

Run-Time Monitoring Environments for Real-
Time and Safety Critical Systems

Conference Paper

CISTER-TR-160208

Geoffrey Nelissen

Humberto Carvalho

David Pereira

Eduardo Tovar

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/83044192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Conference Paper CISTER-TR-160208 Run-Time Monitoring Environments for Real-Time and Safety ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Run-Time Monitoring Environments for Real-Time and Safety Critical Systems

Geoffrey Nelissen, Humberto Carvalho, David Pereira, Eduardo Tovar

CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

In this work, we present four different implementations of a run-time monitoring framework suited to real-timeand
safety critical systems. Two implementations are writtenin Ada and follow the Ravenscar profile, which make
themparticularly suited to the development of high integrity systems.The first version is available as a standalone
library for Adaprograms while the second has been integrated in the GNATrun-time environment and instruments
the ORK+ micro-kernel.Information on the task scheduling events, directly originatingfrom the kernel, can thus be
used by the monitors to check ifthe system follows all its requirements. The third implementationis a standalone
library written in C++ that can be used inany POSIX compliant run-time environment. It is thereforecompatible with
the vast majority of operating systems usedin embedded systems. The last implementation is a loadablekernel
module for Linux. It has for main advantage to be ableto enforce complete space partitioning between the
monitors andthe monitored applications. It is therefore impossible for memoryfaults to propagate and corrupt the
state of the monitors.

Run-Time Monitoring Environments for Real-Time

and Safety Critical Systems

Geoffrey Nelissen, Humberto Carvalho, David Pereira, Eduardo Tovar

CISTER/INESC TEC, ISEP

Polytechnic Institute of Porto

Porto, Portugal

Email: {grrpn, hjesc, dmrpe, emt}@isep.ipp.pt

Abstract—In this work, we present four different implementa-
tions of a run-time monitoring framework suited to real-time
and safety critical systems. Two implementations are written
in Ada and follow the Ravenscar profile, which make them
particularly suited to the development of high integrity systems.
The first version is available as a standalone library for Ada
programs while the second has been integrated in the GNAT
run-time environment and instruments the ORK+ micro-kernel.
Information on the task scheduling events, directly originating
from the kernel, can thus be used by the monitors to check if
the system follows all its requirements. The third implementation
is a standalone library written in C++ that can be used in
any POSIX compliant run-time environment. It is therefore
compatible with the vast majority of operating systems used
in embedded systems. The last implementation is a loadable
kernel module for Linux. It has for main advantage to be able
to enforce complete space partitioning between the monitors and
the monitored applications. It is therefore impossible for memory
faults to propagate and corrupt the state of the monitors.

I. INTRODUCTION

As a part of the development process of embedded systems,

there is a need to verify that the functional and timing

requirements defined in the system specifications will always

be respected after the system deployment. This is even more

important for safety critical systems, which must go through

a thorough certification process. However, with the increasing

complexity of embedded systems, it becomes always more

complicated and sometimes impossible to statically verify

offline that all the requirements will be respected at run-time.

Specifically, with the advent of multicore processors, several

new challenges arose: (i) the manufacturers sacrificed the de-

terminism of their computing platforms to improve the average

case performances, (ii) the number of applications running

concurrently on the same processor and hence competing for

the shared resources, is increased, (iii) the applications are

becoming more complex and make use of intra-task paral-

lelism to take advantage of the processing power offered by

the several cores. Additionally, the integration of applications

developed by different companies or development teams, the

utilisation of legacy code and/or the lack of access to the

source code of some of the executed functionalities, render

the verification process even more complex.

Under such conditions, it becomes unrealistic to formally

verify that all the system requirements will be respected under

any possible execution scenario. The worst-case analyses that

are usually performed before the system deployment are also

based on a set of assumptions (e.g., minimum activation

period, worst-case execution time, maximum release jitter)

that may not always be respected at run-time. For all those

reasons, run-time monitoring and run-time verification become

an interesting alternative to the traditional offline verification.

Run-time verification is based on the instrumentation of the

target applications. Monitors are then added to the system to

verify at run-time that the system requirements are respected

during the execution. If a misbehaviour is detected, an alarm

can be raised so as to trigger appropriate counter-measures

(e.g., execution mode change, reset or deactivation of some of

the functionalities).

Run-time monitoring and verification can be used during the

system development phase to test and debug the applications.

However, the monitors can also be left in the system after its

deployment, in which case they play the role of a safety net,

preventing the system to enter in an unexpected or dangerous

state.

Safety related standards recommend the use of run-time

monitoring and verification solutions in safety critical systems

[1]–[3]. However, their use is not limited to safety critical

applications. They can be very useful for the development of

mission critical and business critical applications, or simply to

improve the reliability of any embedded system.

II. REFERENCE ARCHITECTURE

In [4], a reference architecture for a safe and reliable run-

time monitoring framework was proposed. This architecture is

depicted on Figure 1. It is based on four main components: (i)

event buffers in which events (i.e., a timestamp associated to a

data) can be pushed by the instrumented application, (ii) event

writers used by the monitored application to push events in the

buffers, (iii) event readers that may be used by the monitors

to access the events that are saved in the buffers, and (iv)

monitors, implemented as periodic tasks, that read events and

check that the application respect its specifications.

As shown on Figure 1, there can be only one writer per

buffer. This avoids parallel accesses to the same buffer, which

may have lead to unwanted blocking times. Thanks to this

restriction, the writing operation in a buffer is wait free. There

can however be more than one reader connected to the same

Run-Time Environment

Event Buffer 1

Event Buffer 2

Event Buffer 3

Event Buffer n

Task t

Task 1

Running

on

Monitor

m

Monitor

1

Running

on

Pushes

Events Pops

Events

Handler

Handler

Triggers

Triggers

Acts upon

Acts

upon

...

Event writer

Event reader

...

...

Fig. 1. Run-time monitoring reference architecture [4].

buffer, which allows several monitors to use the same events

in parallel.

III. IMPLEMENTATIONS FOR DIFFERENT EXECUTION

ENVIRONMENTS

Four different implementations of the reference architecture

proposed in [4] have been developed and should be presented

during the demo session.

A. Ravenscar Compliant Ada Library

The first implementation is written in Ada, a programming

language particularly suited to the development of critical

applications. The library respects all the restrictions associated

with the Ada Ravenscar profile [5]. The Ravenscar profile

was defined to ensure timing predictability and hence ease

the timing analysis of critical applications, by enforcing strict

coding rules.

The developed library can be used in any application written

in Ada (Ravenscar compliant or not). It provides all the needed

facilities to instantiate monitors, buffers, buffer readers and

writers discussed above.

B. Integration in the ORK+ Micro-Kernel

ORK+ is a Ravenscar compliant micro-kernel [6] imple-

mented in Ada and integrated in the GNAT GPL 2011 compi-

lation system developed by AdaCore. The kernel is packaged

together with the compiler and the other libraries proposed

by the GNAT runtime environment. ORK+ is currently one

of the reference run-time environments in the ESA EagleEye

reference mission [7] used for testing new technologies for

future space applications.

The Ada library mentioned in the previous section was

added to the GNAT runtime environment and has been used to

instrument the ORK+ micro-kernel. This means that monitors

can now have access to task scheduling related events extracted

directly at the kernel level. Those events are saved in a set

of predefined buffers that can be accessed by user-defined

monitors.

C. POSIX Compliant C++ Library

The third implementation is written C++ and assumes a

POSIX execution environment. It can thus be used in a vast

majority of real-time operating systems available for embed-

ded applications (e.g., Linux, RTEMS, ...). Similarly to the

Ada library, the C++ version offers all the facilities required

for the implementation of an efficient run-time verification

framework compliant with the reference architecture described

in Section II. Each monitor is encapsulated in a POSIX thread

which is periodically executed.

D. Integration in Linux as a Kernel Module

In addition to the POSIX implementation, a loadable kernel

module has been implemented for Linux. The major advan-

tage of this Linux implementation is that it achieves total

space partitioning. Indeed, the monitors can be instantiated

in different processes than the monitored application. As each

process runs within its own virtual sandbox, it is impossible

for a monitor or a monitored application generating memory

errors to corrupt monitors instantiated in other processes.

Additionally, the buffers are living at the kernel level while

the monitors and monitored applications are instantiated at

the user level. Given that the event buffers are allocated in

kernel memory, they cannot be corrupted, and will persist

even if the monitored application crashes, thereby allowing

the monitors to continue extracting critical information even

when the system malfunctions. Finally, kernel land allows for

finer-grained control over the hardware. The preemptions can

thus be disabled during critical sections, guaranteeing wait-

free read and write operations in the buffers.

IV. DEMONSTRATION

During the demo session, we will (i) show how applications

running in the different execution environments described in

the previous section can easily be instrumented, (ii) show how

monitors can be implemented either for logging, for runtime

verification purposes or for providing adaptive capabilities to

the instrumented application, (iii) provide indications on the

impact of the framework on the application performances.

Acknowledgments.This work was partially supported by National Funds through

FCT/MEC (Portuguese Foundation for Science and Technology) and co-financed by

ERDF (European Regional Development Fund) under the PT2020 Partnership, within

project UID/CEC/04234/2013 (CISTER); also by FCT/MEC and the EU ARTEMIS

JU within project(s) ARTEMIS/0003/2012 - JU grant nr. 333053 (CONCERTO) and

ARTEMIS/0001/2013 - JU grant nr. 621429 (EMC2).

REFERENCES

[1] DO-178C, Software Considerations in Airborne Systems and Equipment

Certification. RTCA, Inc., 2011.
[2] ISO26262, Road vehicles Functional safety. ISO, 2011.
[3] A. Esper, G. Nelissen, V. Nélis, and E. Tovar, “How realistic is the

mixed-criticality real-time system model?” in Proceedings of the 23rd

International Conference on Real Time and Networks Systems. ACM,
2015, pp. 139–148.

[4] G. Nelissen, D. Pereira, and L. M. Pinho, “A novel run-time monitoring
architecture for safe and efficient inline monitoring,” in Reliable Software

Technologies–Ada-Europe 2015. Springer, 2015, pp. 66–82.
[5] A. Burns, B. Dobbing, and T. Vardanega, “Guide for the use of the ada

ravenscar profile in high integrity systems,” ACM SIGAda Ada Letters,
vol. 24, no. 2, pp. 1–74, 2004.

[6] Universidad Politécnica de Madrid, “ORK+,” 2014. [Online]. Available:
http://www.dit.upm.es/ str/ork/index.html

[7] V. Bos, P. Mendham, P. K. Kauppinen, N. Holst, A. Crespo Lorente,
M. Masmano, J. A. d. l. Puente Alfaro, and J. R. Zamorano Flores, “Time
and space partitioning the eagleeye reference mission,” 2013.

