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Abstract - This paper studies the performance of a Fractional Order controller in a 

hexapod robot with joint leg actuators having saturation. For that objective the robot 

prescribed motion is characterized in terms of several locomotion variables. Moreover, 

two indices measure the walking performance based on the mean absolute density of 

energy per travelled distance and on the hip trajectory errors. A set of experiments 

reveals the influence of the different controller tuning upon the proposed indices and on 

the feet trajectory tracking. Copyright  2004 IFAC
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1. INTRODUCTION 

Walking machines allow locomotion in terrain 

inaccessible to other type of vehicles, since they do 

not need a continuous support surface. On the other 

hand, the requirements for leg coordination and 

control impose difficulties beyond those encountered 

in wheeled robots (Song and Waldron, 1989). There 

exists a class of walking machines for which 

locomotion is a natural dynamic mode. Once started 

on a shallow slope, a machine of this class will settle 

into a steady gait, without active control or energy 

input (McGeer, 1990). However, the capabilities of 

these machines are quite limited. Previous studies 

focused mainly in the control at the leg level and leg 

coordination using neural networks (Tsai and Lee, 

1998), fuzzy logic (Tsai, et al., 1997), central pattern 

generators (Collins and Richmond, 1994) and 

subsumption architecture (Celaya and Porta, 1995). 

There is also a growing interest in using insect 

locomotion schemes to control walking robots 

(Ferrell, 1995). In spite of the diversity of 

approaches, for multi-legged robots the control at the 

joint level is usually implemented through a simple 

PID like scheme with position/velocity feedback. 

Other approaches include sliding mode control 

(Martins-Filho, et al., 2003), computed torque 

control (Lee, et al., 1998) and hybrid force/position 

control (Song, et al., 1999). 

The application of the theory of fractional calculus in 

robotics is still in a research stage, but the recent 

progress in this area reveals promising aspects for 

future developments (Silva, et al., 2003a). 

With these facts in mind, a simulation model for 

multi-leg locomotion systems was developed, for 

several periodic gaits. Based on this tool, the present 

study compares different Fractional Order (FO) robot 

controller tuning. The analysis is based on the 

formulation of two indices measuring the mean 

absolute density of energy per travelled distance and 

the hip trajectory errors during walking. It is 

analysed the system performance for two cases: two 

leg joints are motor actuated and the ankle joint is 

mechanical actuated and the three leg joints are fully 

motor actuated. The simulations reveal the superior 

performance of the FO controller, with all leg joints 

motor actuated. 

Bearing these facts in mind, the paper is organized as 

follows. Section two introduces the robot kinematic 

model and the motion planning scheme. Sections 

three and four present the robot dynamic model and 

control architecture and the optimizing indices, 

respectively. Section five develops a set of 

experiments that compare the performance of the 

different controller tuning. Finally, section six 

outlines the main conclusions and directions towards 

future developments. 



2. ROBOT KINEMATICS AND TRAJECTORY 

PLANNING 

We consider a walking system (Fig. 1) with n = 6 

legs, equally distributed along both sides of the robot 

body, having each three rotational joints (i.e., j = {1, 

2, 3}  {hip, knee, ankle}). 

Motion is described by means of a world coordinate 

system. The kinematic model comprises: the cycle 

time T, the duty factor , the transference time 

tT = (1 )T, the support time tS = T, the step length 

LS, the stroke pitch SP, the body height HB, the 

maximum foot clearance FC, the i
th

 leg lengths Li1

and Li2 and the foot trajectory offset Oi (i = 1, …, n). 

Moreover, we consider a periodic trajectory for each 

foot, with body velocity VF = LS / T.

Gaits describe sequences of leg movements, 

alternating between transfer and support phases. 

Given a particular gait and duty factor , it is 

possible to calculate, for leg i, the corresponding 

phase i, the time instant where each leg leaves and 

returns to contact with the ground and the cartesian 

trajectories of the tip of the feet (that must be 

completed during tT) (Song and Waldron, 1989). 

Based on this data, the trajectory generator is 

responsible for producing a motion that synchronises 

and coordinates the legs. 

The robot body, and by consequence the legs hips, is 

assumed to have a desired horizontal movement with 

a constant forward speed VF. Therefore, for leg i the 

cartesian coordinates of the hip of the legs are given 

by pHd(t) = [xiHd(t), yiHd(t)]
T
:

T

F B
t V t HHdp (1)

Regarding the feet trajectories, on a previous work 

we evaluated two alternative space-time foot 

trajectories, namely a cycloidal and a sinusoidal 

function (Silva, et al., 2003b). It was demonstrated 

that the cycloid is superior to the sinusoidal function, 

because improves the hip and foot trajectory 

tracking, while minimising the corresponding joint 

torques. These results do not present significant 

changes for different acceleration profiles of the foot 

trajectory. 

Considering the above conclusions, for each cycle 

the desired trajectory of the foot of the swing leg is 

computed through a cycloid function (Eq. 2). For 

example, considering that the transfer phase starts at 

t = 0 s for leg i = 1 we have for 

pFd(t) = [xiFd(t), yiFd(t)]
T
:
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Fig. 1. Coordinate system and variables that 

characterize the motion trajectories of the multi-

legged robot. 

The algorithm for the forward motion planning 

accepts the desired cartesian trajectories of the leg 

hips pHd(t) and feet pFd(t)  as inputs and, by means of 

an inverse kinematics algorithm 
1
, generates the 

related joint trajectories d(t) = [ i1d(t), i2d(t), 

i3d(t)]
T
, selecting the solution corresponding to a 

forward knee and a backward ankle: 

T

id idt x t y t t td Hd Fdp p p (4a)

1
( ) ( )t t t td d d dp p (4b)

1( ) ,t td dJ p J (4c)

In order to avoid the impact and friction effects, at 

the planning phase we estimate null velocities of the 

feet in the instants of landing and taking off, assuring 

also the velocity continuity. 

3. ROBOT DYNAMICS AND CONTROL 

ARCHITECTURE 

3.1 Inverse Dynamics Computation 

The planned joint trajectories constitute the reference 

for the robot control system. The model for the robot 

inverse dynamics is formulated as: 

( )
T

RH F RFH c , g F J F (5) 

where  = [fix, fiy, i1, i2, i3]
T
 (i = 1, …, n) is the 

vector of forces/torques,  = [xiH, yiH, i1, i2, i3]
T
 is 

the vector of position coordinates, H( ) is the inertia 

matrix and c ,  and g( ) are the vectors of 

centrifugal/Coriolis and gravitational forces/torques, 

respectively. The n m (m = 3) matrix ( )T

FJ is the 

transpose of the robot Jacobian matrix, FRH is the 

m  1 vector of the body inter-segment forces and 

FRF is the m  1 vector of the reaction forces that the 

ground exerts on the robot feet. These forces are null 

during the foot transfer phase. During the system 

simulation, Eq. (5) is integrated through the Runge-

Kutta method. 

Furthermore, we consider that the joint actuators are 

not ideal, exhibiting a saturation given by: 



Fig. 2. Model of the robot body and foot-ground 

interaction. 

,

sgn ,

ijm ijMaxijC

ijm

ijC ijMax ijm ijMax

(6)

where, for leg i and joint j, ijC is the controller 

demanded torque, ijMax is the maximum torque that 

the actuator can supply and ijm is the motor effective 

torque. 

3.2 Joint j = 3 Implementation 

During this study leg joint j = 3 can be either 

mechanical actuated or motor actuated. For the 

mechanical actuated case, we suppose that there is a 

rotational spring-dashpot system connecting leg links 

Li2 and Li3. This mechanical impedance maintains the 

angle between the two links and imposes a joint 

torque given by (for leg i):

3 3 3 3 3

3 3 3 3 3 3
,

i m i i

i i d i i i d i

K B

t t t t
(7)

where, i3m is the joint effective torque, K  and B  are 

the coefficients of stiffness and viscous friction and 

i3d and i3 are the planned and real trajectories. 

3.3 Robot Body Model 

Figure 2 presents the dynamic model for the hexapod 

body and foot-ground interaction. It is considered a 

robot body compliance because walking animals 

have a spine that allows supporting the locomotion 

with improved stability. In the present study, the 

robot body is divided in n identical segments (each 

with mass Mbn
1
) and a linear spring-damper system 

is adopted to implement the intra-body compliance: 
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where (xi’H, yi’H) are the hip coordinates and u is the 

total number of segments adjacent to leg i.

Fig. 3. Hexapod robot control architecture. 

In this study, the parameters K  and B  (  = {x, y})

in the {horizontal, vertical} directions, respectively, 

are defined so that the body behaviour is similar to 

the one expected to occur on an animal (Table 1). 

3.4 Foot-Ground Interaction Model 

The contact of the i
th

 robot feet with the ground is 

modeled through a non-linear system (Silva, et al.,

2003b) with damping B F and stiffness K F ( = {x,

y}) in the {horizontal, vertical} directions, 

respectively (see Fig. 2), yielding: 

0 0,
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f K B
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where xiF0 and yiF0 are the coordinates of foot i

touchdown and v is a parameter dependent on the 

ground characteristics. The values for the parameters 

K F and B F (Table 1) are based on the studies of soil 

mechanics (Silva, et al., 2003b). 

3.5 Control Architecture 

The general control architecture of the hexapod robot 

is presented in Fig. 3. On a previous work were 

demonstrated the advantages of a cascade controller, 

with PD position control and foot force feedback, 

over a classical PD with, merely, position feedback, 

particularly in real situations where we have non-

ideal actuators with saturation and being also more 

robust for variable ground characteristics (Silva and 

Machado, 2003). Based on these results, in this study 

we evaluate the effect of different FO controller 

implementations for Gc1(s), while for Gc2 it is 

considered a simple P controller. For the FO

algorithm we have: 

1
, 1 1, 1,2,3j

C j j j
G s K s j (10) 

where Kj is the gain and j is the fractional order. 

In what concerns Eq. (10) it should be noted that the 

mathematical definition of a derivative of fractional 

order has been the subject of several different 



approaches. For example, Eq. (11a) and Eq. (11b), 

represent the Laplace (for zero initial conditions) and 

the Grünwald-Letnikov definitions of the fractional 

derivative of order  of the signal x(t)

D [x(t)] = L {s X(s)} (11a)

0
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where  is the gamma function and h is the time 

increment. 

In this paper, for implementing the FO algorithm 

(Eq. (10)) it is adopted a discrete-time 4
th

-order Padé 

approximation (aij, bij , j  1, 2, 3) yielding an 

equation in the z-domain of the type: 

4 4

1

0 0

i i
i i

C j j ij ij

i i

G z K a z b z (12) 

where Kj is the controller gain. 

4. MEASURES FOR PERFORMANCE 

EVALUATION 

In mathematical terms we establish two global 

measures of the overall performance of the 

mechanism in an average sense. In this perspective, 

we define one index {Eav} inspired on the system 

dynamics and another one { xyH} based on the 

trajectory tracking errors. 

A first measure in this analysis is the mean absolute 

density of energy per travelled distance Eav. This 

index is computed assuming that energy regeneration 

is not available by actuators doing negative work, 

that is, by taking the absolute value of the power. At 

a given joint j (each leg has m = 3 joints) and leg i

(since we are adopting a hexapod it yields n = 6 

legs), the mechanical power is the product of the 

motor torque and angular velocity. The global index 

Eav is obtained by averaging the mechanical absolute 

energy delivered over the travelled distance L:

0
1 1

1 n m
T

av ijm ij

i j

E t t dt
L

(13) 

In what concerns the hip trajectory following errors 

we can define the index: 

2 2

1 1

1
,

( ) ( ), ( ) ( )
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xyH ixH iyH

i kS
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N

x k x k y k y k

(14) 

where NS is the total number of samples for 

averaging purposes and {d, r} indicate the i
th

 samples 

of the desired and real position, respectively. 

In all cases the performance optimization requires the 

minimization of each index. 

Table 1 System parameters

Robot model parameters Locomotion parameters 

SP 1 m 50% 

Lij, j=1,2 0.5 m LS 1 m 

Li3 0.1 m HB 0.9 m 

Oi 0 m FC 0.1 m 

Mb 88.0 kg VF 1 ms
1

Mij, j=1,2 1 kg Ground parameters 

Mi3 0.1 kg KxF 1302152.0 Nm
1

KxH 10
5
 Nm

1 KyF 1705199.0 Nm
1

KyH 10
4
 Nm

1 BxF 2364932.0 Nsm
1

BxH 10
3
 Nsm

1 ByF 2706233.0 Nsm
1

ByH 10
2
 Nsm

1 v 0.9

Table 2 Controller parameters

Joint 3: mechanical actuated motor actuated 

K1 4200.0 K1 3900.0 

K2 400.0 K2 500.0 

K3 2.0 K3 100.0 j = 0.4 

B3 0.5   

K1 7200.0 K1 7600.0 

K2 800.0 K2 1600.0 

K3 0.5 K3 240.0 j = 0.5 

B3 2.0   

K1 1000.0 K1 200.0 

K2 200.0 K2 50.0 

K3 1.0 K3 25.0 j = 0.6 

B3 2.0   

K1 700.0 K1 200.0 

K2 200.0 K2 25.0 

K3 0.5 K3 25.0 j = 0.7 

B3 0.5   

K1 400.0 K1 100.0 

K2 200.0 K2 40.0 

K3 4.0 K3 20.0 j = 0.8 

B3 3.5   

5. SIMULATION RESULTS 

In this section we develop a set of simulations to 

analyse the performances of the different FO

controller tuning during a periodic wave gait at a 

constant forward velocity VF. For simulation 

purposes we consider the locomotion parameters, the 

robot body parameters and the ground parameters 

(supposing that the robot is walking on a ground of 

compact clay) presented in Table 1. 

5.1 Controller Tuning Methodology 

To tune the different controller implementations we 

adopt a systematic method, testing and evaluating 

several possible combinations of parameters, for all 

controller implementations. Therefore, we adopt the 

Gc1(s) parameters that establish a compromise in 

what concerns the simultaneous minimisation of xyH

and Eav and a proportional controller Gc2 with gain 

Kpj = 0.9 (j = 1, 2, 3). Moreover, it is assumed high 

performance joint actuators with a maximum 

actuator torque in Eq. (6) of ijMax = 400 Nm. 
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Fig. 4. Plots of xyH vs. Eav for the different Gc1(s) FO

controller tuning, when establishing a 

compromise between the minimisation of xyH and 

Eav, with Gc2 = 0.9, joints 1 and 2 motor actuated 

and joint 3 mechanical actuated. 
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Fig. 5. Plots of xyH vs. Eav for the different Gc1(s) FO

controller tuning, when establishing a 

compromise between the minimisation of xyH and 

Eav, with Gc2 = 0.9 and all joints motor actuated. 

We start by considering that leg joints 1 and 2 are 

motor actuated and joint 3 is mechanical actuated. 

For this case we tune the FO joint controllers for 

different values of the fractional order j in the 

interval 0.9 < j < 0.9 and j  0.0. Afterwards, 

we consider that joint 3 is also motor actuated, and 

we repeat the controller tuning procedure versus j.

The controller parameters, for both cases, are 

presented in Table 2. 

5.2 FO Algorithm Performance 

Figure 4 presents the best controller tuning for 

different values of j when joint 3 is simple 

mechanical actuated. We observe that the value of 

j = 0.5 presents the best compromise situation in 

what concerns the simultaneous minimisation of xyH

and Eav. For values of j = {0.6, 0.7, 0.8} the values 

of xyH are similar and slightly higher than the 

corresponding value for j = 0.5. Concerning the 

values of Eav, the minimum is obtained for j = 0.8.

Figure 5 presents a similar chart for the case when all 

joints are motor actuated. As in the previous case, we 

observe that the value of j = 0.5 presents the best 

compromise situation in what concerns the 

simultaneous minimisation of xyH and Eav. For values 

of j = {0.6, 0.7, 0.8} the values of xyH are Eav are 

slightly higher. 
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Fig. 6. Plots of 1xF vs. t for j = {0.5, 0.6, 0.7, 0.8}. 
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Fig. 7. Plots of 1yF vs. t for j = {0.5, 0.6, 0.7, 0.8}. 

For values of j = {0.1, 0.2, 0.3, 0.4}, the results are 

very poor and for 0.9 < j < 0.1 and j = 0.9, the 

hexapod locomotion resulted unstable. Furthermore, 

comparing Figures 4 and 5, we conclude that the best 

case correspond to leg joints being motor actuated. 

In order to fully understand the different FO

controller tuning, for the case of motor actuated joint 

3, we analyse the response to a step foot disturbance, 

of amplitude 1yFd = 0.01 m, in the y1Fd(t) desired 

cartesian trajectory. 

Figures 6 and 7 present the plots of 1xF and 1yF

versus t for the values of the fractional order under 

consideration ( j = {0.5, 0.6, 0.7, 0.8}). Figure 7 

reveals that the overshot is similar for all the values 

of j under consideration; nevertheless, for j = 0.5 

we have the higher settling time, while for j = 0.6 

we have the lower one. 

Since the objective of the walking robots is to walk 

in natural terrains, in the sequel we test how the 

different controllers behave under distinct ground 

properties. Figures 8 and 9 present the time evolution 

of 1xF and 1yF versus j when the ground is of loose 

clay (Silva, et al., 2003b). Through the comparison 

of these plots with the previous ones of Figures 6 and 

7 we conclude that the controller responses are quite 

similar, meaning that these algorithms are robust to 

variations of the ground characteristics. 
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It is worth mentioning that in the case when joint 3 is 

mechanically actuated, the robot puts the toe tips in 

the ground, followed by the ankle. Both stay in this 

state during the feet support phase and, consequently, 

the robot walks supporting its body in link Li3. On the 

contrary, when all joints are motor actuated, during 

the feet support phase, the robot walks in its toe tips. 

By other words, the hexapod supports itself in the 

extremity of link Li3.

From the biological point of view both cases are 

important. Therefore, further study is necessary to 

understand more deeply how the behaviour change 

with the locomotion parameters. 

6. CONCLUSIONS 

In this paper we have compared the performance of 

different FO robot controller for joint leg control of a 

hexapod robot, both for the mechanical and motor 

actuated ankle joint. 

In order to analyze the system performance two 

measures were defined based on the mean absolute 

density of energy per travelled distance and the hip 

trajectory errors. The leg response to a step 

disturbance in the feet trajectory is also considered 

for performance comparison purposes. The 

experiments reveal the superior performance of the 

FO controller for j  0.5 and a robot with all motor 

actuated joints. 

The focus of the work presented has been on FO

controllers with a pure derivative / integrative term. 

Presently we are studying the performance of the 

system in case we add several terms. Future work in 

this area will also address the study of the 

performance of these controllers when the hexapod is 

faced with variable ground conditions, obstacles and 

different locomotion parameters. 
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