
Using FPGAs to create a reconfigurable IEEE1451.0-compliant

weblab infrastructure

Ricardo Costa

12
, Gustavo Alves

1
 and Mário Zenha-Rela

2

ISEP/CIETI/LABORIS
1
, FCTUC/CISUC

2

rjc@isep.ipp.pt, gca@isep.ipp.pt, mzrela@dei.uc.pt

Abstract
The reconfiguration capability provided by Field

Programmable Gate Arrays (FPGA) and the current

limitations of weblab infrastructures, opened a new

research window. This paper focus on describing the

way weblabs can be reconfigured with different

Instruments & Modules (I&M) required to conduct

remote experiments, without changing the entire

infrastructure. For this purpose, the paper
emphasizes the advantage of using FPGAs to create

reconfigurable weblab infrastructures using the

IEEE1451.0 Std. as a basis to develop, access and

bind embedded I&Ms to an IEEE1451.0-Module.

1. Introduction
In the electronic domain reconfiguration is

becoming a familiar word since the appearance of

FPGAs. These provide the ability of redefining an

architecture based on a set of internal modules that

can be interconnected according to a set of rules

described by standard Hardware Description

Languages (HDL). This means reconfiguring the

device, and therefore the way it runs, without

replacing its main hardware. This flexibility

provided by FPGAs can be viewed not only as a

thematic of study in engineering courses, but also as

devices able to create the so-called weblab
infrastructures, by the implementation of

sensors/actuators that can be the I&Ms required to

use in a remote experiment [1].

Weblabs allow the remote conduction of

laboratorial experiments, providing a way for

teachers and students to access real equipment,

provided by an infrastructure, using a simple device

connected to the Internet. Since the 90’s that

weblabs are proliferating in education, especially in

engineering and science disciplines [2][3][4][5]

where laboratorial work is fundamental [6][7]. This

is justified essentially by the flexibility they provide

on accessing, without time and place constrains, the

equipment commonly available in a laboratory,

which comprehends a set of I&Ms connected to an

Experiment Under Test (EUT). Noticeably, the

implementation of weblabs in different institutions

can be increased if improving their infrastructures,

namely by: i) enabling their reconfiguration (only

setting up connections of predefined I&Ms is
currently allowed [8]) and, ii) adopting a standard

solution for their implementation and access.

Despite these two problems are being debated in the

GOLC technical committee [9], currently there is

not yet a solution to solve them. While the standard

access to a weblab infrastructure can be overcome

by the use of a common API, infrastructural and

reconfiguration aspects are still unsolved. It is

precisely in this scenario that the reconfigurable

nature of FPGAs and the use of a standard approach,

can contribute to overcome the two referred

problems.

Adopting FPGAs as the main device of a weblab

infrastructure allow reconfiguring, in its core, a set

of embedded I&Ms that, if described through

standard HDL files, can be shared by the entire

educational community. At the same time, if these

same I&Ms follow a specific standard, they will be

easily shared, integrated and accessed, promoting

more collaboration among institutions in the

development and dissemination of weblabs.

Therefore, for promoting a high widespread of

weblabs in education, this paper proposes joining the
capabilities provided by the reconfigurable nature of

FPGAs, to the large focus provided by the

IEEE1451.0 Std., that allows defining and network-

interfacing transducers, which can be the referred

I&Ms. The paper describes the implementation of a

generic and synthesizable IEEE1451-Module for

FPGA devices, and a methodology to develop,

access and bind I&Ms compatible with this module.

Section 2 provides an overview about the

IEEE1451.0 Std., and presents the weblab
infrastructure implemented at our laboratory. Section 3,

presents the IEEE1451.0 Std. and the IEEE1451.0-
Module, this entirely described in the standard Verilog

HDL. Section 4, describes the process of creating and
binding I&Ms to that IEEE1451-Module, so they can

be used by the weblab infrastructure to conduct
experiments. Section 5 explains the reconfiguration

process of the weblab infrastructure, and section 6

concludes this paper and presents ongoing work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/83044212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Weblab infrastructure overview
The IEEE1451.0 Std. [10] aims to network-

interface transducers through an architecture based

on two modules: the Transducer Interface Module

(TIM), that controls Transducer Channels (TC), and

the Network Capable Application Processor
(NCAP), that provides network access to the TIM

and to those TCs. The behaviour and features of a

TIM and TCs are described by Transducer

Electronic Data Sheets (TEDS) monitored by a

status register and controlled by a set of commands

that may be accessed by an IEEE1451.0 HTTP API.

As illustrate in figure 1, the implemented

infrastructure uses the NCAP implemented in a

micro webserver, connected by a serial RS232

interface to the TIM. This is implemented in a

FPGA-based board that provides a set of interfaces
(digital I/O, DAQs, etc.) to access a specific

Experiment Under Test (EUT). Internally, the

adopted FPGA is reconfigured by a generic

IEEE1451.0-Module that, by decoding a set of

commands received from the NCAP, controls TCs

and therefore, the embedded I&Ms bound to it. To

run remote experiments, users remotely access these

I&Ms, that are connected to the EUT, using the

IEEE1451.0 HTTP API implemented in the NCAP.

Fig. 1. Implemented weblab infrastructure.

While standardization is guaranteed by the
adoption of the IEEE1451.0 Std., the use of an

FPGA for implementing the TIM is fundamental,

since it can be reconfigured with I&Ms required for

a specific experiment, and these can run

independently and in parallel, like in a traditional

laboratory.

Therefore, seeking for a flexible and

reconfigurable solution, the TIM was entirely

described in Verilog HDL, which guarantees its

portability towards any kind of FPGA. Internally the

IEEE1451.0-Module implements all features

described by the standard, controlling the TCs used
to access the embedded I&Ms. The adoption of this

architecture required the TIM description supported

in two fundamental aspects: i) the IEEE1451.0-

Module is able to be redefined according to the

adopted I&Ms and, ii) each I&M is described

through a set of files following a specific

methodology.

3. IEEE1451.0-Module
Entirely described in Verilog HDL, as illustrated

in figure 2, the IEEE1451.0-Module internally

comprehends 4 other modules:

1- Decoder/Controller Module (DCM) - is the

Central Processing Unit (CPU) that controls all the
other modules, by decoding commands received

from an Universal Asynchronous Receiver /

Transmitter Module (UART-M) or by the reception

of event signals generated by I&Ms.

2- TEDS Module (TEDS-M) - comprehends an

internal controller able to access TEDSs.

3- Status/State Module (SSM) - manages the

operating states and the status registers of each TC

and TIM.

4- UART Module (UART-M) - interfaces the

NCAP and the TIM through a RS232 interface using
receiver/transmitter modules (Rx/Tx).

Fig. 2. Internal modules of the IEEE1451.0-Module.

The DCM controls the entire IEEE1451.0-

Module by implementing the following features: i)

provides IEEE1451.0 commands defined through a

set of command-tasks, ii) implements error detection

mechanisms, iii) controls both the SSM and the

TEDS-M by reading, writing or updating their

internal memories using a set of commands provided

by dedicated hardware APIs, iv) controls the UART-

M used to establish the NCAP-TIM interface, and

iv) controls a set of embedded TC-tasks that manage
the TCs, running as actuators, sensors or event

sensors. The DCM provides a set buses that

interfaces the TEDS-M, SSM and I&Ms, the UART-

M to receive/transmit commands from/to the NCAP,

and two external memories that support the

operations of the DCM, named Memory Buffer

(MB) and Map Table (MT). The MB gathers

temporary TEDS’ fields before they can be written

into a TEDS’s memory provided within the TEDS-

M. It also acts as a data-bridge to Data Sets (DS),

which are available in each I&M to hold internal
data sent or received by IEEE1451.0 commands.

The MT implements a table to associate each TEDS,

defined in the TEDS-M, to a particular TC or TIM,

according to a specific Identification Field (ID).

Defined during a reconfiguration process described

in section 5, it is based on this association that the

DCM may understand which TEDS should be

accessed after a reception of command.

The TEDS-M integrates all TEDSs adopted by the

infrastructure, including those associated to a

particular I&M, to the TIM and/or to TCs. This

module comprehends an internal controller that

provides particular commands to write, read or

update each TEDS. To facilitate the access to those

commands, the TEDS-M provides a hardware API,

that can be used by the DCM, namely by command-

tasks that implement IEEE1451.0 commands, and by

TC-tasks that manage the interface between the

I&Ms and the DCM.
The SSM provides access to two independent

memories whose contents specify the operation

states and the status of the TC/TIM. During the

DCM operation, those memories will be accessed by

command/TC-tasks to update the state and the status

of each TC/TIM. The access to those memories is

made using a set of commands provided by an

internal controller, whose access can also be made

by a hardware API.

The UART-M is controlled by the DCM using a

handshake protocol that manage a set of signals to
access two internal buffers and to control all data

flow during transmissions. Structured in internal

modules, the UART-M also implements a

mechanism for validating and creating data

structures according to the IEEE1451.0 Std..

In order to fulfill the reconfigurable requirements

of the weblab infrastructure, besides using FPGA

technology, the IEEE1451.0-Module was described

through a set of Verilog HDL files some of them

redefined according to the I&M adopted for a

particular experiment. Moreover, its automatic
redefinition, that is a part of the reconfiguration

process, required the use of a specific architecture

for developing and binding I&Ms, so they can be

compatible with the IEEE1451.0-Module and

therefore, able to be accessed according to the

IEEE1451.0 Std..

4. Compatible Instruments & Modules
To bind I&Ms to the IEEE1451.0-Module, these

should be designed in different parts. These parts

include one or more modules bound through TC

lines to a set of TC-tasks, which are described in

Verilog HDL and embedded in the DCM. As

illustrated in figure 3, these tasks allow the access to

the other modules and the interface between the

IEEE1451.0-Module and each I&M, enabling their

control according to TEDSs’ contents that should

also be defined by the developer. The number of

TCs depends on the I&M’s architecture and the

parameters to be controlled.

Therefore, the design of an I&M compatible with

the IEEE1451.0-Module comprehends an

architecture divided in 3 distinct parts: i) HDL

modules describing the I&M itself, ii) TC-tasks to

control and interface those same modules with the

DCM; and iii) TEDSs to define the behaviour of the

entire IEEE1451.0-Module and of each TC. An I&M

is accessed by one or more TCs controlled by TC-

tasks managed according to the data available within

TEDSs and status/state memories. Since I&Ms’

developers need to define both the TC-tasks and the

HDL modules, they can adopt any type of handshake

protocol to exchange data between the DCM and the

I&Ms. Some TC-tasks are optional others

mandatory, and they are responsible to automatically

access the TEDS-M, the SSM, in some situations the
UART, and the MB, when the IEEE1451.0-Module

receives event signals or IEEE1451.0 commands.

Fig. 3. Parts required for defining I&Ms compatible with

the IEEE1451.0-Module.

To simplify the design of an I&M, each TC-task

accesses those modules using the hardware APIs,

facilitating this way their description and

independence toward the specificities of the DCM

implementation. They should be defined according

to the adopted TC, so the DCM may automatically

use them to handle received commands or events

generated by I&Ms. The number of adopted TCs

depends on developers’ options that should take into

consideration the parameters to control in an I&M,

the TEDS’s definitions, and the resources available
in the FPGA. Therefore, the development of an I&M

compatible with the IEEE1451.0-Module should

follow the sequence presented in figure 4.

Fig. 4. Sequence for implementing an I&M compatible

with the IEEE1451.0-Module.

Developers should start by evaluating the

requirements and features of the I&M they want to

develop, estimating its complexity to understand

what modules should be described. For that purpose,

the outputs and inputs connected to the EUT should
be selected, namely the associated signals, which are

managed by I&Ms’ parameters controlled by TCs.

After selecting the inputs/outputs and the parameters

to be controlled, developers should define the

number of TCs. This definition should be made

according to the type of parameters to control and

the requirements posed to the FPGA device, since

the use of several TCs may require many FPGA

resources. Once selected the TCs used to access the

I&M, developers should define the TEDSs to

describe the TIM architecture and the TCs’

behaviour that, among other definitions, specifies if

a TC acts as an actuator, a sensor or as an event

sensor. Current solution suggests that at least the

TC-TEDS should be defined for each TC, but

developers may define others TEDSs, as described

by the IEEE1451.0 Std.. The way those TCs are
controlled is made by a set of predefined TC-tasks

described by the developer, so they can provide the

interface to the other modules within the

IEEE1451.0-Module. To simplify developments, the

hardware APIs provided by the TEDS-M and the

SSM should be used with the protocol adopted to

control the data transmission/reception of the

UART-M. After all these definitions, a specific I&M

is available to bind to the IEEE1451.0-Module using

a reconfiguration process.

5. Reconfiguration
After describing the I&Ms, these can be bound to

the IEEE1451.0-Module so they can be used in a

specific experiment. For this purpose, the

infrastructure, namely the TIM, should be

reconfigured, which means changing the internal

connections of the FPGA. This reconfiguration

process involves a set of steps described in figure 5,

currently supported by a specific web

reconfiguration tool already detailed in [11].

Fig. 5. Weblab infrastructure reconfiguration sequence.

This tool is available in a remote machine named

Labserver that runs the entire reconfiguration

process. Internally this machine integrates a set of
software modules and, in particular, the

IEEE1451.0-Module that will be redefined

according to the selected I&Ms and to some

configuration rules. For this purpose, users should

start selecting two groups of files. The first group

describing each I&M, and the second group

describing all changes to be made in the TIM and in

the IEEE1451.0-Module, so it may bind the selected

I&Ms. The TIM, and in particular the IEEE1451.0-

Module, is then redefined according to the rules

defined in a configuration file, and a new HDL

project will be created and synthesized to the
selected FPGA using the tool associated to its

manufacturer. A bitstream file is then created and

sent to the FPGA, reconfiguring the weblab

infrastructure to run the specified experiment.

6. Conclusions and ongoing work
The use of FPGAs is a promising solution for

developing reconfigurable weblab infrastructures.

This document emphasized this aspect, presenting

current weblabs problems, and the way these can be

solved by joining the IEEE1451.0 Std. basis with
FPGA technology. The development of a

reconfigurable, flexible and universal solution at low

prices, is the main objective of the described work.

In the next months a prototype experiment based on

step-motors will be validated by some specialist in

the area. The goal is to get feedback about the

implemented infrastructure and the methodology for

reconfiguring the weblab infrastructure. In the

future, the intention is to enlarge the offer of

compatible I&Ms, so other experiments can be

designed. For further details, readers are invited to
visit the webpage: www.dee.isep.ipp.pt/~rjc/phd.

References
[1] Antonio de la Piedra, An Braeken and Abdellah

Touhafi, ‘Sensor Systems Based on FPGAs and Their

Applications A Survey’, Sensors, vol. 12, no. 9, pp.

12235–12264, Sep. 2012.
[2] Javier García Zubía and Gustavo R. Alves, Using

Remote Labs in Education - Two Little Ducks in

Remote Experimentation -. Deusto Digital, 2011.

[3] Abul K.M. Azad, Michael E. Auer and V. Judson
Harward, Ed., Internet Accessible Remote

Laboratories - Scalable Elearning Tools for

Engineering and Science Disciplines. Engineering

Science Reference - IGI Global, 2011.

[4] Luís Gomes, ‘Current Trends in Remote Laboratories’,
IEEE Transactions on industrial electronics, vol. 56,
no. 12, p. 4744, Dec. 2009.

[5] G.R. Alves et al., ‘Using VISIR in a large
undergraduate course: Preliminary assessment results’,

2011 IEEE Global Engineering Education Conference

(EDUCON), pp. 1125 –1132, Apr. 2011.

[6] Lyle D. Feisel and George D. Peterson, ‘A Colloquy
on Learning Objectives For Engineering Education
Laboratories’, Proceedings of the American Society

for Engineering Education, p. 12, 2002.
[7] Doru Popescu and Barry Odbert, ‘The Advantages Of

Remote Labs In Eng. Education’, Educator’s Corner -

Agilent Tech. - application note, p. 11, Apr. 2011.
[8] Mohamed Tawfik et al., ‘Virtual Instrument Systems

in Reality (VISIR) for Remote Wiring and

Measurement of Electronic Circuits on Breadboard’,

IEEE Transactions on Learning Technologies, vol. PP,
no. 99, p. 1, 2012.

[9] ‘GOLC - The Global Online Laboratory Consortium’,
2012. [Online]. Available: http://www.online-lab.org/.
[Accessed: 12-Nov-2012].

[10] IEEE Std. 1451.0TM, ‘IEEE Standard for a Smart
Transducer Interface for Sensors and Actuators’, The

Institute of Electrical and Electronics Engineers, Inc.,
p. 335, Sep. 2007.

[11] Ricardo Costa, Gustavo Alves and Mário Zenha-Rela,

‘Reconfigurable IEEE1451-FPGA based weblab
infrastructure’, 9th Int. Conf. on Remote Eng. and

Virtual Instrumentation (REV), pp. 1 –9, Jul. 2012.

