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Abstract We consider a variational problem modelling the evolution with time of two
probability measures representing the subjective beliefs of a couple of agents engaged in
a continuous-time bargaining pricing scheme with the goal of finding a unique price for a
contingent claim in a continuous-time financial market. This optimization problem is coupled
with two finite dimensional portfolio optimization problems, one for each agent involved in
the bargaining scheme. Under mild conditions, we prove that the optimization problem under
consideration here admits a unique solution, yielding a unique price for the contingent claim.
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1 Introduction

In this paper we extend the variational sequential bargaining pricing scheme studied in
Azevedo et al. (2013) to the setup of continuous-time financial markets. The ultimate goal
of such variational pricing scheme is to provide a novel behavioural explanation for the
pricing of contingent claims and similar financial assets, traded in realistic setups leading to
market incompleteness. Therefore, the approach developed here, extending previous work
in Azevedo et al. (2013), Boukas et al. (2011), Pinheiro et al. (2013), Xanthopoulos and
Yannacopoulos (2008), is an alternative point of view to the pricing of contingent claims in
incomplete markets, a relevant problem in financial mathematics. Recall that incompleteness
of the market can arise from all sorts of market imperfections and, in particular, it may be due
to the non-existence of a large enough number of assets in the market so that all contingent
claims can be hedged, to lack of liquidity in the financial markets, to taxation rules and trans-
action costs, among other reasons. Unlike the complete markets setup extensively studied in
the mathematical finance literature (see, e.g. Karatzas and Shreve 1998; Pliska 1997), under
which a unique pricing kernel exists and uniquely determines the price of every contingent
claim, in the incomplete markets setup the existence of an infinity of pricing kernels is still
compatible with the assumption of absence of arbitrage. Hence, for the setup under consid-
eration here, absence of arbitrage and the risk neutral valuation principle are not sufficient to
provide a pricing rule for any given contingent claim.

Let us provide some additional motivation for the model under consideration here. Specif-
ically, we consider two interacting agents, one playing the role of “seller” of a given asset,
while the other plays the role of “buyer”. The asset to be traded is modeled as a contingent
claim whose payoff at some future time T equals the value of a random variable defined on
an appropriate probability space. We note that this general modeling point of view enables
us to include in our analysis examples as distinct as, for instance, financial assets traded over
the counter; company mergers and acquisitions; physical infrastructures; and real options,
among others. We assume that both agents goal is to reach an agreement for the price of such
contingent claim by an a priori fixed instant of time T0 < T . Moreover, we assume that the
two agents are allowed to have subjective beliefs, modeled by probability measures, reflect-
ing their personal points of view concerning the likelihood of occurrence of the future states
of the world. Finally, we suppose that the two agents actively engage in a beliefs update
process under which both collect information about each other pricing for the contingent
claim and the corresponding sensitivity to changes in such price. The agents then combine
this collective information to change their beliefs concerning the future value of the asset to
be traded and, therefore, the contingent claim price at time T0. The resulting common price
turns out to be such that the agents end up assuming more risk than they would optimally like
to, by giving away some potential profit, so that the agreement on the price of the contingent
claim to be traded becomes feasible.

The problem described above from an intuitive point of view can be modelled by a vari-
ational problem which may be decomposed into the following two types of coupled partial
problems: a final wealth stochastic optimal control problem for each agent and a joint belief
update problem for the two agents. In what concerns the stochastic optimal control problems
for the agents final wealth, it is enough to mention that standard techniques for the control of
Itô diffusions apply (Oksendal and Sulem 2005; Yong and Zhou 1999), guaranteeing exis-
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tence and uniqueness of solutions. Our main focus is then the variational problem modeling
the interaction between the two agents, whereby their beliefs, identified with appropriately
picked probability measures, are updated and a common price is reached for the asset being
traded. We remark that this problem turns out to be a continuous-time Calculus of Variations
problem. However, a key difficulty lies on the fact that the phase space onwhich the dynamics
take place is some space of probability measures, an object of difficult mathematical treat-
ment. To address such issue, we resort to an assumption based on the “bounded rationality”
of the two agents trading the contingent claim, enabling us to specify a space of probability
measures suitable for analytical treatment.More precisely, we assume that each agent assigns
some positive probability to a finite number of events forming a partition of the probability
space where the underlying financial market is defined. One possible construction yielding
the desired outcome is to assume that each agent assigns some positive probability to the
following special class of events: the price of a given asset traded in the underlying financial
market is in some element of a finite partition of the positive half-line on a given element of a
finite list of instants of time. It is our opinion that such assumption is not only realistic, but also
that it accurately mimics the qualitative behaviour of many financial market agents. Finally,
we remark that the finiteness assumption detailed above enables us to identify the phase
space of our Calculus of Variations problem with a simplex in a high dimensional Euclidean
space. Given such identification, the dynamics of this Calculus of Variations problem turn
out to be given by absolutely continuous paths (on some simplexes) that minimize an “action
functional” modelling the agents reluctance in moving to fast towards a final agreement, as
well as the increased utility gained from moving closer to a unique price for the contingent
claim, subject to appropriate boundary conditions.

This paper is organized as follows. In Sect. 2 we provide the mathematical formulation
of the model under consideration leading to a continuous time variational problem. In Sect.
3 we study the existence of solutions to this variational problem under general assumptions
on the bidding functions used by the agents in the bargaining scheme. In Sect. 4 we provide
an example of bidding rule realizing the assumptions used for the proof of our main theorem
in Sect. 3. We conclude in Sect. 5.

2 Mathematical formulation of the model

In this section we will fix notation and introduce the setup under consideration throughout
the rest of the paper.

2.1 The financial market

Let (Ω,F, P) be a complete filtered probability space. We consider a financial market with
finite horizon T > 0 determined by the following processes:

(i) a M-dimensional Brownian motion {W (t),Ft : 0 ≤ t ≤ T } defined on (Ω,F, P),
where {Ft }0≤t≤T is the augmentation of the filtration {FW

t }0≤t≤T generated by W (·);
(ii) a continuous deterministic risk-free rate process r(·);
(iii) a continuous deterministic N -dimensional mean rate of return process μ(·);
(iv) a continuous deterministic (N × M)-matrix-valued volatility process σ(·);
(v) a vector of positive, initial stock prices

S(0) = (S1(0), . . . , SN (0))′.
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We refer to this financial market asM = (r(·), μ(·), σ (·), S(0)). Thus, the financial market
under consideration has N+1 assets that can be traded continuously: one risk-free asset S0(t)
(called the bond) and a fixed number of risky-assets S1(t), . . . , SN (t). The price process S0(·)
is continuous and increasing, whereas the processes (S1(t), S2(t), . . . , SN (t)) are continu-
ous and strictly positive. Moreover, we assume that these processes satisfy the following
stochastic differential equations:

dS0(t) = r(t)S0(t)dt , S0(0) = 1,

dSi (t) = Si (t)

[
μi (t)dt +

M∑
j=1

σi j (t)dWj (t)

]
, Si (0) = si > 0,

for all t ∈ [0, T ] and i = 1, . . . , N .
A portfolio process (π0(·), π(·)) for the marketM under consideration consists of a {Ft }-

progressivelymeasurable real-valued processπ0(·) and a {Ft }-progressivelymeasurableRN -
valued process π(·) = (π1(·), . . . , πN (·)), such that the following integrability conditions
hold almost surely

∫ T

0

∣∣∣π0(t) +
N∑
i=1

πi (t)
∣∣∣|r(t)|dt < ∞

∫ T

0

∣∣∣π(t)α(t)
∣∣∣dt < ∞ (1)

∫ T

0
||σ ′(t)π(t)||2dt < ∞ , (2)

where α(t) = (μ1(t)−r(t), . . . , μN (t)−r(t)) ∈ R
N is the risk premium. The gains process

G(·) associated with (π0(·), π(·)) is given by

G(t) =
∫ t

0

((
π0(s) +

N∑
i=1

πi (s)

)
r(s) + π(s)α(s)

)
ds

+
∫ t

0
π(s)σ (s)dW (s), (3)

for t ∈ [0, T ]. The portfolio process (π0(·), π(·)) is said to be self-financed if

G(t) = π0(t) +
N∑
i=1

πi (t),

for all t ∈ [0, T ]. The component π0(t) represents the number of units of the bond in the
portfolio, whereas the component π j (t), j ∈ {1, · · · , N }, represents the number of shares of
stock j at any given time t ∈ [0, T ]. We assume that each component of a trading strategy is
predictable.

We now introduce a cumulative income process I (t), t ∈ [0, T ], associated with the
continuous income process i(t), t ∈ [0, T ], in such a way that

I (t) =
∫ t

0
i(t)dt.
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We think of I (t) as the cumulative wealth received by an investor up to time t ∈ [0, T ]. We
define the wealth process associated with (I (·), π0(·), π(·)) as being

X (t) = I (t) + G(t) , (4)

where G(·) is the gains process in (3). We can rewrite the previous equation in differential
form as

dX (t) =
(
i(t) + r(t)X (t) + π(t)α(t)

)
dt + π(t)σ (t)dW (t).

The SDE above describes the evolution of the wealth process X (·) associated with both the
continuous-time income process i(t) and portfolio (π0(·), π(·)). Since the wealth process
X (·) combines into a single quantity the income derived from investment in the financial
market and the external income provided by the process i(·), the portfolio (π0(·), π(·)) is not
self-financing. Instead, the portfolio (π0(·), π(·)) is I (·)-financed (see Karatzas and Shreve
1998, Ch. I, Sec. 1.3) in the sense that

X (t) = π0(t) +
N∑
i=1

πi (t).

The existence of a self-financed portfolio process π(·) is an arbitrage opportunity in the
financial marketM if the corresponding gains processG(·) satisfiesG(T ) ≥ 0 almost surely
andG(T ) > 0 with positive probability (see, e.g. Karatzas and Shreve 1998). We say that the
financial marketM is viable if no such arbitrage opportunities exist. It is well known that the
financial market M is viable if there exists a progressively measurable process θ(·) ∈ R

N ,
called the market price of risk, such that for Lebesgue-almost-every t ∈ [0, T ] the risk
premium α(t) is related to θ(t) by the equation

α(t) = σ(t)θ(t) a.s.

and is such that the following two conditions hold

∫ T

0
‖θ(s)‖2 ds < ∞ a.s.

E

[
exp

(
−
∫ T

0
θ ′(s)dW (s) − 1

2

∫ T

0
‖θ(s)‖2 ds

)]
= 1.

Throughout this paper we will assume that the financial marketM is viable, i.e. there are no
arbitrage opportunities.

2.2 The pricing problem

In this section we introduce a problemwhere a pair of agents, a seller and a buyer (denoted by
A and B, respectively), need to reach an agreement for a price p for the trade at time T0 < T
of a contingent claim with payoff at time T given by a FT -measurable random variable
F . Throughout this paper we will assume that the random variable F is non-constant and
bounded.

We assume that each agent has some beliefs about the likelihood of occurrence of the
future states of the world, which we associate with elements of the sample space ω ∈ Ω .
Moreover, we assume that the agents’ ability to assign probabilities to each set of future
states of the world, i.e. subsets of Ω , is limited in the sense that we now pass to describe.
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Let P(Ω) denote the set of probability measures on Ω and denote by ΔK the unit simplex
in R

K . Each agent fixes some finite partition of Ω , Πβ , of the form:

Πβ =
{
ω

β
1 , . . . , ω

β
Kβ

}
, β ∈ {A, B} ,

where Kβ > 1 andω
β
i ∈ F for every i ∈ {1, . . . , Kβ}. Then, each agent assigns probabilities

aβ
i to each element in the corresponding partition ofΩ , i.e. the beliefs of agent β, β ∈ {A, B},
belong the set of probability measures, P(Ω), whose elements are of the form

Q(E) =
Kβ∑
i=1

aβ
i P

(
E |ωβ

i

)
(5)

where E ∈ F and (aβ
1 , . . . , aβ

Kβ
) ∈ ΔKβ .

Throughout this paper, we will assume that each agent has beliefs given by probability
measures as described above. Indeed, we claim that the restriction to a space of probability
measures of this type is realistic from the modelling point of view. To support this statement,
we note that the usual process under which the future value of financial assets is assessed or
described has an inherently finite and discrete nature, as most other human behaviours. As
an example, recall that financial advisers, investment companies, or other economic agents
specialized in such type of financial counseling, very often classify the future values of
financial assets in terms of a finite number of intervals on which the corresponding payoffs
lie. For the sake of completeness, and to provide a particular example for the financial market
under consideration herein, the behaviour described above amounts to fixing values

yn1 (ti ) < · · · < ynKn
ti
(ti ) , n ∈ {1, . . . , N } ,

for each risky asset S1, . . . , SN at instants of time given by elements of a finite sequence
0 < t1 < . . . < t� ≤ T of length � ∈ N, in such a way that the future events considered by
the economic agents referred to above are either of the form

Sn(ti , ω) ∈ (ynj (ti ), y
n
j+1(ti )] , j = 1, . . . , Kn

ti − 1 ,

or of one of the following two forms

Sn(ti , ω) ≤ yn1 (ti ) or Sn(ti , ω) > ynKn
ti
(ti )

for every n ∈ {1, . . . , N } and i ∈ {1, . . . , �}. Note that the set of events above defines a
“natural” finite partition of the probability space Ω in terms of the prices of the risky assets
S1, . . . , SN at the sequence of instants of time {ti }�i=1.

In addition to the finiteness assumption detailed above, we will assume that such beliefs
are not rigid, i.e. the agents are willing to update their beliefs about the future states of the
world in order to reach an agreement leading to a common price for the contingent claim
F . However, the agents are not flexible enough to instantaneously update their beliefs to
reach the desired common price. Instead, they continuously adjust their beliefs, taking into
consideration each other pricing updates, to reach an agreement on or before the trade date
T0. We model such continuous adjustment or bargaining process as follows. We identify
Pβ(Ω) with the simplex ΔKβ ⊆ R

Kβ and consider paths γβ : [0, T0] → ΔKβ such that for
each t ∈ [0, T0] we have that

γβ(t) =
(
aβ
1 (t), . . . , aβ

Kβ
(t)
)

∈ ΔKβ
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determines agent β beliefs at time t ∈ [0, T0], Qβ(t) ∈ Pβ(Ω), through the relation (5).
The evolution of the agents’ beliefs with time will then be realized as the minimum of an
appropriate functional over a set of absolutely continuous paths. For our purposes to be
achieved, such functional must satisfy the following modeling properties:

i) it must be increasing when seen as a function of the norm of the paths γβ velocities (note
that the path velocities exist for a.e. t ∈ [0, T0] by absolute continuity);

ii) it must be increasing when seen as a function of the agents disagreement concerning the
price of the contingent claim at each instant of time t ∈ [0, T0].

Properties i) and i i) above influence the beliefs dynamics (modelled by the paths γβ, β ∈
{A, B}) in two opposite ways, ultimately balancing each other. Property i i) promotes a fast
agreement between the agents in what concerns the price of the contingent claim, while
property i) prevents such agreement from taking place faster by introducing some disutility
into a fast adjustment (i.e. large velocities of the paths γβ, β ∈ {A, B}).

In what concerns the agents preferences, we assume that these are described by utility
functions Uβ : R → R, β ∈ {A, B}, satisfying the usual Inada conditions (see Inada 1963),
i.e. the utility functions have value zero when x = 0, are strictly increasing, strictly concave
and continuously differentiable, and their first derivatives satisfy the following asymptotic
conditions

lim
x→−∞U

′
β(x) = +∞, lim

x→+∞U
′
β(x) = 0, β = A, B.

Assume that agents A and B have cumulative income processes IA(·) and IB(·), and let Vβ ,
β ∈ {A, B}, be compact convex subsets of RN+1. We assume that the agents are allowed to
allocate theirwealth in the financialmarket by choosing trading strategies {πβ(t) : t ∈ [0, T ]}
such that πβ(t) ∈ Vβ for every t ∈ [0, T ]. The sets Vβ may be interpreted as constraints on

the portfolio strategies of the agents. For each β ∈ {A, B}, we will denote by X
β,πβ

t0,xβ
(t, ω)

the stochastic process representing agent β wealth at time t ∈ [0, T ] and state of the world
ω ∈ Ω , when choosing a trading strategy {πβ(t) : t ∈ [t0, T ]} starting with wealth xβ at
time t0.

Assume for the time being that the agents agree to trade the contingent claim with payoff
F at time T for the price p at time T0. Then, it is easy to check that the agents wealth process

X
β,πβ

t0,xβ
(t) will be given by

X
β,πβ

0,xβ
(t) = Iβ(t) + lβ pχ{t≥T0}(t) − lβFχ{t=T }(t) +

N∑
i=0

∫ t

0
π

β
i (u)dSi (u) (6)

where lA = 1 and lB = −1. Notice that, in accordance with the standard notion of a
contingent claim (with maturity T ), the buyer pays an amount p at time T0 in order to receive
a payoff of F at time T . Regarding the use of the signs lβ in equation (6), recall that the
initial payment at time T0 is made by the buyer to the seller, while the payoff F at time T
corresponds to a payment from the seller to the buyer.

During the bargaining leading to the contingent claim trade at time T0, and during the span
of time between such trade and the payoff time T , the agents invest their wealth in such a way
that maximizes their utility at the final time T , i.e. the agents choose investment strategies
π∗

β , β ∈ {A, B}, such that

π∗
β = argmax

πβ(t)∈Vβ

E
[
Uβ

(
X

β,πβ

0,xβ
(T, ω)

)∣∣∣Ft

]
. (7)
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We note that (7) is a standard finite horizon optimal control problem associated with a wealth
process which is obtained by interlacing two Itô diffusions at time t = T0, i.e. there is a
discontinuity at T0 caused by the trade of the contingent claim F . Such problem is well-
posed and existence and uniqueness of solution follow by standard results from stochastic
optimal control theory. For further details see Oksendal and Sulem (2005) and Yong and
Zhou (1999).

For each β ∈ {A, B}, let pβ : [0, T0] × ΔKβ → R be the time t ∈ [0, T0] valuation
that agent β has for the contingent claim F under the beliefs γβ ∈ ΔKβ associated with the
measure Qβ ∈ Pβ(Ω). Note that these pricing functions depend also on the random variable
F .

Let ψβ : [0, T0] ×R
+
0 → R

+
0 , β ∈ {A, B}, be such that for every t ∈ [0, T0], ψβ(t, ·) is a

continuous function with a unique mimimum at 0. Assume also that the function φ : R → R

is continuous and has a unique mimimum at 0. Taking into consideration the comments
concerning the bargaining process provided earlier in this section, we will now introduce the
functional to be minimized, determining the evolution of the agents beliefs. Such functional
is given by

J (γ ) =
∫ T0

0
αψA

(
t, ||γ̇A(t)||2

)
+ (1 − α)ψB

(
t, ||γ̇B(t)||2

)

+φ(pB(t, γB(t)) − pA(t, γA(t)))dt. (8)

At each instant of time, the agents choose their beliefs γA(t), γB(t) by minimizing the
functional (8) over the set of absolutely continuous paths γ : [0, T0] → ΔKA × ΔKB

subject to the initial beliefs

γ (0) = (
γ 0
A, γ 0

B

) ∈ ΔKA × ΔKB (9)

and the constraint that the transaction takes place at T0, i.e.

pA(T0, γA(T0)) ≤ pB(T0, γB(T0)). (10)

In the next section we will resort to variational calculus techniques to prove the existence
of a unique solution to this problem.

3 The variational problem

In this section we prove the existence of a solution to the minimization problem (8) under
the constraints (9) and (10). Moreover, we provide a detailed description of the qualitative
properties of the optimal paths.

3.1 A calculus of variations approach

We will use the direct method of the Calculus of Variations to prove the existence of mini-
mizers of (8)–(10) within the class of absolutely continuous trajectories.

From now on we will use the notation ‖·‖ for the euclidean norm in R
KA+KB . A path

γ : [0, T0] → ΔKA × ΔKB is said to be absolutely continuous on [0, T0] if for every ε > 0
there exists δ > 0 such that, for every disjoint family of subintervals [si , ti ] ⊆ [0, T0],∑

i ||γ (ti ) − γ (si )|| < ε and
∑

i |ti − si | < δ. We will denote by AC([0, T0];ΔKA × ΔKB )

the set of absolutely continuous curves γ : [0, T0] → ΔKA × ΔKB .
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Consider the following set of assumptions:

A1. for each β ∈ {A, B}, ψβ : [0, T0] × R
+
0 → R

+
0 is a C2 function such that for every

t ∈ [0, T0], ψβ(t, ·) is strictly convex and attains its minimum value at 0.

A2. there exist Dβ
1 > 0, Dβ

2 ∈ R and δβ > 1 such that

ψβ(t, x) ≥ Dβ
1 |x |δβ + Dβ

2 ,

for β ∈ {A, B}.
A3. the function φ : R → R is strictly convex with a unique minimum at 0.
A4. the price functions pβ : [0, T0] × ΔKβ → R, β ∈ {A, B}, are continuous functions

such that for each fixed t ∈ [0, T0], the map pA(t, ·) is strictly concave and the map
pB(t, ·) is strictly convex.

A5. the initial conditions γ 0
A ∈ ΔKA and γ 0

B ∈ ΔKB are such that

pA
(
0, γ 0

A

) ≥ pB
(
0, γ 0

B

)
for fixed levels of initial wealth xA, xB ∈ R.

Theorem 1 Let α ∈ (0, 1) be fixed and assume that (A1)-(A5) hold. Then, there exists a
unique path γ ∗ = (γ ∗

A, γ ∗
B) ∈ AC([0, T0];ΔKA × ΔKB ) for which the constraints

pA(T0, γA(T0)) ≤ pB(T0, γB(T0)),

γ (0) = (
γ 0
A, γ 0

B

) ∈ ΔKA × ΔKB (11)

hold and satisfying

J (γ ∗) ≤ J (γ )

for all γ ∈ AC([0, T0];ΔKA × ΔKB ).

The proof of Theorem 1 uses standard techniques from the Calculus of Variations (see, e.g.
Fathi 2008 for further details). We will provide some details below for the sake of complete-
ness. However, before proceeding to the proof, we need to establish some terminology and
one auxiliary result.

Recall that a map S : R+
0 → R

+
0 is said to be superlinear if for all k ∈ R there exists

C := C(k) such that

S(x) ≥ kx + C

for all x ∈ R
+
0 . Equivalently, S is superlinear if and only if

lim
x→+∞

S(x)

x
= +∞.

Lemma 1 Suppose that the sequence γ k ∈ AC([0, T0];ΔKA × ΔKB ) is such that

∫ T0

0
S(||γ̇ k(t)||)dt ≤ C, (12)

for some superlinear function S : R
+
0 → R

+
0 . Assume also that, for some t0 ∈ [0, T0],

||γ k(t0)|| ≤ C for every k ∈ N. Then, there exists a subsequence γ k j satisfying:
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(a) γ k j → γ , uniformly, for some γ ∈ AC([0, T0];ΔKA × ΔKB );
(b) γ̇ k j → γ̇ , weakly in L1([0, T0];ΔKA

× ΔKB ), i.e. for any function φ ∈ L∞([0, T0];ΔKA × ΔKB ), we have∫ T0

0
φ(t)γ̇ k j (t)dt →

∫ T0

0
φ(t)γ̇ (t)dt.

Proof We start by proving item (a). As a first step in the proof of absolute continuity of
γ , we will prove that the sequence {γ k} is equicontinuous. Combining equicontinuity with
the boundedness assumption in the Theorem statement and the Arzelà-Ascoli Theorem, one
is able to ensure the existence of a subsequence {γ k j } satisfying items (a) and (b) in the
statement, as detailed below. Since S is superlinear, for any k ≥ 1 there exists C(k) ∈ R such
that

S(τ ) ≥ k|τ | − C(k) ,

for every τ > 0. Then, for any t1, t2 ∈ [0, T0], we have that since S is non-negative and
∫ t2

t1
S (‖γ̇ (t)‖) dt ≤

∫ T0

0
S (‖γ̇ (t)‖) dt

we obtain that ∥∥∥γ k(t2) − γ k(t1)
∥∥∥ ≤

∫ t2

t1

∥∥∥γ̇ k(t)
∥∥∥ dt

≤ 1

k

∫ t2

t1
S
(∥∥∥γ̇ k(t)

∥∥∥) dt + C(k)

k
|t2 − t1| (13)

≤ C

k
+ C(k)

k
|t2 − t1|.

Thus, given ε > 0, if we choose k such thatC/k ≤ ε/2, and δ > 0 such thatC(k)δ/k ≤ ε/2,
we obtain that whenever |t2 − t1| < δ we have ||γ k(t2) − γ k(t1)|| < ε. In particular, since
the sequence γ k is bounded in norm for some t0 ∈ [0, T0], by Arzelà-Ascoli Theorem (see,
e.g. Rudin 1973) there exists a subsequence {γ k j } of {γ k} that converges uniformly to a
continuous path γ : [0, T0] → ΔKA × ΔKB .

We will now prove that the limit γ is an absolutely continuous path. Given a disjoint
family of subintervals [si , ti ] ⊆ [0, T0], we have that

∑
i

∥∥∥γ k j (ti ) − γ k j (si )
∥∥∥ ≤

∑
i

∫ ti

si

∥∥∥γ̇ k j (t)
∥∥∥ dt

≤ 1

k j

∑
i

∫ ti

si
S
(∥∥∥γ̇ k j (t)

∥∥∥) dt + C(k j )

k j

∑
i

|ti − si |

≤ C

k j
+ C(k j )

k j

∑
i

|ti − si |. (14)

Taking k j → +∞, for sufficiently large j we have that

∑
i

‖γ (ti ) − γ (si )‖ ≤ C

k j
+ C(k j )

k j

∑
i

|ti − si |.

Moreover, for any ε > 0, choosing δ > 0 as above, we obtain that whenever
∑

i |ti − si | < δ

we have
∑

i ||γ (ti )−γ (si )|| < ε. We conclude that the limit path γ is absolutely continuous.
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We will now prove item (b). It is enough to check that the result holds for characteristic
functions of Borel sets. Indeed, such functions are dense in L∞([0, T0];ΔKA × ΔKB ). For
that purpose, consider first the case where E is a finite union of disjoint intervals (ai , bi ), i.e.

E =
N⋃
i=1

(ai , bi ) ,

then
∫
E

γ̇ k j (t)dt =
N∑
i=1

γ k j (bi ) − γ k j (ai ) →
N∑
i=1

γ (bi ) − γ (ai ) =
∫
E

γ̇ (t)dt .

Consider now the case where E is an infinite union of disjoint intervals (ai , bi ):

E =
∞⋃
i=1

(ai , bi ).

Using superlinearity of S and assumption (12), we obtain that the sequence of derivatives
γ̇ k j is uniformly integrable (for the Lebesgue measure on [0, T0]). Hence, for any ε > 0
there exists δ > 0 such that if A ⊂ [0, T0] is a Borel subset with Lebesgue measure smaller
than δ, then

∫
A

∥∥γ̇ k j (t)
∥∥ dt < ε. Fix ε > 0 and pick the corresponding value of δ determined

by uniform integrability of the sequence γ̇ k j to obtain the existence of i0 ∈ N such that
whenever

∑∞
i=i0 |bi − ai | < δ we have

∞∑
i=i0

||γ k j (bi ) − γ k j (ai )|| < ε

for every j ∈ N. Taking the limit as j → +∞, we get that

∞∑
i=i0

||γ (bi ) − γ (ai )|| ≤ ε.

Set

E0 =
∞⋃
i=i0

(ai , bi )

and notice that by absolute continuity we can write

∣∣∣∣
∫
E0

γ̇ k j (t)dt

∣∣∣∣ =
∥∥∥∥∥∥

∞∑
i=i0

γ k j (bi ) − γ k j (ai )

∥∥∥∥∥∥
≤

∞∑
i=i0

∥∥∥γ k j (bi ) − γ k j (ai )
∥∥∥

< ε ,

and also ∣∣∣∣
∫
E0

γ̇ (t)dt

∣∣∣∣ ≤ ε.

We now notice that since E\E0 is a finite union of disjoint intervals, by the previous case,
we obtain that

123



Ann Oper Res

lim
j→∞

∫
E\E0

γ̇ k j (t)dt =
∫
E\E0

γ̇ (t)dt.

Thus, since we have that∣∣∣∣
∫
E

γ̇ k j (t) − γ̇ (t) dt

∣∣∣∣ ≤
∣∣∣∣
∫
E\E0

γ̇ k j (t) − γ̇ (t) dt

∣∣∣∣+
∣∣∣∣
∫
E0

γ̇ k j (t) − γ̇ (t) dt

∣∣∣∣
we conclude that

lim sup
j→∞

∣∣∣∣
∫
E

γ̇ k j (t)dt −
∫
E

γ̇ (t)dt

∣∣∣∣ ≤ 2ε

for any arbitrary positive ε. Hence, we arrive at∫
E

γ̇ k j (t)dt →
∫
E

γ̇ (t)dt

as required.
Finally, if E is any Borel set, we approximate E by a decreasing sequence of open sets

and use the Lebesgue monotone convergence Theorem (see, e.g. Rudin 1987) to conclude
the proof. �

We now use Lemma 1 to prove Theorem 1.

Proof (Proof of Theorem 1) Let us start by considering a (minimizing) sequence γ k ∈
AC([0, T0];ΔKA × ΔKB ) with boundary conditions satisfying (11) and such that

J (γ k) → inf J.

By assumptions (A1)–(A4) there exists a superlinear function S : R+ → R
+ such that

∫ T0

0
S(||γ̇ k ||)dt ≤ J (γ k) ≤ C.

Hence, by Lemma 1 there exists γ ∗ ∈ AC([0, T0];ΔKA ×ΔKB ) such that the constraints (11)
hold and a subsequence γ k j of γ k such that γ k j → γ ∗ uniformly in [0, T0]. Moreover, we
have that γ̇ k j → γ̇ ∗ weakly in L1([0, T0];ΔKA × ΔKB ). Finally, by lower semicontinuity,
we obtain that

J (γ ∗) ≤ lim infk J (γ k).

As a consequence, we obtain that

J (γ ∗) = inf
γ∈AC

([0,T0];ΔKA×ΔKB
) J (γ )

thus proving the existence of a minimizer. Uniqueness of the minimizer follows from con-
vexity of the integrand in J with respect to (γ, γ̇ ). �
We remark that the minimizer γ ∗ : [0, T0] → ΔKA × ΔKB of (8)–(9)–(10) is piecewise C1.
This follows from convexity of the integrand of J with respect to (γ, γ̇ ) combined with strict
convexity with respect to γ̇ (see Clarke 1989, Cor. 2.5 and Prop. 2.1 for further details).

A remark regarding the nature of the problem under consideration herein is in order at
this point. Notice that the optimization problem (8)–(9)–(10) is coupled with two (stochastic)
optimal-investment problems of the form (7) via the evolution of each agent wealth process
and its impact on the corresponding price functions on which the objective functional J
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in (8) and the constraint (10) both depend on. If the price functions pA and pB are deter-
ministic, corresponding to the modeling scenario where the agents disregard the financial
market information on the determination of the contingent claim pricing functions, then the
optimization problem (8)–(9)–(10) is deterministic and so are the optimal beliefs γ ∗ whose
existence was proved in Theorem 1. However, a more realistic point of view is the one where
the information collected regarding the financial market evolution is used by the agents to
infer appropriate price mechanisms. In this case, the objective functional J can be seen as
possessing a parametric dependence onω ∈ Ω , i.e. J can be seen as a random variable taking
values on a space of appropriate functionals. Nevertheless, for each ω ∈ Ω , Theorem 1 will
hold, yielding appropriate optimal beliefs γ ∗, which can be seen as a random variable taking
values in the space of absolutely continuous paths AC([0, T0];ΔKA × ΔKB ). We also note
that this feature has an impact on the results presented in Sect. 3.2, all of which hold pointwise
with respect to ω ∈ Ω . However, for simplicity of notation and clarity of presentation, we
drop the dependence on ω ∈ Ω in what follows, while keeping the implicit relation in mind.

3.2 Qualitative properties

We can think of the minimizer of (8)–(9)–(10) as the orbit of a finite-horizon continuous-
time dynamical system with initial condition (γA(0), γB(0)) = (γ 0

A, γ 0
B) ∈ ΔKA ×ΔKB and

terminal condition on the set{
(γA, γB) ∈ ΔKA × ΔKB : pA(T0, γA) = pB(T0, γB)

}
.

Theorem 2 Let α ∈ (0, 1) be fixed and assume that the hypotheses of Theorem 1 hold. Then,
the following statements hold for the solution γ ∗ = {(γ ∗

A(t), γ ∗
B(t)

) ∈ ΔKA × ΔKB : t ∈
[0, T0]} of the variational problem (8)–(10):

a) if there exists t ∈ [0, T0) such that pA(t, γ ∗
A(t)) = pB(t, γ ∗

B(t)), then for every u such
that u > t we have that

pA
(
u, γ ∗

A(u)
) = pB

(
u, γ ∗

B(u)
) ;

b) for every t ∈ [0, T0], the inequality below holds

pA
(
t, γ ∗

A(t)
) ≥ pB

(
t, γ ∗

B(t)
) ;

c) at t = T0, we have that

pA
(
T0, γ

∗
A(T0)

) = pB
(
T0, γ

∗
B(T0)

) ;
d) for every t ∈ [0, T0], the map t → pA(t, γ ∗

A(t)) is non-increasing and the map t →
pB(t, γ ∗

B(t)) is non-decreasing.

Moreover, the minimizers γ ∗ = (γ ∗
A, γ ∗

B) depend continuously on the relative bargaining
power α ∈ (0, 1), as well as on the initial beliefs (γ 0

A, γ 0
B) ∈ ΔKA × ΔKB and the initial

wealth levels xA, xB ∈ R.

Proof We will start by proving item a). Let γ ∗ = {γ ∗(t) : t ∈ [0, T0]} be a solution of
the optimization problem (8)–(11). By contradiction, assume that γ ∗ is such that there exists
t ∈ [0, T0) and s ∈ (t, T0) such that

pA
(
t, γ ∗

A(t)
) = pB

(
t, γ ∗

B(t)
)

and pA
(
s, γ ∗

A(s)
)

> pB
(
s, γ ∗

B(s)
)
.
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Let γ (t) be the trajectory defined by

γ (u) =
{

γ ∗(u) , u ∈ [0, t]
γ ∗(t) , u ∈ (t, T0] . (15)

Then, we have that

J (γ ) < J (γ ∗) ,

contradicting the minimality of γ ∗.
To prove item b) assume, by contradiction, that γ ∗ is such that there exists t ∈ [0, T0)

and s ∈ (t, T0) such that

pA
(
t, γ ∗

A(t)
) ≥ pB

(
t, γ ∗

B(t)
)

and pA
(
s, γ ∗

A(s)
)

< pB
(
s, γ ∗

B(s)
)
.

Then, by continuity of pA, pB and γ ∗, there exists u ∈ [t, s) such that pA(u, γ ∗
A(u)) =

pB(u, γ ∗
B(u)). The contradiction follows from the statement of item a).

Item c) follows from item b) and the constraint

pA
(
T0, γ

∗
A(T0)

) ≤ pB
(
T0, γ

∗
B(T0)

)
.

In what concerns the proof of item d), we consider only the case of the price function
pA, the proof for the price function pB being similar. By contradiction, assume that γ ∗ is
such that there exists an interval [ta, tb] ⊆ [0, T0] such that t → pA(t, γ ∗

A(t)) is increasing
in [ta, tb]. We need to distinguish between the following two cases: tb = T0 and tb < T0. In
the first case, we define

γ A(u) =
{

γ ∗
A(u) , u ∈ [0, ta]

γ ∗
A(ta) , u ∈ (ta, T0] . (16)

Since pA(T0, γ ∗
A(T0)) > pA(T0, γ A(T0)) and pB(T0, γ ∗

B(T0)) = pA(T0, γ ∗
A(T0)), then by

continuity of γ ∗
B(t), t ∈ [0, T0], there exists tc ∈ [ta, T0) such that

pB
(
tc, γ

∗
B(tc)

) = pA
(
ta, γ

∗
A(ta)

)
.

Define

γ B(u) =
{

γ ∗
B(u) , u ∈ [0, tc]

γ ∗
B(tc) , u ∈ (tc, T0] (17)

and let γ (t) = (γ A(t), γ B(t)), t ∈ [0, T0]. By construction of γ , we have that

J (γ ) < J (γ ∗) ,

contradicting minimality of γ ∗. We consider now the case where tb < T0. We need to con-
sider the following two subcases: pA(T0, γ ∗

A(T0)) ≥ pA(ta, γ ∗
A(ta)) and pA(T0, γ ∗

A(T0)) <

pA(ta, γ ∗
A(ta)). For the first case, we let γ A(t), t ∈ [0, T0] be as given in (16) and by the

same reasoning used for the case tb = T0, we have that there exists tc ∈ [ta, T0] such that
pB(tc, γ ∗

B(tc)) = pA(ta, γ ∗
A(ta)). Hence, letting γ B(t), t ∈ [0, T0], we get that

J (γ ) < J (γ ∗) ,

contradicting minimality of γ ∗ once again. Finally, we consider the case where tb < T0
and pA(T0, γ ∗

A(T0)) < pA(ta, γ ∗
A(ta)). Since pA(t, γ ∗

A(t)) is increasing in [ta, tb] and
pA(T0, γ ∗

A(T0)) < pA(ta, γ ∗
A(ta)), by continuity of γ ∗

A(t) there exists tc ∈ [tb, T0[ such
that pA(tc, γ ∗

A(tc)) = pA(ta, γ ∗
A(ta)). Define
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γ A(u) =
⎧⎨
⎩

γ ∗
A(u) , u ∈ [0, ta]

γ ∗
A(ta) , u ∈ (ta, tc]

γ ∗
A(u) , u ∈ (tc, T0]

and let γ (t) = (γ A(t), γ ∗
B(t)), t ∈ [0, T0]. By construction of γ , we obtain that

J (γ ) < J (γ ∗) ,

contradicting minimality of γ ∗.
The continuity of the solution γ ∗ of the optimization problem (8) with respect to

(γ 0
A, γ 0

B , xA, xB , α) ∈ ΔKA × ΔKB × R
2 × [0, 1] is a consequence of Berge’s maximum

Theorem (1997, Ch. VI, Sec. 3), which guarantees continuity of the minimal functional

J
(
γ ∗; γ 0

A, γ 0
B , xA, xB , α

)
with respect γ 0

A ∈ ΔKA , γ 0
B ∈ ΔKB , α ∈ [0, 1], and xA, xB ∈ R, and upper semicontinuity

of the correspondence given by(
γ 0
A, γ 0

B , xA, xB , α
) → γ ∗ (γ 0

A, γ 0
B , xA, xB , α

)
,

completing the proof. �
For the remaining of this section we will assume that the conditions of Theorem 2 are

satisfied. Fix xA, xB ∈ R, let A+ denote the set

A+ =
{(

γ 0
A, γ 0

B

) ∈ ΔKA × ΔKB : pA
(
0, γ 0

A

) ≥ pB
(
0, γ 0

B

)}
,

and let E denote the set
E = A+ × [0, 1].

We define the common price map p∗ : E → R by

p∗ (γ 0
A, γ 0

B , α
) = {

pA
(
T0, γ

∗
A(T0)

) : {γ ∗(t)}t∈[0,T0] is the minimizer of (8)
}

= {
pB
(
T0, γ

∗
B(T0)

) : {γ ∗(t)}t∈[0,T0] is the minimizer of (8)
}
.

Note that the common price map p∗ is a single valued map whose image corresponds to the
actual price for which the asset is eventually traded.

Proposition 1 The common price map p∗ is continuous on E .
Proof Follows from the assumption (A4) and the second part of Theorem 2. �
The next result describes the dependence of the common price map p∗ with respect to the
relative bargaining power α ∈ [0, 1].
Proposition 2 Assume that the assumptions of Theorem 2 hold and fix the agents initial
beliefs (γ 0

A, γ 0
B) ∈ A+. Let p∗(α) denote the dependence of the common price map on the

agents relative bargaining power α. The following statements hold:

(i) if α = 0 then γ ∗
B(t) = γ 0

B for every t ∈ [0, T0] and p(0) = pB(0, γ 0
B);

(ii) if α = 1 then γ ∗
A(t) = γ 0

A for every t ∈ [0, T0] and p(1) = pA(0, γ 0
A);

(iii) the graph of p∗(α) is non decreasing with α.

Proof The proofs of items (i) and (i i) are similar to Theorem 2 items b) and c) and we skip
it. Item (i i i) follows by Theorem 2, the form of functional J in (8) and the definition of the
map p∗(α). �

In the next section we will provide an example satisfying the assumptions used in this
section.
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4 A family of pricing functions with appropriate convexity properties

We note that the functions to which assumptions (A1)–(A3) used in Theorem 1 refer to, play
the role of “generalized” distance functions. A particular simple example is to take

ψβ(t, x) = x2 , β = A, B and φ(x) = x2.

However, it should be clear that a very large class of functions satisfy assumptions (A1)–(A3).
In this sectionwe provide an example of a family of price functions satisfying the assumptions
(A4)–(A5) in Theorem 1, namely that the price functions pA and pB are, respectively, strictly
concave and strictly convex with respect to the agents beliefs γA ∈ ΔKA and γB ∈ ΔKB , and
that there exist initial conditions γ 0

A ∈ ΔKA and γ 0
B ∈ ΔKB such that pA(0, γ 0

A) ≥ pB(0, γ 0
B),

for fixed levels of initial wealth xA, xB ∈ R.
For each β ∈ {A, B}, i ∈ {1, . . . , Kβ} and t ∈ [0, T0], let Fβ

i (t) be the quantity given by

Fβ
i (t) = E

[
Fχ

ω
β
i

∣∣Ft

]
,

i.e. Fβ
i (t) is the mean value with respect to the probability measure P of the contingent claim

payoff restricted to the set ωβ
i ∈ Πβ given the information Ft available to a market observer

during the interval [0, t]. Since F is assumed to be bounded, then Fβ
i (t) is finite for every

β ∈ {A, B}, i ∈ {1, . . . , Kβ} and t ∈ [0, T0]. Let F̃β(t) be the stochastic process with value

Fβ
i (t) on each set ωβ

i ⊆ Ω , for each t ∈ [0, T0].
For each t ∈ [0, T0] and each γβ ∈ ΔKβ , we define agent β price function pβ : [0, T0] ×

ΔKβ → R as the unique real number P satisfying the implicit relation

Uβ

(
ρt,T X

β,πβ

0,xβ
(t)
)

= EQβ

[
Uβ

(
ρt,T X

β,πβ

0,xβ
(t) + lβρT0,T P − lβ F̃

β(t)
)]

, (18)

where

EQβ

[
Uβ

(
ρt,T X

β,πβ

0,xβ
(t) + lβρT0,T P − lβ F̃

β(t)
)]

=
Kβ∑
i=1

aβ
i Uβ

(
ρt,T X

β,πβ

0,xβ
(t) + lβρT0,T P − lβF

β
i (t)

)

for the measure Qβ ∈ Pβ(Ω) associated with γβ =
(
aβ
1 , . . . , aβ

Kβ

)
∈ ΔKβ and

ρt,T = exp

(
−
∫ T

t
r(s)ds

)

is a discount factor.
Using the properties of the utility functions Uβ , β ∈ {A, B}, and of the expected value

EQβ [·], it is possible to check that the price functions pβ : [0, T ] × ΔKβ → R are well
defined. The proof is similar to Azevedo et al. (2013, Lemma 5.8) and we skip it. It is also
possible to prove that the price functions pA and pB are continuous, being that pA is strictly
concave with respect to γA ∈ ΔKA and pB is strictly convex with respect to γB ∈ ΔKB .
The proof of this result is similar to that of Lemma 5.9 in Azevedo et al. (2013). Thus, we
conclude that the family of pricing functions introduced here satisfies assumption (A4) of
Theorem 1. The only property that remains to be checked is the existence of γA ∈ ΔKA and
γB ∈ ΔKB such that condition (A5) also holds. This is a consequence of the following two
lemmas.
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Lemma 2 For each β ∈ {A, B} and initial wealth xβ ∈ R, the price function pβ : [0, T ] ×
ΔKβ → R satisfies the inequalities

min
i∈{1,...,Kβ } F

β
i (t) ≤ pβ(t, γ ) ≤ max

i∈{1,...,Kβ } F
β
i (t) ,

for every t ∈ [0, T0] and γ ∈ ΔKβ .

The proof of Lemma 2 is analogous to the one of Azevedo et al. (2013, Cor. 5.10) and we
skip it.

Lemma 3 The following inequalities hold for every t ∈ [0, T0]:
max

i∈{1,...,KA} F
A
i (t) > min

j∈{1,...,KB } F
B
j (t)

max
j∈{1,...,KB } F

B
j (t) > min

i∈{1,...,KA} F
A
i (t).

Proof We only prove the first item, the proof of the second item being similar. Assume that
the inequality in the first item does not hold. Then, we have that

F A
i (t) ≤ FB

j (t) ,

for every i ∈ {1, . . . , KA}, j ∈ {1, . . . , KB} and t ∈ [0, T0], with strict inequality for at least
one pair (i, j) such that i ∈ {1, . . . , KA} and j ∈ {1, . . . , KB}. Hence, we obtain that

KA∑
i=1

F A
i (t) <

KB∑
i=1

FB
i (t). (19)

However, by definition of Fβ
i (t), β ∈ {A, B}, we have that

Kβ∑
i=1

Fβ
i (t) =

Kβ∑
i=1

E
[
Fχ

ω
β
i

∣∣Ft

]
= E

⎡
⎣F

Kβ∑
i=1

χ
ω

β
i

∣∣∣∣Ft

⎤
⎦ = E

[
F
∣∣Ft
]

,

which contradicts (19). Thus, the inequality in the first item must hold. �
We remark that the setup described in this section can be applied to the modelling of realistic
continuous time barganing examples such as, for instance, financial assets traded over the
counter; companymergers and acquisitions; physical infrastructures; and real options, among
others. We will now very briefly consider the special case of a bargaining session leading to
the exchange of a real asset such as a mine or a factory. Recall the objective functional to be
minimized, given by (8). Within the specificity of the particular example under consideration
at this point, α ∈ (0, 1) can be “interpreted” as a measure of the relative bargaining power of
the two agents. The disutility that the agents experience when updating their beliefs about the
future states of the world is modeled byψβ , β ∈ {A, B}. These can be interpreted as distance
functions quantifying the buyer’s and seller’s inertia to move from their currents beliefs, or
else, their regret for being forced to update their beliefs in order for a unique price to be
reached. In what concerns the funtion φ, it models the common disutility experienced by the
two agents in terms of the distance between their prospective prices, ultimately leading the
bargaining towards a common price for the two agents. Lastly, the constraint (10) ensures
that at the transaction time, T0, the valuation of the buyer is at least as high as the valuation
of the seller, so that an agreement can be reached.
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5 Conclusion

We study a variational problem modelling the interaction between two agents trading a con-
tingent claim in a incomplete continuous-time multiperiod financial market. We combine
techniques from stochastic optimal control theory and variational calculus to prove the exis-
tence and uniqueness of solutions to such problem.We conclude with an illustrative example
of pricing functions satisfying the assumptions of our main results.
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