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Abstract—There is a wide diversity of applications relying
on the identification of the sequences of n consecutive words (n-
grams) occurring in corpora. Many studies follow an empirical
approach for determining the statistical distribution of the n-
grams but are usually constrained by the corpora sizes, which
for practical reasons stay far away from Big Data. However,
Big Data sizes imply hidden behaviors to the applications, such
as extraction of relevant information from Web scale sources.

In this paper we propose a theoretical approach for estimat-
ing the number of distinct n-grams in each corpus. It is based on
the Zipf-Mandelbrot Law and the Poisson distribution, and it
allows an efficient estimation of the number of distinct 1-grams,
2-grams,. . . , 6-grams, for any corpus size. The proposed model
was validated for English and French corpora. We illustrate
a practical application of this approach to the extraction
of relevant expressions from natural language corpora, and
predict its asymptotic behaviour for increasingly large sizes.

Keywords-n-gram Models; Big Data; Zipf-Mandelbrot Law;
Poisson Distribution; Extraction of Relevant Expressions

I. INTRODUCTION

Words do not occur with similar probabilities in text.

Everyday experience shows us that words such as ”the”,

”and”, or ”in” are much more frequent than ”agriculture” or

”stomatology”, whatever the topic of the text. This means

words are more or less repeated throughout the text, so

the number of distinct words in a corpus is less than the

total number of words in that corpus. This applies to single

words or multiwords (sequences of n consecutive words

where n ≥ 2). Most of the empirical studies on the n-gram

distribution only cover corpora of relatively small sizes. This

precludes their usage towards understanding the behaviour

of an increasingly large number of Big Data applications

that depend on the n-gram distributions. This requires an

accurate estimation of the repetition patterns of the n-grams

and their evolution for increasing-size corpora.

Zipf Law [1] states that the frequency1 of any word in a

work of literature is inversely proportional to its rank in the

frequency table. Mandelbrot [2] proposed a generalization

1In this paper, by default, the term ”frequency” refers to the absolute
number of occurrences.

of Zipf Law showing to be a more adequate model, but is

not sufficient to estimate the number of distinct n-grams.

We propose an efficient approach to estimate this number,

for single or multiwords, for any corpus size. It is based

on the properties of the Poisson distribution and the Zipf-

Mandelbrot Law. Results for English and French are shown.

In this paper we discuss related work (Sect. II), followed by

the proposed approach (Sect. III), results and applications

(Sect. IV) and conclusions (Sect. V).

II. RELATED WORK

The frequency distribution of words in text has been stud-

ied in statistical linguistics ([1], [2], [3]). These frequencies

tend to follow the Zipf Law [1], [4]. However, Mandelbrot

[2] proposed a generalization of this law for a better fitting

of the frequency of some ranks, as it happens in some

corpora. Other improvements to Zipf Law were proposed

in [5]. A critical review about Zipf’s word frequency law

in natural language is made in [6] claiming that semantics

strongly influences word frequency. We think that is true,

but it will not be the case for very Big Data corpora, where

the existence of numerous topics tends not to favor any

particular topic.

Heaps’ law, originally discovered by Gustav Herdan [7],

is an empirical law describing the number of distinct single

words in documents as a function of the document length. It

states that VR(n) = K nβ where VR is the number of distinct

words in the text of size n, and K and β are parameters

determined empirically. According to [8], [9], [10], under

mild assumptions, this law is asymptotically equivalent to

Zipf Law concerning the frequencies of individual words.

In [11], [12], although their aim is not to propose an

approach to estimate the number of distinct n-grams, some

estimate of cardinality is presented for hashing design.

However, these estimates incur some computational weight,

depending on the data volume.

A clustering model for words distribution [13] is proposed

based on estimating a probability (p) for each word occurring

in a document of a given length. Then, the number of distinct

words can be estimated but the model is not very accurate for
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large p values, and is not always a close fit to observed data.

There is no evidence that this approach could be extended

to larger n-gram sizes: 2-grams, 3-grams, . . . .

To the best of our knowledge, there is no approach focused

on the estimation of the number of distinct multiword n-

grams. In this paper a new approach is proposed to estimate

the cardinality of n-grams (single or multiwords) in English

or other languages.

III. THE NUMBER OF DISTINCT n-GRAMS IN Corpora

This section presents an approach to estimate the cardi-

nality of distinct n-grams for any corpus size.

A. The Zipfian Models

The most widely recognized approach to model the distri-

bution of words in text is the Zipf Law [1]. It states that the

frequency of the rth most frequent word in natural corpora,

f(r), scales according to

f(r) ∝ 1

rα
(1)

where r is the frequency rank of a word, and α≈1. The most

frequent word corresponds to r=1; for the ith most frequent

word (r = i), its frequency f(i) is proportional to 1/iα.

Though Zipf Law works as a good model, it presents some

deviations mainly for low and high ranks for some corpora.

To minimize these deviations, Mandelbrot [2] proposed a

generalization of this law by shifting rank r by a value β:

f(r) ∝ 1

(r + β)α
. (2)

Then we state a corresponding equation for the frequency of

rank r, denoted by f(r, (β, α)) for r = 1, 2, . . ., keeping the

proportionality according to the Mandelbrot model in (2):

f(r, (β, α)) = (1 + β)α
f(1)

(r + β)α
, (3)

where f(1) means the frequency of the most frequently

occurring word in corpus. The particular case of β = 0
in (3) corresponds to the Zipf Law model.

By using (3), (β, α) combinations can be searched for

each corpus so that the estimate of the frequency of each

rank is as close as possible to the actual frequency in corpus.

As shown in Sect. IV and resulting from our experiments,

we consider that for each language and each n-gram size,

there is a best (β, α) combination, which produces the most

possible accurate results, similar to different corpus sizes,

to estimate the number of distinct n-grams.

B. Estimating the Number of Distinct Single Words in Cor-
pora

Having analyzed the relative frequency of the most com-

mon word in English, that is ”the”, corresponding to r = 1,

— it can be taken as the probability of rank 1 in the corpus,

denoted by p1 — we noticed that it tends to be constant when

corpora sizes grow, as this probability presents very slight

variations for small and median size corpora, but converging

to a value keeping more and more decimal digits for large

corpora: for English corpora over 500 million words, the

first 7 decimal digits showed to be the same for p1, which

was 0.0503705. Thus, considering that the semantics of the

texts is kept if words are separated from some punctuation

marks, then, in order to obtain a more correct counting

for the actual number of occurrences of each word, words

were separated from the following set of characters, for all

corpora in this paper: {’< ’, ’> ’, ’ ” ’, ’ ! ’, ’ ? ’, ’ : ’, ’ ; ’,

’ , ’, ’ ( ’, ’ ) ’, ’ [ ’, ’ ] ’, ’ . ’}. If other criteria are used for the

content of this set, p1 can tend to a different constant value.

For other ranks of very frequent English words such as

”of”, ”and”, ”in”, among others, it was easily verified that

their individual probabilities also tend to constant values. We

noticed this tendency still exists for other not so frequent

words such as ”late” and ”again”, although larger corpora
were needed to reach their corresponding constant probabili-

ties. Thus, there is no reason not to believe that this tendency

is applicable to all words, even for rare ones, which will

certainly be verified in huge corpora. For the other language

considered in this work (French), the same behaviour was

verified. This leads us to the belief that as corpora sizes

grow for the same language, words tend to have fixed ranks,

which is consistent with the existence of what we called the

best (β, α) combination for each language.

Thus, assuming that the probability of rank 1 tends to

remain constant for large corpora, then its expected fre-

quency is f(1) = p1 × c, where c is the corpus size in

words. Also, the frequency of rank r can be estimated by

(3), for a given (β, α) combination, such that f(r, (β, α)) =
(1+β)α f(1)/(r+β)α. So, the expected frequency of rank

r in a corpus having c words, for a (β, α) combination, is:

f(r, (β, α), c) = (1 + β)α
p1 × c

(r + β)α
. (4)

However, once there is a best (β, α) combination for each

language and that best combination must be used to obtain

the frequency of rank r in a corpus of size c, in a language

l, then β and α depend on l. Similarly, the probability of

rank 1 depends on language l too:

f(r, l, c) = (1 + β(l))α(l)
p1(l)× c

(r + β(l))α(l)
. (5)

Considering Poisson Distribution: A random variable

X follows a Poisson distribution [14] with parameter λ >
0, if, for k = 0, 1, 2, . . ., the probability mass function is,

according to the classical notation:

f(k;λ) = Pr(X=k) =
λke−λ

k!
(6)

where e is the Euler’s constant (e = 2.71828 . . .) and k!
is the factorial of k. λ is a positive real number equal

to the expected value of X . This distribution provides a
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realistic model for many random phenomena for which a

count of some sort is of interest, such as the number of

traffic accidents per week, given its rate λ. So, let X be the

number of times that word w in rank r occurs in a corpus
of size c, written in language l. Then, the probability of

non-occurrence of w is:

Pr(X=0) =
λ0e−λ

0!
= e−λ = e−f(r,l,c) (7)

where f(r, l, c) stands for the expected frequency of rank

r, given by (5). Thus, the probability of w occurring in the

same corpus is:

Pr(X ≥ 1)=1− e−f(r,l,c) . (8)

Considering for example, the size of the smallest English

corpus used in this paper (c = 2,226,162, l =”English”) and

using the best (β, α) combination searched for English 1-

grams (β=7.7950, α=1.3466) — explained in Sect. IV —,

by application of (8), the probabilities of occurrence of the

words corresponding, for example, to ranks 1, 100,000 and

3,000,000, are Pr(X ≥1)=1.0, Pr(X ≥1)=0.32120 and

Pr(X ≥ 1) = 0.00396 respectively. For a corpus 10 times

larger, those probabilities are respectively Pr(X ≥1)=1.0,

Pr(X ≥ 1) = 0.97923 and Pr(X ≥ 1) = 0.03895. This

matches our intuition, as we expect that the probability of

occurrence of frequent words is high, even in small corpora;

and the probability of rare words (higher ranks, such as

3,000,000), though low, grows with the corpus size.
So, by (8) it is possible to calculate the probability of any

word (its rank) in the vocabulary of a language. Now, in

order to calculate the number of distinct words in a corpus
with c words written in a language l, we propose to sum

the probabilities of occurrence of each word in that corpus,

considering the entire vocabulary of l, that is its size V(l):

Dist(l, c) =

r=‖V(l)‖∑
r=1

(
1− e−f(r,l,c)

)

Dist(l, c) = ‖V(l)‖ −
r=‖V(l)‖∑

r=1

e
−
(
(1+β(l))α(l)× p1(l)×c

(r+β(l))α(l)

)
(9)

where ‖V(l)‖ is the size of V(l), being the number of distinct

words of l, which can reach some millions for languages

such as English or French, as we noticed for large corpora.
This sum of probabilities must not be taken as a prob-

ability. Indeed, the sum of probabilities can be used to

estimate some population sizes. For example, the number of

heads from tossing a fair coin 1000 times can be correctly

estimated by summing the probability of a head in a single

toss (0.5), 1000 times, i.e.
∑t=1000

t=1 0.5 = 500.

C. Estimating the Number of Distinct Multiwords in Cor-
pora

Multiwords, also known as n-grams (n ≥ 2) are oc-

currences of contiguous words in text. ”in the”, ”United

Nations”, are 2-grams; ”in this world”, ”let it be” are 3-

grams; etc.. We noticed that the frequency of 2-grams in

corpora also follows a Zipfian distribution. For English

corpora, the most common 2-gram (i.e. r = 1), ”of the”,

also tends to have a relative frequency that converges to a

fixed value when corpora grow. The same happens to ranks

2, 3, . . .. So, the estimate of frequency given by (5) could

also be applied to 2-grams, however, there is a different best
(β, α) combination for 2-grams for each of the considered

languages. Likewise for larger size n-grams: 3-grams, 4-

grams,. . . . Thus, due to their dependence on the language l
and on the n-gram size, β and α are denoted by β(l, n) and

α(l, n). Similarly, the probability of rank 1 also depends

on the n-gram size and on each specific language, being

denoted by p1(l, n).
On the other hand, for the same language, the number

of distinct single words is different from the number of

distinct 2-grams, 3-grams,. . . . This means that the size of

the vocabulary depends not only on the language, but also

on the n-gram size; we use ‖V(l, n)‖ to denote this number.

Therefore, (9) can be generalized also to any n-gram size:

Dist(l, n, c) = V −
r=V∑
r=1

e
−
(
(1+β(l,n))α(l,n)× p1(l,n)×c

(r+β(l,n))α(l,n)

)

(10)

where symbol V means ‖V(l, n)‖.

D. An Efficient Implementation

Using (10) we can estimate the number of distinct n-

grams in a language for each corpus size. However this

is computationally heavy; e.g. for the case of 6-grams for

any English corpus, due to the large vocabulary size, the

sum in (10) may lead to an order of magnitude of 1011

iterations. So, we propose an efficient implementation of

(10), where the heavily iterated sums are replaced with an

integral, leading to (17), which is derived as follows.

According to the Euler-Maclaurin formula, the finite sum∑n=b
n=a g(n) can be substituted by an integral as follows [15]:

n=b∑
n=a

g(n) ≈
∫ b

a

g(x)dx+B (11)

where B = g(b)+g(a)
2 +

∑∞
k=1

B2k

(2k)!

(
g(2k−1)(b)−g(2k−1)(a)

)
and g(2k−1)(b) stands for the (2k−1)th derivative of g(.) in

b. And Bm, a Bernoulli number, is given by:

Bm =

v=m∑
v=0

j=v∑
j=0

(−1)j
(
v

j

)
jm

v + 1
. (12)

So, by (12), B2 = 1/6, B4 = −1/30, etc..

On the other hand, variables l, n, c, V , β(l, n) and α(l, n)
in (10), can be taken as constants in the context of each

specific Dist(l, n, c) calculation, that is, in the context of

the estimation of the number of distinct n-grams of size n
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of a corpus size c in a specific language l. Thus, (10) can be

simplified for better mathematical manipulation, as follows:

D = Dist(l, n, c) A = α(l, n) R = r + β(l, n)

Q = (1 + β(l, n))α(l,n) × p1(l, n)× c

r�1 = 1 + β(l, n) r�v = ‖V(l, n)‖+ β(l, n) . (13)

Thus

D = V −
R=r�v∑
R=r�1

e−QR−A

. (14)

Then, by applying the Euler-Maclaurin formula, given by

(11), taking R as the integration variable,

D = V −
R=r�v∑
R=r�1

e−QR−A

= V −
(∫ r�v

r�1

e−QR−A

dR+ B

)
(15)

where

B =
g(r�1) + g(r�v)

2
+

∞∑
k=1

B2k

(2k)!

(
g(2k−1)(r�v)−g(2k−1)(r�1)

)
,

(16)

g(R) = e−QR−A

and B2k is given by (12).

Our experiments showed us that, it made a negligible

difference to the result of D in (15), including or not the

derivatives of g(.). in the sum of (16). So, for simplicity,

their respective equations are ignored in this paper.

Then, following the rule of the integration by substitution,∫ b

a
g(x)dx is equal to

∫ ϕ−1(b)

ϕ−1(a)
g(ϕ(t))ϕ′(t)dt. So, let t =

R−A and R = ϕ(t) = t−1/A, and then

D − V +B = −
∫ r�v

r�1

e−QR−A

dR

= −
∫ ϕ−1(r�v)

ϕ−1(r�1 )

e−Qt (t−
1
A )′dt =

1

A

∫ ϕ−1(r�v)

ϕ−1(r�1 )

e−Qt t(
−1
A −1)dt

=
1

A

[
−Γ

(− 1
A , Q t

)
(Qt)

1
A

t
1
A

+ Const

]t=ϕ−1(r�v)

t=ϕ−1(r�1 )

= −Q
1
A

A

[
Γ

(
− 1

A
,Q t

)
+ Const

]t=ϕ−1(r�v)

t=ϕ−1(r�1 )

.

Then,

D=E−Q
1
A

A

[
Γ

(
− 1

A
,Q×(r�v)

−A

)
− Γ

(
− 1

A
,Q×(r�1)

−A

)]
(17)

where E=V −B and Γ(., .) is the Incomplete Gamma

function. Thus, (17) gives the number of distinct n-grams,

where the substitutions for symbols D, Q, A, r�v and r�1 are

in (13), V = ‖V(l, n)‖, g(R) = e−QR−A

and B in (16).

For testing the efficiency of this approach, we used a

laptop with Mac OS X 10.5.8, 2.4 Ghz Intel, 4Gb 667 MHz

DDR2 SDRAM. When (10) was used to estimate the number

of distinct 1-grams of a 100,000,000 words English corpus,

it took 178.73 minutes. The same estimate took 0.0078408

seconds by using (17). Similar gains were obtained for larger

n-gram sizes. The vocabulary size and the β and α values

used in these tests result from the tuning phase (Sect. IV-A).

Both implementations were written in Python 2.5.1.

IV. RESULTS

This approach was tested with English and French

Wikipedia based corpora [16]. To assess the accuracy of

the estimates as the corpus size grows, for each language,

corpora were generated by doubling approximately the

size of each corpus, from about 2×106 to 109 words:

2×106, 4×106, 8×106, . . . . For obtaining each of these

specific corpora sizes, random paragraphs were extracted

from the largest corpus (109 words) in each language until

the required size is approximately reached. We identify each

corpus by its size in words2. Tables I and II show, for each

corpus, its size and the number of actual distinct n-grams.

A. Tuning Parameters for each Language

In order to obtain the best possible estimate of the number

of distinct n-grams for a given corpus by using (17),

three values must be previously found: β(l, n), α(l, n) and

‖V(l, n)‖, corresponding to the best (β, α) combination and

the vocabulary size for each pair (language, n-gram size).

These tunings were made according to the following

criterion. For each pair, an exhaustive search was made

varying ‖V(l, n)‖ from 2× 107 up to a maximum of 4×1011

words, by steps of 1× 106 words or larger; then, for each

‖V(l, n)‖ value, different (β, α) combinations were taken by

varying α from 0.5 to 1.8 and β from -0.5 to 80, by steps of

0.005 and 0.0001 respectively. Then, for each (‖V(l, n)‖, β,

α) combination, two estimates were obtained using (17): one

for a relatively small corpus and another one for a relatively

large corpus. Next, if these two estimates did not deviate

more than 5% from the actual number of distinct n-grams

of the respective corpus, the search stopped as we considered

that the actual size of the corresponding vocabulary could be

approximated by (‖V(l, n)‖) and the best (β, α) combination
had been found. Although actual vocabularies are open, as

new words and multiwords arise and others tend to stop

being used, they are finite. However, the lack of consensus

about the real vocabulary sizes, prevent us from assessing

how far the ‖V(l, n)‖ values are from the actual sizes.

Tables III and IV show the best (β, α) combination
and vocabulary size for each pair (language, n-gram size),

resulting from each tuning. Then, the obtained parameter

values were used in (17) to estimate the number of distinct

n-grams for all corpora of Tables I and II. The relative errors

of these estimates are shown in Tables V and VI. This error

2All these corpora are available at http://cjsg.dynip.sapo.pt/corpus-
demos/BigData2016/
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Table I
THE ACTUAL NUMBER OF DISTINCT n-GRAMS FOR EACH ENGLISH corpus

Corpus Size 1-grams 2-grams 3-grams 4-grams 5-grams 6-grams
2,226,162 171,011 918,150 1,682,247 2,031,928 2,146,452 2,188,946
4,450,249 275,142 1,604,333 3,168,994 3,971,242 4,253,952 4,358,108
8,955,079 446,746 2,797,067 5,961,183 7,775,790 8,465,778 8,721,741

18,006,731 728,634 4,833,505 11,104,396 15,128,835 16,789,872 17,421,851
35,771,592 1,186,891 8,207,918 20,257,703 28,895,723 32,773,139 34,304,469
72,677,601 1,966,084 14,086,371 37,403,872 56,034,675 65,160,115 68,934,903

140,275,807 3,155,397 23,084,447 65,483,074 102,858,205 122,712,271 131,338,738
245,492,006 4,718,348 34,960,884 104,706,565 171,430,164 209,426,765 226,713,292
490,846,877 7,783,551 57,967,910 185,346,762 319,964,031 403,573,252 444,167,811
981,996,022 12,813,557 94,705,122 323,192,231 589,842,301 770,074,139 863,071,391

Table II
THE ACTUAL NUMBER OF DISTINCT n-GRAMS FOR EACH FRENCH corpus

Corpus Size 1-grams 2-grams 3-grams 4-grams 5-grams 6-grams
2,172,301 157,116 766,994 1,509,595 1,904,418 2,050,038 2,107,627
4,322,189 248,002 1,301,878 2,770,059 3,653,037 4,008,093 4,151,262
8,710,051 394,498 2,209,397 5,087,526 7,041,834 7,899,233 8,256,115

17,442,724 628,094 3,713,547 9,205,032 13,382,741 15,384,969 16,252,632
34,744,534 996,291 6,160,934 16,420,573 25,131,306 29,684,624 31,749,122
69,331,062 1,582,633 10,162,503 29,033,342 46,814,925 56,956,887 61,782,559

139,025,258 2,517,866 16,682,341 50,978,036 86,678,234 108,858,991 119,959,588
242,346,014 3,654,954 24,662,841 79,264,438 140,574,704 181,301,336 202,674,252
484,314,987 5,778,693 39,559,507 135,285,205 253,300,084 338,323,948 385,396,971
970,351,308 9,254,004 63,154,520 228,935,214 451,752,256 625,662,563 726,463,547

is given by (Es/Act−1)×100%, where Es and Act stand

for the estimate and the corresponding actual number in the

corpus, respectively. Results show that the relative error is

generally less than 1% for estimates of 2-grams,. . . , 5-grams

for the full range of corpora in both languages. However,

errors are slightly higher for some of the corpora, reaching

a maximum of 4.3% for 1-grams, and 4.7% for 6-grams.

Fig. 1 illustrates the evolution of the actual numbers of

distinct 1-grams and 2-grams, and their respective estimates

obtained by this approach for the English corpora referred

in the Tables I and V. It shows a small deviation between

the curves of 1-grams, however not more than 4.3% as we

know from table V. For 2-grams, curves coincide apparently,

since they deviate less than 1% for all corpus sizes. Table

V allows us to preview similar coincidence for 3-grams, 4-

grams and 5-grams; curves for 6-grams would also present

just a small deviation, as in the 1-gram case. Similar curves

were obtained for French using Table VI.

B. Estimates for Big Data Corpora

Estimates are given by (17), an efficient implementation

of (10). From (10) we conclude that, for each n-gram size,

as the corpus size increases towards infinity, the sum in the

second parcel tends to zero, so the number of distinct n-

grams tends to the size of the vocabulary. Due to this, the

evolution of the number of distinct n-grams as a function

of the corpus size exhibits a plateau which corresponds to

the respective vocabulary size. This is illustrated in Fig. 2

whose left curve shows that for English corpora sizes larger

than a threshold of 9.22×1011 words, the estimated number

of distinct 1-grams will not grow further, having reached the

vocabulary size, that is 1.95 × 108 words. The right curve

shows the corresponding values for the 6-grams case. The

values for the French language are shown in Fig. 3.
Tables VII and VIII show all obtained plateau values for

the different n-gram sizes and the corresponding corpus size

thresholds from which these plateau values are reached.

C. Applications
The estimation of the number of distinct n-grams in

different size corpora for Big Data is critical to support

algorithm design and implementation. The identification of

the plateau levels allows to determine the maximum required

capacity of memory and number of machines (for distributed

implementations) in applications whose problem size is

proportional to the number of distinct n-grams, e.g. in the

LocalMaxs method [17], which counts n-gram frequencies,

calculates n-gram internal cohesions, and extracts relevant

n-grams. A cache for n-grams was designed to keep the

distinct n-grams locally, taking advantage of their repetition

patterns, with a significant reduction in the total execution

time [18]. According to the model, the cache miss ratio tends

to constant values for Big Data corpora, as determined by

the plateaux defined in this paper. These conclusions also

apply to similar applications.

V. CONCLUSIONS

In this paper we propose an approach to estimate the num-

ber of distinct n-grams, 1 ≤ n ≤ 6, in any size corpora. It
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Table III
THE best (β, α) combinations AND THE VOCABULARY SIZES FOUND FOR ENGLISH corpora

1-grams 2-grams 3-grams 4-grams 5-grams 6-grams
β 7.7950 48.1500 21.8550 0.4200 -0.4400 0.6150
α 1.3466 1.1873 0.9800 0.8252 0.8000 0.8000

Voc Size 1.95× 108 7.08× 108 3.54× 109 9.80× 109 5.06× 1010 3.92× 1011

Table IV
THE best (β, α) combinations AND THE VOCABULARY SIZES FOUND FOR FRENCH corpora

1-grams 2-grams 3-grams 4-grams 5-grams 6-grams
β 16.4850 73.8550 71.3800 7.3500 -0.0700 2.4400
α 1.4496 1.2653 1.0444 0.8843 0.7835 0.8602

Voc Size 1.60× 108 4.25× 108 1.52× 109 4.19× 109 7.98× 109 8.50× 1010

Table V
RELATIVE ERRORS OF THE ESTIMATED NUMBER OF DISTINCT n-GRAMS FOR EACH ENGLISH corpus. VALUES ARE IN PERCENTAGE (%)

Corpus Size 1-grams 2-grams 3-grams 4-grams 5-grams 6-grams
2,226,162 -2.9 -0.5 0.0 -0.1 0.5 -0.5
4,450,249 -0.3 -0.9 -0.7 -1.1 0.6 4.7
8,955,079 2.2 -0.9 -0.8 -0.8 0.6 -3.0

18,006,731 3.7 -0.5 -0.5 -0.5 1.0 -4.0
35,771,592 4.2 0.0 0.0 0.0 0.9 0.9
72,677,601 4.3 0.5 0.3 0.3 0.6 0.7

140,275,807 3.4 0.8 0.6 0.6 0.5 1.0
245,492,006 2.2 0.8 0.6 0.7 0.3 -0.3
490,846,877 -0.1 0.3 0.4 0.3 -0.1 -0.5
981,996,022 -2.9 -0.5 -0.3 -0.5 0.4 -0.5

Table VI
RELATIVE ERRORS OF THE ESTIMATED NUMBER OF DISTINCT n-GRAMS FOR EACH FRENCH corpus. VALUES ARE IN PERCENTAGE (%)

Corpus Size 1-grams 2-grams 3-grams 4-grams 5-grams 6-grams
2,172,301 -1.8 -0.6 0.2 -0.5 -0.2 0.0
4,322,189 -0.7 -1.0 -0.3 -0.5 -1.0 2.7
8,710,051 0.5 -0.9 -0.4 -0.6 -0.6 0.4

17,442,724 1.1 -0.8 -0.2 -0.2 -0.3 1.1
34,744,534 1.6 -0.3 0.1 0.1 0.1 0.1
69,331,062 1.7 0.2 0.5 0.5 0.5 -0.4

139,025,258 1.6 0.8 0.8 0.8 0.8 -0.6
242,346,014 1.1 1.0 0.9 0.9 0.8 -0.7
484,314,987 0.6 1.5 0.8 0.8 0.7 -0.4
970,351,308 -1.7 0.9 -0.5 -0.4 -0.3 0.2

Table VII
Plateau VALUES (VOCABULARY SIZES) FOR DISTINCT ENGLISH n-GRAMS AND CORRESPONDING corpus SIZE THRESHOLDS

1-grams 2-grams 3-grams 4-grams 5-grams 6-grams
Plateau Value 1.95× 108 7.08× 108 3.54× 109 9.80× 109 5.06× 1010 3.92× 1011

Corpus Size Threshold 9.22× 1011 1.05× 1012 1.29× 1012 1.43× 1012 6.18× 1012 2.39× 1013

Table VIII
Plateau VALUES (VOCABULARY SIZES) FOR DISTINCT FRENCH n-GRAMS AND CORRESPONDING corpus SIZE THRESHOLDS

1-grams 2-grams 3-grams 4-grams 5-grams 6-grams
Plateau Value 1.60× 108 4.25× 108 1.52× 109 4.19× 109 7.98× 109 8.50× 1010

Corpus Size Threshold 8.78× 1011 9.69× 1011 1.12× 1012 1.20× 1012 1.43× 1012 6.80× 1012
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Figure 1. Actual versus estimated number of distinct 1-grams and 2-grams for English corpora
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Figure 2. Estimated number of distinct 1-grams and 6-grams for Big Data English corpora

can be used for English or other languages, as long as a small

and a large corpus can be used to tune the parameters for that

language and for each n-gram size. The approach is based

on Zipf-Mandelbrot Law and uses the Poisson distribution.

Computationally heavy sums are replaced with an integral

in order to provide high performance calculation, which

can be useful for Big Data applications in the context of

data mining, database systems or for cache size and hashing

size calculation, where the memory space to accommodate

cardinalities needs to be quickly estimated.

In the context of this development, we noticed that the

probability of each n-gram tends to remain constant when

corpora of the same language grow in size, which became

evident for frequent n-grams, in the experiments we made.

And there is no reason to think that, for Big Data corpora,

the same will not happen for less frequent n-grams. This

property led us to develop this approach.

Although vocabularies for each n-gram size are open, as

new words may arise and others tend to stop being used, they

are finite. This sets a plateau for the maximum number of

distinct n-grams that any corpus can have, as our approach

shows when estimates are calculated for Big Data corpora.
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Figure 3. Estimated number of distinct 1-grams and 6-grams for Big Data French corpora

Tests showed promising results for the calculations of

estimates, as the highest relative error was lower than 5%.
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