
1 of 5

IEEE 1149.1 Compliance-enable Pin(s): A Solution for Embedded Microprocessor-
based Systems Debug and Test

Gustavo R. Alves
Department of Electrical Engineering

ISEP
Rua de S. Tomé

4200 Porto, Portugal
e-mail: galves@dee.isep.ipp.pt

José M. M. Ferreira
Department of Electrical Engineering

FEUP
Rua dos Bragas

4000 Porto, Portugal
e-mail: jmf@fe.up.pt

Abstract

Microprocessor-based systems are usually debugged
with the help of in-circuit emulators and logic analysers.
However, these traditional debug tools can not be used
when the microprocessor is an embedded core. To
overcome this problem we propose the use of an embedded
debug and test infrastructure and the IEEE 1149.1
compliance-enable mode to implement the basic
functionality provided by an In-circuit emulator and a logic
analyser.

Keywords: embedded microprocessor, embedded
debug and test infrastructure, IEEE 1149.1 compliance-
enable mode, Boundary Scan Test.

1. Introduction

Boards with a microprocessor are usually debugged
using an In-circuit Emulator (ICE) and a logic analyser.
These tools are able to assist not only in the detection and
analysis of problems faced during the prototype validation
but also during the integration of software (e.g. the program
run by the microprocessor) with hardware, generally
considered to be the most troublesome phase. Unfortunately
these traditional debug tools can not be used when the
microprocessor is an embedded core as there is no physical
access to it.

The concept of Design for Testability (DfT) is being
adopted by an increasing number of designers in order to
solve, earlier in the design phase, the testability problems
faced during the prototype validation and production test.
Boundary Scan Test (BST) or IEEE 1149.1 standard [1] is
also now widely used and supported by several silicon
manufacturers. Although BST is primarily used for the

structural test of Printed Circuit Boards (PCBs), it can be
used for others applications like functional test, circuit
emulation or debug [2, 3, 4, 5, 6].

On this paper we describe how to use an IEEE 1149.1
compatible debug and test infrastructure and the IEEE
1149.1 compliance-enable mode to implement the basic
functionality provided by an ICE and a logic analyser for
debugging embedded microprocessor-based systems. Our
approach eliminates the need for physical access, imposed
by these traditional debug tools, although it requires the
system-on-a-chip to have a standard Test Access Port
(TAP) and one or more IEEE 1149.1 compliance-enable
pin(s).

2. The debug and test requirements

To write down the requirements for the debug and test
infrastructure we first identify the basic functionality
provided by ICEs and logic analysers. These tools are used
at the PCB level and they are virtually design independent
e.g., their use does not imply that the system should be
designed in a particular way. However at the chip level, the
inclusion of an embedded debug and test infrastructure
requires that all implications and aspects related to the
interaction between the functional and test logic should be
discussed and planned earlier at the specification phase. A
brief study shows that when using an ICE it is possible to
reset, single step, stop on break point conditions or run the
microprocessor [7]. When the microprocessor is stopped it
is possible to examine and change the internal registers
contents and the internal and external data memory
contents. The microprocessor may run the program from an
internal or external memory. The logic analyser provides
the capabilities needed to observe the program execution
flow in real time [8]. Characteristics like the maximum
acquisition speed, the memory size, the number of data

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/83043942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 of 5

inputs, the number of inputs for synchronisation and the
trigger options are taken into account when selecting the
right logic analyser. Based on the information gathered it is
possible to specify the following basic debug modes:

• Start mode.
• Single Step (SS) mode.
• Break Point (BP) mode.
• Real Time (RT) mode.

Start mode

In this mode the microprocessor is in the reset state
and it is possible to download the program into the program
memory. As the microprocessor is stopped it is also
possible to read and change the internal registers and both
data memories contents. To implement these capabilities
the debug and test infrastructure must:

1) provide control to the embedded microprocessor reset
line.

2) provide access and control to program memory,
internal registers and both data memories.

SS mode

In this mode it is possible to single step the
microprocessor. There are two options for what is
considered to be a single step: provide n clock cycles to the
microprocessor, where n is specified by the user, or provide
clock cycles until the microprocessor program counter
changes it’s current value. When the microprocessor is
stopped it is possible to read and change the internal
registers and both data memories contents. To implement
these capabilities the debug and test infrastructure must:

1) provide control to the clock line and monitor the
address (and possibly the control) bus in order to detect
changes in the microprocessor program counter.

2) provide access and control to internal registers and
both data memories.

BP mode

In this mode the user may specify a BP condition and
run the microprocessor program until the condition
becomes true. Although there are many possible BP
conditions the following list represents a minimum set:

• BP on program address
• BP on program data
• BP on external data memory address
• BP on external data memory data

When the microprocessor is stopped it is possible to
read and change the internal registers and both data
memories contents. To implement these capabilities the
debug and test infrastructure must:

1) monitor in real time the address and data bus in order
to detect the BP condition.

2) provide control to the clock line in order to stop the
microprocessor.

3) provide access and control to internal registers and
both data memories.

RT mode

In this mode the microprocessor is in a free-running
state and it is only possible to monitor and sample the
signal lines. A brief survey on several logic analysers
trigger options shows that it is generally possible to define
an acquisition protocol where the trigger or transition
conditions are specified by the user and where the
following states commonly exist: start, look for condition
(or idle) and store sample. The conditions may be the ones
already supported in the BP mode. To implement this
capability the debug and test infrastructure must:

1) monitor and sample in real time the address and data
bus in order to detect the transition condition.

2) store the samples in a dedicated memory whose
contents may be shifted out.

3. The embedded debug and test
infrastructure

 The scheme presented in figure 1 allows the
implementation of the debug and test infrastructure, in the
embedded microprocessor core, which may be seen as a
special BST infrastructure. From the list of requirements
presented at each one of the debug modes (Start, SS, BP
and RT) it is possible to identify the requirements for the
embedded debug and test infrastructure:

a) provide control to the embedded microprocessor
reset line.

b) provide control to the embedded microprocessor
clock line in order to single step, stop or resume the
program execution.

c) provide access and control to program memory,
internal registers and both data memories.

d) monitor in real time the address and data bus in
order to detect the BP or the transition condition.

e) store the samples in a dedicated memory whose
contents may be shifted out through the BS chain.



3 of 5

To implement requirements a) and b) the debug and
test infrastructure of the embedded microprocessor must
control the reset and clock lines. The control must be
independent e.g., when the values present on the reset and
clock lines are controlled through the debug and test
infrastructure the values of the remaining lines may be
controlled by the microprocessor functional circuitry. Also
it must be possible to resume the microprocessor normal
activity by placing the cell associated with the clock line in
a bypass mode, without causing any spikes on the transition
that could have hazardous effects. A simple circuit based on
a Flip-Flop may be used to fulfil this precaution.

Fig. 1: IEEE 1149.1 compatible device containing an
embedded microprocessor core with a debug and test
infrastructure.

To implement requirement c) the debug and test
infrastructure of the embedded microprocessor must have
access and control to the program memory (internal or
external to the microprocessor), internal registers and both
data memories. The scheme presented in figure 2 allows the
implementation of this requirement. The internal registers
and memories (program or data) of the embedded
microprocessor can be accessed through an internal scan
chain. A private BST instruction can be used to place the
internal scan chain into the TDI-TDO path of the embedded
microprocessor. Other embedded memories (program or
data) that are exterior to the microprocessor can be accessed
through the BS register, using for instance the EXTEST
instruction. If other embedded blocks have access to these

memories then possible situations of bus contention should
be prevented.

Fig. 2: Access to internal registers and embedded memories
(inside or outside the microprocessor core).

Fig. 3: Embedded DBMs connected to some of the
microprocessor lines.

To implement requirements d) and e) it is necessary to
embed, as illustrated in figure 3, the core of one or more
devices called Digital Bus Monitors (DBMs) or 74SN8994
[9, 10]. The DBM contains a special register that allows
users to scan in, through the TAP, a vector and a mask to be
compared against the patterns sampled at the 16 input data
lines. The vector represents the value expected and the
mask contains information regarding which bits are relevant
e.g., should be compared. When the comparison results true



4 of 5

an output pin, called Event Qualification Output (EQO) is
activated. This pin is connected to the special cell
associated with the microprocessor clock line so that it may
be stopped immediately after a match is found. The number
of DBMs that have to be embedded depends on the
microprocessor address and data bus width. If several
DBMs are needed then they should be daisy chained e.g.,
the TDO of the first one should be connected to the TDI of
the second one, this way until all of them are connected
together. The sampled values are stored in the DBM
internal memory (identified as RAM in the block diagram
presented in figure 4) whose contents can be scanned out
through the TAP. This device also contains a Test Cell
Register that allows to form a signature of the RAM
contents, thus reducing the number of bits that have to be
shifted out in certain cases.

Fig. 4: Block diagram of the DBM.

 To enable this solution the DBM core should be made
available, as a debuggability building block, to all
Electronic Design Automation (EDA) tools. The debug and
test infrastructure formed by the BST infrastructure of
embedded microprocessor and the embedded DBMs may
be accessed through the device TAP, by adding one or more
IEEE 1149.1 compliance-enable pins. When one or more
steady-state logic patterns, called “compliance-enable”
patterns, are applied to those pins then compliance to the
IEEE 1149.1 standard is enabled and the device test
infrastructure acts as a normal BST infrastructure. When
compliance to the standard is disabled, the device TAP acts
as an interface to the embedded debug and test

infrastructure and this way instructions and data may be
shifted in to it through the device TDI-TDO.

4. Conclusion

The inclusion of an embedded debug and test
infrastructure in the original circuit implies an added cost
expressed in additional silicon and the extra IEEE 1149.1
compliance-enable pins. The device TAP pins may be used
for board production test and internal circuits debug. The
embedded debug and test infrastructure includes the special
microprocessor BST infrastructure, the embedded DBMs
and possibly the BST infrastructure of other embedded
blocks. The special microprocessor BST infrastructure
allows independent control of the reset and clock lines and
also access and control to program memory, internal
registers and both data memories contents. The embedded
DBMs allow monitoring and sampling in real time the
address and data bus in order to detect the BP or the
transition condition. The samples can be stored in a
dedicated memory whose contents may be shifted out
through the embedded debug and test infrastructure.

The proposed debug and test infrastructure can be first
implemented in a PCB containing the DBMs and the circuit
that will be integrated using the appropriated CAD tools
and core libraries. The embedded BS chain is the same as
the board BS chain and it can be accessed through the
device TAP, as long as IEEE 1149.1 compliance-enable
pins are used. This solution allows a straightforward
approach to the embedded circuit debug and test.

References

[1] IEEE Standard Test Access Port and Boundary-Scan
Architecture, Oct. 1993, IEEE Std. 1149.1 (Includes
IEEE Std. 1149.1a).

[2] M. F. Lefébvre, “Functional Test and Diagnosis: A
Proposed JTAG Sample Mode Scan Tester,” in
International Test Conference, pp. 294-303, IEEE
Computer Society Press, 1990.

[3] Richard M. Sedmak, “Boundary-Scan: Beyond
Production Test,” in International Test Conference,
pp. 415-420, IEEE Computer Society Press, 1994.

[4] K. Sievert, Y. Manoli, A. Both and R. Lerch, “On-
chip Emulation and Debugging for Embedded
Microcontrollers using the IMS ScanDebugger,” in
European Design & Test Conference User Forum, pp.
229-233, IEEE Computer Society Press, 1995.



5 of 5

[5] Andy Halliday, Greg Young and Al Crouch,
"Prototype Testing simplified by Scannable Buffers
and Latches," in International Test Conference, pp.
174-181, IEEE Computer Society Press, 1989.

[6] Jerry Katz, “A Case-Study in the use of Scan in
microSPARCTM testing and debug,” in International
Test Conference, pp. 70-75, IEEE Computer Society
Press, 1994.

[7] Bruce Erickson, “Selecting the Right Debugging
Tool,” in Electronic Design, pp. 83-98, Oct. 1995.

[8] Thomas R. Blakeslee and Jan Liband, “Real-Time
Debugging Techniques: Hardware-Assisted Real-
Time Debugging Techniques for Embedded Systems,”
in Embedded Systems Programming, vol. 8, nº 4,
1995.

[9] Texas Instruments, SCOPETM Logic Products:
Application and Data Manual, 1994.

[10] Lee Whetsel, “An IEEE 1149.1 Based
Logic/Signature Analyser in a Chip,” in International
Test Conference, pp. 869-878, IEEE Computer
Society Press, 1991.


