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Introductory note 

Accuracy is the keyword when it comes to radiotherapy. More advanced treatments 

usually take more time, so immobilization is mandatory. However, immobilization does 

not resolve the intrafraction motion problem, whether it is caused by natural processes 

such as breathing and heart beating or patient intentional movement. 

This question led to the development of the Calypso® 4D Localization System. This is 

a system that monitors internal movement when treating allowing to interrupt and to 

correct any shift that occurs during treatment (intrafraction motion). That way it is 

possible to detect when the patient moves and also to account for internal movement. 

This technology was recently acquired and installed in Champalimaud Clinical Center.  

Considering that I am a radiation therapist in this center where the purpose is to ensure 

good quality of administered treatments, I could not do but to direct this work towards 

the field in which I dwell daily. It is advisable to study the effect of any new equipment 

in treatment delivery and that gives the opportunity to acquire and to explore local data. 

In the first part of this work, a review on state-of-the-art literature is provided (previously 

submitted in December 2013 and accepted in May 2014), as to allow for a fully 

comprehension of the subject discussed here: how Calypso® system works, its 

advantages when compared to other monitoring systems available and how it is being 

used around the world.  

After knowing how Calypso® works, one question is inevitable. In order to monitor the 

patient continuously an array is positioned above the patient during the treatment and 

the treatment planning system does not account for that. How much dose does the 

array attenuate? The second part of this work assesses this subject. A study was 

performed by measuring the transmitted radiation of several beams (with beam energy, 

field size and gantry angle variation) with and without the array in the beam path and 

the attenuation was calculated and analyzed (previously submitted in May).  

Finally, the third part of this work studies radiation attenuation in treatment tabletops. It 

was noted when Calypso® system was being installed that changing the treatment 

table was part of the installation process. For the system to work properly no electric 

conductive materials are allowed in the array’s volume detection, as the system 

functions by electromagnetic detection. Carbon fiber is an electric conductive material 

so the Varian Exact IGRT tabletop was replaced by a table with the two exchangeable 
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inserts kVueTM Universal Tip Insert (carbon fibre) and kVueTM Calypso ® Varian Insert 

(kevlar). 

A study was performed in order to determine if there was any loss in treatment 

administration quality due to the radiation attenuated in the treatment tabletop. 

Radiation measurements were performed without tabletop and also with each of the 

three tabletops (with beam energy, field size and gantry angle variation). Attenuation 

was calculated for the three tabletops. It was assessed if new tabletops attenuated 

more or less radiation than the original one, and it was considered if it was adequate 

not to switch between kVueTM Calypso® Varian and kVueTM Universal Tip tabletops 

according to the use of calypso system or not, respectively. 

It is noteworthy that the Master Commission authorized the presentation of this work as 

three scientific articles written in English, with the purpose of future publication in 

international, peer-reviewed journals. In order to do so it respects some criteria related 

to this objective. 
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Abstract 

Purpose: Calypso® four-dimensional localization system is a system based on 

electromagnetic transponders detection enabling precise three-dimensional localization 

and continuous tracking of tumor target. This review intended to provide information in 

order to (1) show how Calypso 4D Localization System® works, (2) to present 

advantages and disadvantages of this system, (3) to gather information from several 

clinical studies and, finally, (4) to refer Calypso System as a tool in Dynamic Multileaf 

Collimator studies for target motion compensation. 

Methods: A structured search was carried out on b-On platform. The key words used in 

this research were “Calypso”, “Transponder”, “Electromagnetic Localization”, 

“Electromagnetic Tracking”, Target Localization”, “Intrafraction Motion” and “DMLC”.  

Review: Treatment the implanted transponders are excited by an electromagnetic field 

and resonate back. These frequencies are detected and Calypso software calculates 

the position of the transponders. If the movement detected is larger than the limits 

previously defined, irradiation can be stopped. The system has been proven to be 

submillimeter accurate.  

Discussion: Calypso® system has been presented as an accurate tool in prostate 

radiotherapy treatments. The application of this system to other clinical sites is being 

developed. 

Conclusion: The Calypso® system allows real-time localization and monitoring of the 

target, without additional ionizing radiation administration. It has been a very useful tool 

in prostate cancer treatment.  

Key words: Calypso, DMLC, Beacon ® transponders, Prostate, Lung. 
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Introduction 

The main goal in radiation therapy is to deliver a prescribed dose to a target volume 

while minimizing toxicity to adjacent healthy tissues. One potential way to decrease 

radiation related toxicity would be to spare more normal tissues (1-5). The latest 

equipment development now allows us to use more precise and conformal techniques 

when delivering radiation, such as IMRT (Intensity Modulated Radiotherapy) and IMAT 

(Intensity Modulated Arc Therapy) techniques. The introduction of these techniques 

demands for precise target immobilization and localization so there is minimal 

movement during treatment (6). 

New imaging modalities have improved localization and setup accuracy. The possibility 

to acquire a ConeBeamCT (CBCT) before treatment allows professionals to make 

adjustments according to the target and surrounding organs position, instead of making 

adjustments according to boney position (MV planar images) (7-16). CBCT images can 

be acquired before and/or after treatment delivery or even between beams. 

Nevertheless, that does not account for movement that may occur during treatment 

and organ motion is a major obstacle to reducing margins without compromising dose 

to the target volume (17). Camille Noel et al. studied this pre- and post-treatment CBCT 

acquisition as a way of predicting intrafraction movement in prostate patients. The 

conclusion of this study indicated that this imaging acquisition is not a good predictor of 

intrafraction prostate motion (18). 

In order to consider internal movement, various methods have been used for real-time 

tracking. Methods as fluoroscopy and mega-voltage imaging (associated or not with 

gold fiducials) have the disadvantage of increasing the radiation delivered to the 

patient. On the other hand infrared tracking of external markers consider external 

movement as directly related to internal movement, but this correlation has been 

proven to be imperfect (7-16; 19-21). 

The Calypso 4D Localization System (Calypso Medical, Seatle, WA) is a wireless 

electromagnetic localization system which aims to target tumors accurately before and 

during treatment delivery (22).  

This review provides information  in order to (1) show how Calypso 4D Localization 

System works, (2) to present advantages and disadvantages of this system, (3) to 

gather information from several clinical studies and, finally, (4) to refer Calypso System 

as a tool in Dynamic MLC (DMLC) studies for target motion compensation. 
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Materials and methods 

The review was based on literature searched on B-On Platform. The key words used in 

this research were “Calypso”, “Transponder”, “Electromagnetic Localization”, 

“Electromagnetic Tracking”, Target Localization”, “Intrafraction Motion” and “DMLC”. 

The search provided several articles since January 2005. After reading and analyzing 

the B-On search, a selection of references mentioned in some of these articles was 

made and also analyzed and included in this review. 

 

The Calypso 4D Localization System 

This system has five components: Beacon transponders (specially created for Calypso 

system), the console, the array, the optical localization subsystem and the monitoring 

station (23). 

Each transponder consists of a sealed glass capsule containing a miniature electronic 

circuit. Transponders are 8,7 mm length and 1,85 mm in diameter and are biologically 

inert (6, 23, 24). Typically, three Beacons are implanted in the patient. Only two 

transponders are necessary for the system to calculate translational movements. 

However, to have information about rotations a minimum of three transponders is 

needed (23-25). The transponders resonate when excited with the electromagnetic 

field generated by the array. Each transponder has a unique frequency response. The 

transponders are also color coded with their intended position, which allows them to be 

distinguished individually. Sensors in the array measure the magnetic field strength 

from each transponder and the software can calculate the location of each transponder 

(22, 23, 26, 27). 

The console is inside the treatment room. It is a movable unit that gathers a power 

supply, a computer with the software that calculates transponders location, cables, and 

the array (23). 

The array contains source coils, sensors and infrared targets. The source coils 

generate the electromagnetic fields that excite the transponders. The sensors of the 

array receive the resonant signals of each transponder and the infrared targets are 

detected by infrared cameras (22, 23). The array is positioned above the patient, with 

minimum beam attenuation (28). 

Three infrared cameras are mounted in the treatment room so that the array position is 

continuously monitored. The array location yields the position of the center of the 



4 

 

target, with respect to the machine isocenter. This means that the system calculates 

the table translation movements that are necessary to have the Beacons positioned at 

the treatment unit according to the planning CT scan. The positional information is 

simultaneously displayed and updated in the console as it is in the control area (23, 24, 

27, 29) (Figure 1).  

 

Figure 1. Tracking station display: in this example the patient is positioned in (0, 

0, 0) Calypso® coordinates (black line) and during the monitoring period 

beacons’ movements are within acceptable limits (grey zone) whenever the 

graph is blue, and outside acceptable limits (black zone) whenever the graph is 

yellow; the actual shift value for the three coordinates is on the screen left side 

(reproduced by kind permission of Calypso from Calypso System User’s 

Manual). 

 

Radiation therapists are in the control area monitoring the movement of the target 

during the treatment delivery through the observation of the data that is being displayed 

on the monitoring station. Visual and audio alerts warn therapists that the target has 

exceeded the limits established (23, 30).  
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Advantages (22, 31-35) 

• No additional ionizing radiation is delivered to the patient;  

• The target is monitored continuously; 

• Real-time information is provided so that action may be taken to limit the 

influence of intrafraction motion (33); 

• Three dimensional target tracking; 

• Not dependent on target size: the system relates to a virtual point about which 

the physician defined radiation volume is actually delivered; 

• The transponders are implanted directly into the target volume; 

• The implantation procedures are generally uneventful and well tolerated by the 

patients (23); 

• Compact; 

• Biocompatible; 

• Transponders are compatible with Computed Tomography (CT) imaging and, in 

some cases, megavoltage imaging; 

• Connection between Calypso System and Linear Accelerator: the irradiation 

may stop automatically when the detected movement is superior to the 

threshold previously defined (available only for Varian Edge Platform); 

 

Disadvantages (23, 25, 29, 30, 36, 37) 

• Extra imaging may be needed to assess fully the Planning Target Volume 

(PTV) and the organs at risk (OARs) – e. g. the system may confirm that the 

prostate is in the right position, but no information is given regarding the size of 

the bladder, an image is required to evaluate that OAR; 

• Need for implantation; 

• Calypso® manual considers a localization volume under the array of 14 x 14 x 

27 cm3 space in lateral, longitudinal and vertical directions (32) therefore the 

Beacons should be placed so that they are inside this volume during treatment; 

• Implanted Beacons may result in a problem when MRI follow-up exams are 

performed: the RF transmitters in the Beacons create huge image artifacts (37); 

• Patients with pacemakers should be handled with care; 

• After implantation, Beacons stay inside the patient and cannot be re-used; 

• Patients with certain prostheses may not be suitable candidates for this system; 
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Quality Assurance 

The accuracy of the system has been verified to sub millimeter accuracy, in several 

laboratory and clinical studies. 

Balter et al. report the results for several tests focused on the accuracy of transponder 

localization relative to the array. First a single transponder was positioned at locations 

up to 8 cm in the X and Y planes from the center position, at Z distances of 8 and 27 

cm from the array. A continuous readout of the transponder positions was recorded at 

these positions for periods up to 20 min. At 8 cm distance from the array the offset after 

15 min the readouts were +0,03, +0,05 and -0,09 mm for the X, Y and Z directions 

respectively. At 27 cm distance from the array after 15 min the readouts were +0,19, 

+0,22 and -0,2 mm for the same directions, respectively (31).  

The experiment was repeated with the beacon in 0,9 % saline solution (concentration 

that simulates a conductivity environment compared to twice that of human tissue). At 

27 cm distance from the array and 8 cm away from the center the readouts after 20s 

were +0,29, +0,43 and -0,33 mm for the same directions, respectively (31).  

After concluding that the system correctly detects one beacon, the experience was 

repeated at 8 and 27 cm offset from the array, this time with a set of three beacons: at 

Z distance of 8 cm the offset was +0,17, +0,03 and +0,05 mm and at Z distance of 27 

cm the offset was +0,16, +0,18 and +0,12 mm for X, Y and Z, respectively, for both 

measurements (31). 

Ogunleye et al. compared Calypso® system with kV planar imaging for localization of 

markers. In this case Beacons were the markers to be localized as they are detected 

by Calypso® system (magnetic resonance) and they are also detected in x-ray image 

(radio opaque) (38). 

A stationary phantom was not aligned in the isocenter. The measured offset of the 

target isocenter from the correct position as indicated by the Calypso system should be 

the exact opposite of the OBI shift required to move the target isocenter to the correct 

position. The values were compared for 30 different phantom positions. The difference 

between the two systems was 0,4 (δ=0,4); 0,2 (δ=0,3) and 0,4 (δ=0,3) mm in the X, Y 

and Z directions, respectively (38). The process was repeated with 259 prostate 

treatment fractions. The difference between the two systems was 0,7 (δ=0,5); 1,1 

(δ=0,9) and 1,2 (δ=0,9) mm in the X, Y and Z directions, respectively (38). 
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Action Protocol for Treatment Intervention 

The above mentioned target positioning limits are inserted into the Calypso software 

according to an Action Protocol for Treatment Intervention. Several protocols have 

been reported. 

Shinohara et al. studied five locally advanced pancreatic cancer patients with a 3mm-

action protocol. The therapists were to interrupt radiation delivery every time 

intrafractional motion was greater than 3 mm (17). In a prostate study by Smith et al. 

the same action level was established (40). 

Also in a prostate study by Su et al. a 5 mm shift as threshold was used. A re-

localization was to be performed only if the Beacon centroid drifted more than 5 mm for 

25 seconds continuously (41). 

One of the prone position studies was reported by Shah et al.  In this study, therapists 

were instructed to observe the prostate gland position and intervene when the motion 

was larger than 3 mm. However, if the motion was transient as peristaltic movement, 

even if exceeding 3 mm, the therapists should not act. Also, intervention should be 

between beams (38). 

 

Clinical Applications  

The Calypso 4D Localization System has been approved for marketing by FDA for 

target organ positioning and monitoring during delivery of radiation therapy in prostate 

cancer patients  (23). Most recently, CE Mark approved Calypso Anchored Beacons to 

be used in lung treatments as well. Several studies considering future clinical 

applications have been performed. 

Prostate 

The implantation procedures are generally uneventful and well tolerated by patients. 

Quigley et al. refer that fifty two percent of patients in their study (22/42) reported 

symptoms after the implantation procedure. Those symptoms were not revealed, but 

it was referred that those were usual symptoms after similar procedures as 

implantation of gold fiducials (23, 25, 34, 35).  

It is to be mentioned that, after the implantation of fiducials, the prostate usually 

swells (inflammatory response). There may be a change in fiducials position when 
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prostate swells and also when it returns back to its natural position. Litzenberg et al. 

reported that it is safe to acquire a planning CT scan 4 days after implantation, as 

any swelling appears to have resolved by then (6). 

Calypso System has been a very important tool in the most recent studies of 

intrafraction prostate motion (2, 42, 44, 45). These movements are caused not only 

by repeating processes such as breathing, but also because of random processes 

like gradual rectal distention, peristaltic motion and bladder volume. This means 

prostate movement is random, sporadic and patient specific, which makes the 

prediction of the prostate motion difficult. 

As above mentioned Calypso® manual considers a localization volume under the 

array of 14 x 14 x 27 cm3 which means that patients with protuberant abdomen may 

not be a suitable candidate for this system. When considering the localization 

volume of the system, the recommendation is that the maximum distance between 

the array and the beacons should be less than 27 cm. On the other hand Bittner et 

al. (30) and Quigley et al. (23) assumed that this distance should not be more than 

23 cm in their studies’ patient selection. The latter led to several studies in order to 

present the prone position as an alternative position to treat these patients with 

Calypso accurately (36, 38, 43). Shah et al. refer that prostate displacements larger 

than 3 and 5 mm were higher in the prone position by a factor of three in 

comparison to the supine position. Displacements larger than 10 mm occurred as 

often in the prone as in the supine position.  

Lung 

Implantation of transponders in lungs has some risks. The current design of the 

transponders was not the most appropriate for lung implantation: although they 

show good to moderate shot-term fixation rates, long-term fixation rates are low 

(46). Percutaneous implantation in the lung led to a significant rate of pneumothorax 

(47). However, bronchoscopic implantation has been safer (48, 49). 

In the meantime, Calypso Medical has developed a new transponder design with a 

stabilization feature: Calypso Anchored Beacon. This improved Beacon is a regular 

Beacon with a 5-legged nitinol stability feature. These five legs are to anchor the 

transponder in a small diameter airway (bronchoscopic implantation) (37). Mayse et 

al. refer that this lung transponder has 100 % long-term fixation rates over 60-day 

period for 54 bronchoscopic implanted transponders in canine lungs (50). In the 

European Union, the Beacons were approved to be used in lung treatments by CE 
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Mark. The first application for lung tumor treatment was already conducted in August 

of this year in the Fundação Champalimaud in Lisbon, Portugal. 

Pancreas 

A study has been developed in The Vanderbilt Clinic, Nashville by University of 

Pennsylvania (2011), with 5 locally advanced pancreatic cancer patients (with no 

metastatic disease). Each patient underwent implantation of three regular Beacons. 

Transponder implantation was well tolerated in all patients, with minimal migration: a 

single transponder migrated in a patient who had intractable vomiting out of the 15 

transponders implanted. To monitor the stability of the transponder placement, 

intertransponder distance was obtained before the start of each fraction using the 

Calypso system.  

Data from 164 treatments was analyzed. Mean intrafractional motion was superior 

7,2 mm; inferior 11,9 mm; anterior 4,9 mm; posterior 2,9 mm; left 2,2 mm; and right 

3,1 mm. All these values were smaller when applied breath holding while treating 

(157 treatments analyzed): superior 4,3 mm;; anterior 2,5 mm; posterior 1,7 mm; 

inferior 8,1 mm; left 1,0 mm; and right 2,1 mm (17). 

 

Electromagnetic Guided Real-Time Dynamic Multileaf Collimator Tracking System 

In the past few years researchers have investigated Dynamic Multileaf Collimator 

tracking possibilities (51-54). The goal of these investigations is to create a system able 

to find the target location and reposition the treatment beam to compensate for target 

motion. Considering this, Calypso System can be the key tool on finding target location. 

To reposition the treatment beam a DMLC is used (55-57). 

There are some obstacles when integrating these systems. Once target movement is 

detected, the data stream is input to the DMLC tracking software, which generates the 

ideal beam aperture. Depending on the MLC, this ideal beam aperture may not be 

viable because of MLC physical limitations such as finite MLC leaf widths or the paired 

leaf structure. Another limitation is related to a finite time lag that is observed between 

motion detection and MLC response – system latency – which is spent in motion 

detection, the calculation of the new leaf positions and the time required by the MLC 

leaves to reach their new positions (55-57).  

To reduce the system latency, studies have been made on predictive algorithms to 

estimate future target positions (57, 58). 
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Wu et al. studied an algorithm capable of readjusting treatment beam for translational 

and also rotational intrafraction movements. They tested this integrated system with 

success. The system detected and adapted the treatment beam for translation and 

rotation movements (55). 

Sawant et al. refer to have built their system successfully. The system was tested on 

patient-derived three dimensional motion trajectories comprising two lung tumors and 

one prostate trace. Tracking accuracy was sub-2mm for the respiratory motion and 

sub-1mm for prostate motion (56). 

 

Discussion 

The Calypso 4D Localization System is a technology based on electromagnetic 

transponders detection which enables precise three-dimensional localization and 

continuous tracking of tumor target. The main advantage of this system with respect to 

other systems continuous internal tracking with no extra ionizing radiation delivered to 

the patient. Advantages and disadvantages should be considered when thinking of 

acquiring this system as well as costs and objectives on how to use the system in the 

clinic. 

 

Quality Assurance 

Balter et al. tested the accuracy of Calypso® system when localizing one and three 

transponders. The accuracy was higher for one transponder detection; still both tests 

resulted in sub-millimeter shift values. It was also performed a similar test in 0,9 % 

saline solution - concentration that simulates a conductivity environment compared to 

twice that of human tissue. The accuracy of the system was lower, but the values were 

also below a millimeter, showing that transponder detection should be accurate in 

human body. For all these tests the accuracy decreased as the beacon(s) distance to 

the array increased, but the measured values kept being sub-millimeter (31).  

Ogunleye et al. evaluated the difference between Calypso and KV planar image for 30 

different phantom positions: values were sub-millimeter. When he repeated the process 

with 259 more fractions the difference between the two systems was higher than 1 mm 

(1,2 mm in the Z direction), so values are not that small. However, OBI system 

uncertainty should be taken in consideration in these tests, added to Calypso® system 

inner uncertainty present in other studies (38). 
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Action Protocol for Treatment Intervention 

Regarding action protocols on how to intervene when using Calypso® system to 

monitor a treatment several examples were presented.  

The pancreatic study with the 3 mm action protocol was performed on patients treated 

with 3D conformal treatment using 4 fields and a 1 to 1,5 cm margin was added to the 

CTV to construct a PTV_4500; there was no reference to the linac used to deliver the 

treatment (17). The prostate study that used this same protocol referred that IMRT 

treatments were analyzed on 44 prostate treatment fractions of 28 patients; there was 

mention neither to PTV margins nor to the linac used to deliver these treatments (40).  

Su et al. referred that each patient underwent 28 treatment sessions, each about 8 

minutes long, but there was also no reference to the treatment plans (PTV margins, 

technique) or to the linac that delivered these treatments (41). 

Shah et al. treated their patients in 40 sessions. The PTV margins were 3 mm posterior 

and 5 mm in all other directions (38). 

There are no studies available on the validity of these protocols. It is however to note 

that the treatments administered in these studies were different from clinic to clinic so it 

is natural that the protocols were also different. More investigation should be performed 

regarding action protocols and the treatments they apply to. A recommendation for a 

future study on action protocols could include suggestions on how calypso margins 

should be defined according to PTV margins, time of irradiation (regular or FFF beams, 

3D conventional or IMRT techniques), and target localization (natural movement of 

target and surrounded OARs). 

 

Clinical applications 

Concerning prostate treatments, Calypso System has been implemented and used in 

several clinics. It detects prostate movements due to breathing movements, peristaltic 

movements and other natural processes. However, depending on the protocol being 

used, it may be necessary to acquire images to assess OARs position related to the 

PTV (such as the rectum and the bladder). 
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Another obstacle for prostate treatment is the transponder implantation maximum 

depth in tissue. Prone position has been presented as an alternative (36, 38, 43). It is 

to refer that previous literature presents studies on the stability of prone versus supine 

positions.  

Several studies indicated that there is more interfraction movement when the patient is 

in prone position (59, 60). Considering that positioning the patient using Calypso® 

system already corrects interfraction motion, it makes sense to analyze intrafraction 

motion in prostate in both positions. 

At Cancer Center of Irvine it was decided to treat prostate in supine position after a 

local study was performed in 15 patients by Wilder et al. (61). The study evaluated 

intrafraction movement in supine and prone position and position preference of the 

patients. The study was performed in patients with gold seeds implanted. 

Anteroposterior and lateral KV planar images were acquired to evaluate intrafraction 

movement. Mean values were 0,6 (δ=0,9), 1,6 (δ=1,8) and 1,7 (δ=1,4) mm in the 

supine position and 1,0 (δ=1,2), 2,2 (δ=2,0) and 2,1 (δ=1,2) in the prone position in the 

X, Y and Z directions, respectively. There was no significant difference in the 

intrafraction prostate motion of the two positions and 80 % of the patients were more 

comfortable in the supine position.  

Kitamura et al. analyzed intrafraction motion using a real-time tumor-tracking system 

that uses two fluoroscopic images acquired 30 times per second and software that is 

able to detect gold markers position. Mean values for ten patients were 0,1 (δ=0,1), 0,3 

(δ=0,2) and 0,3 (δ=0,4) mm in the supine position and 0,5 (δ=0,4), 1,4 (δ=0,5) and 1,6 

(δ=0,4) in the prone position in the X, Y and Z directions, respectively. It was concluded 

that internal organ motion is less frequent in the supine position than in the prone 

position (62). 

The decision on the patient position for prostate treatment lies in each radiotherapy 

department. On one hand supine position is more comfortable for the patient, and 

several studies indicate less inter- and intrafraction motion in this position; on the other 

hand a department that has Calypso® system available may consider that prone 

position is an appropriate alternative to treat large prostate patients so those 

movements can be detected and can be corrected by technicians. 

It is of note that none of this studies compared supine and prone positions rotation 

shifts. More investigation should be performed in this area. 
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Clinical application of the Calypso System in tumors other than prostate has not been 

approved in USA yet, and CE Mark approval for lung treatments with Anchored 

Beacons in EU is still very recent. Therefore, no published clinical results on this 

application are available yet, but it is understandable the advantage of the use of 

transponders in regions of significant target movement.  

 

Electromagnetic Guided Real-Time Dynamic Multileaf Collimator Tracking System 

In the near future, a few integrated systems have been created and tested in 

phantoms, with success for tracking target position. The integration of Calypso 4D 

Localization System and Dynamic Multileaf Collimator is being developed in order to 

achieve an Electromagnetic Guided Real-Time DMLC Tracking System. Still, these 

algorithms have taken into account only the target position, OARs positions are not 

considered, yet.  

 

Conclusion 

The Calypso 4D Localization System allows real-time localization and monitoring of the 

target, with no ionizing radiation additional administration. It is a very important tool in 

prostate cancer treatment. More studies are currently being developed. 

Further research has to be performed: (1) prostate studies involving a larger cohort of 

patients, (2) clinical application in clinical sites other than the prostate and prostate 

bed, (3) the effect of the system on hypofractionated treatments, (4) studies involving 

rotational movement corrections besides translational movement corrections, and (5) 

investigation and implementation of more advance prediction algorithms for DMLC 

systems. 

Improvements and integrations are also expected in the future, such as (1) phantoms 

dedicated to Calypso and/or DMLC tracking system studies, (2) integration of Calypso 

System with linear accelerator, (3) integration of Calypso System with robotic couch 

(6D), and (4) improvements in software design and speed of processing hardware 

allowing the clinical use of Calypso + DMLC integrated system into achieving adaptive 

radiotherapy.  
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Abstract 

Introduction: The Calypso 4D Localization System gives the possibility to track the 

tumor during treatment, with no additional ionizing radiation delivered. To monitor the 

patient continuously an array is positioned above the patient during the treatment. We 

intend to study, for various gantry angles, the attenuation effect of the array for 6- and 

10 MV and FFF 6- and FFF 10 MV photon beams. 

Materials and methods: Measurements were performed using an ion chamber placed 

in a slab phantom positioned at the linac isocenter for 6 MV, 10 MV, FFF 6 MV and 

FFF 10 MV photon beams. Measurements were performed with and without array 

above the phantom for 0˚, 10˚, 20˚, 40˚ and 50˚ beam angle for a True Beam STx linac, 

for 5 x 5 cm2 and 10 x 10 cm2 field size beams to evaluate the attenuation of the array. 

Results and discussion: Attenuation measured values were up to 3 %. Angular 

dependence of the attenuation was observed. Attenuation values were between 1 % - 

2 % with the exception of the 30o - 50o gantry angles which were up to 3,3 %. 

Conclusion: Attenuation of treatment beam by the Calypso array may be within 

acceptable limits. 

Keywords: Calypso, array, attenuation. 

 

Introduction 

Higher accuracy and reproducibility in radiotherapy has led to great development in 

imaging and monitoring systems. Megavoltage imaging has been used clinically for 

many years, and kV imagers have also been installed in linacs all over the world.  

Monitoring systems for tracking movement during treatment have been used to monitor 
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patient surface – e.g. infrared tracking of external markers or virtual view of the patient 

surface – or the tumor movement – e.g. fluoroscopy (1-11). 

The Calypso 4D Localization System is a monitoring system that gives the possibility to 

track the tumor during treatment, with no additional ionizing radiation delivered, a great 

advantage when compared to other systems available (12). 

This system has five components: Beacon transponders, the console, the array, the 

optical localization subsystem and the monitoring station (13). The array consists of 4 

sources and 32 receiver coils. An oscillating signal (25 Hz) through the source coil 

generates resonance in the transponders. When this signal is turned off, the 

transponders emit electromagnetic signals, which are detected by the receiver coils in 

the array, thereby localizing their positions relative to the array. Meanwhile, the in-room 

infrared camera system tracks the array relative to the isocenter (14). 

To monitor the patient continuously an array is used. This array is positioned above the 

patient during the treatment (13, 15). The internal structure of the array panel contains 

optical targets, source coils and sensors (13). 

Although the array lies between the patient and the beam, it is not included in the dose 

calculation of the treatment planning system. 

Zou et al. studied the array attenuation effect for the regular energies 6 MV and 15 MV 

photon beams for various gantry angles – and concluded that the dose difference due 

to the placement of Calypso array was clinically insignificant to the treatment (16). In 

our institute the calypso system is mainly used in the irradiation of free flattening filter 

(FFF) beams. Given that the removal of the flattening filter lowers the mean energy of 

the beam we propose to study, for various gantry angles, the attenuation effect of the 

array for FFF 6 and FFF 10 MV photon beams. 

 

Materials and methods 

Transmission measurements were performed on a True Beam STx linear accelerator 

(Varian Medical Systems, Palo Alto, CA, USA) using a CC13 ionization chamber of 

0,13 cm3 of sensitive volume (IBA Dosimetry, Germany) connected to a Dose 1 

electrometer (IBA Dosimetry, Germany). Corrections for temperature and pressure 

were applied. 
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The ionization chamber was inserted in a slab phantom and positioned in the isocenter 

at 5 cm depth. See Figure 1.  

The array was positioned above the phantom in the (0, 0, 0) position indicated by 

Calypso software system, in the same way it is positioned above the patient during 

treatment (See Figure 1). 

 

Figure 1. Gantry angle measurements acquisition scheme 

Measurements were performed for regular 6- and 10 MV and FFF 6- and FFF 10 MV 

energies, for both 5 x 5 and 10 x 10 cm2 square field sizes. The readings were obtained 

in six different gantry angles: 0 ˚, 10˚, 20˚, 30˚, 40˚ and 50˚. For each measurement, 

200 monitor units (MU) were delivered at a dose rate of 600 MU/min for regular beam 

energies and 800 MU/min for FFF energies. 

Measures were performed with and without the array in the beam path. Each 

measurement was repeated five times. The transmission measurements were 

registered in a table. The attenuation was calculated according to the formula:  

attenuation		%� � 	1 �
measurement	with	array

measurement	without	array
� ∗ 100 

The attenuation calculated values were registered and analyzed. Mean and standard 

deviation were calculated. 

A fit was done to the attenuation curves to evaluate the goodness of the fit. 
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Results and discussion 

The attenuation values measured were higher for 5 x 5 cm2 fields than for 10 x 10 cm2 

fields for all energies and for the same measurement conditions. Therefore, the data 

shows that the beam attenuation is field size dependent. This dependency was not 

calculated. Field size dependency has been previously reported in other devices 

attenuation studies, although this dependency was also not quantifiable in those 

reports (17-19). 

These studies usually also report an angular dependence on the attenuation of the 

beam by devices. A second degree polynomial fit was applied to the attenuation 

curves. For the 5 x 5 cm2 field size curves, the r2 value for 6 MV, 10 MV, FFF 6 MV and 

FFF 10 MV of 0,97; 0,95; 0,95 and 0,96, respectively. For 10 x 10 cm2 field size curves, 

the r2 value was 0,96; 0,98; 0,97 and 0,98, for the same energies respectively. 

Therefore, there is a tendency for higher attenuation values as the gantry angle 

increases, as it is shown in Figures 2 and 3.  

 

Figure 2. Attenuation by Calypso array of 5 x 5 cm2 field size beams. 
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Figure 3. Attenuation by Calypso array of 10 x 10 cm2 field size beams. 

 

Only one measurement showed a standard deviation of 0,2 %. All the other points 

measured showed 0,0 % or 0,1% standard deviation. Measurements can be 

considered precise. 

The array attenuation calculated values are comparable to attenuation values 

presented previously. Zou et al. reported that the attenuation on the array was about 2 

% - 3 % for both 6 and 15 MV energies, for 1 x 1 cm2 field size beams at gantry angles 

between 0˚ - 40˚. The calculated attenuation slowly increased above these values for 

angles around 50˚ - 60˚ (16). 

Here the calculated attenuation values were between 1 % - 2 % for gantry angles 0˚, 

10˚, 20˚ and 30˚, for both field sizes for all energy beams. Acquisitions at 40˚ and 50˚ 

gantry angles showed higher attenuation values. The higher attenuation calculated 

value was 3,3% for a 5 x 5 cm2 field for a FFF 6 MV beam (gantry angle: 50˚), and 3,1 

% for a 10 x 10 cm2 field of the same energy beam, at the same gantry angle. 

A limitation of this study is that point measurements were performed and because the 

FFF energy beams are not flat by definition, positioning accuracy of the ionization 

chamber can be challenging. Furthermore, the array is also inhomogeneous, as it 

contains source coils, sensors and infrared targets. A 2D EPID detector could be used 

to assess that, however it has to be compatible with the use of FFF beams.  
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Conclusion 

The behavior of the array attenuation curves is important to study due to its 

inhomogeneous structure. 

Dose attenuations were measured to be within 1 % - 2 % with the exception of the 30o - 

50o gantry angles which were up to 3,3%. The results indicate that the dose attenuation 

of the Calypso array may be within acceptable limits. 

Future work should assess the Calypso attenuation of radiotherapy treatment beams 

with more detail. 
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Abstract 

Introduction: Our clinic acquired a Calypso 4D Localization System where 

electromagnetic (EM) frequencies to detect implanted transponders in the patient are 

used. Carbon fiber is an electrical conductive material which interferes with EM 

frequencies. In order to be able to use the Calypso System the carbon fiber tabletop in 

the treatment room must be replaced. It is our goal to determine the attenuation of the 

new tabletops. 

Materials and Methods: Transmission measurements were performed using an 

ionization chamber inserted in a slab phantom positioned at the isocenter for 6 MV, 10 

MV, 6FFF MV and 10FFF MV photon beams for 0˚, 30˚ and 60˚ beam angles for 5 x 5 

cm2 and 10 x 10 cm2 field size beams. The attenuation was calculated for each 

measurement. 

Results: At 0o incidence on the Exact IGRT Couch, the measured attenuation for 10 x 

10 cm2 was 2,8% and 2,1% for 6 MV and 10 MV beams, respectively. For the same 

field size was measured 3,3% and 2,6% attenuation for 6FFF MV and 10FFF MV 

beams, respectively. At the same incidence and regarding the other tabletops, the 

calculated attenuation is lower. For 10 x 10 cm2 field there is 2,0%, 1,4%, 2,1% and 

2,6% attenuation for 6MV, 10 MV, 6FFF MV and 10FFF MV energy beams on the 

kVueTM Universal Couch. For the KvueTM Calypso ®Couch 10 x 10 cm2 irradiation field, 

the measurements were respectively 1,6%, 1,3%, 1,9% and 1,5%. This tendency is 

observed for all gantry angles. 

Discussion: The attenuation outputs were higher for the Varian Exact IGRT Couch 

when compared to the kVue tabletops. kVueTM Calypso® Varian tabletop showed 

smaller mean attenuation of the beams than kVueTM Universal Tip Insert for all 

measurements. 
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Conclusions: There was no loss in treatment quality administration due to beam 

attenuation in the tabletop when tabletops were exchanged because of Calypso system 

integration. There is no need to change between kVue tabletops whenever there is a 

regular treatment or a Calypso System guided treatment. 

Keywords: Calypso, tabletop attenuation, carbon fiber, kevlar 

 

Introduction 

The main goal in radiotherapy is to deliver the prescribed dose to the target volume 

affecting the surrounding healthy tissues as less as possible (1-5). In order to achieve 

the later, radiation is delivered to the patient from different angles, while the patient is 

lying on the treatment table. When posterior and posterior oblique treatment beams 

pass through the treatment couch attenuation of the photon beams occurs (6). 

Radiotherapy treatment couches are usually made of carbon fiber. Carbon fiber is a 

polymer like component (7), widely used in radiotherapy treatments due to its high 

mechanical strength and rigidity, low specific density, extremely light, and regularly 

considered radiotranslucent (8-11). Moreover, artifacts in the images acquired in 

clinical routine for setup correction are avoided if carbon fiber components are used 

(12, 13). 

The attenuation of various carbon fiber couches has already been reported by other 

authors (10, 14-16). Some treatment planning systems have the possibility to include 

the attenuation factor for the tabletop used for the treatment.  

A system for tracking the tumor has been approved for radiotherapy treatment: Calypso 

4D Localization System. It consists of a magnetic array positioned above the patient 

during treatment that continuously detects the position of the transponders that were 

previously placed inside the patient, in/by the tumor. Three infrared cameras in the 

room detect the position of the array relative to the isocenter (17). 

For the beacons detection to be accurate, it is necessary to guaranty some 

requirements. beacons have to be in the array’s volume detection, there is a maximum 

distance between the treatment isocenter and the beacons, and also, no electric 

conductive materials are allowed in the array’s volume detection. This last item may 

prevent patients with certain metallic prosthesis to be treated with Calypso. 

Besides metal, carbon fiber compatibility with Calypso system is also an issue. It is 

known that carbon fiber is an electrical conductive material and it interferes with EM 
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frequencies detection (7, 12). If the treatment couch has a carbon fiber tabletop, it has 

to be replaced by a Calypso system compatible tabletop. As compared to other light-

weight materials, such as carbon fiber, Kevlar is less conductive and thus tends to 

cause less distortion in the electromagnetic field (7, 18). 

In our institute a Calypso 4D Localization System was acquired. The previous 

treatment couch had to be changed according to Calypso system guidelines when 

calypso was installed. The Varian Exact IGRT Couch (no rails) was replaced by a 

tabletop system with rails support and two different tabletops – kVueTM Universal Tip 

Insert (carbon fiber) and kVueTM Calypso ® Varian Insert (Kevlar). 

In the current article we report on the attenuation effect of the above mentioned three 

tabletops for regular 6- and 10-MV photon beams and also Flattening Filter Free (FFF) 

6- and 10 MV photon beams produced by a Varian True Beam STx machine, for 

various gantry angles. It is our goal to (1) determine the attenuation of the new 

treatment tabletops and (2) to verify if it is adequate not to switch between kVueTM 

Calypso® Varian and kVueTM Universal Tip tabletops according to the use of calypso 

system or not, respectively. 

 

Materials and Methods 

Measurements were performed on a True Beam STx linear accelerator (Varian Medical 

Systems, Palo Alto, CA, USA) equipped with regular 6 MV and 10 MV and also FFF6 

MV and FFF 10 MV energies. 

Three tabletops were studied: Varian Exact IGRT tabletop (carbon fiber), kVueTM 

Universal Tip Insert (carbon fiber) and kVueTM Calypso ® Varian Insert (kevlar). 

Transmission measurements were performed with a CC13 ionization chamber of 0,13 

cm3 of sensitive volume (IBA Dosimetry, Germany) connected to a Dose 1 electrometer 

(IBA Dosimetry, Germany). Corrections for temperature and pressure were applied. 

The ionization chamber was positioned aligned to the isocenter inserted in a slab 

phantom at 5 cm depth. The source-detector distance was 100 cm.  

Measurements were done for the four referred energies, for both 5 x 5 cm2 and 10 x 10 

cm2 square field sizes. The readings were obtained in three different gantry angles: 0o, 

30o and 60o. For every measurement 200 MU were delivered at a dose rate of 600 

MU/min for regular beam energies and 800 MU/min for FFF energies.  
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Each tabletop was positioned on top of the phantom and all measurements were 

repeated for each tabletop - couch rails not considered in this study (see Figure 1). 

Summarizing, 72 points were measured. 

  

Figure 1. The three tabletops studied, in measurement acquisition position: Varian 

Exact IGRT tabletop (left), kVueTM Universal Tip Insert (center), kVueTM Calypso ® 

Varian Insert (right) 

With the Varian Exact IGRT tabletop, the attenuation measurements were performed 

from the medium thickness part of the couch (longitudinal position equivalent to pelvic 

region treatment), as the thickness of the tabletop is not constant in the longitudinal 

direction. 

The transmission measurements were registered in a table. The attenuation was 

calculated according to the formula:  

attenuation		%� � 	1 �
measurement	with	tabletop

measurement	without	tabletop
� ∗ 100 

 

Each measurement point was repeated five times. Mean of the five repetitions was 

calculated and registered. Standard deviation was calculated to evaluate the precision 

of the measurements. 

 

Results 

The attenuation measurements for the each tabletop for the three gantry angles 

measured for the 5 x 5 cm2 field size are presented in Figures 2, 3 and 4. The 

attenuation measurements for the each tabletop for the three gantry angles measured 

for the 10 x 10 cm2 field size are presented in Figures 5, 6 and 7.  

Regarding the 72 points measured only two points has a standard deviation of 0,2 %, 

both in attenuation measurements of 6 MV fields by Varian Exact IGRT Couch: gantry 

angle 0o for 5 x 5 cm2 field size and gantry angle 30o for 10 x 10 cm2 field size. All the 
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other measured points showed 0,0 or 0,1% standard deviation. It can be said that 

measurements have good precision. 

 

 

Figure 2. Mean attenuation by KvueTM Calypso ® Varian Insert for the three gantry 

angles measured for a 5 x 5 cm2 field size. 

 

Figure 3. Mean attenuation by kVueTM Universal Tip Insert for the three gantry angles 

measured for a 5 x 5 cm2 field size. 

 

Figure 4. Mean attenuation by Varian Exact IGRT Couch for the three gantry angles 

measured for a 5 x 5 cm2 field size. 
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Figure 5. Mean attenuation by KvueTM Calypso ® Varian Insert for the three gantry 

angles measured for a 10 x 10 cm2 field size. 

 

Figure 6. Mean attenuation by kVueTM Universal Tip Insert for the three gantry angles 

measured for a 10 x 10 cm2 field size. 

 

Figure 7. Mean attenuation by Varian Exact IGRT Couch for the three gantry angles 

measured for a 10 x 10 cm2 field size. 

 

The output measurements show that the attenuation is field size dependent. The 

attenuation values measured were always higher for 5 x 5 cm2 fields than for 10 x 10 

cm2 fields, in the same measurement conditions. 

The collected data also indicates an angular dependence of the attenuation. As 

expected all measurements (for both field sizes, for all energies, for all tabletops) 

indicate higher attenuation values as the gantry angle increases.  
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At 0o incidence on the Exact IGRT Couch, the measured attenuation for 10 x 10 cm2 

was 3,0% and 2,2% for 6 MV and 10 MV beams, respectively. For the same field size 

was measured 3,4% and 2,6% attenuation for 6FFF MV and 10FFF MV beams, 

respectively. At the same incidence on the other tabletops, the measured attenuation is 

lower. For 10 x 10 cm2 field there is 1,8%, 1,4%, 2,1% and 1,6% attenuation for 6MV, 

10 MV, FFF6 MV and FFF10 MV energy beams on the kVueTM Universal Couch. For 

the KvueTM Calypso ®Couch 10 x 10 cm2 irradiation field, the measurements were 

respectively 1,6%, 1,2%, 1,9% and 1,4%.  

This example shows the tendency observed for all gantry angles, and for all tabletops: 

6MV and FFF6 MV energy beams are more attenuated in the tabletop than the 10 MV 

and FFF10 MV energy beams. Also, FFF energy beams are more attenuated than the 

respective regular energy beam. 

The Figures 8, 9, 10, 11, 12 and 13 show the same data presented before but they 

were rearranged in order to show the attenuation values for the three different 

tabletops, when maintaining the field size and the gantry angle. 

 

Figure 8. Mean attenuation for the three tabletops for 5 x 5 cm2 field - gantry angle 0o. 
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Figure 9. Radiation attenuation for the three tabletops for 5 x 5 cm2 field - gantry angle 

30o. 

 

Figure 10. Mean attenuation for the three tabletops for 5 x 5 cm2 field - gantry angle 

60o. 

 

Figure 11. Mean attenuation for the three tabletops for 10 x 10 cm2 field - gantry angle 

0o. 
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Figure 12. Mean attenuation for the three tabletops for 10 x 10 cm2 field - gantry angle 

30o. 

 

Figure 13. Mean attenuation for the three tabletops for 10 x 10 cm2 field - gantry angle 

60o. 

For all 72 measured points it is clear that the Exact IGRT Couch presents higher 

attenuation values than the other two tabletops. 

Mean attenuation values by kVueTM Universal Couch are higher than mean attenuation 

by KvueTM Calypso ®Couch for all the measured points. Nevertheless the tips of error 

bars of kVueTM Universal and KvueTM Calypso ®Couches are coincidental for gantry 

angles 0o and 30o for 6MV energy beam and for gantry angle 30o for FFF 10 MV 

energy beam (Figures 11 and 12).  

 

Discussion 

Attenuation measurements 

As previously reported (19-21), the measurements showed field size dependence. 

Higher attenuation was measured for the 5 x 5 cm2 field size beams than for 10 x 10 

cm2, for the same measurement conditions. 

Measurements were also angular dependent. The higher the gantry angle, the higher is 

the attenuation. With more oblique angles, the couch distance crossed by the beam is 

longer. This dependence has also been reported already (16, 19, 21). 

Vanetti et al measured the attenuation of the thinner part of the Varian Exact IGRT 

Couchtop for a 10 x 10 cm2 field size with a 6 MV photon beam. The authors report 

attenuations of 2,3% and 3,1% with gantry angles of 0° and 45°, respectively (22). 

Seppälä et al. found the corresponding measured attenuations to be 1,9% and 2,7% 
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(13). Our study reports on the attenuation values for a thicker part of the couch which 

corresponds to the pelvic treatment region. Our results are between 3,0% and 5,3% for 

0° and 60° gantry angles, respectively, which are s ignificant values. All these data 

support angle dependence attenuation. 

6 MV energy beams are more attenuated than 10 MV energy beam for all tabletops 

used in this study.  Li et al. (19) studied the attenuation of two tabletops (Varian Clinac 

standard couch and Varian Exact IGRT couch) in 6MV and 18 MV beams and stated 

that the 6 MV photon beam yielded a larger attenuation difference than the 18 MV 

photon beam. Considering 6 MV beams are less energetic than 10 MV beams, it is 

expected that more photons of this beam are attenuated in the tabletop than 10 MV 

photons are. Similarly, this happens with 6FFF MV and 10FFF MV beams.  

On the other hand, 6FFF MV energy beams are more attenuated than 6 MV beams. 

Regular energy beams go through the flattening filter leading to a more homogeneous 

field. FFF beams contain the low energy photons that were not attenuated by the 

flattening filter. Therefore, it is expected that more photons are attenuated in the 

tabletop.  

 

Tabletops comparison  

For both field sizes and for all energy beams, the attenuation outputs were definitely 

higher for the Varian Exact IGRT Couch when compared to the kVue tabletops. Figure 

10 shows the maximum attenuation measured values for each tabletop (Gantry = 60o 

for 5 x 5 cm2). The original tabletop mean attenuation is 5,8% and 4,4% for 6MV and 

10 MV respectively. Measurements with the new tabletops are 4,7% and 3,5% for the 

carbon fiber tabletop, and 4,2% and 3,2% for the Kevlar Calypso tabletop, respectively. 

FFF energy beams are attenuated for these tabletops the same way. For the same 

field size Varian Exact IGRT Couch mean attenuation of 6FFF MV and 10 FFF MV are 

6,6% and 5,0%, respectively. kVueTM Universal Tip Tabletop corresponding 

measurements are 5,3% and 4,0% and kVueTM Calypso ® Varian tabletop 

corresponding measurements are 4,8% and 3,6%, respectively. All the remaining 

measurements follow the same tendency, as it is shown in Figures 8-13. 

Therefore treatment delivery was not compromised due to beam attenuation in the 

tabletop when couches were changed because of the Calypso System carbon fiber 

limitation. Nevertheless, in the TPS used in the clinic (Eclipse, version11, Varian, Palo 

Alto, USA) there was a loss in treatment quality administration when the tabletop was 
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taken into consideration by TPS. In Eclipse the treatment couch can be modeled to 

account for beam attenuation. Varian Exact IGRT Couch characteristics are available 

in the TPS and were included in every treatment plan. None of the kVue tabletops are 

available for this tool, yet.  

The attenuation measurements for the kVue tabletops were closer to each other. 

kVueTM Calypso® Varian tabletop showed smaller mean attenuation of the beams than 

kVueTM Universal Tip Insert for all energies. As it was previously referred there was a 

coincidence in error bars limit in three measured points. Since 72 points were 

evaluated, it was considered that kVueTM Calypso® Varian tabletop attenuated 

radiation less than kVueTM Universal Tip Insert. Therefore, it was decided that in the 

department there was no need to change between tabletops whenever there was a 

regular treatment or a Calypso System guided treatment.  

 

Limitations of the study 

This study reports on the attenuation of radiotherapy treatment beams by treatment 

tabletops. Four energy treatment beams are analyzed: 6MV, 10MV, 6FFF MV and 

10FFF MV. All measures were performed at the isocenter. 6 MV and 10 MV beams can 

be considered homogeneous, so measurements can be considered representative of 

the whole field. 

Varian Exact IGRT Couch insert is supported on the couch stand, but the two new 

tabletops (kVueTM Universal Tip and kVueTM Calypso ® Varian) are supported on two 

rails that also are in the beam path. Every tabletop measurement was performed with 

the tabletop positioned on the phantom, which means that rail supports were not taken 

into consideration in this study. 

Although several studies have reported on carbon fiber rails support beam attenuation 

(19, 20, 23), none is applicable to the rails with the calypso system because the 

material is Kevlar instead of carbon fiber. 

 

Conclusions 

Attenuation output measurements are field size- and angular- dependent. 

Low regular energy beams are more attenuated than higher regular energy beams. 

FFF energy beams are more attenuated than regular energy beams.  
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The Exact IGRT Couch presents higher attenuation values, followed by kVueTM 

Universal Couch and, finally, the KvueTM Calypso ®Couch. Therefore treatment 

delivery was not compromised by the exchange of tabletops. However, attenuation of 

treatment tabletops should be corrected in the treatment planning.  Unfortunately, kVue 

tabletops are not included in the treatment plan system yet. It is suggested that the 

TPS should have kVue tabletops characteristics available so they can be taken into 

consideration in the treatment plan. 

Future work should include more detailed studies on FFF energy beams attenuation as 

they are not homogeneous. Calypso tabletops rail support system attenuation should 

also be studied in the future. 
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General Conclusion 

The purpose of this study was to understand how Calypso® system works and to 

investigate whether its limitations lead to any considerable loss in radiation treatment 

delivery. 

In conclusion, Calypso® is a wireless system that allows real-time localization and 

monitoring of the target, with no additional administration of ionizing radiation. 

In order for the system to work, an array is placed above the patient during treatment. 

Radiation attenuation of the array was measured. It was shown that the attenuation 

values were to be within 1%-2% for gantry angles 0o-30o. For gantry angles between 

30o-50o those values could be up to 3,3%. These attenuation values may be 

considered within acceptable limits. 

Regarding the tabletop exchange, it was concluded that there was no loss in treatment 

administration due to radiation attenuation by the new tabletops. The original tabletop - 

Exact IGRT Couch - presents higher attenuation values, followed by kVueTM Universal 

Couch (carbon fiber) and, finally, the KvueTM Calypso ®Couch (kevlar). 


