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This paper proposes a novel approach for generating multi-scroll chaotic attractors in multi-

directions for fractional-order (FO) systems. The stair nonlinear function series and the saturated

nonlinear function are combined to extend equilibrium points with index 2 in a new FO linear sys-

tem. With the help of stability theory of FO systems, stability of its equilibrium points is analyzed,

and the chaotic behaviors are validated through phase portraits, Lyapunov exponents, and Poincar�e
section. Choosing the order 0.96 as an example, a circuit for generating 2-D grid multiscroll chaotic

attractors is designed, and 2-D 9 � 9 grid FO attractors are observed at most. Numerical simulations

and circuit experimental results show that the method is feasible and the designed circuit is correct.

With the development of fractional-order (FO) calculus,

it is well verified that many nonlinear FO differential

systems, such as the FO Duffing oscillator, the FO Chua

circuit, or the so-called FO R€ossler, FO Chen, FO

Lorenz, and FO L€u systems, among others, exhibit com-

plex bifurcations and chaotic phenomena. These systems

can generate single-scroll or double-scroll chaotic attrac-

tors. Multi-scroll chaotic attractors (MSCA) admit much

more complex dynamic behaviors, more adjustability,

and more encryption parameters. Therefore, MSCA

have more potential application to communications,

cryptography, and many other fields. Naturally, the

design and implementation of fractional MSCA is an

interesting and challenging topic. In this paper, a new

MSCA generation method will be introduced, which is

different from the existing ones. In addition, circuit ex-

perimental results of the generation of fractional MSCA

are presented.

I. INTRODUCTION

The study of chaos started about 300 years ago and the

discovery of the Lorenz system brought the area into a new

era. Since chaos is useful in many fields, such as secure com-

munication, signal processing, digital data, systems identifi-

cation, data encryption, nonlinear optimization, power

systems, and others,1–3 generating chaos has received atten-

tion from many scholars.

Compared with the single-scroll chaotic attractors, it is

well known that MSCA reveal much more complex topologi-

cal structures and dynamic behaviors. They have been used in

secure communications and encryption. Therefore, the genera-

tion of MSCA is a subject of increasing interest, and a

considerable number of researchers have done work in this

field.4–13 For example, Tang et al. introduced a sine-function

approach to generate n-scroll attractors, and a 9-scroll-attractor

was observed for the first time.4,5 Later, Yalcin et al. presented

a family of multi-directional, MSCA by adopting a stair non-

linear function series (SNFS) method, including 1-D n-scroll,

2-D n�m-scroll, and 3-D n�m� p-scroll attractors.6 L€u
et al. presented a hysteresis to generate 1-D, 2-D, and 3-D

multi-directional MSCA.7–11 Soon afterwards, L€u et al. pro-

posed a saturated nonlinear function (SNLF) approach to cre-

ate 1-D, 2-D, and 3-D multi-directional MSCA.12 Zhang and

Yu introduced two different kinds of piecewise-linear func-

tions (PWLF) to generate multi-directional MSCA in a single

system.13 Nowadays, there are many methods to design and

realize MSCA in the classical differential systems.14–16

In the last decades, fractional calculus have gained con-

siderable research attention for its more advantages than

classical integer-order ones in describing memory and hered-

itary properties of many materials and processes.17–23 It was

recognized that many fractional-order (FO) nonlinear differ-

ential systems, including the FO Duffing oscillator,24 the FO

Chua circuit,25 or the so-called FO R€ossler,26 FO Chen,27 FO

Lorenz,28 FO L€u,29 and FO Liu systems,30 exhibit complex

bifurcations and chaotic phenomena. Moreover, the research

on the multi-directional MSCA generated from FO linear

autonomous systems by adding different functions has also

been reported. In fact, topological structures of MSCA in FO

systems are different from those in the classical differential

systems because of the nonlocal properties of FO differential

operators. Only a few FO systems capable of generating

multi-directional MSCA have been reported in recent years.

For instance, Deng et al. proposed the SNFS, the SNLF, and

the hysteresis series methods to generated multi-directional

MSCA based on a specific FO differential linear system.31–33

Sun et al. discussed the generation of MSCA based on the
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switched FO multi-model systems.35 Ahmad36 demonstrated

that multiple-scroll attractors can be obtained from FO

chaotic systems by using a modified nonlinearity and an

appropriate set of control parameters. Xu37 investigated the

generation of multi-wing chaotic attractors using integer and

FO linear differential equation systems with switching

controls.

Note that one kind of PWLF was used to generate multi-

directional MSCA in the above papers. No one has tried to

create multi-directional MSCA in one single FO system

employing two (or more) different kinds of PWLF.

Therefore, it is interesting to ask whether the FO system can

also generate multi-directional MSCA, by using two differ-

ent kinds of PWLF, such as the SNFS and the SNLF, It is

worth mentioning that the SNFS and the SNLF are different

kinds of functions which have different forming mecha-

nisms. Our work gives a positive answer to the question for-

mulated above. Moreover, it should be pointed out that these

aforementioned MSCA, created from FO systems, were only

verified by numerical simulations.31–33,35–37 To the best of

our knowledge, there are few results about circuit realization

of MSCA generated from FO systems. Nonetheless, it is

more substantive to implement the FO system by circuits

than merely by simulating them.

Motivated by the above discussions, this paper proposes

a novel FO system with multi-directional MSCA, which is

not topological equivalent to the systems in References

31–33 and 35–37. Similarly, the equilibrium points with in-

dex 2 of this system can be extended by adding breakpoints

into the PWLF. Two different PWLF, SNFS and SNLF, are

combined to generate MSCA in our FO system in the x-y or

the y-x planes. That is to say, we use SNFS to generate

attractors in x-axis and SNLF in y-axis, or SNFS in y-axis

and SNLF in x-axis. It is straightforward to see that the

attractors generated by two different kinds of functions

are topologically nonequivalent to those generated by only

one kind of function. The dynamical behavior of the multi-

directional multi-scroll system is further investigated by

employing phase portraits, the Lyapunov exponents, and

Poincar�e section. A simple circuit of order 0.96 is designed,

and as many as 9� 9 attractors are observed.

The rest of this paper is organized as follows. In Section II,

some preliminaries of the FO system are presented. In

Section III, the generation of FO multi-directional MSCA is

considered. In Section IV, a circuit is designed, and several

experimental results are presented. Finally, in Section V, con-

clusions are drawn.

II. PRELIMINARIES

This section briefly introduces several basic definitions

of the fractional calculus.

There are many different kinds of definitions for FO

derivatives, but the most commonly used ones are the

Riemann-Liouville and the Caputo definitions.

Definition 1. (Podlubny19) The FO integral (Riemann-

Liouville integral) D�a
t0;t

with FO a 2 Rþ of function x(t) is

defined as

D�a
t0;t

x tð Þ ¼ 1

C að Þ

ðt

t0

t� sð Þa�1x sð Þds;

where Cð�Þ is the gamma function, CðsÞ ¼
Ð1

0
ts�1e�tdt.

Definition 2. (Podlubny19) The Riemann-Liouville de-

rivative of FO a of function x(t) is given as

RLDa
t0;t

x tð Þ ¼ dn

dtn
D
� n�að Þ
t0;t x tð Þ;

¼ dn

dtn

1

C n� að Þ

ðt

t0

t� sð Þn�a�1x sð Þds;

where n� 1 < a < n 2 Zþ.

Definition 3. (Podlubny19) The Caputo derivative of FO

a of function x(t) is defined as

CDa
t0;t

x tð Þ ¼ D
� n�að Þ
t0;t

dn

dtn
x tð Þ;

¼ 1

C n� að Þ

ðt

t0

t� sð Þn�a�1x nð Þ sð Þds;

where n� 1 < a < n 2 Zþ.

In this paper, we adopt the Caputo FO derivative, Da,

because of its convenience in engineering applications.

The stability of FO systems is different from that in the

integer case. So, the following definitions and lemmas are

presented firstly.

Definition 4. (Deng and L€u33) Considering a general

n-dimensional FO system

DaðXÞ ¼ f ðXÞ (1)

the roots of the equation f(X)¼ 0 are called the equilibrium

points of the system, where DaðXÞ ¼ ðDax1;D
ax2; :::;D

axnÞT ;
X ¼ ðx1; x2; :::; xnÞT 2 Rn.

Definition 5. (Li and Ma38) Suppose that E is an equilib-

rium point of system (1), and that all the eigenvalues kiðJÞ
ði ¼ 1; 2;…; nÞ of the Jacobi matrix J at the equilibrium

point E satisfy: jkiðJÞj 6¼ 0 and jargðkiðJÞÞj 6¼ ap=2, then we

call E a hyperbolic equilibrium point. The symbol J denotes

the Jacobi matrix of f(X)¼ 0, and ki are the eigenvalues of J.

It follows from the Theorem 3 proposed in Ref. 38 that

the vector field f(x) is topologically equivalent with its line-

arization vector field Jx in the neighborhood of the equilibri-

um point E if E is a hyperbolic equilibrium point. Therefore,

the following lemma (Lemma 1) can serve as an effective

way to determine the stability of system (1) at E.

Lemma 1. (Deng and L€u33) For n¼ 3, system (1) is as-

ymptotically stable at the equilibrium points, E, if

jargðkiðJÞÞj > ap=2, i¼ 1, 2, 3.

Lemma 2. (Cafagna and Grass34) The equilibrium point,

E, of system (1) is unstable if the order a satisfies the condi-

tion below for at least one eigenvalue

a >
2

p
arc tan

jIm kð Þj
jRe kð Þj

:

Lemma 3. (Deng and L€u33) For n¼ 3, if one of the

eigenvalues is k1 < 0 and the other two conjugate eigenval-

ues jargðk2Þj ¼ jargðk3Þj < ap=2, then the equilibrium



point, E, is called a saddle point with index 2; if one of the

eigenvalues k1 > 0 and the other two conjugate eigenvalues

are jargðk2Þj ¼ jargðk3Þj > ap=2, then the equilibrium point,

E, is called a saddle point with index 1.

A chaotic attractor is generally considered to be generat-

ed around saddle points with index 2. One saddle point with

index 2 will generate one attractor at most.

III. GENERATING MULTI-DIRECTIONAL
MULTI-SCROLL ATTRACTORS

A. Model and numerical simulations

We introduce here a simple 3-dimensional autonomous

FO system

Dax ¼ yþ z;
Day ¼ lz;
Daz ¼ �x� z;

8<
: (2)

where l is constant, l > 0, and a is system order, 0 < a < 1.

System (2) has only one equilibrium point (0, 0, 0). The char-

acteristic equation of (2) at equilibrium (0, 0, 0) is given by

k3 þ k2 þ kþ l ¼ 0: (3)

Denoting D ¼ l� 2=27 and d ¼ l2=4� ð7=54Þl� 1=36,

then the roots of Equation (2) are as follows:

k1 ¼ �
1

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�D

2
þ

ffiffiffi
d
p

3

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�D

2
�

ffiffiffi
d
p

3

r

and

k2;3 ¼ �
1

3
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�D

2
þ

ffiffiffi
d
p

3

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�D

2
�

ffiffiffi
d
p

3

r !

6

ffiffiffi
3
p

2
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�D

2
þ

ffiffiffi
d
p

3

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�D

2
�

ffiffiffi
d
p

3

r !
;

¼ b 6 ci;

where b ¼ Reðk2;3Þ; c ¼ jImðk2;3Þj. The stability of the equi-

librium point (0, 0, 0) of system (2) is determined by

Lemmas 1 and 2. According to Lemma 3, (0, 0, 0) is a saddle

point with index 2 if k1 < 0; b > 0; c 6¼ 0 and jarctanðc=bÞj
< ap=2. Hereafter, one always chooses a suitable l to ensure

that the characteristic equation of a certain equilibrium

of the system has one negative real root k1 and a pair of

conjugate complex roots k2;3 ¼ b6ci, where b > 0; c 6¼ 0;
jarctanðc=bÞj < ap=2.

Since (2) is linear, for this system to be chaotic, we need

to bring nonlinear terms into it. We know that one saddle

point with index 2 will only generate one attractor at most.

The generation of multi-directional MSCA will need a large

number of saddle points with index 2, so the main idea is to

add breakpoints into nonlinear functions in system (2). To

this end, the system (2) is recasted as follows:

Dax ¼ yþ z� f ðyÞ;
Day ¼ lz;

Daz ¼ �x� zþ f ðxÞ;

8><
>: (4)

where 0 < a < 1 is order and l > 0. Functions f(x) and f(y)

are PWLF. By choosing suitable PWLF and l, system (4)

can generate multi-directional MSCA.

To generate multi-directional MSCA, two different

kinds of PWLF, namely, the SNFS and the SNLF, are chosen

and added to system (2) to show the working principle. Take

F1 xð Þ ¼
Xk¼K

k¼�K;k 6¼0

p

2q

(����x� p 2k � jkj
k

� �
þ q

����
�
����x� p 2k � jkj

k

� �
� q

����
)
;

and

F2ðxÞ ¼ A1sgnðxÞ þ
XN

n¼1

sgnðx� 2nA2Þ

þ
XM

m¼1

sgnðxþ 2mA3Þ;

where K;M;N;m; n are positive integers, k is an integer,

A1;A2;A3; p > 0, and q 2 ð0; pÞ. Note that F1ðxÞ is a SNLF,

the saturated slope is p/q, and the delay time is ð2k � jkj=kÞp.

Function F2ðxÞ is a SNFS. System (4) can generate ð2K þ 1Þ
attractors in x-axis or y-axis when f ðxÞ ¼ F1ðxÞ or f ðyÞ
¼ F1ðxÞ, respectively. Similarly, ðmþ nþ 1Þ attractors will

be created in system (4) by F2 in x-axis or y-axis when A1 ¼ 0,

and ðnþ mþ 2Þ attractors will be generated when A1 6¼ 0.

The parameters K; p; q;A1;A2;A3 are all adjustable. By chang-

ing these parameters, one can design the number of the equilib-

rium points as necessary conditions to generate MSCA.

Let p¼ 1;q¼ 0:02p;K¼ 2;A1¼A2¼A3¼ 1;m¼ n¼ 1,

thus forming 5�4 attractors in x-y plane, corresponding to

the type 1 attractors in Table I. The attractors in x-axis are

generated by SNLF and y-axis by SNFS. Since SNFS and

SNLF are different kinds of functions, which have different

forming mechanisms. Topologies of attractors created by

different combinations of those are not equivalent with

each other. Table I gives the details of some parameters and

the corresponding multi-directional MSCA generated with

these parameters, where Type 1, 2, 3, and 4 in Table I are

used to identify these different attractors. That is to say,

Type 1, 2, 3, and 4 attractors are created by the combinations

of SNLF and SNFS, SNLF and SNLF, SNFS and SNLF,

SNFS and SNFS, respectively. Take the parameters p¼ 1;
q¼ 0:02p in Table I. Numerical simulations are depicted in

Figs. 1(a)–1(d). The parameters in Table I are not unique and

can be chosen within a certain range while the system still

keeps chaotic.

TABLE I. Attractors generated with parameters l;K;M;N;A1;A2;A3.

Type x-axis y-axis l K M N A1 A2 A3 A Attractors

1 SNLF SNFS 2.5 2 1 1 1 1 1 0.96 5� 4

2 SNLF SNLF 2.5 2 … … … … … 0.96 5� 5

3 SNFS SNLF 3 2 1 1 0 0.5 0.5 0.9 3� 5

4 SNFS SNFS 2.5 … 2 2 1 1 1 0.96 6� 6



The distribution of the locations of all four kinds of

attractors is listed in Tables II–V.

Remark 1. In fact, by using only one kind of PWLF,

SNFS or SNLF, one-directional MSCA in x-axis or y-axis

can be generated in the system.

Remark 2. From Figs. 1(a)–1(d), we can easily verify

the difference between the four kinds of attractors.

B. Dynamic behavior analysis

In this section, take the type 2 MSCA as an example to

analyze dynamic behavior. The corresponding system of

type 2 attractors is

Dax ¼ yþ z� F1ðyÞ;
Day ¼ lz;
Daz ¼ �x� zþ F1ðxÞ:

8<
: (5)

FIG. 1. Phase portrait of four kinds of attractors: (a) type 1; (b) type 2; (c) type

3; (d) type 4.

TABLE II. Location of attractors of type 1 attractors.

(�4, 3, 0) (�2, 3, 0) (0, 3, 0) (2, 3, 0) (4, 3, 0)

(�4, 1, 0) (�2, 1, 0) (0, 1, 0) (2, 1, 0) (4, 1, 0)

(�4, �1, 0) (�2, �1, 0) (0, �1, 0) (2, �1, 0) (4, �1, 0)

(�4, �5, 0) (�2, �3, 0) (0, �3, 0) (2, �3, 0) (4, �3, 0)

TABLE III. Location of attractors of type 2 attractors.

(�4, 4, 0) (�2, 4, 0) (0, 4, 0) (2, 4, 0) (4, 4, 0)

(�4, 2, 0) (�2, 2, 0) (0, 2, 0) (2, 2, 0) (4, 2, 0)

(�4, 0, 0) (�2, 0, 0) (0, 0, 0) (2, 0, 0) (4, 0, 0)

(�4, �2, 0) (�2, �2, 0) (0, �2, 0) (2, �2, 0) (4, �2, 0)

(�4, �4, 0) (�2, �4, 0) (0, �4, 0) (2, �4, 0) (4, �4, 0)

TABLE IV. Location of attractors of type 3 attractors.

(�2, 4, 0) (0, 4, 0) (2, 4, 0)

(�2, 2, 0) (0, 2, 0) (2, 2, 0)

(�2, 0, 0) (0, 0, 0) (2, 0, 0)

(�2, �2, 0) (0, �2, 0) (2, �2, 0)

(�2, �4, 0) (0, �4, 0) (2, �4, 0)

TABLE V. Location of attractors of type 4 attractors.

(�5, 5, 0) (�3, 5, 0) (�1, 5, 0) (1, 5, 0) (3, 5, 0) (5, 5, 0)

(�5, 3, 0) (�3, 3, 0) (�1, 3, 0) (1, 3, 0) (3, 3, 0) (5, 3, 0)

(�5, 1, 0) (�3, 1, 0) (�1, 1, 0) (1, 1, 0) (3, 1, 0) (5, 1, 0)

(�5, �1, 0) (�3, �1, 0) (�1, �1, 0) (1, �1, 0) (3, �1, 0) (5, �1, 0)

(�5, �3, 0) (�3, �3, 0) (�1, �3, 0) (1, �3, 0) (3, �3, 0) (5, �3, 0)

(�5, �5, 0) (�3, �5, 0) (�1, �5, 0) (1, �5, 0) (3, �5, 0) (5, �5, 0)

FIG. 2. The 3-D phase portrait of type 2 attractors.



According to Table I, one has the parameters l ¼ 2:5, K¼ 2,

p¼ 1, q ¼ 0:02p, and a ¼ 0:96. Fig. 2 shows the 3-D phase

portrait of 5� 5 attractors of type 2. Fig. 3(a) shows the largest

Lyapunov exponent with respect to l of system (5), Fig. 3(b)

represents the Poincar�e map on section y¼ 0, and Fig. 3(c)

shows the largest Lyapunov exponent with respect to a of sys-

tem (5). Making Dax ¼ Day ¼ Daz ¼ 0, yields y�F1ðyÞ¼0,

z¼0, and�xþF1ðxÞ¼0. All the equilibrium points of system

(5) are calculated and depicted in Fig. 4. We verify that there

are ð2kþ1Þ�ð2Kþ1Þþ2K�2K¼41 equilibrium points.

At equilibrium point E� ¼ ðx�; y�; z�Þ, the Jacobi matrix

of system (5) is

JE� ¼
0 1� F01ðy�Þ 0

0 0 l

F01ðx�Þ � 1 0 �1

0
B@

1
CA; (6)

where F01ðy�Þ ¼
dF1ðyÞ

dy jy� ; F01ðx�Þ ¼
dF1ðxÞ

dx jx� .
The derivative of F1ðuÞ at point u�(u denotes x or y) is

F01 u�ð Þ ¼ dF1 uð Þ
du

����
u�
;

¼
Xk¼K

k¼�K;k 6¼0

p

2q

(
sgn u� � p 2k � jkj

k

� �
þ q

� �

�sgn u� � p 2k � jkj
k

� �
� q

� �)
:

If u� ¼ 2kp; k ¼ 0;61;62; :::6K, which corresponds to the

equilibrium points marked as ‘�’ in Fig. 4, then F01ðu�Þ ¼ 0.

Alternatively, if u� ¼ ð2k � jkj=kÞp; k ¼ 0;61;62; :::6K,

which correspond to the equilibrium points marked as ‘•’ in

Fig. 4, then F01ðu�Þ ¼ p=q.

The characteristic equation of matrix (6) is

f ðkÞ ¼ k3 þ k2 � ðF01ðx�Þ � 1Þk
þlðF01ðx�Þ � 1ÞðF01ðy�Þ � 1Þ ¼ 0: (7)

For equilibrium points ‘�’, as F01ðx�Þ ¼ F01ðy�Þ ¼ 0, then the

characteristic equation can be simplified to

f ðkÞ ¼ k3 þ k2 þ kþ l ¼ 0: (8)

The roots of Equation (8) are k1 ¼ �1:4732; k2;3 ¼ 0:2366

61:2810i, yielding jargðk2;3Þj ¼ 1:3882 < 1:5080 ¼ ap=2.

According to Lemma 3, points ‘�’ are saddle points with

index 2, and an attractor will form around each ‘�’. For equi-

librium points ‘•’, F01ðx�Þ ¼ F01ðy�Þ ¼ p=q ¼ 50 and the

characteristic equation can be simplified to

FIG. 3. (a): Largest Lyapunov exponent of system (5) with respect to l. (b):

Poincar�e map of system (5) on section y¼ 0. (c): Largest Lyapunov expo-

nent of system (5) with respect to a.

FIG. 4. Equilibrium point distribution of system (5).



f ðkÞ ¼ k3 þ k2 þ ð1� p=qÞkþ ð1� p=qÞ2l ¼ 0: (9)

The roots of Equation (9) are k1 ¼ �19:4269; k2;3 ¼ 9:2135

614:9697i, yielding jargðk2;3Þj ¼ 1:0191 < 1:5080 ¼ ap=2.

According to Lemma 3, points ‘•’ are saddle points with in-

dex 2. However, numerical simulation in Fig. 1(d) shows

that only points ‘�’ can generate attractors. In fact, having

a saddle point with index 2 is only a necessary condition, not

a sufficient one for generating attractors. According to the

Homoclinic Ŝilnikov Theorem,39 it is needed a condition-

existence of a homoclinic orbit in the neighboring region of

the equilibrium point to generate attractors. This is the rea-

son why we say, that one saddle point with index 2 will gen-

erate only one attractor at most.

The attractors of type 1, type 3, and type 4 can be inves-

tigated in the same way.

IV. CIRCUIT IMPLEMENTATION FOR MULTI-SCROLL
ATTRACTORS

In this section, several circuit diagrams are designed to

realize various MSCA. Circuit implementation is somewhat

different from numerical simulation due to hardware limita-

tions. Since circuits cannot keep such a high operational pre-

cision as computers, some distortion will be introduced and

the input signal cannot be well tracked under the condition

of large input signals. We know that chaotic systems are

very sensitive to the initial values and the parameters of the

system. Therefore, it is difficult to control the value of the

resistors and the capacitors very precisely in the circuit

implementation.

In a FO circuit, since there is not a device to implement

directly the FO calculations, we adopt a number of resistors

and capacitors connecting in parallel, or in series, to approxi-

mate the transfer function of 1=sa (where a is the order),

which often causes an increasing error. Up to now, there are

no results reported in the literature about generation of FO

multi-directional multi-scroll using a circuit.

Firstly, we investigate the circuit diagram which is the

basic cell for designing the SNLF in Fig. 5(a). The operation-

al amplifier in Fig. 5(a) is the TL082. Moreover, all original

devices in our circuit diagrams below are operational ampli-

fiers of type TL082 with voltage supply 615 V and saturated

output voltage about 613.5 V.

The Ui–Uo relationship of the ith basic cell, depicted in

Fig. 5(b), is given by

Uo ¼

Vsat if Ui < Ei � Vsat
R2

R1

� �
;

�R1

R2

Ui � Eið Þ if Ei � Vsat
R2

R1

� �
� Ui

� Ei þ Vsat
R2

R1

� �
;

�Vsat if Ui > Ei þ Vsat
R2

R1

� �
;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(10)

where Ui and Uo are the input and the output voltages (notice

that the subscript i of Ui means ‘input’, not ith). Furthermore,

Vsat denotes the saturated output voltage of the operational

amplifier so that Vsat¼ 13.5 V. The values ðEi � VsatR2=R1Þ
and ðEi þ VsatR2=R1Þ are switching points of the ith cell, and

the slope is �R1=R2. Equation (10) can be rewritten as

Uo ¼ �
R1

2R2

����Ui � Ei þ
VsatR2

R1

�����
����Ui � Ei �

VsatR2

R1

����
( )

:

By connecting several basic cells in parallel, and adding an

invert sum box circuit in series, as shown in Fig. 5(c), we

can easily deduce that

f1 uð Þ ¼
Xk¼K

k¼�K;k 6¼0

R1R4

2R2R3

(����u� Ei þ
VsatR2

R1

����
�
����u� Ei �

VsatR2

R1

����
)
: (11)

Let us assume that E¼ 1 is the unit voltage and take

Ei ¼ ð2k � jkj=kÞE. Comparing Equation (11) with function

F1ðxÞ, we obtain that q ¼ VsatR2=R1 and p¼E. If we set

FIG. 5. The circuit diagram. (a) basic cell, (b) Ui–Uo relationship, and (c)

the realization of f1ðuÞ.



R1 ¼ 200 kX, since q¼ 0.02 and Vsat¼ 13.5 V, then R2

¼ 300 X. While R1R4=2R2R3 ¼ p=2q, we set R4 ¼ 1 kX, and

then R3 ¼ 13:5 kX. Thus, Equation (10) can be perfectly re-

alized using a circuit.

Moreover, if the resistor R1 !1 in Fig. 5(c), that is,

R1 is off, then �R1=R2 ! �1. The switching points

ðEi � VsatR2=R1Þ and ðEi þ VsatR2=R1Þ both tend to Ei.

Therefore, the circuit to realize the SNLF tends to the SNFS.

Equation (10) can be recasted as

Uo ¼
Vsat if Ui � Ei;
�Vsat if Ui > Ei:

�
(12)

Similarly, the SNFS function F2ðxÞ can be realized as

follows:

f2ðuÞ ¼ A1sgnðuÞ þ
XN

i¼1

sgnðu� EiÞ þ
XM

j¼1

sgnðuþ EjÞ;

where Ei ¼ 2iE1; Ej ¼ 2jE2, E1 and E2 are the unit voltages,

and E1¼A2, E2¼A3. The circuit diagram is omitted here for

the matter of saving space.

According to Min et al.,40 the approximating fractional

transfer function of order 0.96 is

H sð Þ ¼ 1:515 sþ 1433ð Þ sþ 3:565ð Þ
sþ 1821ð Þ sþ 4:532ð Þ sþ 0:01127ð Þ :

The circuit to realize the 0.96 order differentiation is depicted

in Fig. 6. The circuit values are calculated R3 ¼ 81:95 MX,

R4 ¼ 1:22 MX, R5 ¼ 0:0039 MX, C1 ¼ 0:232 lF, C2

¼ 0:18 lF, and C3 ¼ 0:66 lF, for a ¼ 0:96.

Based on all these rules, we choose the type 2 attractors

as a vehicle to generate multi-directional MSCA of order

0.96, and a maximum 9� 9 attractor is observed. The circuit

diagram is represented in Fig. 7. This circuit diagram

includes four different parts:

• Part 1: invert sum box N0;
• Part 2: FO integrator box N1;
• Part 3: invert box N2;
• Part 4: saturated function generator SNLF.

Box F stands for the 0.96-order calculation unit shown

in Fig. 6. Box SNLF stands for the saturated function unit in

Fig. 5(c). All resistors marked R1 ¼ 10 kX, R2 ¼ 100 X.

According to the Kirchhoff current law, and for the zero ini-

tial condition, we can derive the following equations:

R2Cs0:96Ux sð Þ ¼ Uy sð Þ þ Uz sð Þ � f Uy sð Þ
� �

;

R2Cs0:96Uy ¼
R1

R2

Uz sð Þ;

R2Cs0:96Uz sð Þ ¼ �Ux sð Þ � Uz sð Þ þ f Ux sð Þð Þ;

8>>><
>>>:

(13)

where UxðsÞ; UyðsÞ; UzðsÞ; f ðUxðsÞÞ; f ðUyðsÞÞ denote the

Laplace transform of ux, uy, uz, f ðuxÞ; f ðuyÞ, respectively.

The expression s0:96 denotes the 0.96-order Laplace trans-

form. Equation (13) is equivalent to

s0:96Ux sð Þ ¼ 1

R2C
Uy sð Þ þ Uz sð Þ � f Uy sð Þ

� �	 

;

s0:96Uy sð Þ ¼ 1

R2C

R1

R3

Uz sð Þ;

s0:96Uz sð Þ ¼ 1

R2C
�Ux sð Þ � Uz sð Þ þ f Ux sð Þð Þ½ �;

8>>>>>>><
>>>>>>>:

(14)

where 1=R2C is the integrator constant of the circuit, and

also the transformation factor of the time scale. The parame-

ter l ¼ R1=R3 is not unique, and in our system, we choose

l¼ 3, yielding R3 ¼ 3:3 kX. The 9� 9 attractors generated

by SNLF in two directions are shown in Fig. 8(a). We can

also observe other kinds of attractors by adjusting the circuit

diagram. We list a few in Figs. 8(b)–8(d).

Remark 3. The primal FO linear systems used to gener-

ate MSCA are different from those in References 31–33 and

35–37.

Remark 4. It should be noted that most of the aforemen-

tioned MSCA were only verified by numerical simula-

tions.31–33,35–37 Here, circuit experiments have been carried

out, which coincide with the theoretical results.

Remark 5. It follows from Table I and Fig. 1 that sys-

tem (4) can also generate grid MSCA by employing one kind

of function series(SNFS or SNLF). However, Topology

structure of multi-directional MSCA generated by using

SNLF and SNFS is different from ones by employing SNLF

or SNFS; SNLF and SNFS belong to different kinds of

FIG. 7. Circuit diagram to generate attractors of type 2.

FIG. 6. Diagram of 0.96-order differential unit.



functions, which have different forming mechanisms. In ad-

dition, the complexity of the whole circuit is different be-

cause the ways of the circuit implementation of SNLF and

SNFS are not same.

Remark 6. Here, to generate grid MSCA from FO linear

system by using SNFS and SNLF can take advantage of their

own strengths. It will increase even more flexibility to design

MSCA at one’s will. First, the distance between each scroll

and size of each scroll can be designed by adjusting the

parameters in SNFS, which also benefits circuit implementa-

tion. Second, since SNLF is more smooth than SNFS,

widths, slopes, breakpoints, equilibrium points, and shapes

of SNLF are adjustable easily, which offer more flexibility

than SNFS.

V. CONCLUSION

A novel FO chaotic system is proposed and investigated

in this paper. Multi-directional MSCA are created success-

fully by adding two different kinds of PWLF to a novel FO

linear system. Chaotic behaviors of the system are verified

by means of the stability of the equilibrium points,

Lyapunov exponent, and Poincar�e section. It is worth men-

tioning that for the first time the circuit implement of FO

multi-directional multi-scroll chaotic system is discussed in

this paper. Circuit implementation results confirm the theo-

retical analysis. Attractors of order 0.96 generated by four

kinds of function combinations are observed.
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