTION

The use of nanometer scales in FPGAs manufacturing leads
to a greater integration and to a per unit power reduction,
enabling them to grow both in size and complexity. As a
result, FPGAs became an excellent alternative to the more and
more expensive Application Specific Integrated Circuits
(ASICs) for the implementation of complex circuits, even
when high production volumes are forecast. Furthermore, due
to their inherent configurability they enjoy an unsurpassed
degree of flexibility enabling quicker turnaround time not only
during the project phase but also in the field, without the
prohibitive costs associated to ASICs in the same situations.
These advantages have been reinforced and new possibilities
added with the advent of dynamic and partially reconfigurable
SRAM-based FPGAs (e. g. the Virtex family from Xilinx),
which enable the dynamic customization of hardware
functions to a particular system or application “on-the-fly” [1].

The need to reprogram the whole device, halting its
operation, was one the major limitations associated with
classic SRAM-based FPGAs. Additionally, the contents of all
registers (state information) were lost when the component
was reprogrammed. In recent FPGA generations,
manufacturers addressed these issues by supporting partial
device reconfiguration, which can take place concurrently
with the system operation. Dynamic reconfiguration goes
beyond “in-system reprogramming” since it does not interrupt
the operation of the device.

However, the same distinctive features that make FPGAs
more appellative also brought them some negative aspects. As
a result of size increase the number of configuration memory
cells in SRAM-based FPGAs grew exponentially and thus
these devices became particularly vulnerable to radiation-
induced faults, such as Single Event Upsets (SEU) and Multi-
Bit Upsets (MBU) [2-4]. Although these faults do not
physically damage the chip, their effects are permanent, since
the functionality of the circuits mapped into the device is
permanently altered.

In non-reconfigurable technologies, such as ASICs,
protection against SEUs is restricted to flip-flops and memory
areas, because logic paths among them are typically hard-
-wired. Nevertheless, Single Event Transients (SETs) ― a
charge transient induced in a combinatorial gate by the
incidence of an heavy ion ― may be propagated to flip-flop
inputs, where they have a high probability to be registered,
causing soft-errors in the user data. Besides, if a SET strikes a
clock line, double-clocking may occur, leading to an
extemporaneous update that may affect part of or all the flip-
flops driven by that line (depending on the charge value and
on line attenuation). Because the definition of logic paths in
FPGAs relies on memory cells, these paths are also
susceptible to SEUs.

Therefore, there is a critical need to incorporate fault
tolerance mechanisms in all the circuits implemented in
FPGAs. Furthermore, the robustness of those circuits should
be verified before going to the field, preventing possible flaws
that may lead to critical failures. That verification may be
conducted by submitting the circuits to radiation campaigns,
carried out with the objective of understanding if the effects of
radiation-induced faults are effectively handled by the
introduced mechanisms. The problem with radiation
campaigns is not only their high cost but also the difficulty of
accessing the radiation facilities necessary to carry them out.
This prevents assessing the effectiveness, in the closest real
working conditions, of many solutions proposed in the
literature to make circuits more robust.

A number of fault injection approaches, proposed as
alternatives to those (expensive) radiation campaigns, were
described in several papers to turn around this situation. In
these papers the effects of SEUs are emulated as bit-flips in
the bitstream of the configuration memory of the FPGA, either

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/83044497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

through changes in the original configuration bitstream or at
run-time, through dynamic reconfiguration [5-7]. The greatest
advantage of these methods is not only their comparatively
smaller costs but also the smaller resources needed to
implement them. Furthermore, the higher controllability of the
experiments, in contrast to the unpredictability of radiation
injection, enables a better diagnosis of the effects of each
SEU. However, the implementation of such fault injection
approaches still needs a great deal of knowledge concerning
the mechanisms of partial reconfiguration and the set up of a
rather complex infrastructure to automate the procedure. Since
this infrastructure is independent of the functionality of the
circuit implemented in the FPGA, a generic infrastructure may
be built and made available remotely. Furthermore, this
infrastructure may be complemented by other mechanisms
such as those required to analyze the behavior of
microprocessors (implemented as soft cores, inside the FPGA)
under radiation, using on-chip debug (OCD) facilities [8].

The OCD infrastructures implemented by different families
of processors share some common characteristics that form a
core feature set, which usually includes run-control,
breakpoint support and memory and register access. Some
devices include more advanced features like watchpoints,
program trace and real time debug capabilities. In general, an
OCD is a combination of hardware and software on the
microprocessor that requires some external hardware to be
used, the basic requirement being some kind of
communication link between the microprocessor and the host
machine. The access to the OCD infrastructure is made
through an interface port usually requiring an external
debugger in between. When available, trace capabilities
provided by the OCD can be an efficient mean to monitor
fault propagation and effects [9]. Enhanced diagnosis
capabilities, including profiling, are thus important in any fault
injection technique. An industry consortium has been working
on the establishment of a standard for OCD, which is formally
designated as “IEEE-ISTO 5001, The Nexus 5001 Forum Std.
for a Global Embedded Processor Debug Interface” [10].

While the OCD infrastructure is mostly used during the
development phase, where usually the target circuit is in a
safe-radiation environment, sometimes it is also used for field
monitoring, where in such case it will also be affected by
SEUs. It is therefore important to evaluate the effects of SEUs
at the OCD infrastructure itself.

Furthermore, the OCD may also be used for injecting faults
in the target circuit. This is another area of undergoing
research, namely for complementing other fault injection
techniques, which fail to provide the time and spatial
controllability provided by OCD infrastructures.

This combined scenario provided the inspiration for a
verification framework concept, formed by a verification
platform and a set of verification services, to be made
remotely available through the Internet.

This paper presents the ideas behind that verification
framework and describes the expected benefits for any
potential user. The rest of this paper is organized as follows:
section 2 presents a conceptual overview of the verification

platform; section 3 describes a number of remote verification
services associated (or not) with the verification platform;
section 4 presents the proposed overall verification
framework; and, finally, section 5 concludes and presents the
future work directions.

II. THE VERIFICATION PLATFORM

The verification platform comprises several interconnected

blocks, whose operation is controlled by a server, as shown in
figure 1. This server implements several functionalities
essential to guarantee the good operation of the whole
verification framework, namely:

1. To manage external request accesses to the platform;
2. To grant access, under certain restrictions and after

checking the client’s id, to the verification platform and
associated services;

3. To upload the users circuit onto the FPGA-based
board;

4. To run the services implemented in the verification
framework;

5. To cease access and regain complete control of the
platform in case of client’s misuses or access timeout.

SERVER

NEXUS
DEBBUGER

I
N
T
E
R
N
E
T

OTHERFAULT INJECTION
CONTROLLER

SRAM-FPGA WITH
CIRCUIT UNDER
VERIFICATION

Fig. 1: Verification platform block diagram.

When the connection with the remote client is established,

the server generates the interface through which he/she
uploads his/her own circuit onto the FPGA and then controls
the services available in the verification framework. These
services correspond to: A) the ability to inject faults into the
FPGA configuration memory; B) using an external debugger
to diagnose the effects of injected faults, including possible
effects on the OCD itself; and C) using the OCD and the
debugger to inject faults on the target registers and memories.

The fault injection controller is responsible for
implementing the first mentioned service. At present, it is
thought to be a software module, running on a host machine
and controlling the FPGA configuration memory through an
IEEE1149.1-compatible Test Access Port (TAP). The link
between the host machine and the TAP can be implemented
either through a simple PC parallel port (less bandwidth) or
through a dedicated hardware module (e.g. an USB-JTAG
adapter – higher bandwidth). Although physically connected
to the FPGA-based board, the fault injection controller could
also be used for remotely injecting faults in a board located
near to the user. In this case, the board TAP had to be
connected to an Ethernet-JTAG adapter and its IP address

indicated to the fault injection controller. The command/data
signals could then be re-directed to that adapter while the fault
injection controller would be running at the verification
platform.
An external debugger connected to the microprocessor
(implemented as a soft core inside the FPGA) debug port is
capable of monitoring the circuit operation while subject to
the fault injection campaigns. This service B is intended for
diagnosing the effects of injected faults not only on the
functional circuit but also on the OCD itself.

Finally, the same debugger may be used for injecting faults
on the functional circuit, an additional service C that can not
be run in parallel with service A, because it is important to
guarantee the perfect operation of the OCD.

The possibilities and requirements associated to each
service are in described in more detail in the following
section.

III. THE VERIFICATION SERVICES

A. Fault Injection on the FPGA configuration memory

The fault injection procedure consists on the insertion of

bit-flip faults on the configuration memory using the
reconfiguration capabilities of the target FPGA. Depending on
the purpose of the affected bit the effects on the target system
can be classified as follows:

• A modification to a logical function, namely by altering
Look-Up Tables (LUTs) contents. This is considered a
change to a static element;

• A modification to the routing configuration, adding,
removing or altering one or more interconnects. Again,
this is considered a change to a static element;

• A modification to memory elements contents, used as
such by the target system. This is considered a change
to a dynamic element.

An important aspect, at this point, is that circuit registers
may be composed of either memory elements or Configurable
Logic Block (CLB) flip-flops. Notice that, while it is possible
to read the content of a flip-flop, it is not possible to write it
through the configuration memory, and therefore it is not
possible to inject faults in CLB flip-flops (constraint 1).
Additionally, the injection of faults can be performed in real
time only if targeting frames configuring just static elements
(constraint 2). Providing that the target system is suspended
during fault injection, this methodology can be further applied
to components that can change during execution (i.e.
memories). The suspension is required to allow reading back
the contents of relevant elements. The content of the target
element should be modified, according to the desired fault
model, while the contents of the other elements pertaining to
the circuit should remain unchanged.

For better understanding constraint 2, consider for instance
the Virtex FPGAs from Xilinx, where the configuration
memory is divided into one bit wide vertical frames that span

from the top to the bottom of the array. Each column of CLBs
comprises multiple frames, which combine internal CLB
configuration and state information, with column routing and
interconnection information. A representation of the
configuration memory frame partitioning is shown in figure 2.
The LUTs located in the CLBs can also be configured as
memory modules (RAMs) for user applications. However, the
extension of this fault injection concept to the injection of
faults in LUT/RAMs is not viable due to the time interval
between frame read and frame write and also due to
configuration memory architecture. The content of the
LUT/RAMs could be read and written through the
configuration memory, but if there is a write attempt during
the interval between the read-modify-write cycle needed to
perform the fault injection, there is no possible mechanism,
other than to stop the system, capable of ensuring the
consistency of the fault injection procedure, as can be inferred
from [11]. Furthermore, since frames span an entire column of
CLB slices, the same LUT bit in all of them is updated with a
single write command. One must thus ensure that all the
remaining data in the slice is constant. Even if not being
subject to fault injection, LUT/RAMs should not lie in any
column that could be affected by the fault injection procedure.

Le
ft

IO
B

 c
ol

um
n

B
lo

ck
 R

A
M

 c
on

te
nt

 a
nd

in

te
rc

on
ne

ct

R
ig

ht
 IO

B
 c

ol
um

n

B
lo

ck
 R

A
M

 c
on

te
nt

 a
nd

in

te
rc

on
ne

ct

C
LB

 c
ol

um
n

2
IOBs

2
IOBs

C
LB

 c
ol

um
n

2
IOBs

2
IOBs

C
en

tre
 C

ol
um

n

2
GCLK

2
GCLK

C
LB

 c
ol

um
n

2
IOBs

2
IOBs

C
LB

 c
ol

um
n

2
IOBs

2
IOBs

B
lo

ck
 R

A
M

 c
on

te
nt

 a
nd

in

te
rc

on
ne

ct

B
lo

ck
 R

A
M

 c
on

te
nt

 a
nd

in

te
rc

on
ne

ct

Fig. 2: Configuration memory organization.

The knowledge of the target configuration and the

capability of precisely controlling the fault insertion and its
position on the target system allows three main approaches,
depending on the objective, namely:

• The target system is considered to be the entire FPGA
device and the objective is the evaluation of the effects
of SEUs on the configuration memory itself;

• The target is a model of an ASIC device, but the fault
types are not constrained, the objective being the
evaluation of all malfunctions that can be emulated, by
modifications to the configuration memory;

• The objectives are limited to the specific effects of
SEUs on the target system, with faults into
configuration memory adhering to a specific fault
model (e.g. bit-flips in memory elements of the target
system).

To closely simulate radiation effects (radiation-induced
faults are not deterministic), the fault injection controller
randomly selects a reconfiguration frame and changes the state
of one of its bits. The frame is then written back in the

configuration memory. A log with information about the
position of the bit changed during the fault injection is kept by
the server. This fault injection log is needed for the client to
diagnose the causes of a circuit failure, if it occurs during the
fault injection procedure.

B. Diagnosis of faults effects, including on OCD
infrastructures

While the use of OCD mechanisms for diagnosing fault

effects is considered a normal debug scenario, the rules and
procedures for the diagnosis of faults affecting the OCD
infrastructure are still being developed and documented
applications are rare. Although some research on the
possibility of faults in test infrastructures has identified a
number of problems and proposed some solutions [12], the
added functionalities and complexity of modern OCD
implementations requires further study.

Early OCD implementations were focused on
controllability, assuming that status data could be obtained
through other means (i.e. logic analyzers) or stopping the
target system. Recent trends in debug and fault injection
require real time operation, relying on trace capabilities
embedded on the OCD infrastructures.

OCD functionalities that may assist the diagnosis process
can be summarized as:

• Register and Memory reading;
• Real Time Trace;
• Breakpoints and Watchpoints.

As an example of recent trends on OCD technologies we
may consider the NEXUS proposal for standardization of
OCD interface and functionalities. The proposed infrastructure
should allow all traditional OCD capabilities, including trace
and watchpoint support and also real time access to memory
elements, being potentially very useful. In fact, the overall
observability provided by the OCD is a measure of its
effectiveness for diagnosis purposes.

Testing for OCD infrastructure faults can be executed in
two different ways, namely online and offline. This last option
is used when the target system is not operating and consists on
testing the correct operation of the infrastructure, allowing the
detection of permanent errors on ASIC devices and/or
configuration memory errors, if using FPGA devices. The
online diagnosis of OCD infrastructure errors assumes that the
target system is operating and is even more constrained. It can
be expected that in operational use the OCD is usually idle,
allowing the use of “dead time” for fault detection and/or
diagnosis.

When operating offline, it is possible to use specific test
patterns or sequences to verify the correct behavior of at least
part of the OCD infrastructure. Elements like the
communications port, overall control logic and data paths can
be reasonably tested. Some limitations exist, and some
functions may be impossible to verify. As an example, most
OCD registers are accessible only for writing. Testing all

possible values, in all operational conditions, would also not
be feasible within a reasonable timeframe. The testing of all
interconnections may require excessive time, particularly in
systems with large memory areas. Reactive logic area may be
difficult to test as it would require the microprocessor (or its
components) to apply stimulus, and this would require the
programming and execution of a considerable number of test
algorithms. In short, if relying on the data that is output by the
OCD itself, it will be difficult to detect and diagnosis all
possible faults.

The techniques that can be used to identify faults affecting
an OCD infrastructure and the areas where these can be
detected are summarized as follows:

• Reading of OCD registers;
• Writing into OCD registers;
• Writing and reading microprocessor registers or

memory;
• Inserting and testing watchpoints or breakpoints.

In the specific case of NEXUS compliant infrastructures we
can propose a multi-level procedure for OCD fault detection.
Three modes with different intrusiveness levels are
considered:
• Non intrusiveness and limited availability of the OCD

infrastructure – in this mode it is assumed that debug
operations are being executed in parallel with the fault
diagnosis and therefore operations requiring OCD
resources can only be executed whenever these are not
being used for other purposes (i.e. debug). Only non-
intrusive operations can be executed;

• Non intrusiveness and full availability of the OCD
infrastructure – in this mode all OCD resources are
available for fault diagnosis, but still only non intrusive
operations can be executed;

• Unrestricted OCD access and use – in this mode fault
diagnosis takes precedence over all other operations
including the target system execution. All OCD
resources can be used, including run control,
breakpoints and memory/register access.

Table 1 presents the OCD operations that are available in
NEXUS compliant infrastructures, their possible uses for fault
diagnosis and the expected intrusiveness. Basic operation
refers to the communication channel, message decoding and
control structure and are tested in all operations, as an error on
one of these elements should prevent successful completion of
the required operation. Overhead refers to the required
messages via the OCD communications interface and indicates
the feasibility of using the indicated operation in parallel with
other debug tasks.

Depending on the intrusiveness level considered the
execution of fault detection operations can be done in parallel
with the target execution and scheduled in order to
synchronize with its operation or debug tasks being
performed. Different alternatives are possible and further
research is necessary in order to reach a complete diagnosis
framework.

Table 1 – NEXUS operations for fault diagnosis
Operation Tests Intrusiveness
Device
Identification

OCD register access
(for reading)

Low overhead, no effect
on target

Watchpoint
Insertion

OCD register access
(for writing)
Triggering Logic

Low overhead, no effect
on target

System
Halt/Restart

Run Control Low overhead, requires
target suspension

Breakpoint
Insertion

Triggering Logic
Run Control

Low overhead, requires
target suspension

CPU register
read/write

CPU register access
Run control

Low overhead, requires
target suspension

Memory
read/write

CPU memory access Low overhead, no effect
on target

Program Trace
CPU register access
OCD register access
(for writing)

High overhead, no effect
on target

Data Trace
CPU memory access
OCD register access
(for writing)

High overhead, no effect
on target

It should be noted that, although the referred operations are
based on the NEXUS architecture, they can be used with most
OCD implementations with eventual adjustments or
restrictions. Similarly, the use of more advanced OCD
versions or architectures may provide additional resources. It
is predictable that with present OCD capabilities and access
restrictions, most fault diagnosis tasks would be limited to
fail/pass testing and would present limited coverage.

C. Fault injection via OCD

As OCD infrastructures provide access to internal
resources, in parallel with the target hardware and running
software, they are also an excellent mechanism for modifying
register and / or memory values, for fault injection purposes.
In most cases, OCD fault injection techniques rely on halting
the processor, either by the use of control signals or
breakpoints, and subsequently accessing the targeted registers
or memory locations to insert the intended faults [13].

Furthermore, to address the debug requirements of real time
systems recent microprocessor devices are being equipped
with enhanced OCD infrastructures that provide on-the-fly run
control and memory access. These capabilities are very useful
for real time debugging and can also be reused for fault
injection.

Recent work using both a regular and a modified NEXUS
compliant infrastructure [14, 15] showed that it is possible to
use these to assist real time fault injection into memory and
also into the microprocessor internal registers, in this case
with a minimal performance loss and requiring a temporary
target suspension. Different variants were studied, with the
basic approach being based only on a regular NEXUS
infrastructure (OCD) and a compliant debugger.

These techniques could be used to partially compensate the
limitations identified for the injection of faults into dynamic
elements present in FPGAs. A combination of both
approaches could enhance fault coverage, overall performance
and real time operation. Although we have no results to

sustain this hypothesis, it is possible to understand that these
two approaches are orthogonal, i.e. while service A relies on
the physical infrastructure that is part of every FPGA (the
ability to reconfigure it through the TAP), the present service
C relies on the logic present in the target circuit. Notice that
although a debug infrastructure is usually not considered to be
part of the functional logic (i.e. it does not implement any
circuit function, but rather it is used to debug the circuit
function), it is always a part of the circuit, i.e. it is there and it
can potentially be used for purposes other than debug. In any
case, using OCD mechanisms for injecting faults requires
more user intervention, as information will be dependent on
the target circuit, e.g. the user must know the address of the
register/memory cell where the fault should be inserted to
define the debugger commands to use.

IV. THE VERIFICATION FRAMEWORK

The described verification platform and services require a

flexible methodology to handle the variable capabilities and
limitations of both the fault injection (diagnosis) environment
and the target system. As services may be used individually or
combined (services A and B can be used simultaneously),
there should be a comprehensive interface for the user,
allowing him/her to understand: a) how the verification
platform can be accessed and the circuit uploaded; b) the
sequence of steps associated with each service, and how they
can be executed in parallel; c) how to obtain and understand
the results provided by each service; and finally, d) how to use
a certain service in a remote fashion, without downloading a
circuit onto the verification platform, i.e. how to use the
service with a circuit implemented in an FPGA-board located
near the user (and not near the server where the service is
being executed on).

As initially stated, this paper does not describe an
implemented framework, but rather presents the ideas around
it. The complete sequence of steps associated with each
service is not available yet, but still it is possible to present a
tentative list, for instance, respecting to service A.

1. Upload the FPGA with the circuit whose robustness the
client wants to verify;

2. Initialize the fault injection controller;
3. Apply stimulus to the circuit inputs and read responses

from circuit outputs through I/O buses. Internal values
can also be obtained by downloading (readback) the
FPGA configuration memory;

4. Inject one fault;
5. Evaluate the circuit behaviour in the presence of an

injected fault (detected/undetected, catastrophic, etc.)
6. Repeat steps 3 to 5 during an entire fault injection

campaign;
7. Download the fault injection log.

The previous list highlights the need for the remote user to
interact with the verification platform in order to program it
and apply the stimulus / read the responses during the

execution of a fault injection campaign. This could be
something simple, for instance in the case where the circuit is
a microprocessor running an algorithm that gets all its input
information from a memory and outputs the results to a
memory, or more difficult, e.g. the situation where the circuit
interacts with an external system, physically located near the
user. In the latter situation, it would however be possible to
devise the solution depicted in figure 3, where the fault
injection controller would be running on the remote server,
and, through an Ethernet/JTAG converter, interacting with the
user circuit implemented in a local FPGA-based board [16].

Fig. 3: Running the fault injection controller, in a remote fashion, with a

circuit implemented in a local FPGA-based board.

Being possible to run the verification services with the user

circuit implemented in a local board (i.e. local from the user's
point of view) or in a remote board, many possibilities are
open for the definition of a verification methodology. We
therefore use the expression verification framework to denote
the “basic structure underlying a system or concept”, in our
case, the verification platform and services. Notice that the
possibility to use a certain resource through the Internet is not
new, as in fact many physical resources are now shared
through the Internet [17].

V. CONCLUSION AND FUTURE WORK
This paper presented a framework for making remotely

accessible a verification platform and a set of verification
services. Only the underlying concepts were discussed, some
of them in a very superficial manner. Nevertheless, the
services are based on previous work already described in
literature [14, 15, 18], the main novelties presented here
being: a) the conjunction of different services related to fault
injection; b) the ability to execute them in a circuit uploaded
by a remote user in a FPGA-based board, connected to a local
server; or in alternative c), in a remote fashion, in which case
the user will need to have installed on his/her location an
Ethernet/JTAG converter.

The future work is described along the text and is now
being tackled in a modular approach.

REFERENCES
[1] C. Maxfield, “Logic that mutates while-u-wait”, EDN

Magazine, N.º 23, November 1996.
[2] L. Sterpone and M. Violante, “Analysis of the Robustness of the

TMR Architecture in SRAM-Based FPGAs”, IEEE
Transactions on Nuclear Science, Vol. 52, No. 5, pp. 1545-
1549, Oct. 2005.

[3] M. Ceschia, M. Violante, M. S. Reorda, A. Paccagnella, P.
Bernardi, M. Rebaudengo, D. Bortolato, M. Bellato, P.
Zambolin, A. Candelori, “Identification and Classification of
Single-Event Upsets in the Configuration Memory of SRAM-
Based FPGAs”, IEEE Trans. on Nuclear Science, Vol. 50, No.
6, pp. 2088-2094, December 2003.

[4] M. Bellato, P. Bernardi, D. Bortolato, A. Candelori, M. Ceschia,
A. Paccagnella, M. Rebaudengo, M. S. Reorda, M. Violante, P.
Zambolin, “Evaluating the effects of SEUs affecting the
configuration memory of an SRAM-based FPGA”, Design,
Automation and Test in Europe Conf., pp. 584-589, 2004.

[5] F. Lima Kastensmidt, L. Sterpone, L. Carro, M. S. Reorda, “On
the Optimal Design of Triple Modular Redundancy Logic for
SRAM-Based FPGAs”, Proc.of the Design, Automation and
Test in Europe Conf., pp. 1290-1295, 2005.

[6] L. Sterpone and M. Violante, “A New Reliability-Oriented
Place and Route Algorithm for SRAM-Based FPGAs”, IEEE
Trans. on Computers, Vol. 55, No. 6, pp. 732-744, June 2006.

[7] M. Rebaudengo, M. S. Reorda, M. Violante, “Simulation-based
analysis of SEU effects on SRAM-based FPGAs”, Proc. of the
12th Intl. Conf. on Field-Prog. Logic and Applications, pp. 607-
615, 2002.

[8] A. Berger and M. Barr, “Introduction to On-Chip Debug”,
Embedded Systems Programming, pp. 47-48, March 2003

[9] A. Fidalgo, G. Alves and J. Ferreira, “A Modified Debugging
Infrastructure to Assist Real Time Fault Injection Campaigns”,
9th IEEE Workshop Design and Diagnostics of Electronic
Circuits and Systems, pp. 174-179, Prague, Czech Republic,
April 2006

[10] “The Nexus 5001 Forum Standard for a Global Embedded
Processor Interface version 2.0”; IEEE-ISTO 5001, 2003.

[11] W. Huang and E. J. McCluskey, “A Memory Coherence
Technique for Online Transient Error Recovery of FPGA
Configurations”, Proc. 9th ACM International Symposium on
FPGAs, pp. 183-192, Feb. 2001.

[12] F. Jong and F. Hayden, “Testing the Integrity of the Boundary
Scan Test Infrastructure”, IEEE International Test Conference,
Nashville, USA, October 1991

[13] J. Vinter, O. Hannius, T. Norlander, P. Folkesson, and J.
Karlsson; “Experimental dependability evaluation of a fail-
bounded jet engine control system for unmanned aerial
vehicles”, International Conference on Dependable Systems and
Networks, Yokohama, Japan, June 2005

[14] A. Fidalgo, G. Alves and J. Ferreira, “OCD-FI: On-Chip Debug
and Fault Injection”, Int. Conference on Dependable Systems
and Networks, Philadelphia, USA, June 2006

[15] A. Fidalgo, G. Alves and J. Ferreira, “Real Time Fault Injection
Using Enhanced OCD – A Performance Analysis”, 21st IEEE
Int. Symposium on Defect and Fault Tolerance in VLSI Systems,
pp. 254-264, Arlington, USA, October 2006

[16] Actel, http://www.actel.com/products/solutions/remprog/,
accessed September 2007.

[17] Luís Gomes and Javier García-Zubía (eds.), “Advances on
remote laboratories and e-learning experiences”, University of
Deusto press, 312 pp., June 2007, ISBN 978-84-9830-077-2

[18] Manuel G. Gericota, Gustavo R. Alves, Miguel L. Silva, and
José M. Ferreira, Chapter 10. “Run-time defragmentation for
dynamically reconfigurable hardware”, in New Algorithms,
Architectures and Applications for Reconfigurable Computing,
edited by Patrick Lysaght and Wolfgang Rosenstiel, Springer,
313 p., Abril 2005, pp. 117-129, ISBN 1-4020-3127-0

