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Abstract — The growing number of circuits implemented in Field 
Programmable Gate Arrays (FPGAs) and the increased 
susceptibility, due to higher integration levels, of these devices to 
soft faults caused by radiation at ground level is leading the 
scientific and technical community to the study of new fault 
tolerant designs and solutions, and how they can be verified and 
validated. Using fault injection techniques and enhanced debug 
tools to inject faults in a circuit and observing its behaviour in the 
presence of such faults, respectively, is a proven solution for the 
previous verification and validation problem. This paper presents 
the underlying concepts for a remote verification  framework to 
assess the robustness of circuits to soft faults. It comprises a 
verification platform and a set of verification services that can be 
used in a remote or local fashions.  
 

I.  INTRODUCTION 

The use of nanometer scales in FPGAs manufacturing leads 
to a greater integration and to a per unit power reduction, 
enabling them to grow both in size and complexity. As a 
result, FPGAs became an excellent alternative to the more and 
more expensive  Application Specific Integrated Circuits 
(ASICs) for the implementation of complex circuits, even 
when high production volumes are forecast. Furthermore, due 
to their inherent configurability they enjoy an unsurpassed 
degree of flexibility enabling quicker turnaround time not only 
during the project phase but also in the field, without the 
prohibitive costs associated to ASICs in the same situations. 
These advantages have been reinforced and new possibilities 
added with the advent of dynamic and partially reconfigurable 
SRAM-based FPGAs (e. g. the Virtex family from Xilinx), 
which enable the dynamic customization of hardware 
functions to a particular system or application “on-the-fly” [1]. 

The need to reprogram the whole device, halting its 
operation, was one the major limitations associated with 
classic SRAM-based FPGAs. Additionally, the contents of all 
registers (state information) were lost when the component 
was reprogrammed. In recent FPGA generations, 
manufacturers addressed these issues by supporting partial 
device reconfiguration, which can take place concurrently 
with the system operation. Dynamic reconfiguration goes 
beyond “in-system reprogramming” since it does not interrupt 
the operation of the device. 

However, the same distinctive features that make FPGAs 
more appellative also brought them some negative aspects. As 
a result of size increase the number of configuration memory 
cells in SRAM-based FPGAs grew exponentially and thus 
these devices became particularly vulnerable to radiation-
induced faults, such as Single Event Upsets (SEU) and Multi-
Bit Upsets (MBU) [2-4]. Although these faults do not 
physically damage the chip, their effects are permanent, since 
the functionality of the circuits mapped into the device is 
permanently altered.  

In non-reconfigurable technologies, such as ASICs, 
protection against SEUs is restricted to flip-flops and memory 
areas, because logic paths among them are typically hard-
-wired. Nevertheless, Single Event Transients (SETs) ― a 
charge transient induced in a combinatorial gate by the 
incidence of an heavy ion ― may be propagated to flip-flop 
inputs, where they have a high probability to be registered, 
causing soft-errors in the user data. Besides, if a SET strikes a 
clock line, double-clocking may occur, leading to an 
extemporaneous update that may affect part of or all the flip-
flops driven by that line (depending on the charge value and 
on line attenuation). Because the definition of logic paths in 
FPGAs relies on memory cells, these paths are also 
susceptible to SEUs.  

Therefore, there is a critical need to incorporate fault 
tolerance mechanisms in all the circuits implemented in 
FPGAs. Furthermore, the robustness of those circuits should 
be verified before going to the field, preventing possible flaws 
that may lead to critical failures. That verification may be 
conducted by submitting the circuits to radiation campaigns, 
carried out with the objective of understanding if the effects of 
radiation-induced faults are effectively handled by the 
introduced mechanisms. The problem with radiation 
campaigns is not only their high cost but also the difficulty of 
accessing the radiation facilities necessary to carry them out. 
This prevents assessing the effectiveness, in the closest real 
working conditions, of many solutions proposed in the 
literature to make circuits more robust. 

A number of fault injection approaches, proposed as 
alternatives to those (expensive) radiation campaigns, were 
described in several papers to turn around this situation. In 
these papers the effects of SEUs are emulated as bit-flips in 
the bitstream of the configuration memory of the FPGA, either 
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through changes in the original configuration bitstream or at 
run-time, through dynamic reconfiguration [5-7]. The greatest 
advantage of these methods is not only their comparatively 
smaller costs but also the smaller resources needed to 
implement them. Furthermore, the higher controllability of the 
experiments, in contrast to the unpredictability of radiation 
injection, enables a better diagnosis of the effects of each 
SEU. However, the implementation of such fault injection 
approaches still needs a great deal of knowledge concerning 
the mechanisms of partial reconfiguration and the set up of a 
rather complex infrastructure to automate the procedure. Since 
this infrastructure is independent of the functionality of the 
circuit implemented in the FPGA, a generic infrastructure may 
be built and made available remotely. Furthermore, this 
infrastructure may be complemented by other mechanisms 
such as those required to analyze the behavior of 
microprocessors (implemented as soft cores, inside the FPGA) 
under radiation, using on-chip debug (OCD) facilities [8]. 

The OCD infrastructures implemented by different families 
of processors share some common characteristics that form a 
core feature set, which usually includes run-control, 
breakpoint support and memory and register access. Some 
devices include more advanced features like watchpoints, 
program trace and real time debug capabilities. In general, an 
OCD is a combination of hardware and software on the 
microprocessor that requires some external hardware to be 
used, the basic requirement being some kind of 
communication link between the microprocessor and the host 
machine. The access to the OCD infrastructure is made 
through an interface port usually requiring an external 
debugger in between. When available, trace capabilities 
provided by the OCD can be an efficient mean to monitor 
fault propagation and effects [9]. Enhanced diagnosis 
capabilities, including profiling, are thus important in any fault 
injection technique. An industry consortium has been working 
on the establishment of a standard for OCD, which is formally 
designated as “IEEE-ISTO 5001, The Nexus 5001 Forum Std. 
for a Global Embedded Processor Debug Interface” [10]. 

While the OCD infrastructure is mostly used during the 
development phase, where usually the target circuit is in a 
safe-radiation environment, sometimes it is also used for field 
monitoring, where in such case it will also be affected by 
SEUs. It is therefore important to evaluate the effects of SEUs 
at the OCD infrastructure itself. 

Furthermore, the OCD may also be used for injecting faults 
in the target circuit. This is another area of undergoing 
research, namely for complementing other fault injection 
techniques, which fail to provide the time and spatial 
controllability provided by OCD infrastructures. 

This combined scenario provided the inspiration for a 
verification framework concept, formed by a verification 
platform and a set of verification services, to be made 
remotely available through the Internet. 

This paper presents the ideas behind that verification 
framework and describes the expected benefits for any 
potential user. The rest of this paper is organized as follows: 
section 2 presents a conceptual overview of the verification 

platform; section 3 describes a number of remote verification 
services associated (or not) with the verification platform; 
section 4 presents the proposed overall verification 
framework; and, finally, section 5 concludes and presents the 
future work  directions. 

II.  THE VERIFICATION PLATFORM 
 
The verification platform comprises several interconnected 

blocks, whose operation is controlled by a server, as shown in 
figure 1. This server implements several functionalities 
essential to guarantee the good operation of the whole 
verification framework, namely: 

1. To manage external request accesses to the platform; 
2. To grant access, under certain restrictions and after 

checking the client’s id, to the verification platform and 
associated services; 

3. To upload the users circuit onto the FPGA-based 
board;   

4. To run the services implemented in the verification 
framework;  

5. To cease access and regain complete control of the 
platform in case of client’s misuses or access timeout. 
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Fig. 1: Verification platform block diagram. 

 
When the connection with the remote client is established, 

the server generates the interface through which he/she 
uploads his/her own circuit onto the FPGA and then controls 
the services available in the verification framework. These 
services correspond to: A) the ability to inject faults into the 
FPGA configuration memory; B) using an external debugger 
to diagnose the effects of injected faults, including possible 
effects on the OCD itself; and C) using the OCD and the 
debugger to inject faults on the target registers and memories. 

The fault injection controller is responsible for 
implementing the first mentioned service. At present, it is 
thought to be a software module, running on a host machine 
and controlling the FPGA configuration memory through an 
IEEE1149.1-compatible Test Access Port (TAP). The link 
between the host machine and the TAP can be implemented 
either through a simple PC parallel port (less bandwidth) or 
through a dedicated hardware module (e.g. an USB-JTAG 
adapter – higher bandwidth). Although physically connected 
to the FPGA-based board, the fault injection controller could 
also be used for remotely injecting faults in a board located 
near to the user. In this case, the board TAP had to be 
connected to an Ethernet-JTAG adapter and its IP address 



 
 

indicated to the fault injection controller. The command/data 
signals could then be re-directed to that adapter while the fault 
injection controller would be running at the verification 
platform.  
An external debugger connected to the microprocessor 
(implemented as a soft core inside the FPGA) debug port is 
capable of monitoring the circuit operation while subject to 
the fault injection campaigns. This service B is intended for 
diagnosing the effects of injected faults not only on the 
functional circuit but also on the OCD itself.  

Finally, the same debugger may be used for injecting faults 
on the functional circuit, an additional service C that can not 
be run in parallel with service A, because it is important to 
guarantee the perfect operation of the OCD. 

The possibilities and requirements associated to each 
service are in described in more detail in the following 
section. 

III.  THE VERIFICATION SERVICES 
 

A. Fault Injection on the FPGA configuration memory 
 
The fault injection procedure consists on the insertion of 

bit-flip faults on the configuration memory using the 
reconfiguration capabilities of the target FPGA. Depending on 
the purpose of the affected bit the effects on the target system 
can be classified as follows: 

• A modification to a logical function, namely by altering 
Look-Up Tables (LUTs) contents. This is considered a 
change to a static element; 

• A modification to the routing configuration, adding, 
removing or altering one or more interconnects. Again, 
this is considered a change to a static element; 

• A modification to memory elements contents, used as 
such by the target system. This is considered a change 
to a dynamic element.  

An important aspect, at this point, is that circuit registers 
may be composed of either memory elements or  Configurable 
Logic Block (CLB) flip-flops. Notice  that, while it is possible 
to read the content of a flip-flop, it is not possible to write it 
through the configuration memory, and therefore it is not 
possible to inject faults in CLB flip-flops (constraint 1). 
Additionally, the injection of faults can be performed in real 
time only if targeting frames configuring just static elements 
(constraint 2). Providing that the target system is suspended 
during fault injection, this methodology can be further applied 
to components that can change during execution (i.e. 
memories). The suspension is required to allow reading back 
the contents of relevant elements. The content of the target 
element should be modified, according to the desired fault 
model, while the contents of the other elements pertaining to 
the circuit should remain unchanged. 

For better understanding constraint 2, consider for instance  
the Virtex FPGAs from Xilinx, where the configuration 
memory is divided into one bit wide vertical frames that span 

from the top to the bottom of the array. Each column of CLBs 
comprises multiple frames, which combine internal CLB 
configuration and state information, with column routing and 
interconnection information. A representation of the 
configuration memory frame partitioning is shown in figure 2. 
The LUTs located in the CLBs can also be configured as 
memory modules (RAMs) for user applications. However, the 
extension of this fault injection concept to the injection of 
faults in LUT/RAMs is not viable due to the time interval 
between frame read and frame write and also due to 
configuration memory architecture. The content of the 
LUT/RAMs could be read and written through the 
configuration memory, but if there is a write attempt during 
the interval between the read-modify-write cycle needed to 
perform the fault injection, there is no possible mechanism, 
other than to stop the system, capable of ensuring the 
consistency of the fault injection procedure, as can be inferred 
from [11]. Furthermore, since frames span an entire column of 
CLB slices, the same LUT bit in all of them is updated with a 
single write command. One must thus ensure that all the 
remaining data in the slice is constant. Even if not being 
subject to fault injection, LUT/RAMs should not lie in any 
column that could be affected by the fault injection procedure. 
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Fig. 2: Configuration memory organization. 

 
The knowledge of the target configuration and the 

capability of precisely controlling the fault insertion and its 
position on the target system allows three main approaches, 
depending on the objective, namely: 

• The target system is considered to be the entire FPGA 
device and the objective is the evaluation of the effects 
of SEUs on the configuration memory itself; 

• The target is a model of an ASIC device, but the fault 
types are not constrained, the objective being the 
evaluation of all malfunctions that can be emulated, by 
modifications to the configuration memory; 

• The objectives are limited to the specific effects of 
SEUs on the target system, with faults into 
configuration memory adhering to a specific fault 
model (e.g. bit-flips in memory elements of the target 
system). 

To closely simulate radiation effects (radiation-induced 
faults are not deterministic), the fault injection controller 
randomly selects a reconfiguration frame and changes the state 
of one of its bits. The frame is then written back in the 



 
 

configuration memory. A log with information about the 
position of the bit changed during the fault injection is kept by 
the server. This fault injection log is needed for the client to 
diagnose the causes of a circuit failure, if it occurs during the 
fault injection procedure. 
 

B. Diagnosis of faults effects, including on OCD 
infrastructures 

 
While the use of OCD mechanisms for diagnosing fault 

effects is considered a normal debug scenario, the rules and 
procedures for the diagnosis of faults affecting the OCD 
infrastructure are still being developed and documented 
applications are rare. Although some research on the 
possibility of faults in test infrastructures has identified a 
number of problems and proposed some solutions [12], the 
added functionalities and complexity of modern OCD 
implementations requires further study. 

Early OCD implementations were focused on 
controllability, assuming that status data could be obtained 
through other means (i.e. logic analyzers) or stopping the 
target system. Recent trends in debug and fault injection 
require real time operation, relying on trace capabilities 
embedded on the OCD infrastructures. 

OCD functionalities that may assist the diagnosis process 
can be summarized as: 

• Register and Memory reading; 
• Real Time Trace; 
• Breakpoints and Watchpoints. 

As an example of recent trends on OCD technologies we 
may consider the NEXUS proposal for standardization of 
OCD interface and functionalities. The proposed infrastructure 
should allow all traditional OCD capabilities, including trace 
and watchpoint support and also real time access to memory 
elements, being potentially very useful. In fact, the overall 
observability provided by the OCD is a measure of its 
effectiveness for diagnosis purposes. 

Testing for OCD infrastructure faults can be executed in 
two different ways, namely online and offline. This last option 
is used when the target system is not operating and consists on 
testing the correct operation of the infrastructure, allowing the 
detection of permanent errors on ASIC devices and/or 
configuration memory errors, if using FPGA devices. The 
online diagnosis of OCD infrastructure errors assumes that the 
target system is operating and is even more constrained. It can 
be expected that in operational use the OCD is usually idle, 
allowing the use of “dead time” for fault detection and/or 
diagnosis. 

When operating offline, it is possible to use specific test 
patterns or sequences to verify the correct behavior of at least 
part of the OCD infrastructure. Elements like the 
communications port, overall control logic and data paths can 
be reasonably tested. Some limitations exist, and some 
functions may be impossible to verify. As an example, most 
OCD registers are accessible only for writing. Testing all 

possible values, in all operational conditions, would also not 
be feasible within a reasonable timeframe. The testing of all 
interconnections may require excessive time, particularly in 
systems with large memory areas. Reactive logic area may be 
difficult to test as it would require the microprocessor (or its 
components) to apply stimulus, and this would require the 
programming and execution of a considerable number of test 
algorithms. In short, if relying on the data that is output by the 
OCD itself, it will be difficult to detect and diagnosis all 
possible faults. 

The techniques that can be used to identify faults affecting 
an OCD infrastructure and the areas where these can be 
detected are summarized as follows: 

• Reading of OCD registers; 
• Writing into OCD registers; 
• Writing and reading microprocessor registers or 

memory; 
• Inserting and testing watchpoints or breakpoints. 

In the specific case of NEXUS compliant infrastructures we 
can propose a multi-level procedure for OCD fault detection. 
Three modes with different intrusiveness levels are 
considered: 
• Non intrusiveness and limited availability of the OCD 

infrastructure – in this mode it is assumed that debug 
operations are being executed in parallel with the fault 
diagnosis and therefore operations requiring  OCD 
resources can only be executed whenever these are not 
being used for other purposes (i.e. debug). Only non-
intrusive operations can be executed; 

• Non intrusiveness and full availability of the OCD 
infrastructure – in this mode all OCD resources are 
available for fault diagnosis, but still only non intrusive 
operations can be executed; 

• Unrestricted OCD access and use – in this mode fault 
diagnosis takes precedence over all other operations 
including the target system execution. All OCD 
resources can be used, including run control, 
breakpoints and memory/register access. 

Table 1 presents the OCD operations that are available in 
NEXUS compliant infrastructures, their possible uses for fault 
diagnosis and the expected intrusiveness. Basic operation 
refers to the communication channel, message decoding and 
control structure and are tested in all operations, as an error on 
one of these elements should prevent successful completion of 
the required operation. Overhead refers to the required 
messages via the OCD communications interface and indicates 
the feasibility of using the indicated operation in parallel with 
other debug tasks. 

Depending on the intrusiveness level considered the 
execution of fault detection operations can be done in parallel 
with the target execution and scheduled in order to 
synchronize with its operation or debug tasks being 
performed. Different alternatives are possible and further 
research is necessary in order to reach a complete diagnosis 
framework. 



 
 

Table 1 – NEXUS operations for fault diagnosis 
Operation Tests Intrusiveness 
Device 
Identification 

OCD register access 
(for reading) 

Low overhead, no effect 
on target 

Watchpoint 
Insertion 

OCD register access 
(for writing) 
Triggering Logic 

Low overhead, no effect 
on target 

System 
Halt/Restart 

Run Control Low overhead, requires 
target suspension 

Breakpoint 
Insertion 

Triggering Logic 
Run Control 

Low overhead, requires 
target suspension 

CPU register 
read/write 

CPU register access 
Run control 

Low overhead, requires 
target suspension 

Memory 
read/write 

CPU memory access Low overhead, no effect 
on target 

Program Trace  
CPU register access 
OCD register access 
(for writing) 

High overhead, no effect 
on target 

Data Trace 
CPU memory access 
OCD register access 
(for writing) 

High overhead, no effect 
on target 

It should be noted that, although the referred operations are 
based on the NEXUS architecture, they can be used with most 
OCD implementations with eventual adjustments or 
restrictions. Similarly, the use of more advanced OCD 
versions or architectures may provide additional resources. It 
is predictable that with present OCD capabilities and access 
restrictions, most fault diagnosis tasks would be limited to 
fail/pass testing and would present limited coverage. 
 

C. Fault injection via OCD 
 

As OCD infrastructures provide access to internal 
resources, in parallel with the target hardware and running 
software, they are also an excellent mechanism for modifying 
register and / or memory values, for fault injection purposes. 
In most cases, OCD fault injection techniques rely on halting 
the processor, either by the use of control signals or 
breakpoints, and subsequently accessing the targeted registers 
or memory locations to insert the intended faults [13]. 

Furthermore, to address the debug requirements of real time 
systems recent microprocessor devices are being equipped 
with enhanced OCD infrastructures that provide on-the-fly run 
control and memory access. These capabilities are very useful 
for real time debugging and can also be reused for  fault 
injection. 

Recent work using both a regular and a modified NEXUS 
compliant infrastructure [14, 15] showed that it is possible to 
use these to assist real time fault injection into memory and 
also into the microprocessor internal registers, in this case 
with a minimal performance loss and requiring a temporary 
target suspension. Different variants were studied, with the 
basic approach being based only on a regular NEXUS 
infrastructure (OCD) and a compliant debugger. 

These techniques could be used to partially compensate the 
limitations identified for the injection of faults into dynamic 
elements present in FPGAs. A combination of both 
approaches could enhance fault coverage, overall performance 
and real time operation. Although we have no results to 

sustain this hypothesis, it is possible to understand that these 
two approaches are orthogonal, i.e. while service A relies on 
the physical infrastructure that is part of every FPGA (the 
ability to reconfigure it through the TAP), the present service 
C relies on the logic present in the target circuit. Notice that 
although a debug infrastructure is usually not considered to be 
part of the functional logic (i.e. it does not implement any 
circuit function, but rather it is used to debug the circuit 
function), it is always a part of the circuit, i.e. it is there and it 
can potentially be used for purposes other than debug. In any 
case, using OCD mechanisms for injecting faults requires 
more user intervention, as information will be dependent on 
the target circuit, e.g. the user must know the address of the 
register/memory cell where the fault should be inserted to 
define the debugger commands to use. 

IV.  THE VERIFICATION FRAMEWORK 
 
The described verification platform and services require a 

flexible methodology to handle the variable capabilities and 
limitations of both the fault injection (diagnosis) environment 
and the target system. As services may be used individually or 
combined (services A and B can be used simultaneously), 
there should be a comprehensive interface for the user, 
allowing him/her to understand: a) how the verification 
platform can be accessed and the circuit uploaded; b) the 
sequence of steps associated with each service, and how they 
can be executed in parallel; c) how to obtain and understand 
the results provided by each service; and finally, d) how to use 
a certain service in a remote fashion, without downloading a 
circuit onto the verification platform, i.e. how to use the 
service with a circuit implemented in an FPGA-board located 
near the user (and not near the server where the service is 
being executed on).   

As initially stated, this paper does not describe an 
implemented framework, but rather presents the ideas around 
it. The complete sequence of steps associated with each 
service is not available yet, but still it is possible to present a 
tentative list, for instance, respecting to service A. 

1. Upload the FPGA with the circuit whose robustness the 
client wants to verify;  

2. Initialize the fault injection controller; 
3. Apply stimulus to the circuit inputs and read responses 

from circuit outputs through I/O buses. Internal values 
can also be obtained by downloading (readback) the 
FPGA configuration memory; 

4. Inject one fault; 
5. Evaluate the circuit behaviour in the presence of an 

injected fault (detected/undetected, catastrophic, etc.) 
6. Repeat steps 3 to 5 during an entire fault injection 

campaign; 
7. Download the fault injection log. 

The previous list highlights the need for the remote user to 
interact with the verification platform in order to program it 
and apply the stimulus / read the responses during the 



 
 

execution of a fault injection campaign. This could be 
something simple, for instance in the case where the circuit is 
a microprocessor running an algorithm that gets all its input 
information from a memory and outputs the results to a 
memory, or more difficult, e.g. the situation where the circuit 
interacts with an external system, physically located near the 
user. In the latter situation, it would however be possible to 
devise the solution depicted in figure 3, where the fault 
injection controller would be running on the remote server, 
and, through an Ethernet/JTAG converter, interacting with the 
user circuit implemented in a local FPGA-based board [16].  

 
Fig. 3: Running the fault injection controller, in a remote fashion, with a 

circuit implemented in a local FPGA-based board. 
 
Being possible to run the verification services with the user 

circuit implemented in a local board (i.e. local from the user's 
point of view) or in a remote board, many possibilities are 
open for the definition of a verification methodology. We 
therefore use the expression verification framework to denote 
the “basic structure underlying a system or concept”, in our 
case, the verification platform and services. Notice that the 
possibility to use a certain resource through the Internet is not 
new, as in fact many physical resources are now shared 
through the Internet [17]. 

V.  CONCLUSION AND FUTURE WORK 
This paper presented a framework for making remotely 

accessible a verification platform and a set of verification 
services. Only the underlying concepts were discussed, some 
of them in a very superficial manner. Nevertheless, the 
services are based on previous work already described in 
literature  [14, 15, 18], the main novelties presented here 
being: a) the conjunction of different services related to fault 
injection; b) the ability to execute them in a circuit uploaded 
by a remote user in a FPGA-based board, connected to a local 
server; or in alternative c), in a remote fashion, in which case 
the user will need to have installed on his/her location an 
Ethernet/JTAG converter. 

The future work is described along the text and is now 
being tackled in a modular approach. 
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