




Energy Consumption Awareness
for Resource-Constrained Devices:

Extension to FPGA

Edgar M. Silva1, Pedro Maló1 and Michele Albano2

1UNINOVA-CTS, Faculdade de Ciências e Tecnologia Universidade Nova de

Lisboa, Portugal
2CISTER Research Unit, ISEP/INESC-TEC, Polytechnic Institute of Porto, Portugal

E-mail: {ems; pmm}@uninova.pt; mialb@isep.ipp.pt

Received 16 September 2016; Accepted 16 November 2016;
Publication 22 November 2016

Abstract

The devices running embedded applications tend to be battery-powered, and
the energy efficiency of their operations is an important enabler for the wide
adoption of the Internet-of-Things. Optimization of energy usage depends
on modelling power consumption. A model-based simulation must consider
parameters that depend on the device used, the operating system, and the
distributed application under study. A realistic simulation thus depends on
knowledge regarding how and when devices consume energy. This paper
presents an approach to direct measurement of energy consumed in the
different execution states of the device. We present the architecture and
the measurement process that were implemented. We provide a reference
architecture, whose constituent parts can be implemented in different manners,
e.g. the processing unit of the device can be the chip on a mote, or an Field-
Programmable Gate Array (FPGA) implementation. Details are given regard-
ing the setup of the experimental tests, and a discussion of the results hints at
which architecture is the best for each application under study. The presented
methodology can be extended easily to new architectures and applications, to
streamline the process of building realistic models of power consumption.

Keywords: Simulation, Modeling, Resouce-Constrained Devices, Energy.

Journal of Green Engineering, Vol. 6_3, 229–256.
doi: 10.13052/jge1904-4720.631
c© 2016 River Publishers. All rights reserved.



230 E. M. Silva et al.

1 Introduction

The Internet-of-Things (IoT) is an active field of research, since it is on
the verge of the maturity needed to provide added value to both industrial
processes and people’s everyday life. The Cyber Physical Systems (CPSs) that
make up the IoT address different application domains and services to target
different IoT scenarios, which span from Smart Cities to Domotics (Smart
Buildings), to Intelligent Transportation Systems, to eHealth, etc. A common
aspect of these scenarios is that the involved devices tend to be embedded
and resource constrained (low power, small processing power, limited storage
capabilities, etc.). In particular, the energy available to the devices is limited,
since in most scenarios they are powered by batteries. Energy saving is thus
one of the most important research topics in this area.

Research efforts, like other human activities, proceed by trends. Past trends
on energy saving were considering mainly wireless sensor networks, and
focused on minimizing the energy spent for the communication activities of
the devices, in particular by studying network protocols and Medium Access
Control (MAC) layers. Within network protocols, the goal was to minimize
the number of packets sent to perform a given activity in the sensor network
as a whole; within MAC layers, the objective was to organize transmission
and reception activities to maximize the time that the each device’s wireless
interface spent in the sleep state. More recent activities have generalized this
vision in many ways. The focus has moved from wireless sensor networks
to CPSs, which are devices not limited to data collection activities; the
architecture of distributed systems and their Operating Systems (OSs) have
been object of analysis, to maximize their energy efficiency; computations
performed by devices has become part of the game, and for example it has
been an important parameter in deciding which cryptographic algorithms can
be used by constrained devices.

An accurate analysis of power consumption is a fundamental support
for other Research and Development activities, since it is instrumental to
predict expected devices lifetime and to allow developers to optimize energy
consumption in distributed IoT applications. Two primary approaches have
been followed up to now. Direct measurement is performed by engineering
the devices to measure energy consumption while they are executing their
distributed applications; this approach is accurate but it is very expensive since
it involves engineering every single device involved, and it is not practical in
large distributed applications. The second approach is related to simulation



Energy Consumption Awareness for Resource-Constrained Devices 231

models, which are more practical and scale better, but which depend on direct
measurement over smaller scenarios to collect the parameters used to enhance
the realism of the model.

Direct measurement can be applied according to two main strategies, time-
based sampling and event-based sampling. With first approach, the sampling
process is executed periodically with a fixed period, while in the second
approach the sampling execution is triggered by an event. The latter approach
can be implemented in different manners [1] and has produced accurate results
in some scenarios [2]. On the other hand, most current architectures for IoT
provide straightforward support for the time-based sampling, and event-based
sampling by means of conditional triggering over periodic interrupts, as will
be shown in Section 5.

This paper follows the direct measurement approach, and considers the
time-based sampling, since most devices would provide event-based sampling
simulated on top of time-based sampling. A discussion on most common
hardware, OSs and simulators is used to select OSs and platforms to be studied.
An architecture is presented, and implemented over a testbed. An approach to
the set up of experiments is given, and the results of basic experimental tests
are presented, to showcase how this methodology can be applied to investigate
energy efficiency.

2 Background Information

This section provides support to the paper by means of an acronyms table
(Table 1) and a discussion on the hardware platforms, operating systems and
simulators that appear most commonly in IoT scenarios. Anyway, a reader
already knowledgeable regarding IoT hardware (Subsection 2.1), software
(Subsection 2.2) and simulators (Subsection 2.3) can disregard the related
subsections, and get directly to the discussion at the end of the section
(Subsection 2.4). The conclusions drawn by the discussion drive the selec-
tion of the hardware and operating system that are targeted by the direct
measurement activities described in the rest of the paper.

2.1 Hardware

Hardware technology for sensor nodes is changing due to advances in Micro-
Electro Mechanical System (MEMS) technology, which have led to smaller
and cheaper sensor nodes [3]. A wireless sensor node is composed by a



232 E. M. Silva et al.

Table 1 Table of acronyms
Acronym Full Text
ACM Association for Computing Machinery
ADC Analog-to-Digital Converter
ASIC Application Specific Integrated Circuits
CPS Cyber Physical System
CPU Central Processing Unit
DIP DIssemination Protocol
DYMO DYnamic Manet On-demand protocol
FPGA Field-Programmable Gate Array
IEEE Institute of Electrical and Electronics Engineers
IoT Internet of Things
LED Light-Emitting Diode
LUT Lookup Table
MAC Medium Access Control
MEMS Micro-Electro Mechanical System
nesC Network Embedded System C
OS Operating System
RAM Random Access Memory
RF Radio Frequency
SD Secure Digital
SUT System Under Test
VHDL VHSIC Hardware Description Language
WSN Wireless Sensor Network

micro-controller, memory, timer, transceiver, battery, sensing unit andAnalog-
to-Digital Converter (ADC) [4]. Figure 1 shows a simplified block diagram
of a sensor node typical architecture.

Wireless sensor networks are nowadays based on an impressive number
of different platforms [25] that provide hardware that can host sensor network

Figure 1 Typical sensor node architecture.



Energy Consumption Awareness for Resource-Constrained Devices 233

Figure 2 Typical FPGA architecture.

operating systems and applications. Lately, an alternative approach has been
based on FPGA and reconfigurable hardware platforms (see Figure 2).

2.1.1 FPGA-based sensor networks
FPGA has been explored as the hardware for sensor networks for different
goals.

First of all, an intermediate step between simulation and implementation
onApplication Specific Integrated Circuits (ASICs), also kwown as traditional
hardware platforms, is based on hardware emulation, since it allows to produce
a sensor platform with initial minimal investment [26]. It is thus possible
to validate research solutions, programmed in Verilog or Very High Speed
Integrated Circuits (VHSIC) Hardware Description Language (VHDL) before
implementing the solution in real hardware.

Moreover, FPGA is able to execute computationally intensive data pro-
cessing more efficiently than low cost general-purpose microcontroller [27],
and the solution resulting from the merging of FPGA with traditional sensor
hardware is able to provide an efficient trade-off between low cost and efficient
computations. In fact, FPGA platform can exploit the inherent parallelism in
the tasks execution to speed-up the execution and end up with lower energy
consumption. The work in [28] studied a sensor data processing platform
providing a design matrix including tasks’ partitioning, a low-complexity
background subtraction, bilevel coding, and duty cycling, and it showed an
energy reduction of up to a factor of 69 as compared with software solutions
on traditional hardware.



234 E. M. Silva et al.

Finally, when the simulation of extensive distributed systems is necessary,
simulators run on traditional computers have limited computational power and
bandwidth, and the implementation on FPGA-based platform enable higher
computational effectiveness [29]. Thus, FPGA platform are useful for the
extensive simulation of huge sensor networks, harvesting the advantages
related to fully parallel hardwired architectures, reconfigurability, fast clock
speed, and sophisticated design tools.

Different FPGA platforms were compared [30], to understand the advan-
tages of each platform on its intended scenario. The Basys2 evaluation
platform appears to be well accepted in the research community, for both
its computational performance [31], low cost and reconfigurability [32].

2.2 Operating Systems

Several Operating Systems (OS) have been proposed to manage sensor nodes’
constrained hardware resources in an efficient manner, and to allow the
concurrent execution of multiple applications. According to the authors of
[4, 5], the most popular OS for sensor nodes are TinyOS, Contiki, MANTIS,
Nano-RK and LiteOS. The study conducted in [6], based on scientific and
engineering databases including IEEE Xplore, ACM Digital Library and
Science Direct, states that TinyOS and Contiki account for 81% and 9%
respectively of the global references, and are considered in the following.

2.2.1 TinyOS operating system
TinyOS [7] is a multi-platform, component-based and open-source OS deve-
loped at the University of California (Berkley). It presents a footprint of about
400 bytes and it falls under the monolithic architecture class. TinyOS can
support concurrent programs with low memory requirements and its execution
model is event-based. TinyOS applications are designed as interaction between
components, the latter being independent computational entities that expose
one or more interfaces. The components are written and wired together using
nesC (Network Embedded System C) [8], a component-based programming
language based on C. Components present three computational abstractions:
commands, events and tasks. Commands and events are mechanisms for inter-
component communication, while tasks are used to express intra-component
concurrency.

TinyOS simulates concurrency using TinyOS threads (TOSThreads),
which were first introduced in [9]. TOSThreads are lightweight (context
switches and system calls introduce an overhead of 0.92% or less [9]) and



Energy Consumption Awareness for Resource-Constrained Devices 235

use either a non-preemptive First-In-First-Out (FIFO) scheduling or the Earli-
est Deadline First (EDF) scheduling [7]. These two algorithms present known
disadvantages (FIFO’s waiting time depends on task execution time and EDF
does not produce a feasible schedule when tasks compete for resources),
and it can be concluded that TinyOS does not provide solid real-time
scheduling.

Efficient memory and type safety for TinyOS were introduced in [10]
for Mica2, MicaZ and TelosB platforms. The presented mechanisms ensure
safe execution by providing protection of Random Access Memory (RAM)
against array and pointer errors, useful diagnostics, and recovery strategies.
The internals make use of the Deputy concept, i.e. a resource to resource
compiler that ensures type and memory safety. Current TinyOS provides com-
munication support for communication through a number of routing protocols
such as 6lowpan [17], DYMO [18] and DIP [19]. At the MAC layer, TinyOS
provides implementation for a large number of protocols, comprising: a single
hop TDMA protocol, a TDMA/CSMA hybrid protocol which implements
Z-MAC’s slot stealing optimization, B-MAC, and an optional implementation
of an IEEE 802.15.4 complaint MAC [3]. To accomplish resource sharing,
TinyOS uses two mechanisms, the Virtualization to provide independent
virtual instances of a resource, and the Completion Event to handle sequential
access to resources that cannot be virtualized.

TinyOS provides a single level file system, due to the assumption that for
a given point in time only a single application is running. The limited amount
of available memory supports this assumption. Other features supported
by TinyOS are database support (TinyDB [11]), security for communica-
tions (TinySec [12]) and simulation of TinyOS applications (TOSSIM [13],
described in Subsection 2.3.1). TinyOS widely adoption is also due to its
extensive documentation, which can be found on the TinyOS home page
(http://www.tinyos.net).

2.2.2 Contiki operating system
Contiki [20] is a lightweight operating system for memory-constrained device.
While other operating systems need at least a few megabytes to run, Contiki
can be executed with just 2 kilobytes of RAM. The OS is implemented in
the plain C language, and the applications run under this OS are expected
to be written in C. Contiki has been ported to a number of microcontroller
architectures [22], comprising MSP430 and Atmel AVR.

The kernel of Contiki supports multiprogramming through a handful of
mechanisms. Applications can be event-based, and both interrupt routines



236 E. M. Silva et al.

and the primary execution flow can dispatch events that cause the execution
of event handlers. On top of this simple event-driven execution model, The OS
provides multi-threading by means of Protothreads [21], which are stackless
thread (state must be saved in the private memory of the process), cannot
be preempted, and each protothread run until it puts itself into a waiting
state. Finally, Contiki offers preemptive multi-threading, which is much more
memory-consuming but provides each thread with an independent stack [20].
All these mechanisms requires deep user intervention, and Contiki cannot be
considered to provide solid real-time scheduling.

Contiki has the particularity of being able to selectively reprogram parts
of the on-chip flash memory, to flush out routines not under use and minimize
used memory at any point in time. Contiki provides a full IP network stack
by means of the µIP library [24], in addition to low-power standards such as
6lowpan, RPL, and CoAP [23].

Contiki is now managed and commercialized by Thingsquare, a company
created by Contiki author, and it is thus well maintained. Finally, Cooja [16],
described in Subsection 2.3.4, provides simulation environment for Contiki
application, allowing to execute the same code on the simulated nodes, and
the real ones, at least for some of the hardware platforms (see [22] for the list
of platforms supported by Cooja).

2.3 Simulators

Usage of simulators allows to set up a measurement pipeline without working
on the hardware of devices. The approach scales well because devices can be
instantiated programmatically, while direct measurement needs preparation
work on each and any physical device involved in the scenario. The simulators
are the recipient for direct measurement results, since the latter are used to
make the simulators more realistic.

This subsection presents the most widely used simulators tailored to wire-
less sensor networks. We are here disregarding general-purpose simulators
such as network simulator 2 (ns-2) and network simulator 3 (ns-3), since
they tend to have more complex simulation setup and can provide energy
information regarding communication activities only.

2.3.1 TOSSIM
TOSSIM [13] is a C/C++ library included in the TinyOS framework, and
it replaces low-level hardware components with simulated implementations,
including models for CPUs, ADCs, clocks, timers, flash memories and radio



Energy Consumption Awareness for Resource-Constrained Devices 237

components. The simulation is configured by writing a program that defines
the scenario. The code used for the components can be the same nesC code
that is deployed onto nodes. The scenario definition is written either in C++
or Python. The Python library allows the user to interact with the running
simulation dynamically, however, at the cost of performance when obtaining
the simulation results.

The hardware model employed by TOSSIM is quite abstract, and it is
impossible to capture low-level details of timings and interrupts, which are
important for precise power analysis.Also, the simulation is only supported for
a single hardware platform, the MicaZ, making it a platform and OS-specific
tool.

2.3.2 PowerTOSSIM
PowerTOSSIM [14] is an extension to TOSSIM that enables the estimation
of node power consumption. It is shipped with a detailed model for hardware
energy consumption of the Mica2 sensor node platform, built by extensive
application-level benchmarking. Anyway, PowerTOSSIM is extensible and
can be customized for different platforms, by mean of the same process of
extensive application-level bechmarking. PowerTOSSIM authors ensure that
it is able to achieve results within 13% of the power consumption of real
hardware nodes [14].

2.3.3 Avrora
Avrora [15] is open-source and widely used, it is a cycle-accurate instruction
level simulator, and scales to networks of up to 10,000 nodes. It is language and
operating system independent, since it simulates the assembly code compiled
from the source code of the applications.Applications are run without the need
to specially adapt them for simulation.

Avrora presents support for sensor platforms such as Mica2 and MicaZ,
and runs AVR elf-binary or assembly codes. Avrora is written in Java, each
hardware component is represented as an object-oriented class, and each node
is managed as an independent computational entity. It is possible to retrieve
information from the application simulation both at runtime (e.g.: current
LEDs state) and as a summary at the end of the simulation (e.g.: total energy
consumption). Avrora is available from its sourceforge1 repository, it is not
actively maintained and it does not provide extensions for CPU architectures
different than the AVRMCU cores, making it a platform-specific simulator.

1http://avrora.sourceforge.net/



238 E. M. Silva et al.

2.3.4 Cooja
Cooja [16] is devoted to simulating the Contiki OS, as executed on on either
TI-MSP430 or AtmelAVR microcontrollers. It enables simultaneous simula-
tions at the network, operating system and machine code instruction set level,
to verify application before being uploaded to sensor nodes. Each node can
differ both in on-board software and simulated hardware. Contiki programs
can be executed either by running compiled code directly on the host CPU, or
by emulating the compiled program code in an instruction-level TI-MSP430
emulator.

2.4 Comparative Analysis

The information reported in this section were used to build up a compari-
son of the different hardware platforms, operating systems, and simulation
environments.

Results of the comparison of the simulators are summarized in Table 2.
The simulators operate at different levels. Within TOSSIM and Power
TOSSIM, the applications are written in nesC and converted into the sim-
ulation code, and thus they are language and OS dependent [15], while Avrora
and Cooja can simulate machine code and considered to be language and
OS independent. TOSSIM does not have advanced power simulation. On
the other hand, PowerTOSSIM introduces a detailed model for the hardware
energy consumption built from real-life tests of the Mica2 platform, and it
can be extended to other platforms. Avrora represents the hardware through
Java classes and is capable of performing energy consumption simulations,
but it supports the AVRMCU core only, is getting outdated and is not actively

Table 2 Simulators comparative analysis
Simulator TOSSIM PowerTOSSIM Avrora Cooja
Simulation
level

Operating
system

Operating
system

Instruction level Network, OS and
machine code

Hardware
representation

Abstract
hardware
model

Abstract
hardware
model

Object classes
(Java)

Not available

Simulation
interface

C++/Python C++/Python Java Java

Energy
consumption

No Yes Yes No

Hardware
platform

MicaZ MicaZ AVRMCU cores
(Mica2 and MicaZ)

TI MSP430 cores,
Atmel AVR cores



Energy Consumption Awareness for Resource-Constrained Devices 239

maintained. Concerning Cooja, no information on power consumption simu-
lation was found, and it is believed to lack any kind of power consumption
simulation tool.

Since the simulator that appears to be the best choice for energy simulation
is PowerTOSSIM, which is focused on TinyOS, and since this latter operating
system is the leader in terms of adoption at worldwide level [6], this discussion
leads us to focus our measuring efforts on applications running over TinyOS.
Regarding the hardware targeted by the measurement, it was opted to focus
on a number of mainstream sensor platforms (MSP430 microcontroller on
TelosB platform and Atmega128 microcontroller on Iris platform), and on
FPGA-based platforms.

3 Energy Measurement Process

The proposed process, represented in Figure 3, is based on the basic formula
that says that P = V I (consumed power is equal to the tension multiplied by
the current), and it involves direct measurement of both tension and current of
a System Under Test (SUT). A SUT is a certain device (e.g. a microcontroller
based or with a programmable logic design) that is executing a specified
application and on which the direct measurement process is applied. As
shown in the figure, the SUT is identified as ‘Device + APP Under test’.
The measurement process relies on two main blocks, called Circuits and
Micro-Controller, which are used together to attain a reasonable resolution
of consumed energy.

The Circuits block takes care of transforming the tension and current
physical values into digital signals. An analysis of the operating values for
the devices points out that the sensor nodes, powered by two batteries having

Figure 3 Energy measurement process.



240 E. M. Silva et al.

Table 3 Arduino DUE – specifications (resumed)
Microcontroller AT91SAM3X8E SRAM 96 KB
Operating voltage 3.3 V Clock speed 84 MHz
Digital I/O pins 54 Flash memory 512 KB
Analog inputs 16 ADC resolution 12-bit 1Msps

maximum voltage between 3 V and 3.3 V, can work as long as batteries can
provide at least 2.1 V. Thus, the Circuit block was developed to measure
voltages between 1.65 V to 3.3 V. For the current signal, no values can
be excluded, and the signal is obtained using a common sensing resistor
assembly (a low resistor value so it cannot interfere relevantly in the SUT
energy consumption). For both elements, each measuring unit splits the signal
in the middle into two part, and the following unit is tuned on the top or lower
part of the signal, to gain an extra bit of definition for each measuring unit in
the Circuit block.

The Micro-Controller produces the digital values corresponding to the
current and tension analog signal. The block has got at least three ADC
inputs, a good ADC transformer, a reasonable micro-controller clock speed
and some storage capabilities. The block can easily transform the incoming
analog signal into bits. It is also possible to add bits using software, using the
oversampling technique. The theory says that collecting 4n additional samples
leads to getting n more bits in the measured values, but the implementation of
this approach has the drawback of a direct impact on the sampling rate, and the
application of the technique represents a trade-off to be considered at design
time. Currently, the Micro-Controller block is implemented in a Arduino DUE
(Table 3 summarizes its specifications) coupled with a Micro-SD card shield
for storage.

The implemented SUT aim at a final precision of 14-bit for both voltage
and current signals, obtained one bit by hardware, plus 12-bits given by the
ADC and another one using the oversampling method. The sampling rate for
the measurements ended up being 34 KHz (one sample every ∼29.5/µs).

4 Tests

The tests were designed based on an analysis on the market share of IoT
devices, and on the study on OS reported in Section 2. Five different devices
were selected, four of them having similar features and compatible with both
TinyOS and Contiki OS.



Energy Consumption Awareness for Resource-Constrained Devices 241

Table 4 Micro controller based devices selected to be tested
Platform Microcontroller Memory Radio

Prog.
Flash

Data
RAM

Ext.
FlashDesign OSs Ref. RF Chip

XM1000 MSP430
@16 MHz

116 KB 8 KB 1 MB

CM5000 MSP430
@8 MHz

48 KB 10 KB 1 MB
TI-CC2420

CM3300 Te
lo

sB

T
in

yO
S

C
on

ti
ki

MSP430
@8 MHz

48 KB 10 KB 1 MB

XM2110 Iris Atmega1281
@8 MHz

128 KB 8 KB – Atmel-RF230

Table 4 presents the characteristics of these four devices used in the
experimental tests, in terms of their chipset, wireless interface, quantity of
RAM and flash memory, and CPU speed. Apart from the characteristics
presented in Table 4, the CM3300 device has got an amplifier to provide
more power to the antenna. Since it is the market leader, all applications were
executed over tinyOS (version 2.1.2).

Additionally, and as a competitor, a different device was also tested,
based on a programmable logic design. This device, a development board
(Basys2), is a ready-to-use hardware for digital circuit design, equipped with
a Xilinx Spartan 3E-250 FPGA, onboard buttons, switches, leds, PS/2 and
8-bit VGA ports. The Spartan 3E presents the following main characteris-
tics, among others: 250 K system gates, 5508 equivalent logic cells, 38 K
distributed RAM bits, 12 dedicated multiplexers and a maximum of 172 user
Input/Outputs.

Four simple applications were selected for this preliminary study. The
simplest application (Empty) is a void application, and it helped studying
how the devices take care of sleep states, and provide a baseline for the
power consumption in the idle state. In the FPGA case this test consists on
examining the energy consumption when the board is power on, since there
is no operating system on this kind of devices. Since the most important
job for sensor nodes is to sense the environment, the second application
(Timer 1000 ms) studied how the timers are managed by the OS and the
devices, by setting up and firing a timer with a fixed period of 1 second.
Finally, three applications (Blink Led 0, Blink Led 1, Blink Led 2) were
switching periodically on/off one of the three LEDs of the device, and they
were used to study how these operations are scheduled, and how much power
the LEDs consume. In the experiments, the LEDs were turned on and off with



242 E. M. Silva et al.

Table 5 Programmed applications Size (bytes)
Empty Timer 1000 ms Blink Led 0, 1, 2

(ROM/RAM) (ROM/RAM) (ROM/RAM)
CM3300 1320/6 2250/36 2420/56
XM1000 1244/6 2174/36 2344/56
XM2110 754/4 2088/33 2182/51
CM5000 1320/6 2250/36 2420/56

Table 6 Device (FPGA/Basys2) utilization summary
Timer 1000 ms Blink Led

Number of Slice Flip Flops 24 (<1%) 33 (<1%)
Number of used 4 input LUTs as logic 7 (<1%) 17 (<1%)
Number of used 4 input LUTs as route-thru 21 (<1%) 28 (<1%)

the toggle function of TinyOS. In the case of Blink Led 0, the LED stayed on
for 500 ms, then off for 500 ms, and so on for CM3300, XM2110 and CM5000;
the led stayed in the on and off states for 1s in the case of XM1000. In the
Blink Led 1 and Blink Led 2 applications, all LEDs stayed on and off for 1s
at a time.

Table 5 shows the memory footprint of programming each application on
the respective device, on the other hand, Table 6 shows the amount of logic
circuits used in the FPGA tests. Namely, the number of slice flip flops and
Lookup Tables (LUTs), a slice is a block that can contain LUTs and flip-flops.
ALUT is used to encode boolean functions by storing the truth table associated
to that function.

In the Basys2 case, only appears the components utilization for two
applications. This is due to the fact that FPGA has no need of OS, therefore
no component is used the (Empty) test. And since all Leds available in
the development board, Basys2, are of the same color the individual energy
consumption is the same.

5 Results

The data collected from the tests, performed to telosB and Iris devices, is
represented in the Figures 4–8. The results made it clear that these devices,
which are sharing the same OS and applications, have got different energy
consumption.

From the results regarding the Empty application, it appears a first
difference between MSP430 controller and ATmega1281 (Iris). ATmega1281



Energy Consumption Awareness for Resource-Constrained Devices 243

Figure 4 Current results for the empty application.

Figure 5 Current results for firing a timer each 1000 ms.



244 E. M. Silva et al.

Figure 6 Current results for blink application (Led 0).

Figure 7 Current results for blink application (Led 1).



Energy Consumption Awareness for Resource-Constrained Devices 245

Figure 8 Current results for blink application (Led 2).

is put to sleep completely, while the MSP430 needs to wake every 1.85 s to
verify if it has received any interrupt to process. This result is confirmed on the
other graphs too, since the MSP430-based sensors have got more consumption
spikes. The behaviour is related to the lack of a wake up interrupt of the TelosB
microcontroller, causing it to sleep for a fixed period, and then waking up to
verify if it has received data to process.

Another result from the Empty application is that the CM3300 devices
features extra energy consumption of 5 mA (as mentioned in its datasheet)
due to an amplifier used in wireless communication, even when the radio is
not part of the picture. Thus, the CM3300 sensor has got no way to switch off
the amplifier, at least with the current TinyOS libraries. XM1000 and CM500,
which are both based on TelosB architecture, present similar consumption
results when executing the Empty application, but anyway they feature lower
energy consumption than the Iris device.

Figure 5 depicts the energy consumption when a 1000 ms timer is fired.
From the data it is possible to conclude that energy consumption results are
similar to those presented in the Empty application case. The main difference
resides on additional peaks that are visible in all traces. This fact can be



246 E. M. Silva et al.

assigned to the microcontroller need to control the elapsed time to verify
whether the timer period has ended.

The results from the Blink Leds applications shows that significant diff-
erences exist between devices, which are directly related to the led color
used. Iris XM2110 presents for the three leds, whose colors are: Led 0 – red;
Led 1 – green; and Led 2 – yellow. The TelosB motes present the same led
configuration: Led 0 – red; Led 1 – yellow; and Led 2 – blue. The yellow in
XM2110 (Led 2) has a different color shade than the yellow in TelosB motes
(Led 1).

CM3300 is excluded from further analysis since it consumes always more
energy due to its additional amplifier for wireless communication. Another
results from Led 0 blinking application is that the Iris device appears to
consume more energy than the others, due to a higher impact in energy
consumption by the operating system in this type of devices (see Figure 4).

In the case of Led 1, the XM1000 is the mote that consumes more
energy. XM2110’s led color is of different shade, and the XM1000 presents
better hardware features than the CM5000, which leads to a slightly higher
consumption. The results in Figure 8 reinforce the analysis made in the
previous cases: the Iris device has a different led but, when comparing to
Figure 7, it presents a higher consumption (the yellow leds cases), and again
the XM1000 has a higher consumption for the Blinking Led 2 application than
the CM5000.

In order to compare different devices design, microcontroller and field-
programmable approaches, three tests were made to the development board –
Basys2. Tests follow the same principle as the previous ones, energy con-
sumption analysis when an Empty, timer firing each 1000 ms, and blink a led
applications are applied, but now to the Basys2. The data collected from the
tests are presented in Figures 9–11.

The first thing that stands out, is the signal (current consumption) instability
in all three tests. In this sense, the Basys2 development board presents some
issues regarding the provided electrical power, and as it is visible in the tests,
the signal takes the form of a sawtooth with is a variation around 5 mA, what
is considerable.

Figure 9 reflects the inherent consumption of all development board
components, and not only of the FPGA, when there is not an implemented
application. The mean value, more or less, is about 37.5 mA and it will be
used as a comparative value to identify the additional consumption imposed
by the other two applications.



Energy Consumption Awareness for Resource-Constrained Devices 247

Figure 9 Current results for Basys2 without any application running.

Figure 10 Current results for firing a timer each 1000 ms on Basys2.



248 E. M. Silva et al.

Figure 11 Current results for blink application running on Basys2.

As previously mentioned, an application in which a timer is fired each
1000 ms was tested in Basys2 (see Figure 10). The consumption associated to
this application presents a average current value of 40.5 mA. Therefore, firing
a timer each 1000 ms in a Basys2 board has an additional current impact
of 3 mA.

The last test accomplished with the development board Basys2 reflects
the consumption when a Led (of yellow colour) blinks every 1000 ms (see
Figure 11). When the Led is off the current signal (average) presents the same
value as the previous test, i.e. 40.5 mA. On the other hand, when the Led is
on, the mean current value is 44.5 mA. Consequently, is possible to conclude
that activating a Led has an impact of 4 mA in the Basys2. Note that the
development board, Basys2, has eight leds all with the same colour. In this
sense, no tests were made to the other seven leds, individually, since results
would be the same.

Table 7 resumes the current consumption values obtained in each one of the
tests presented. Comparing the results between microcontroller based devices
(telosB and Iris) with the programmable logic design board (Basys2), it is
clear that this last one consumes more energy than the majority of the others
tested devices. First, it presents a higher energy consumption impact for just



Energy Consumption Awareness for Resource-Constrained Devices 249

Table 7 Current results summary vs applications (values in mA)
Blink Leds [On]

Empty Timer 1000 ms 0 1 2
CM3300 5.25 6.50 7.74 (Red) 13.1 (Yellow) 16.87 (Blue)
XM1000 0.10 0.12 2.04 (Red) 5.91 (Yellow) 2.74 (Blue)
XM2110 0.95 1.00 2.87 (Red) 4.28 (Green) 5.56 (Yellow)
CM5000 0.10 0.12 1.59 (Red) 4.52 (Yellow) 2.05 (Blue)
Basys2 37.5 40.5 44.5 (Yellow) – –

having it turned on (Basys2 37.5 mAversus CM3300 5.25 mA).Although, this
difference can be associate to the Basys2 extra components, and not directly to
Spartan 3E-250 FPGA. Second, and without reason for an extra consumption
by extra components, is the difference between the Empty application and
blink a Led (Yellow). The results shows that only the CM3300 presents a
higher difference than the Basys2 (7.9 mAfor CM3300, and 7 mAfor Basys2).

Based on the results, it is possible for an application designer to select the
device that has got the longer lifetime. For example, an application that can
sleep for a long time and get back to work only when receiving an interrupt,
could be deployed on an Iris. Another conclusion that can be drawn is that
it would be better not to use devices equipped with the amplifier for most
applications, since it is currently impossible to switch it off and thus any
application on that platform would always consume a lot of energy.

6 Conclusions

A number of conclusions can be drawn from the results. It is hard for the
programmer to have complete knowledge of the energy consumption of his
applications, since many low level details are hidden by the OS, and the
details of the operations executed by the OS are device-dependent. What
started as a work to tune up the energy model for energy simulations with
data taken from real hardware, ended up being a critical analysis of how the
same application code is executed on different platforms. For example the
results highlighted that a simple operation such as just blinking a led, has got
different energy consumption impacts that can be predicted by performing
proper platform analysis. The results also hinted that experiments must be
devoted to verifying the OS capabilities, in the sense that some OS capabilities
are not yet implemented on some hardware – such as switching off the amplifier
of the radio on the CM3300 sensor – and this limitation has got an impact on
energy consumption that cannot be predicted without proper experimentation



250 E. M. Silva et al.

on prototypes. Thus, it appears of the utmost importance to have access to data
measured directly on the hardware devices with the correct configurations and
software, to be able to predict energy consumption of complex applications
in a realistic manner.

Future work involves the extension of the analysis to different hard-
ware elements of the architecture (Analog-to-Digital and Digital-to-Analog
Converters, network interface, etc). A further step will consider measuring
the energy consumption in more complex operations (the sensor takes a
measurement, converts it to digital, stores it, and sends it via the wireless
interface) to compare it to the expected energy consumption related to the
measurements done on the single hardware elements. Finally, we aim to define
a complete architecture, in terms of hardware and software, to facilitate the
direct measurement of energy consumption, to be distilled into information to
be used in model-based simulations of energy consumption. The approach will
streamline how data is included into the model-based simulators, to allow the
application designer to receive realistic and accurate analysis of the consumed
energy by simulation only.

Acknowledgments

This research work was partially supported by national funds provided via
the Portuguese Agency “Fundação para a Ciência e a Tecnologia” (FCT) and
funds provided by the European Commission in the scope of ECSEL/H2020-
662189 MANTIS and ARTEMIS/FCT-332987 Arrowhead RTD projects and
the UID/EEA/00066/2013 PEST (Strategic Plan for Science and Technology)
project for the Centre of Technology and Systems (CTS). Furthermore,
we would like to thank to João Rodrigues and José Gonçalves for their
contribution in testing the devices.

References

[1] Pawlowski, A., Guzmán, J. L., Rodríguez, F., Berenguel, M., Sánchez, J.,
and Dormido, S. (2009). Simulation of greenhouse climate monitoring
and control with wireless sensor network and event-based control.
Sensors 9, 232–252.

[2] Ferre, J. A., Pawlowski, A., Guzmán, J. L., Rodríguez, F., and Berenguel,
M. (2010). “A wireless sensor network for greenhouse climate monito-
ring,” in proceeding of the 5th International Conference on Broadband



Energy Consumption Awareness for Resource-Constrained Devices 251

Communication, Information Technology and Biomedical Applications.
Malaga, Spain.

[3] Yick, J., Mukherjee, B., and Ghosal, D. (2008). Wireless sensor network
survey. Comput. Networks, 58, 2292–2330.

[4] Farooq, M. O., and Kunz,T. (2011). Operating systems for wireless sensor
networks: a survey. Sensors 11, 5900–5930.

[5] Moschitta, A., and Neri, I. (2014). “Power consumption Assessment in
Wireless Sensor Networks,” in ICT – Energy – Concepts Towards Zero –

Power Information and Communication Technology, ed. D. G. Fagas.
[6] Lajara, R., Pelegr-Sebasti, J., and Perez Solano, J. J. (2010). Power

consumption analysis of operating systems for wireless sensor networks.
Sensors 10, 5809–5826.

[7] Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo,
A. (2005). TinyOS: an operating system for sensor networks. Ambient

Intell. 115–148.
[8] Gay, D., Levis, P., Von Behren, R., Welsh, M., Brewer, E., and Culler, D.

(2003). The nesC language: a holistic approach to networked embedded
systems. PLDI 38, 1–11.

[9] Klues, K. Mike Liang, C.-J., Paek, J., Musaloiu-E, Levis, P., Terzis A.
et al. (2009). “TOSThreads: thread-safe and non-invasive preemption
in TinyOS,” in Proceedings of the 7th ACM Conference on Embedded

Networked Sensor Systems, 127–140.
[10] Cooprider, N., Archer, W., Eide, E., Gay, D., and Regehr, J. (2007). “Effi-

cient memory safety for TinyOS,” in Proceedings of the 5th International

Conference on Embedded Networked Sensor Systems, 205–218.
[11] Madden S. R., Franklin, M. J., Hellerstein, M., and Hong, W. (2005).

TinyDB: an acquisitional query processing system for sensor networks.
ACM Transactions on Database Systems, 30, 122–173.

[12] Karlof, C., Sastry, N., and Wagner, D. (2004). “TinySec: a link layer
security architecture for wireless sensor networks,” in Proceedings

of the 2nd International Conference on Embedded Networked Sensor

Systems, 162.
[13] Levis, P., Lee, N., Welsh, M., and Culler, D. (2003). “TOSSIM: accurate

and scalable simulation of entire TinyOS applications,” in Proceedings

of the 1st International Conference on Embedded Networked Sensor

Systems, 126–137.
[14] Perla, E., Catháin,A. Ó., Carbajo, R. S., Huggard, M., and Goldrick, C. M.

(2008). “PowerTOSSIM z: realistic energy modelling for wireless sensor
network environments,” in Proceedings of the 3rd ACM Workshop on



252 E. M. Silva et al.

Performance Monitoring and Measurement of Heterogeneous Wireless

and Wired Networks, 35–42.
[15] Titzer, B. L., Lee, D. K., and Palsberg, J. (2005). Avrora: scalable

sensor network simulation with precise timing, Proceedings of the 4th

international symposium on Information Processing in Sensor Networks,
Los Angeles, CA: IEEE Press.

[16] Osterlind, F., Dunkels, A., Eriksson, Finne, N., and Voigt, T. (2006).
“Cross-Level Sensor Network Simulation with COOJA,” in Proceedings

of 2006 31st IEEE Conference on Local Computer Networks.
[17] Harvan, M. (2007). Connecting Wireless Sensor Networks to the

Internet-a 6lowpan Implementation for Tinyos 2.0. Master thesis, Jacobs
University Bremen, Germany.

[18] Thouvenin, R. (2007). Implementing and Evaluating the Dynamic Manet

on-Demand Protocol in Wireless Sensor Networks. Master thesis, Aarhus
University, Denmark.

[19] Lin, K., and Levis, P. (2008). “Data discovery and dissemination with
dip,” in Proceedings of the 7th International Conference on Information

Processing in Sensor Networks (IPSN 2008), Washington, DC: IEEE
Computer Society.

[20] Dunkels, A., Gronvall, B., and Voigt, T. (2004). “Contiki-a lightweight
and flexible operating system for tiny networked sensors,” in Proceedings

of the 29th Annual IEEE International Conference on Local Computer

Networks (LCN 2004), Washington, DC: IEEE Computer Society.
[21] Dunkels, A., Schmidt, O., Voigt, T., and Ali, M. (2006). “Protothreads:

simplifying event-driven programming of memory-constrained embed-
ded systems,” in Proceedings of the 4th International Conference on

Embedded Networked Sensor Systems (New York, NY: ACM), 29–42.
[22] Thingsware website. Contiki Hardware. Available at http://www.con

tiki-os.org/hardware.html
[23] Reusing, T. (2012). “Comparison of operating systems TinyOS and

Contiki,” in Proceedings of the Seminar Sensor Nodes – Operation,

Network and Application (SN), eds G. Carle, C. Schmitt, A. Klein, U.
Baumgarten, and C. Söllner (Munich, Germany: Technical University of
Munich).

[24] Dunkels, A. (2003). “Full TCP/IP for 8-bit architectures,” in Proceedings

of the 1st International Conference on Mobile Systems, Applications and

Services (New York, NY: ACM).
[25] Wikipedia website. List of Wireless Sensor Nodes. Available at

https://en.wikipedia.org/wiki/List_of_wireless_sensor_nodes



Energy Consumption Awareness for Resource-Constrained Devices 253

[26] Vam, D. P., Rimal, B. P., Maier, M., and Valcarenghi, L. (2016). “Design,
analysis, and hardware emulation of a novel energy conservation scheme
for sensor enhanced FiWi networks (ECO-SFiWi).” IEEE J. Sel. Areas

Commun. 34, 1645–1662.
[27] Zhang, X., Heys, H. M., and Li, C. (2013). “FPGA implementation

and energy cost analysis of two light-weight involutional block ciphers
targeted to wireless sensor networks.” Mobile Netw. Appl. 18, 222–234.

[28] Imran, M., Shahzad, K., and Ahmad, N. (2014). “Energy-efficient
SRAM FPGA-based wireless vision sensor node: SENTIOF-CAM.”
IEEE Trans. Circ. Syst. Video Technol. 24, 2132–2143.

[29] Chen, Y. and Dinavahi, V. (2014). “Hardware emulation building blocks
for real-time simulation of large-scale power grids.” IEEE Trans. Ind.

Informat. 10, 373–381.
[30] Aziz, S. M. and Pham, D. M. (2013). “Energy efficient image transmission

in wireless multimedia sensor networks.” IEEE Commun. Lett. 17,
1084–1087.

[31] Ghauri, S. A., Humayun, H., Ehsan ul Haq, M., and Sohail, F. (2012).
“Implementation of Convolutional codes on FPGA,” IEEE International

Conference for Internet Technology and Secured Transactions, 175–178.
[32] Perera, M. D. R., Meegama, R. G. N, and Jayananda, M. K. (2014).

“FPGA based single chip solution with 1-wire protocol for the design of
smart sensor nodes.” J. of Sensors. 2014, 11.

Biographies

E. M. Silva is researcher at UNINOVA-CTS Institute and Ph.D. student at
Universidade Nova de Lisboa. Holds an MSc in Electrical and Electronic
Engineering, speciality in Telecommunications. Has 5+ years of experi-
ence in national and international research projects, such as FP7-216420
CuteLoop, FP7-234344 CRESCENDO, FP7-318381 EAR-IT (project coor-
dination team), FP7-288315 PROBE-IT (core project team) and FP7-662189



254 E. M. Silva et al.

MANTIS. His primary area of expertise is related with Internet-of-Things
(IoT); Hardware Design and Development; and Energy Consumption of
Resource-Constrained Devices.

P. Maló, Professor at the Electrotechnical Engineering Department (DEE)
of the Faculty of Science and Technology of Universidade Nova de Lisboa
(FCT-UNL) and Senior Researcher at the UNINOVA Centre of Technology
and Systems (CTS). He is graduated, with M.Sc. in Computer Science and
a holds Ph.D. in Computer Engineering. Pedro’s core research interests
are the interoperability and integrability of (complex) systems with special
emphasis on Cyber-Physical Systems / Internet of Things. Pedro has 15+ years
practice in the management, research and technical coordination/development
of research and innovation projects in ICT domains especially addressing data
solutions, systems’ interoperability and integration technologies. Pedro is an
author of over 70 scientific publications published as book chapters, journal
articles or conference papers.

M. Albano is Research Scientist in the CISTER Research Unit of the Poly-
technic of Porto, Portugal, working on communication middleware for embed-
ded systems with a focus on the application areas of industrial informatics,
smart grids, and green wireless communications. He is a Founding Member
of the Technical Committee on Green Communications and Computing
(TCGCC). Michele received his degree from the University of Pisa, Italy,



Energy Consumption Awareness for Resource-Constrained Devices 255

has been involved in more than 10 European research projects, and he acted
as technical manager for CELTIC project Green-T and work package leader for
FP7 IP ROMEO and ITEA2 CarCoDe. His works have been published in more
than 70 international conferences and journals, he is on the editorial board of
the International Journal of Social Technologies and of the Transactions on
Emerging Telecommunication Technologies since 2011, and in 2015 he has
been appointed as Editor in Chief for the Journal of Green Engineering.




