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Abstract: This paper presents a novel zoom transform al-

gorithm for a more reliable frequency estimation. In fact,

in many signal processing problems exact determination

of the frequency of a signal is of paramount importance.

Some techniques derived from the Fast Fourier Transform

(FFT), just pad the signalwith enough zeros in order to bet-

ter sample its Discrete-Time Fourier Transform. The pro-

posed algorithm is based on the FFT and avoids the prob-

lems observed in the standard heuristic approaches. The

analytic formulation of the novel approach is presented

and illustrated by means of simulations over short-time

based signals. The presented examples demonstrate that

the method gives rise to precise and deterministic results.

Keywords: Zoom algorithm; frequency estimation; FFT

1 Introduction
Frequency estimation usually involves the use of FFT-

based estimators, either directly, as it is the case of peri-

odogram, or indirectly, as in the MEM, MUSIC and other

similar methods. In all cases, we are looking for the exact

position of the spectral peaks in a given spectral estimate

S(f ), |f | <

1

2

(where f denotes frequency). Nevertheless,
when using the FFT, S(f ) is sampled over an uniform grid

and, as a consequence, it is very unlikely that we are suc-

cessful in obtaining the true peak positions. A better es-
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timation of the positions of the spectra peaks can be ob-

tained using large zero padding, thus leading to very large

FFT lengths. In [3] a warped discrete Fourier transform is

used and its performance is compared with several other

procedures, namely: Dichotomous-search, Tretter’s linear

regression, Kay’s phase difference and chirp Z-transform

methods. Further readings and applications of this tech-

nique can be found in [2, 4, 5, 8–10].

Wehave an interpolationproblem in the frequencydo-

main, but it is very special case since we know the inter-

polating function, which is the Fourier transform. The real

problem appears because we are using a DFT implementa-

tion. As this defines completely the Fourier transform, we

can approach this problem from a quite different point of

view: the zooming of a small portion of the spectrum that

includes the peak position. To perform the spectral zoom,

twodifferentmethods of interpolationhavebeenproposed

and usually referred as the zoom transform [1]. However,

since these methods imply a return to time, modulation

and filtering, they are not very useful when dealing with

short-time signals. An alternative and simpler algorithm

was proposed in [6] that merely explores the fact that the

FFT (DFT) is a sampling of the Fourier Transform and, so,

it has the whole information we need.

This paper further details this topic and is organized

as follows. In section 2 we present a general formulation

that allows us to choose the frequency search grid. Fur-

thermore, it is also shown that the proposed algorithm is

useful in converting a spectral representation froma linear

to logarithm scale. In section 3we present some numerical

results. Finally section 4 outlines the main conclusions.

2 The Zoom Algorithm
Let x(n), n = 0,· · · , L − 1, denote an L-length sample se-

quence. Every N ≥ L point DFT sequence represents sam-

ples of the Discrete-Time Fourier Transform (DTFT):

X
(︁
ejω

)︁
=

L−1∑︁
n=0

x (n) e−jωn . (1)
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Figure 1: Zoom in two different bands of a spectrum.

This relation defines an infinite number of DFTs, each

one characterized by one sampling grid. We do not need

any additional information to pass from one to another.

Let XN(k) denote the DFT of x(n), corresponding to

sampling X
(︀
ejω

)︀
at a uniform grid:

XN (k) = DFT [x (n)] = X
(︁
ej

2π
N k

)︁
, (2)

k = 0, · · · , N − 1, N ≥ L.

Accordingly to what we said we have many DFTs: one

for each grid that can be defined by N. Each of these DFTs
has the same inverse given by:

x (n) = 1

N

N−1∑︁
k=0

XN (k) ej
2π
N kn

, n = 0, · · · , N − 1. (3)

Substituting equation (3) into equation (1) results in:

X
(︁
ejw

)︁
=

1

N

N−1∑︁
k=0

XN (k)G (ω, k), k = 0, · · · , N − 1, (4)

where G (ω, k) is given by

G (ω, k) = 1 − e−j(ω− 2π
N k)L

1 − e−j(ω− 2π
N k)

, (5)

for |ω| ≤ π and0 ≤ k < N. This relation allows us to compute

the Fourier coefficients corresponding to one grid from the

ones of another grid. It is straightforward to show that:

G (ω, k) =
sinc

[︀(︀
ω −

2π
N k

)︀ L
2

]︀
sinc

[︀(︀
ω −

2π
N k

)︀
1

2

]︀ ej(ω− 2π
N k)

L−1
2

, (6)

where sinc (x) = sin(x)
x . Since ω = 2πf , we obtain:

G (f , k) =
sinc

[︀(︀
f − k

N
)︀
L
]︀

sinc
(︀
f − k

N
)︀ ejπ(f−

k
N )(L−1)

. (7)

Figure 2: a) Estimated frequency as a function of the SNR by zoom-
ing showing on red the exact frequency value (top) and the mean
square error in (– dB) with the Cramer-Rao bound in blue (bot-
tom), b) Periodogram and zoom of the peak for a sinusoidal signal,
f
0
= 0.2276 Hz.

So, equations (4) and either (6) or (7) allowsus to zoom

into the frequency region of interest. Of course, we are not

interested in zooming the whole spectrum¹, just a given

band (see Fig. 1).

3 Simulation results

3.1 Frequency Estimation

In this section, we present some simulation results ob-

tained with a sinusoidal signal of angular frequency

ω
0
= 1.43 (f

0
= 0.2276 Hz) for different values of the

signal-to-noise ratio (SNR), spanning from −10 up to

+50 dB. The Cramer-Rao bound is included for reference

1 But we can do it, if we find it useful.
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Figure 3: Frequency estimation as a function of the SNR of a sinu-
soidal signal (f

0
= 0.2276 Hz) corrupted by a sinusoid with identical

amplitude, for f
1
= 1.2f

0
and noise, showing, a) from top to bottom:

estimated frequency, inverse of mean square error (dB), b) from top
to bottom: periodogram and zoom of the peak.

as in [3] and the reciprocal value of the variance in dB is

also shown. For the calculations the values L = 24, N = 64

are adopted. Furthermore, the band of frequencies to be

zoomed is f ∈ [0.20, 0.25]Hz,where 1000 points are com-

puted in a total of 100 runs (Figure 2a)). Figure 2b) depicts

the periodogram and the corresponding peak zoom for the

same simulations of Figure 2a).

Other numerical calculations are performed and their

results are presented in Figures 3 and 4. The values L = 24,

N = 64 are considered, and the band of frequencies to be

zoomed consists of f ∈ [0.20, 0.25], where 1000 points

are computed in a total of 100 runs. In both cases, a sinu-

soid with identical amplitude is now added to the original

signal, plus noise as before. The new sinusoid has a fre-

quency equal to 1.2f
0
(Fig. 3) and equal to 1.9f

0
(Fig. 4).

We verify that the presence of the second sinusoid pro-

duces abias in the estimated frequencies and, as expected,

when the two frequencies are closer, the bias becomes

higher.

Figure 4: Frequency estimation as a function of the SNR of a sinu-
soidal signal (f

0
= 0.2276 Hz) corrupted by a sinusoid with identical

amplitude, for f
1
= 1.9f

0
and noise, showing a) from top to bottom:

estimated frequency, inverse of mean square error (dB), b) from top
to bottom: periodogram and zoom of the peak.

The saturation effect we observe in Figure 3 is due to

the numerical errors.

3.2 Comparision to FFT Zoom

In this sectionwe present several comparison experiments

of the proposed zoom algorithm against a “classical” FFT

based zoom: a non-destructive zoom Fast Fourier trans-

form of a time history [7]. We ran both algorithms in the

same circumstances for N = 32, N = 64 and N = 128 as

pictured in Figures 5, 6 and 7, respectively. The increased

performance of the proposed algorithm both in terms of

the frequency estimation and its error variance is evident.

However, as the time sequence length increases, both al-

gorithms approach their performances.
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Figure 5: Frequency estimation as a function of the SNR of a sinu-
soidal signal (f

0
= 0.2276 Hz) corrupted white noise, showing from

top to bottom: estimated frequency and inverse of mean square
error (dB), where ’+’ corresponds to the FFT zoom and ’×’ to the pro-
posed algorithm, for N = 32.
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Figure 6: Frequency estimation as a function of the SNR of a sinu-
soidal signal (f

0
= 0.2276 Hz) corrupted white noise, showing from

top to bottom: estimated frequency and inverse of mean square
error (dB), where ’+’ corresponds to the FFT zoom and ’×’ to the pro-
posed algorithm, for N = 64.

3.3 Frequency Scale Conversion

Another application of this algorithm is the conversion of

a linear frequency scale into a logarithmic one. In Figure 8

weuse the algorithm for converting the transfer functionof

a 10th-order low-pass FIR filter, with a bandwidth of 0.0125

Hz, from a linear (blue plot) to log frequency scale (green

plot). This conversion can be easily done using equation

(7) as an interpolation factor for the filter frequency re-

sponse to the new frequency scale.
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Figure 7: Frequency estimation as a function of the SNR of a sinu-
soidal signal (f

0
= 0.2276 Hz) corrupted white noise, showing from

top to bottom: estimated frequency and inverse of mean square
error (dB), where ’+’ corresponds to the FFT zoom and ’×’ to the pro-
posed algorithm, for N = 128.

Figure 8: Example of linear (‘o’ and blue line) to log (‘+’ and green
line) frequency conversion of a 10th-order low-pass FIR filter with a
cut-off frequency of 0.0125 Hz.

4 Conclusions
A zoom algorithm was presented, with applications rang-

ing from frequency estimation to frequency scale conver-

sion. Often the frequency estimation problem involves the

usage of FFT-based estimators, either directly (e.g., pe-

riodogram), or indirectly (e.g., MEM, MUSIC and similar

methods). In all the cases, we are looking for the exact

position of the peaks in a given spectral estimate. The un-

derlying idea of several existing algorithms is to refine the

sampling of the DFT, but with the expense of large compu-

tational requirements. Other methodologies [1] try to solve

this problem by zooming a small portion of the spectrum

where the peak position is located. A first draft of the algo-

rithm was proposed in [6] and was now further developed

and explored. The scheme was applied to spectral estima-

tion with good results.
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