
XtokaxtikoX: A Stochastic Computing-Based
Autonomous Cyber-Physical System

Rui Policarpo Duarte and Horácio Neto
INESC-ID, Instituto Superior Técnico
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Abstract—This paper presents XtokaxtikoX, a fully au-
tonomous cyber-physical system employing only stochastic arith-
metic to perform computations on its data-path. Traditional
implementations of stochastic computing systems benefit from fast
and compact implementation of arithmetic operators, and high
tolerance to errors, but depend heavily on the conversion between
stochastic bitstreams and binary to implement many parts of the
system. Furthermore, if a system requires any interaction with
analog electronic components it must have additional ADC/DAC
conversion circuitry, which further increases the complexity of
the system. Conversely, the proposed work is able to directly
translate analog signals into stochastic bitstreams, process the
stochastic bitstreams and finally control analog actuators relying
only on the information on the stochastic bitstreams. Details on
the architectures to accomplish such functionality are presented
as well as other stochastic arithmetic units. This paper also
presents a small stochastic computing-based autonomous cyber-
physical system implemented on a Cyclone IV FPGA to carry
out a proof-of-concept.
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I. INTRODUCTION

Low resource consumption and complexity implementation
of arithmetic operators, high resilience to errors, and high
performance of Stochastic Computing has attracted a lot of
interest from the research community to this computational
paradigm. Its main characteristic is the encoding of data as
pseudo-random bitstreams of 0s and 1s. The value encoded
on a bitstream represents a number between 0 and 1 and it is
defined by the ratio of the number of 1s over the total number
of bits.

This concept was introduced by [1] as an alternative to
binary systems. Nevertheless, stochastic computing has been
applied to a limited set of applications which include DSP
applications: Finite Impulse Response (FIR) and Infinite Im-
pulse Response (IIR) filters [2], [3], neuromorphic and bio-
inspired systems: binary synapses for low-power neuromorphic
systems [4], digital neurosynaptic network for neuromorphic
chips to develop brain-like computational structures [5], decod-
ing of Low-Density Parity Code (LDPC) codes [6], [7], and
Bayesian computing machines [8]. Most of these applications
are based on additions and multiplications, and are tolerant
to some errors in their computations. Therefore, in the event
of occurring a bit-flip, or transmission error, on any bit of a
stochastic bitstream its impact won’t make the result deviate

as much as it would one of the most significant bits in binary
representation. Nevertheless, interfacing analog sub-systems
such as sensors, which are common in cyber-physical systems,
requires Analog to Digital Converter (ADC) and/or Digital
to Analog Converter (DAC) circuits and the corresponding
controller for their interface on the digital system. In this
scenario the main advantages of stochastic computing rapidly
vanish because there’s a constant need to convert data from
binary to stochastic bitstreams, and vice-versa.

This work addresses this problem by proposing novel
architectures for stochastic units, which exploit the nature
of the pseudo-random bitstreams, to directly interface ana-
log electronic circuits, hence avoiding costly conversions. In
more detail, the waveform of a stochastic bitstream can be
recognized as a Pulse Width Modulation (PWM) signal with
a pseudo-random duty-cycle. Examining particular cases of
encoded values close to zero and close to one, it is close to
PWM signals with a very small and very high duty cycles,
respectively. Hence, an analog output is directly derived from
a stochastic bitstream requiring an R-C network for low-pass
filtering, and in some cases, an output buffer to supply the
correct voltage and current to the analog circuit. Complemen-
tarily, the determination of an analog voltage level is done
using a programmable voltage comparator circuit (op-amp) and
a voltage reference. If a periodic triangular voltage reference is
used then the output of the voltage comparator circuit will be
HIGH when the input voltage is greater, and LOW otherwise.
Thus, generating a sequence of pulses whose width, or duty-
cycle, is proportional to the analog voltage level. Moreover,
considering the aforementioned analog voltage source, it can
be derived from a PWM signal, which can be generated
inside the Field-Programmable Gate Array (FPGA). Thus, it
is possible to generate a triangular voltage reference inside the
same device without adding extra controllers or sub-systems.

In terms of implementation, FPGAs were adopted since
their bit-level circuit specification is inline with the specifica-
tion of stochastic computational systems; and their reconfigu-
ration power, which allows to test different stochastic systems
on the same device, and with different design parameters. Even
though other competitive technologies such as Complex Pro-
grammable Logic Device (CPLD) offer the same functionality,
when targeting very small systems, they don’t scale up support
other real-life systems.

The main contributions of this work are:

• novel arithmetic architectures in stochastic computing;978-1-5090-1370-8/16/$31.00 c©2016 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório Científico do Instituto Politécnico de Lisboa

https://core.ac.uk/display/83043075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. Example of a stochastic bitstream.

• novel stochastic computing units to provide I/O sup-
port to interface external analog signals;

• XtokaxtikoX1, a fully autonomous stochastic cyber-
physical system to demonstrate the proposed architec-
tures.

The remaining of this paper is organized as follows: Section
2 provides the background on stochastic computing to frame
the proposed stochastic units, presented in Section 3. Section 4
presents the organization of the proposed architectures which
are demonstrated in section 5. The paper ends with the
conclusions in Section 6.

II. BACKGROUND

J. Von Neumann introduced Stochastic computing in [1] as
a method to design probabilistic logic circuits and synthesize
robust systems from unreliable components. Later, in [9],
Gaines has introduced the use of stochastic streams to represent
operators with high levels of error tolerance.

Stochastic computing has been applied to design many
applications which include: digital filters FIR [10], IIR [2],
neural networks [11][12], decoding of error correcting LDPC
codes [6], [7], high-throughput Bayesian computing ma-
chines [8], and probabilistic neural networks [13], [12].

A stochastic signal is characterized as result of a stochastic
process which produces binary values. A stochastic bitstream
is defined as a sequence of stochastic signals over time whose
value is determined by the number of 1s over the total number
of bits. Hence, a stochastic number is represented as a ratio
between [0, 1]. [14] has presented a survey on the stochastic
arithmetic units covering the most common arithmetic units.
This contribution also introduces details about hardware real-
izations of the building-blocks for stochastic systems.

Figure 1 exemplifies a small pseudo-random bitstream. On
top (in black) the clock signal is used for synchronization;
and below (in red) the stochastic bitstream. In this example,
the encoded value, which is given by the number of 1 bits over
the total number of bits, that is 5

12 ≈ 0, 41667.

A. Stochastic Arithmetic Building-Blocks

To conduct arithmetic computations some stochastic arith-
metic architectures have been proposed which include: adder,
complement, multiplier, and a squarer, as in figures 2 and 3.

These arithmetic operations are performed over time on
the pseudo-random bitstream and thus operate on the bit
level, which require very little resources, when compared to
typical binary implementations. The stochastic multiplication
is supported by the logic AND of its stochastic inputs. The
complement is the negation of the bitstream. Addition, or more

1The Xs in the name are used as homophonous to emphasize constant signal
transitions on the stochastic bitstream

a) b)

Fig. 2. Logic representation of the a) 2-input stochastic adder and b)
complement.

a) b)

Fig. 3. Logic representation of the stochastic multiplier (left) and squarer
(right).

precisely average, is obtained via a round-robin multiplexation
of the stochastic inputs, which depends on a N-module counter
corresponding to N inputs in the multiplexer. The squarer of
a stochastic bitstream is the equivalent to a multiplication of
a bitstream by itself, de-phased by a delay element (asyn-
chronous) or a clock cycle with a register (synchronous).

Even though the few resources required are of great in-
terest, the main fragilities of stochastic computing are: expo-
nential increase in the length of the bitstream with the linear
increase in the precision of stochastic bitstream; sensitivity to
temporal correlations; and the supporting blocks are usually the
performance bottleneck. Nevertheless, [15] proposed a method
to reduce the sensitivity to temporal correlations via spread-
spectrum, individual and uncorrelated clock sources, based on
Self-Timed Ring-Oscillators (STROs).

Since most conventional computing data sources and col-
lectors use binary representation, a stochastic converter from/to
binary is required to interface stochastic computing systems,
as shown in figure 4 and figure 6. The process of generating
the stochastic bitstream is illustrated in figure 5, where a
specific binary value (val) is compared with the output of
a uniform pseudo-random generator. Whenever the pseudo-
random number is smaller, it produces a 1 and 0 otherwise.
Therefore, the ratio between the number of ones and the total
number of bits converges to val. In this example, the encoded
value is 9/16 = 0, 5625. On the other hand, the conversion
from stochastic-to-binary is based on the integration of the 1s
on a bitstream, which is accomplished using a binary counter.
A second counter is required to count the total number of bits.

Regarding sensitivity to errors on the bitstream, [16] has
presented results where the quality of the results degrades
gracefully with the increase of errors.

To bring more detail into the implementation and synthesis
of the aforementioned components, the Register Transfer Level
(RTL) for some units is presented. The binary-to-stochastic
unit is presented in figure 7, and it is comprised of a pseudo-
random generator connected to a binary comparator. In this
case the unit is configured to use an internal STRO as clock
source for its synchronous logic, instead of the global clock
signal, as proposed in [15]. Inputs of this unit are: reset, load,
seed and binary number to be encoded.



Fig. 4. Block diagram of a binary-to-stochastic unit.

Fig. 5. Detail on process of generating a pseudo-random bitstream for a
given binary value.

Figure 8 shows the RTL, for a 3-input stochastic multiplier.
It corresponds to the logic AND of its inputs, and hence and
doesn’t require a clock signal. The stochastic adder, or average,
is shown in figure 9. It consists of a multiplexer and a modulo-
3 counter attached to its input selector.

III. PROPOSED STOCHASTIC UNITS

A. Multiplication by Factor of 2 (Double)

At the moment the multiplications supported in stochastic
computing are the based on the Boolean AND, and therefore
they consider normalized inputs, which will produce a bit-
stream lesser or equal than one, e.g. 0.5 × 0.4 = 0.2. As
a consequence, the result of a series of multiplications on a

Fig. 6. Block diagram of a stochastic-to-binary unit.

Fig. 7. RTL of the Stochastic Number Generator for a stochastic bitstream.

Fig. 8. RTL of a stochastic multiplier with 3 inputs.

Fig. 9. RTL of a stochastic adder with 3 inputs.

bitstream will tend to zero. Keeping in mind that this can
phenomenon can occur, a novel multiplication unit is here
proposed to scale up.

Considering the bitstream as a pseudo-random sequence
of zeros and ones, it is not straightforward to envision a
method double the number ones in it. Moreover, it is assumed
that converting to binary, performing a multiplication and
converting the result back to stochastic is too computational
expensive to be considered as a possible solution, and this can
be only correctly applied to bitstreams encoding values lesser
or equal than 0.5.

Taking advantage of the approximate results inherent to
Stochastic Computing, and the low-complexity of the arith-
metic operands, the solution here proposed is based on the
simple idea of repeating a 1 whenever it appears on the
bitstream. If the first bit of a bitstream and its predecessor
are connected to a logic OR gate, its output will present a 1
whenever any of the two is 1, hence fulfilling the purpose of
the unit. Thus far, this solves the problem, notwithstanding it’s
not an ideal solution as the replicated bit will always follow
the original bit, hence generating correlations on the new
bitstream. Moreover, even though this unit could be adapted
to add any number of bits, there would be greater impact on
sensitivity to statistic correlations, as bitstreams of consecutive
1s are formed on the new bitstream.

In the original bitstream, if two consecutive bits are 1 then
the unit will only add one 1 instead of two, which will be
placed after the second 1. In other words, even though the
unit is replacing the consecutive bit with a new one, it will
overwrite the bit being replaced, hence not producing an extra
one bit. Nevertheless, the unit doesn’t ignore any of the bits
whenever they are consecutive.

The block diagram for the proposed unit is presented in
figure 10 and its operation is illustrated in table I. The top row
shows a small sample of a given bitstream and the bottom row



Bit Num 8 7 6 5 4 3 2 1
Original 0 0 1 0 0 1 1 0
Double 0 1 1 0 1 1 1 0

TABLE I. OPERATION OF THE DOUBLE UNIT OVER A
PSEUDO-BITSTREAM, FROM RIGHT TO LEFT.

Fig. 10. RTL of the multiplier by 2 arithmetic unit

the output of the proposed double unit.

B. Stochastic I/O Interface

The proposed I/O interface offers interconnection of analog
systems with stochastic bitstreams, without using ADCs and
DACs, and it is made of two fundamental blocks: stochastic
analog input and stochastic analog output.

The output block is accomplished by passing a stochastic
bitstream to an output port, as it is similar to a PWM signal.
A bitstream holding the value 0 is similar to a PWM signal
with a 0% duty cycle, whereas a 1 is similar to a 100% duty-
cycle. In-between values have their ON time proportional to
the analog signal voltage. To smooth the pulses of the PWM
signal, a R-C network is connected to the output pins of the
FPGA. The values of R and C are adjusted depending on
the problem, stability of the generated analog signal and its
time/frequency response. Since the maximum current supplied
by the FPGA’s output ports is very limited, it may be worth
connecting a buffer between both systems. Moreover, this
buffer also isolates the impedance of the R-C network and
the load being driven.

The input block is responsible for the determination of the
analog voltage present at its input. The determination of an
analog voltage level is done using a voltage comparator circuit
(op-amp) and a voltage reference. The output of the voltage
comparator circuit will be HIGH when the input voltage is
greater, and LOW otherwise. If this process is repeated for a
range of analog voltages, then it is possible to determine the
analog voltage present at the comparator’s input. With this is
mind, using a periodic triangular signal as voltage reference
it is possible to generate a sequence of pulses whose width,
or duty cycle, related to the analog voltage level. Moreover,
considering the analog voltage source described above, at the
expense of a PWM signal, which can be generated inside the
FPGA, it is possible to generate the triangular voltage reference
on the same device without adding complex voltage regulators,
controllers or sub-systems, as depicted in figure 11.

Considering a triangular wave signal with 50% duty-cycle,
and an analog voltage half the power supply of the comparator,
it produces, at its output, a binary signal which is HIGH half
the time. The stochastic signal is achieved by maintaining the
50% duty-cycle but changing the period of the signal pseudo-
randomly, since it generates longer and shorter pulses. This is
of great importance as it generates extra entropy and reduce
correlation between bitstreams. This concept is illustrated in
figure 12.

Fig. 11. Stochastic input circuit schematic.

Fig. 12. Principle of working of the proposed stochastic stream generator.

IV. STOCHASTIC SYSTEM ARCHITECTURE

In a system which incorporates the proposed stochastic ele-
ments, it is now possible to interface analog signals without the
necessity to use extra components such as an ADC followed
by binary-to-stochastic converter and an stochastic-to-binary
followed by a DAC. The proposed stochastic system follows
the architecture presented in figure 13. It interfaces the analog
system via the proposed input block to read analog signals
(An2Sto), usually from sensors, and then a Stochastic Machine
which is responsible for all the digital processing in the data-
path. The outputs of the system are then placed at the output
of the system (Sto2An) to attack the analog actuators. The
simplicity, modularity and regularity of the system allows it to
scale to problems of any size, being limited by the resources
available on the reconfigurable device.

V. EVALUATION & DEMONSTRATION

To demonstrate the proposed advancements a cyber-
physical system was envisioned to act as a line-follower.
It is based on a small off-the-shelf line-follower platform,
without any control logic, making only use of its sensors
and motors. The new controller, implemented on an FPGA,
receives information from the analog sensors (photo-resistor)
and sends information to the analog actuators (DC motors).

As its principle of operation, the line-follower senses a

Fig. 13. Top-level architecture of a Stochastic System, including the
supporting units connected to the analog sub-systems.



Fig. 14. Circuit diagram for the supporting elements connected to the
stochastic system on the FPGA.

black line on its floor and moves forward following it. It
has two independent wheels, each attached to a small electric
motor, which are used to drive and change direction. The
direction is estimated from the information provided by the
two photo-resistors, one at each side on its front. Whenever the
photo-resistors detect darkness it means that the line-follower
is crossing the black line, and assuming it was previously in
the correct position, it must avoid moving in that direction,
and therefore, it should reduce the speed or even stop the
corresponding electric motor. On the other hand, whenever
light is detected in means that the photo-resistor is far from
the black line, and hence it can move at full speed. Figure
14 shows the circuit diagram for the implemented system. On
the left, there are the LEDs, which provide a constant light
source to the floor, and the photo-resistors, which sense the
reflected light from the floor. In the middle, there’s the FPGA
which holds the Stochastic System. It is considered that the
proposed I/O ports belong in the system. On the right, there
are the motors and its drivers. The system is powered from
the FPGA board which can be supplied from a USB port or a
battery.

A. Inputs

The sensors, or inputs, of the cyber-physical system con-
sidered are the two photo-resistors. They are connected to a
resistor network to create a voltage divider controlled by the
light they receive. One of these resistors is potentiometer to
allow calibration of the sensor. In normal operating conditions,
the resulting voltage is approximately 1.5 V when in the
presence of light, and 3 V when in darkness. The two input
voltages are sensed by the Stochastic System via the new
stochastic input blocks that convert an analog voltage into a
pseudo-random bitstream with the corresponding value. The
circuit uses LM339 op-amps to act as comparators. The PWM
signal generated inside the FPGA to act as reference voltage
was modified to include small variations in its amplitude. Such
variations were thought to introduce glitches in the digital
signal so that it acquires more transitions when close to the
input voltage, rather than simply setting a unit step signal.

Figures 15 and 16 present all the main signals involved in
the conversion of two analog voltages, of 3V and 1.5V, into two
stochastic bitstreams. In each figure there are 3 signals: analog
voltage at the input (blue,ch1), voltage reference from a PWM
generator inside the FPGA (green,ch3) and the digital output

Fig. 15. Analog, comparison and stochastic bitstream for a voltage of
approximately 3V.

Fig. 16. Analog, comparison and stochastic bitstream signal for a voltage of
approximately 1.5V.

from the comparison (red,ch2). In both figures it is observable
that the duty-cycle of the digital waveform is proportional to
the analog voltage.

B. Outputs

The actuators, or outputs, of the system are the small DC
motors attached to the wheels of the line-follower to make
it move, and are to be controlled by the stochastic system.
In this case, the outputs of the system have the following
specifications:

• a load can be controlled via a PWM signal, which is
similar to a stochastic signal;

• electric motors don’t cope with high-frequency control
signals, thus requiring a low-pass filter;

• the output pins from the FPGA board have enough
current to actuate the motor drivers.

In this case, the output of the stochastic system is connected
directly to the motor drivers via an R-C network that acts as
a passive low-pass filter, e.g. τ = [1; 1000]ms.

C. Controllers

To test the cyber-physical system two controller designs
were created from mathematical expressions. Given the sim-



Fig. 17. RTL of the controller I.

plicity of the system, these designs weren’t thought towards
high performance and efficiency but rather to employ the
proposed units.

1) Controller I: This is an elementary linear proportional
controller for which each output is given by the inverse of
the reading from the sensor, and weighted with a value c that
acts as a speed limiter, as described in equations 1 and 2.
This controller doesn’t perform any check on the validity of
the values at the inputs, i.e. within normal operating range.
Figure 17 shows the RTL for this controller. To slow down
the motors, each input bitstream is multiplied by c using the
logic ANDs. To speed up the DC motors, each input stream
can be multiplied by a constant factor of two, whenever signal
an activation signal d is present. Because of the control logic
the end result if negated to produce the correct actuation level
on the DC motors.

o1 = i1 × c (1)
o2 = i2 × c (2)

2) Controller II: The second controller is a on-off con-
troller as it introduces a threshold that needs to be met before
activating each electric motor. In this scenario, when each of
the inputs is lower than the programmed threshold, their MSbit
at the output is 1. In more detail, given two pseudo-random
bitstream connected to an up(down counter, means that a 1
in one of the bitstreams counts up and the other down. When
both are 1, there’s no counting. If the two bitstreams encode
the same value, over a period of time they will cancel each
other out. Contrarily, if they encode different values, then the
output of the counter is positive or negative, in 2s complement.
Looking at the MSbit it is possible to tell which one of the
two has the greatest value.

The threshold signal is also a pseudo-random bitstream and
hold a value between 0 and 1. In practice, when the input signal
is far from the threshold there will be no stochastic bitstream
generated, but instead a continuous 1 or 0, depending on the
signal. This is desirable as it related with the operation of
the line-follower. Figure 18 shows the RTL for half of this
controller, to process only one of the bitstreams, as the other
half is identical.

Figure 19 shows the photo of the prototype. The FPGA
board is on top of the line-follower platform, and provides
power to the analog converter circuit placed on top of the

Fig. 18. RTL of the controller II.

Fig. 19. Photo of the prototype for the demonstration system.

robotic platform. The analog converter circuit establishes the
connections between the FPGA board and the platform. The
complete stochastic system occupies 38 Logic Cells.

VI. CONCLUSIONS AND FUTURE WORK

This work introduces novel components to support and
process stochastic bitstreams on FPGAs, along with a small
stochastic computing-based autonomous cyber-physical system
to demonstrate the proposed component architectures. Future
work involves a study on the statistical properties of the
proposed architectures, the performance of the system when in
the presence of voltage scaling, and implementation of more
complex systems.
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