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Abstract: The Moore’s law (ML) is one of many empirical expressions that is used to characterize
natural and artificial phenomena. The ML addresses technological progress and is expected to
predict future trends. Yet, the “art” of predicting is often confused with the accurate fitting of
trendlines to past events. Presently, data-series of multiple sources are available for scientific
and computational processing. The data can be described by means of mathematical expressions
that, in some cases, follow simple expressions and empirical laws. However, the extrapolation
toward the future is considered with skepticism by the scientific community, particularly in the
case of phenomena involving complex behavior. This paper addresses these issues in the light of
entropy and pseudo-state space. The statistical and dynamical techniques lead to a more assertive
perspective on the adoption of a given candidate law.
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1. Introduction

In 1965, the physical chemist Gordon E. Moore, co-founder of both Intel and Fairchild
Semiconductor, wrote an article for the 35th anniversary issue of Electronics magazine about
the evolution of the semiconductor industry [1]. Moore noted that the complexity of minimum
cost semiconductor components had doubled per year since 1959, the date of production of
the first chip [2]. Such exponential increase in the number of components on an integrated circuit
became later the so-called Moore’s law (ML), predicting that the number of components that could
be placed on a chip could be expected to double every year, and that such trend would continue for
the foreseeable future [3–5].

Moore revised his first prediction in the year 1980 [6], stating that the exponential increase
could approximately double every two years, rather than every year [6]. Since 1980, ML had
successive revisions and reinterpretations that, in fact, ensured its survival. At the beginning of the
1980’s, ML meant “the number of transistors on a chip would double every 18 months”, in 1990 it
became interpreted as “doubling of microprocessor power every 18 months”, and in the 1990’s it was
reformulated to enunciate that “computing power at fixed cost would double every 18 months” [2],
just to cite a few formulations. This apparent weakness of the empirical ML became its main strength,
and made the law seem accurate until now [3].

The ML disseminated beyond semiconductor and computer technologies [3,7]. In a broader
sense, the ML refers to the perceived increase in the rate of technological development throughout
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history, suggesting faster and more profound changes in the future, possibly accompanied by
underlying economic, cultural and social changes [8–13].

Given the apparent ubiquity of the ML (here interpreted in the broad sense of “exponential
growth”) [13–15], simple questions can be raised: Does ML describe technological development
accurately? Can it be used for reliable forecasting?

The so-called exponential growth should be understood as an approximate empirical model
for real data. During more than two decades, several authors foresaw the end of ML, arguing
that technological limits were close [5,16,17]. Others defended that ML would survive for many
years, as they envisaged the emergence of a new paradigm that could enlarge dramatically the
existent technological bounds. Within such paradigm novel technologies would became available,
such as quantum devices [18–20], biological [21], molecular [22], or heterotic computing [23]. Those
technologies would thereafter keep ML alive.

Whatever one’s opinion, either forward-looking, or conservative, we should note that forecasting
technological evolution for many years ahead from now is difficult. Technological innovation means
by definition something that is new and, therefore, may be inherently unpredictable [24]. However,
even a rough knowledge about technological evolution could be invaluable for helping decision
makers to delineate adequate policies, seeking sustainability and improvement of individual and
collective living [25,26].

In this paper we seek to contribute for the discussion of some the questions raised
above. We illustrate our scheme with real data representative of technological progress in time.
In that perspective, we adopt 4 performance indices: (i) the world inflation-adjusted gross domestic
product (GDP), measured in 2010 billions of U.S. dollars; (ii) the performance of the most powerful
supercomputers (PPS), expressed in tera FLOPS (floating-point operations per second); (iii) the
number of transistors per microprocessor (TPM), and (iv) the number of U.S. patents granted (USP).
Obviously, other data-series may be candidate for assessing the technological evolution. Data-series
from economy, or from finance, can be thought as possible candidates since there is some relationship
between them and scientific and technological progress. However, country economies evolve very
slowly [27], while financial series are extremely volatile [28]. Since they reflect a plethora of
phenomena, not directly related with our main objective, we do not consider them here.

We start by the usual algebraic, or “static”, perspective. In a first step, we adopt nonlinear
least-squares to determine different candidate models for the real data. In a second step, we interpret
the data-series as random variables. We adopt a sliding window to slice the data into overlapping
time intervals and we evaluate the corresponding entropy. We then develop a “dynamical”
perspective and we analyze the data by means of the pseudo-state space (PSS) technique. We
conjecture about the usefulness of the entropy information and the PSS paths as complementary
criteria for assessing the ability of the approximated models in the perspective of forecasting.

In this line of thought, the paper is organized as follows. In Section 2 we analyze the data and in
Section 3 we discuss the results draw the main conclusions.

2. Data Analysis and Results

The 4 performance indices studied here are commonly referred as having exponential growth.
The corresponding data-series have different time-lengths, with time resolution of 1 year. In some
series we may have several samples for the same year, or a variable number of years between
consecutive data points. For these cases, we calculate the annual mean value, or interpolate linearly
between adjacent points. The data-series corresponding to the indices {GDP, PPS, TPM, USP} will
be denoted by yi (i = 1, · · · , 4). The information is available at distinct sources. The World Bank
database [29] was used for retrieving the GDP data. The PPS file is obtained from the TOP500
website [30]. The TPM data-series is available at Wikipedia [31]. The USP information was gathered
from the U.S. Patent and Trademark Office [32]. Table 1 summarizes the main features of the
original data.
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Table 1. Features of the original data.

i Performance Index Time Range Number of Points Units

1 GDP 1970–2015 46 2010 US$ × 109

2 PPS 1994–2015 42 FLOPS × 1012

3 TPM 1970–2015 102 Transistors
4 USP 1946–2015 70 Patents

We study the data-series to determine whether there is any signature of determinism underlying
the data. The existence (or absence) of determinism will point towards the adoption of deterministic
models (or statistical approaches) for representing and analyzing the data [33]. For testing
determinism, we use the autocorrelation function (ACF), due to its simplicity, but other methods
can be chosen [34,35].

We apply a logarithm transformation ỹi = ln(yi) to the data-series [36] and then we calculate the
ACF of ỹi. Figure 1 depicts the correlograms for {GDP, PPS, TPM, USP}. For each case the maximum
lag corresponds to approximately 50% of the total time span, expressed in years. An identical pattern
is observed for all data-series, where the ACF gradually drops toward zero as the time lag increases.
Such pattern is compatible with the existence of determinism.
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Figure 1. Correlogram for the data-series ỹi: (a) GDP; (b) PPS; (c) TPM; (d) USP.

We now test the data not only for the standard exponential growth (Exp), but also for 5 additional
hypotheses, namely the logistic (Log), Morgan-Mercer-Flodin (MMF), rational (Rat), Richards (Ric)
and Weibull (Wei) models, given by:

Exp : ln(y) = a + bt, (1)
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Log : ln(y) =
a

1 + be−ct , (2)

MMF : ln(y) =
ab + ctd

b + td , (3)

Rat : ln(y) =
a + bt

1 + ct + dt2 , (4)

Ric : ln(y) =
a

(1 + eb−ct)1/d , (5)

Wei : ln(y) = a− be−ctd
, (6)

where t represents time and {a, b, c, d} ∈ R are parameters.
Exponential models describe well many natural and artificial phenomena for limited periods

of time [37–39]. However, since it is not possible for any physical variable to grow indefinitely, we
often consider that any growth process has an upper limit, or saturation, level [40,41]. The sigmoidal
models reveal that kind of behavior and are considered here (i.e., models Log, MMF, Ric, Wei). The
Rat equation is tested for their simplicity, yet good adaptability to different shapes. We can adopt
other fitting functions, eventually with more parameters, that adjust better to some particular series.
However, as we shall discuss in the sequel, the main idea is to test some possible “candidate laws”
for predicting future events. Therefore, only simple analytical expressions, requiring a limited set of
parameters, are considered.

In Subsections 2.1 and 2.2 we adopt nonlinear least-squares and entropy, respectively, as
complementary tools for data analysis.

2.1. Nonlinear Least-Squares

We adopt the nonlinear least-squares [42,43] to fit the Models (1)–(6) to the logarithm of the
data-series, ỹi.

Figure 2 depicts the original values, ỹi, and their estimated values, ŷi, obtained from the
Models (1)–(6). The plots were extended toward a 10 year period in the future, that is, until year 2025.
We observe good fit of all models to each available data-series. Moreover, when the models
are used for extrapolating beyond year 2015, it is difficult to argue in favor of a given one in
detriment of others.
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Figure 2. Cont.
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Figure 2. Time evolution of the logarithm of the data-series, ỹi, and the model approximations, ŷi:
(a) GDP; (b) PPS; (c) TPM; (d) USP.

Table 2 summarizes the results in terms of the normalized root-mean-square deviation (NRMSD)
and the coefficient of determination (R2) for ỹi versus ŷi, within the time span of the original data.
Figure 3 depicts the residuals (ỹi − ŷi)

2. As can be seen, those are reasonably symmetrical, tending
to cluster towards the middle of the plot, and do not reveal clear patterns. For all fitting functions
the GDP and the USP are the series that lead to the best and worst fitting, respectively. On the other
hand, for all series, the Rat is the function leading to the best fit, closely followed by the MMF.

Table 2. Values of RMSD and R2 for ỹi versus ŷi, obtained by means of nonlinear least-squares.

Exponential Logistic MMF Rational Richards Weibull

NRMSD, R2 NRMSD, R2 NRMSD, R2 NRMSD, R2 NRMSD, R2 NRMSD, R2

GDP 0.0138, 0.9976 0.0130, 0.9980 0.0124, 0.9982 0.0111, 0.9985 0.0131, 0.9979 0.0156, 0.9981
PPS 0.0186, 0.9962 0.0219, 0.9953 0.0159, 0.9973 0.0142, 0.9979 0.0163, 0.9973 0.0173, 0.9974
TPM 0.0713, 0.9521 0.0672, 0.9565 0.0669, 0.9578 0.0672, 0.9595 0.0672, 0.9594 0.0670, 0.9581
USP 0.0826, 0.8998 0.0796, 0.9040 0.0777, 0.9049 0.0760, 0.9124 0.0796, 0.9040 0.0779, 0.9047
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Figure 3. Cont.
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Figure 3. Residuals (ỹi − ŷi)
2 of the fits generated by nonlinear least-squares: (a) GDP; (b) PPS;

(c) TPM; (d) USP.

2.2. Entropy Analysis

We consider here that each data-series {GDP, PPS, TPM, USP} can be modeled as a random
variable, Y = g(X), where g(·) represents a function given by Equations (1)–(6) and X is a
random variable with probability density function (pdf) fx(x). This means that Y results from the
transformation of the variable X by means of g(·). The pdf of Y, fy(y), is determined by g(·) and
fx(x), by means of the so-called transformation technique, as follows [44].

Suppose that X is a continuous random variable with pdf fx(·), andX = {x : fx(x) > 0} denotes
the set of all possible values of fx(x). Assuming that (i) function y = g(x) defines a one-to-one
transformation of X onto its domain D, and that (ii) the derivative of x = g−1(y) is continuous
and nonzero for y ∈ D, where g−1(y) is the inverse function of g(x), i.e., g−1(y) is that x for which
g(x) = y, then Y = g(X) is a continuous random variable with pdf:

fy(y) =


∣∣∣ d

dy g−1(y)
∣∣∣ · fx[g−1(y)], if y ∈ D

0, otherwise
(7)

Once determined fy(y) we can then calculate the corresponding entropy. This scheme avoids
problems that occur if we determine entropy directly based on the original data-series, since the
reduced number of points available yield inaccurate histograms for estimating the pdf of the indices
{GDP, PPS, TPM, USP}.

We generate a total of 10,000 points for each data-series by means of Models (1)–(6). We then
adopt a sliding time window in order to slice {GDP, PPS, TPM, USP} into partially overlapping time
intervals. For each window we obtain fy(y) by means of the histograms of relative frequencies with
bin size L = 100 and for a uniform pdf fx(x), where x stands for time. We then calculate the resulting
Shannon entropy, S, defined by [45–48]:

S = −
L

∑
k=1

pk ln pk. (8)

We adopt a window length W = 5 years with 40% overlap (i.e., 2 years) making a total of
{18, 10, 18, 26} windows for the data-series {GDP, PPS, TPM, USP}, respectively. Alternative values
for W were tested, but that revealed as a good compromise instantaneous and average behavior of
the entropy evolution.

Figure 4 depicts the results obtained for the Exp, Log, MMF, Rat, Ric and Wei models. In general
we verify a smooth variation of S(t) for most cases, with exception of the Rat for the {GDP, TPM,
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USP}, and the MMF and Wei for the {GDP, USP}. So, the “static” methods of Subsections 2.1 and 2.2
reveal some limitations in evaluating the prediction performance of the candidate laws. In the next
Section we discuss the results in the light of the dynamic behavior of these models.
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Figure 4. Entropy per window for the 6 model approximations: (a) GDP; (b) PPS; (c) TPM; (d) USP.

2.3. Pseudo-State Space

The PSS is a technique adopted in the context of non-linear dynamics, especially useful when
there is a lack of knowledge about the system [49,50]. Generally speaking, the PSS allows a
dynamical system to be represented in a higher dimensional space by taking a small sample of signals
representing measurements of the system time history. The PSS is justified by Takens’ embedding
theorem [51], which states that if a time series is one component of an attractor that can be represented
by a smooth d-dimensional manifold. Then, the topological properties of the signal are equivalent to
those of the embedding formed by the n-dimensional state space vectors:

u(t) = [s(t), s(t− τ), s(t− 2τ), · · · , s(t− (n− 1)τ)], (9)

where n > 2d + 1, {d, n} ∈ N and τ ∈ R+. Parameters τ and n denote the time delay and embedding
dimension, respectively. The vector u(t) is commonly plotted in a n-dimensional graph, forming a
trajectory. Usually we choose n = 3, or n = 2, in order to facilitate the interpretation of the graphs.
The PSS produced by u(t) is expected to allow conclusions about the system dynamics [50].

A key issue in the PSS technique is the choice of τ. Intuitively, choosing τ too small will result in
time series s(t) and s(t− τ) close to each other, not providing two independent coordinates. On the
other hand, choosing τ too large will lead to series s(t) and s(t− τ) almost independent of each other,
providing totally unrelated directions. Most criteria for choosing τ are based on the behavior of the
autocorrelation, or the mutual information (MI), functions. The MI has the advantage of dealing well



Entropy 2016, 18, 217 8 of 11

with nonlinear relations. Therefore, one possible criterion is to consider the value of τ corresponding
to the first local minimum of the MI function.

The MI is a measure of how much information can be predicted about one time series, giving
full information about the other [47,52]. Let X and Y represent two discrete random variables with
alphabet X and Y , respectively, then their mutual information I(X, Y) is given by:

I(X, Y) = ∑
y∈Y

∑
x∈X

p(x, y) · ln
(

p(x, y)
p(x) · p(y)

)
, (10)

where, p(x) and p(y) represent the marginal pdf of X and Y, respectively, and p(x, y) denotes the
joint pdf.

Given the real data representative of the indices {GDP, PPS, TPM, USP}, we start by calculating
the MI between each data-series and their delayed versions, obtaining the minima for τ = {4, 4, 6, 4}
(years). In a second step, we use the Models (1)–(6) to generate year-spaced data points within the
time span of the original data-series, as well as points for 2τ years before and 2τ after that period.
These extrapolated points are then used for regenerating the data that is lost when we construct the
PSS vectors in the 3-dimensional space. Therefore, each year regenerated is given by the median of
the corresponding points extrapolated by the models.

Figure 5 depicts the PSS paths in log scales for n = 3 and the indices {GDP, PPS, TPM, USP}. For
the indices PPS and USP we do not include the Rat model, since it degenerates when extrapolating
for certain years.
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Figure 5. Real and model approximated PSS plots (in log units): (a) GDP; (b) PPS; (c) TPM; (d) USP.

3. Discussion of the Results and Conclusions

Applied sciences are fertile in providing data that can be fitted by means of trendlines. In many
cases we obtain heuristic “laws”, being particularly popular the trendlines of the exponential and
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power-law types [53–59]. The extrapolation of some “law” towards the future, as in the cases of
R. Kurzweil [15] or E. Brynjolfsson [60], is often received with some skepticism by the scientific
community, since future seems unpredictable a priori within present day paradigm of cause and effect.
Nonetheless, the debate of predictability is out of the scope of the present paper that intends mainly
to explore possible visions of the future complexity based on today’s available data.

We observe that the proposed trendlines fit well the data within the time period of the data-series.
In fact, other expressions could be included in the set under analysis, that is kept to 6 just for the sake
of parsimony. Therefore, the purpose of our study is to explore the behavior of such “laws” in the
future and to design a scheme based on entropy to access such evolution.

Bearing these ideas in mind, adopting a time varying window and an entropy measure to
evaluate the evolution of the trendline g(·) can be interpreted in a probabilistic way. Time consists of
an input random variable X that excites function g(X) by means of a uniform pdf. Finally, the entropy
measures the output random variable Y. Therefore, the real-world data-series can be interpreted as
“noisy” measurements of the unknown trendline “law”.

In the present case with 4 data-series and 6 trendlines, we observe that the simple Exp function
can be interpreted as a reasonable good, but not flexible, expression. In the TPM data-series the Rat
function is clearly not adequate for future extrapolations, but seems to remain a valid option in the
rest of the series. In what concerns the other trendlines, both the time and the entropy analysis do not
lead to the emergence of one “best option”.

The 3D PSS inspired in dynamical systems seems more interesting to assess the performance of
a given trendline than the 2D entropy-based approach. It is straightforward to point the Rat, Ric and
Wei models for the TPM series as not adequate. Yet, in most cases we do not have an assertive criteria
to decide for the “best” trendline. May be as pointed by the Danish philosopher Søren Kierkegaard
“Life can only be understood backwards; but it must be lived forwards”.
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