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Abstract 
The reconfiguration capability provided by Field 

Programmable Gate Arrays (FPGA) and the current 

limitations of weblab infrastructures, opened a new 

research window. This paper focus on describing the 

way weblabs can be reconfigured with different 

Instruments & Modules (I&M) required to conduct 

remote experiments, without changing the entire 

infrastructure. For this purpose, the paper 
emphasizes the advantage of using FPGAs to create 

reconfigurable weblab infrastructures using the 

IEEE1451.0 Std. as a basis to develop, access and 

bind embedded I&Ms to an IEEE1451.0-Module. 

 

1. Introduction 
In the electronic domain reconfiguration is 

becoming a familiar word since the appearance of 

FPGAs. These provide the ability of redefining an 

architecture based on a set of internal modules that 

can be interconnected according to a set of rules 

described by standard Hardware Description 

Languages (HDL). This means reconfiguring the 

device, and therefore the way it runs, without 

replacing its main hardware. This flexibility 

provided by FPGAs can be viewed not only as a 

thematic of study in engineering courses, but also as 

devices able to create the so-called weblab 
infrastructures, by the implementation of 

sensors/actuators that can be the I&Ms required to 

use in a remote experiment [1]. 

Weblabs allow the remote conduction of 

laboratorial experiments, providing a way for 

teachers and students to access real equipment, 

provided by an infrastructure, using a simple device 

connected to the Internet. Since the 90’s that 

weblabs are proliferating in education, especially in 

engineering and science disciplines [2][3][4][5] 

where laboratorial work is fundamental [6][7]. This 

is justified essentially by the flexibility they provide 

on accessing, without time and place constrains, the 

equipment commonly available in a laboratory, 

which comprehends a set of I&Ms connected to an 

Experiment Under Test (EUT). Noticeably, the 

implementation of weblabs in different institutions 

can be increased if improving their infrastructures, 

namely by: i) enabling their reconfiguration (only 

setting up connections of predefined I&Ms is 
currently allowed [8]) and, ii) adopting a standard 

solution for their implementation and access. 

Despite these two problems are being debated in the 

GOLC technical committee [9], currently there is 

not yet a solution to solve them. While the standard 

access to a weblab infrastructure can be overcome 

by the use of a common API, infrastructural and 

reconfiguration aspects are still unsolved. It is 

precisely in this scenario that the reconfigurable 

nature of FPGAs and the use of a standard approach, 

can contribute to overcome the two referred 

problems.  

Adopting FPGAs as the main device of a weblab 

infrastructure allow reconfiguring, in its core, a set 

of embedded I&Ms that, if described through 

standard HDL files, can be shared by the entire 

educational community. At the same time, if these 

same I&Ms follow a specific standard, they will be 

easily shared, integrated and accessed, promoting 

more collaboration among institutions in the 

development and dissemination of weblabs. 

Therefore, for promoting a high widespread of 

weblabs in education, this paper proposes joining the 
capabilities provided by the reconfigurable nature of 

FPGAs, to the large focus provided by the 

IEEE1451.0 Std., that allows defining and network-

interfacing transducers, which can be the referred 

I&Ms. The paper describes the implementation of a 

generic and synthesizable IEEE1451-Module for 

FPGA devices, and a methodology to develop, 

access and bind I&Ms compatible with this module.  

Section 2 provides an overview about the 

IEEE1451.0 Std., and presents the weblab 
infrastructure implemented at our laboratory. Section 3, 

presents the IEEE1451.0 Std. and the IEEE1451.0-
Module, this entirely described in the standard Verilog 

HDL. Section 4, describes the process of creating and 
binding I&Ms to that IEEE1451-Module, so they can 

be used by the weblab infrastructure to conduct 
experiments. Section 5 explains the reconfiguration 

process of the weblab infrastructure, and section 6 

concludes this paper and presents ongoing work. 
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2. Weblab infrastructure overview 
The IEEE1451.0 Std. [10] aims to network-

interface transducers through an architecture based 

on two modules: the Transducer Interface Module 

(TIM), that controls Transducer Channels (TC), and 

the Network Capable Application Processor 
(NCAP), that provides network access to the TIM 

and to those TCs. The behaviour and features of a 

TIM and TCs are described by Transducer 

Electronic Data Sheets (TEDS) monitored by a 

status register and controlled by a set of commands 

that may be accessed by an IEEE1451.0 HTTP API. 

As illustrate in figure 1, the implemented 

infrastructure uses the NCAP implemented in a 

micro webserver, connected by a serial RS232 

interface to the TIM. This is implemented in a 

FPGA-based board that provides a set of interfaces 
(digital I/O, DAQs, etc.) to access a specific 

Experiment Under Test (EUT). Internally, the 

adopted FPGA is reconfigured by a generic 

IEEE1451.0-Module that, by decoding a set of 

commands received from the NCAP, controls TCs 

and therefore, the embedded I&Ms bound to it. To 

run remote experiments, users remotely access these 

I&Ms, that are connected to the EUT, using the 

IEEE1451.0 HTTP API implemented in the NCAP. 

 

 
Fig. 1. Implemented weblab infrastructure. 

 

While standardization is guaranteed by the 
adoption of the IEEE1451.0 Std., the use of an 

FPGA for implementing the TIM is fundamental, 

since it can be reconfigured with I&Ms required for 

a specific experiment, and these can run 

independently and in parallel, like in a traditional 

laboratory.  

Therefore, seeking for a flexible and 

reconfigurable solution, the TIM was entirely 

described in Verilog HDL, which guarantees its 

portability towards any kind of FPGA. Internally the 

IEEE1451.0-Module implements all features 

described by the standard, controlling the TCs used 
to access the embedded I&Ms. The adoption of this 

architecture required the TIM description supported 

in two fundamental aspects: i) the IEEE1451.0-

Module is able to be redefined according to the 

adopted I&Ms and, ii) each I&M is described 

through a set of files following a specific 

methodology. 

3. IEEE1451.0-Module 
Entirely described in Verilog HDL, as illustrated 

in figure 2, the IEEE1451.0-Module internally 

comprehends 4 other modules:  

1- Decoder/Controller Module (DCM) - is the 

Central Processing Unit (CPU) that controls all the 
other modules, by decoding commands received 

from an Universal Asynchronous Receiver / 

Transmitter Module (UART-M) or by the reception 

of event signals generated by I&Ms.  

2- TEDS Module (TEDS-M) - comprehends an 

internal controller able to access TEDSs. 

3- Status/State Module (SSM) - manages the 

operating states and the status registers of each TC 

and TIM. 

4- UART Module (UART-M) - interfaces the 

NCAP and the TIM through a RS232 interface using 
receiver/transmitter modules (Rx/Tx). 

 

 
Fig. 2. Internal modules of the IEEE1451.0-Module. 

 

The DCM controls the entire IEEE1451.0-

Module by implementing the following features: i) 

provides IEEE1451.0 commands defined through a 

set of command-tasks, ii) implements error detection 

mechanisms, iii) controls both the SSM and the 

TEDS-M by reading, writing or updating their 

internal memories using a set of commands provided 

by dedicated hardware APIs, iv) controls the UART-

M used to establish the NCAP-TIM interface, and 

iv) controls a set of embedded TC-tasks that manage 
the TCs, running as actuators, sensors or event 

sensors. The DCM provides a set buses that 

interfaces the TEDS-M, SSM and I&Ms, the UART-

M to receive/transmit commands from/to the NCAP, 

and two external memories that support the 

operations of the DCM, named Memory Buffer 

(MB) and Map Table (MT). The MB gathers 

temporary TEDS’ fields before they can be written 

into a TEDS’s memory provided within the TEDS-

M. It also acts as a data-bridge to Data Sets (DS), 

which are available in each I&M to hold internal 
data sent or received by IEEE1451.0 commands. 

The MT implements a table to associate each TEDS, 

defined in the TEDS-M, to a particular TC or TIM, 

according to a specific Identification Field (ID). 

Defined during a reconfiguration process described 

in section 5, it is based on this association that the 

DCM may understand which TEDS should be 

accessed after a reception of command. 



The TEDS-M integrates all TEDSs adopted by the 

infrastructure, including those associated to a 

particular I&M, to the TIM and/or to TCs. This 

module comprehends an internal controller that 

provides particular commands to write, read or 

update each TEDS. To facilitate the access to those 

commands, the TEDS-M provides a hardware API, 

that can be used by the DCM, namely by command-

tasks that implement IEEE1451.0 commands, and by 

TC-tasks that manage the interface between the 

I&Ms and the DCM.  
The SSM provides access to two independent 

memories whose contents specify the operation 

states and the status of the TC/TIM. During the 

DCM operation, those memories will be accessed by 

command/TC-tasks to update the state and the status 

of each TC/TIM. The access to those memories is 

made using a set of commands provided by an 

internal controller, whose access can also be made 

by a hardware API. 

The UART-M is controlled by the DCM using a 

handshake protocol that manage a set of signals to 
access two internal buffers and to control all data 

flow during transmissions. Structured in internal 

modules, the UART-M also implements a 

mechanism for validating and creating data 

structures according to the IEEE1451.0 Std.. 

In order to fulfill the reconfigurable requirements 

of the weblab infrastructure, besides using FPGA 

technology, the IEEE1451.0-Module was described 

through a set of Verilog HDL files some of them 

redefined according to the I&M adopted for a 

particular experiment. Moreover, its automatic 
redefinition, that is a part of the reconfiguration 

process, required the use of a specific architecture 

for developing and binding I&Ms, so they can be 

compatible with the IEEE1451.0-Module and 

therefore, able to be accessed according to the 

IEEE1451.0 Std.. 

 

4. Compatible Instruments & Modules 
To bind I&Ms to the IEEE1451.0-Module, these 

should be designed in different parts. These parts 

include one or more modules bound through TC 

lines to a set of TC-tasks, which are described in 

Verilog HDL and embedded in the DCM. As 

illustrated in figure 3, these tasks allow the access to 

the other modules and the interface between the 

IEEE1451.0-Module and each I&M, enabling their 

control according to TEDSs’ contents that should 

also be defined by the developer. The number of 

TCs depends on the I&M’s architecture and the 

parameters to be controlled. 

Therefore, the design of an I&M compatible with 

the IEEE1451.0-Module comprehends an 

architecture divided in 3 distinct parts: i) HDL 

modules describing the I&M itself, ii) TC-tasks to 

control and interface those same modules with the 

DCM; and iii) TEDSs to define the behaviour of the 

entire IEEE1451.0-Module and of each TC. An I&M 

is accessed by one or more TCs controlled by TC-

tasks managed according to the data available within 

TEDSs and status/state memories. Since I&Ms’ 

developers need to define both the TC-tasks and the 

HDL modules, they can adopt any type of handshake 

protocol to exchange data between the DCM and the 

I&Ms. Some TC-tasks are optional others 

mandatory, and they are responsible to automatically 

access the TEDS-M, the SSM, in some situations the 
UART, and the MB, when the IEEE1451.0-Module 

receives event signals or IEEE1451.0 commands. 
 

 
Fig. 3. Parts required for defining I&Ms compatible with 

the IEEE1451.0-Module. 

 

To simplify the design of an I&M, each TC-task 

accesses those modules using the hardware APIs, 

facilitating this way their description and 

independence toward the specificities of the DCM 

implementation. They should be defined according 

to the adopted TC, so the DCM may automatically 

use them to handle received commands or events 

generated by I&Ms. The number of adopted TCs 

depends on developers’ options that should take into 

consideration the parameters to control in an I&M, 

the TEDS’s definitions, and the resources available 
in the FPGA. Therefore, the development of an I&M 

compatible with the IEEE1451.0-Module should 

follow the sequence presented in figure 4. 
 

 
Fig. 4. Sequence for implementing an I&M compatible 

with the IEEE1451.0-Module. 
 

Developers should start by evaluating the 

requirements and features of the I&M they want to 

develop, estimating its complexity to understand 

what modules should be described. For that purpose, 

the outputs and inputs connected to the EUT should 
be selected, namely the associated signals, which are 

managed by I&Ms’ parameters controlled by TCs. 

After selecting the inputs/outputs and the parameters 

to be controlled, developers should define the 

number of TCs. This definition should be made 

according to the type of parameters to control and 



the requirements posed to the FPGA device, since 

the use of several TCs may require many FPGA 

resources. Once selected the TCs used to access the 

I&M, developers should define the TEDSs to 

describe the TIM architecture and the TCs’ 

behaviour that, among other definitions, specifies if 

a TC acts as an actuator, a sensor or as an event 

sensor. Current solution suggests that at least the 

TC-TEDS should be defined for each TC, but 

developers may define others TEDSs, as described 

by the IEEE1451.0 Std.. The way those TCs are 
controlled is made by a set of predefined TC-tasks 

described by the developer, so they can provide the 

interface to the other modules within the 

IEEE1451.0-Module. To simplify developments, the 

hardware APIs provided by the TEDS-M and the 

SSM should be used with the protocol adopted to 

control the data transmission/reception of the 

UART-M. After all these definitions, a specific I&M 

is available to bind to the IEEE1451.0-Module using 

a reconfiguration process. 

 

5. Reconfiguration 
After describing the I&Ms, these can be bound to 

the IEEE1451.0-Module so they can be used in a 

specific experiment. For this purpose, the 

infrastructure, namely the TIM, should be 

reconfigured, which means changing the internal 

connections of the FPGA. This reconfiguration 

process involves a set of steps described in figure 5, 

currently supported by a specific web 

reconfiguration tool already detailed in [11]. 
 

 
Fig. 5. Weblab infrastructure reconfiguration sequence. 

 

This tool is available in a remote machine named 

Labserver that runs the entire reconfiguration 

process. Internally this machine integrates a set of 
software modules and, in particular, the 

IEEE1451.0-Module that will be redefined 

according to the selected I&Ms and to some 

configuration rules. For this purpose, users should 

start selecting two groups of files. The first group 

describing each I&M, and the second group 

describing all changes to be made in the TIM and in 

the IEEE1451.0-Module, so it may bind the selected 

I&Ms. The TIM, and in particular the IEEE1451.0-

Module, is then redefined according to the rules 

defined in a configuration file, and a new HDL 

project will be created and synthesized to the 
selected FPGA using the tool associated to its 

manufacturer. A bitstream file is then created and 

sent to the FPGA, reconfiguring the weblab 

infrastructure to run the specified experiment.  

 

6. Conclusions and ongoing work  
The use of FPGAs is a promising solution for 

developing reconfigurable weblab infrastructures. 

This document emphasized this aspect, presenting 

current weblabs problems, and the way these can be 

solved by joining the IEEE1451.0 Std. basis with 
FPGA technology. The development of a 

reconfigurable, flexible and universal solution at low 

prices, is the main objective of the described work. 

In the next months a prototype experiment based on 

step-motors will be validated by some specialist in 

the area. The goal is to get feedback about the 

implemented infrastructure and the methodology for 

reconfiguring the weblab infrastructure. In the 

future, the intention is to enlarge the offer of 

compatible I&Ms, so other experiments can be 

designed. For further details, readers are invited to 
visit the webpage: www.dee.isep.ipp.pt/~rjc/phd.  
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