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Abstract

The aim of this study is to model the progression of HIV/AIDS disease
and evaluate the cost of the anti-retroviral therapy for an HIV infected
patient under ART follow-up using Non homogeneous semi-Markov pro-
cesses. States of the Markov process are defined by the seriousness
of the sickness based on the clinical scores. The five states consid-
ered are: Asymptomatic (CD+

4 count > 500 cells/microliter); Symp-
tomatic 1 (350 < CD+

4 count ≤ 500 cells/microliter); Symptomatic
2 (200 < CD+

4 count ≤ 350 cells/microliter); AIDS (CD+
4 count ≤

200 cells/microliter) and Death (Absorbing state). The first four states
are named as good or alive states.

The models formulated can be used to gain insights on the transition
dynamics of the HIV patient given the follow-up time. The transition
probability Model, when fitted with data will give insights on the condi-
tional probability of a patient moving from one disease state to another,
given the current state and the follow-up time. This model will also give
the probability of survival for the HIV patient under treatment given
the current state and follow-up time.
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The total Lifetime Treatment Cost model obtained, when applied to
real data will give the cost of managing an HIV patient given the start-
ing state, the treatment combination which incurs minimum cost and
which treatment combination is most effective at each state. The treat-
ment reward model also when applied to real data will give the state,
which a patient should be maintained so that they remain healthy, non-
infectious and productive to the society. Also the model will show the
optimal/effective time to initiate treatment, which can be used to give
advice on how to handle the HIV infecteds given their states.

Keywords: HIV evolution, Therapeutic intervention, Non homogeneity, Treat-
ment Cost, Semi-Markov model, transition probabilities, reward model.

1 Introduction

As extensions of Markov processes and renewal processes, semi-Markov pro-
cesses are widely applied and hence, an important methodology for modeling.
Semi-Markov models have extensively been studied and applied in finance, in-
surance, business administration as well as manpower models. In biology and
medicine, Semi-Markov modeling has also been used in continuous time to
study prognosis and the evolution of diseases, see [22]; [18]; [8]; [21]; [19]; [15]
[1]; [9]; [16] ;[5]; [10]; [20]; [17]. Typically these methods assume the sample
paths are continuously observed. However, it is often the case where study in-
dividuals’ states are observed only at discrete time points with no information
about the types and times of events between observation times.

Recently, [17] developed methods for fitting continuous-time semi- Markov
multi-state models to panel data. Their methods are illustrated with a model
of the natural history of oncogenic genital HPV infection in women using data
from the placebo arm of an HPV vaccine trial. Discrete-time semi-Markov
models have not received as much attention in the literature as continuous-
time semi- Markov models. In finance, for example, credit rating and reliability
models are based upon discrete time Semi-Markov theory like [12]; [24]; [25];
[23]; [2] ;[3]; [7]. For studies with fixed scheduled visits, such as clinical trials,
it is natural to model time as discrete.

Discrete-time models can have advantages over continuous-time models, such
as not requiring the specification of guarantee times. [12];[23] and [25] studied
nonparametric estimators for discrete-time semi-Markov unidirectional models
with varying initial states in HIV data. They considered only unidirectional
models, which may not be applied to complex disease processes such as HPV
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and HIV where prior states may be revisited and states may not be visited
sequentially. Their methods extended the Markov models developed by [6];
[11] and [13] to a more generalizable discrete-time semi-Markov framework by
allowing the probability of transitioning from the HIV positive state to AIDS
to depend on the duration of HIV infection.

[2] and [3] studied discrete-time multi-state bidirectional semi-Markov models
in finance. Their methods require parametric assumptions, only allow for in-
cident infections, and do not address the possibility of missing data.

The evolution of HIV is Multi-directional, that is recovery from one state
to previous state is reasonable. We propose to develop discrete-time non-
homogeneous Semi- Markov models that can be used to study HIV evolution.

2 HIV progression Dynamics

Disease progression models are useful tools for gaining a systems’ understand-
ing of the transitions to disease states, and characterizing the relationship
between disease progress and factors affecting it such as patients’ profile, treat-
ment and the HIV diagnosis stage. The natural history of HIV infection can
be considered as a series of stages through which a patient progresses. Based
both on current information and physicians opinion, we have taken 5 state
classifications as categorized by clinical signs. In order to predict the HIV evo-
lution, we assume the disease progresses following four transient states related
to clinical scores plus an absorbing state (the death of the patient). Transitions
are allowed in all the transient states. The absorbing state is categorized as
”bad” (once a patient is in the death state, she/he will never be in the other
states and rather stays there forever) and the transient states as ”good” states
(the patient is alive).

1. State I : Asymptomatic (CD+
4 count > 500 cells/microliter)

2. State II : Symptomatic 1 (350 < CD+
4 count ≤ 500 cells/microliter).

3. State III : Symptomatic 2 (200 < CD+
4 count ≤ 350 cells/microliter).

4. State IV : AIDS (CD+
4 count ≤ 200 cells/microliter).

5. D : Death (Absorbing state).

With the above states, we have the HIV transition diagram as shown in Figure
1.



4

Figure 1: HIV Multi-state Model with 5 immunological states and 20 transi-
tions
The red arrows show the progression of a patient to a worse state, blue arrows
show recovery of a patient to a better state and green arrows show a patient

remaining in the same state.
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From the transition diagram in Figure 1, we have HIV transition matrix as
shown in Table 1.

Table 1: Classification of HIV disease State as defined by CDC/WHO
Classification of HIV Disease States

Clinical scores 1: Asymptomatic 2: symptomatic 1 3: Symptomatic 2 4: AIDS D:Death

1: Asymptomatic n11 n12 n13 n14 n1D

2: symptomatic 1 n21 n22 n23 n24 n2D

3: Symptomatic 2 n31 n32 n33 n34 n3D

4: AIDS n41 n42 n43 n44 n4D

D:Death nD1 nD2 nD3 nD4 nDD

The entries nij in the table represents the number of HIV patients who have
moved from state i to state j, where i and j are the disease states as defined
by CDC [4]. The transition nDj j = 1, 2, 3, 4 is not possible because once
a patient is in the death state, she/he will never be in the other states and
rather stays there forever.

For the clinical classification: 1 represents - Asymptomatic (No HIV related
symptoms seen), 2 - represents Symptomatic-Moderate unexplained weight
loss (< 10% of the body weight), 3 - represents Symptomatic-Unexplained
severe weight loss (> 10% of the body weight) and 4 - represents AIDS-the
patient has other co-infections.

Note: Patients in Category 4 are considered to have AIDS.

We model the progression of an HIV patient in different disease states as a
Discrete-time non-homogeneous semi-Markov stochastic process {X(t), t ≥ 0},
having five possible states constituting the state space E = {I, II, III, IV,D},
defined on the probability space (Ω,Γ, P). All the states apart from D are
inter-related, which means improvements are also considered. Patients move
through these five states according to twenty transitions as illustrated in the
state transition diagram in Figure 1.
Now we define the following random variables as defined by [14]

Xn : Ω→ E, Tn : Ω→ N ; n ≥ 0

Where Xn represents the state of the system at the nth transition. Tn rep-
resents the chronological time of the nth transition. A sequence {Xn}n≥0 of
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random variables with values in the set E, represents the state of E at time
n. If Xn = i, the process is said to be in state i at time n, or to visit state i
at time n.

Let us define the duration process (Sn)n∈N by

S0 = 0

Sn+1 = Tn+1 − Tn

where Sn+1 represents the duration time spent in state Xn. The (Xn, Tn)n∈N
process is called the non-homogeneous Markov renewal process if:

Qij(t) = P [Xn+1 = j, Sn+1 ≤ t|Xn = i, Sn = s,Xn−1, Sn−1, ...X1, S1, X0, S0]

= P [Xn+1 = j, Sn+1 ≤ t|Xn = i]

and for j 6= i

The term

Qij(t) = P [Xn+1 = j, Sn+1 ≤ t|Xn = i]

is the associated non-homogeneous semi-markov kernel Q, which is the condi-
tional probability that the process is at state j at time t, given that the process
was in state i at t = 0 and remained in state i for a period of Sn+1 ≤ t time
units.

3 HIV Non-Homogeneous Semi-Markov Model

In order to consider the effects due to medical scientific progress of the HIV
patient, we consider the following sequences of random variables:

Xn : Ω→ E, Tn : Ω→ N ; n ∈ N

where Xn represents the state at the nth transition, that is the possible state
in which the infection may show its level of seriousness, with the set of disease
state E = {I, II, III, IV,D}. Tn represents the chronological time in which
the nth transition occurred. A sample path of the disease evolution is shown
in Figure 2.
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Figure 2: Trajectory of a semi-Markov process

Xn represents the disease state, Tn represents the disease observation time,
and Sn is the sojourn time (holding time) with Sn+1 representing the duration
time spent in state Xn;

where

S0 = 0

Sn+1 = Tn+1 − Tn

It is supposed that the process (Xn, Tn) is a non homogeneous Markovian
renewal process with kernel Q = [Qij(x, t)] defined in the following way:

Qij(x, t) = P [Jn+1 = j, Sn+1 ≤ t|Jn = i, Sn = x]

which represents the conditional probability that a patient is in state j of the
disease at the(n + 1)th transition within the chronological time t, given that
she/he entered state i of the disease at time x with the nth transition.
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Let pij(x, t) represent the probability that a patient makes his/her next tran-
sition to state j at time t, given that he entered state i at time x. Therefore
P(t) = [pij(t)]i,j is the (5 ∗ 5) transition probability matrix of the embedded
non-homogeneous Markov chain (Xn)n∈N and must satisfy

∫∞
0

∑
j pij(t)dt = 1.

The summation equation expresses the requirement that there is unit prob-
ability that an HIV patient will be in one of the five states of the disease
progression at some point in the future, given it started in state i. Hence

pij(x) = P [Xn+1 = j|Xn = i] = lim
t→∞

Qij(x, t) 1 ≤ i, j ≤ 5

From the transition matrix in Table 1, we have the probability transition
matrix

lim
t→∞

P (t) =


p11 p12 p13 p14 p1D
p21 p22 p23 p24 p2D
p31 p32 p33 p34 p3D
p41 p42 p43 p44 p4D
pD1 pD2 pD3 pD4 pDD


When a patient makes a transition from state i to state j, the transition is
said to be real if i 6= j, otherwise it is virtual, that is when i = j. Virtual
transitions are represented in transition matrix by non-zero diagonal elements.
However, before the entrance into j, the patients holds for a time t in state i.
The governing equation for these probabilities are derived as follows:-

A system starting in state i can be in state j at time t in the following ways

1. i = j and the system never leaves state i or the system leaves state i but
returns to state i by time t.

2. i 6= j and the system leaves state i and manages to reach state j by time
t.

Let wi be the mean sojourn time in state i, and let pij(x) be the probability
that a patient makes his/her next transition to state j, given that he entered
state i at time x. With the transition probability matrix P and the sojourn
time vector w, we can visualize the evolution of the semi-Markov process as
follows:

A patient starts in state i, stays there on average for wi amount of time and
then progresses to state j with probability pij(x), stays in state j for wj amount
of time on average and then moves to another state and so on.
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Therefore the conditional probability of a patient being at state j at time t,
given that the patient was in state i at x and remained in state i for a period
of wi time units, can be represented as

Qij(x, t) = P [Xn+1 = j, Sn+1 ≤ t|Xn = i, Sn = x]

= wi(x, t)pij(x, t) (1)

The probability that a transition takes place from any state in time t is given
by summing up all the leaving probabilities from state i to each possible state
j. That is, the probability that a patient moves from state i to any other state
within time t, given some waiting time in state i is given by:

Qi(x, t) = P [Sn+1 ≤ t|Xn = i,Xn+1 = j, Sn = x]

=
4∑
j 6=i

Qij(x, t) (2)

=
4∑
j 6=i

wi(x, t)pij(x, t)

Therefore, the probability that the patient does not leave state i in time t is
given by

Hi(x, t) = P{Sn+1 = t|Xn = i, Sn = x} = 1−Qi(x, t) (3)

Equation (3) is the conditional probability that a patient is still in state i at
time t, given that the patient entered state i at time x.

Combining equations 1, 2 and 3 we get the equation that describes the tran-
sition probabilities which include sojourn times in the states, that is:

pij(x, t) = δij[Hi(x, t)] +
4∑
k 6=i

∫ t

x
Qik(τ, t)pkj(x, τ)dτ

= δij[Hi(x, t)] +
4∑
k 6=i

∫ t

x
Qik(x, τ)pkj(τ, t)dτ (4)

= δij[1−Qi(x, t)] +
4∑
k 6=i

∫ t

x
wi(x, τ)pik(x, τ)pkj(τ, t)dτ
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where δij represents the Kronecker delta function defined by:-

δij =

{
1 for i = j,
0 for i 6= j.

When i is an absorbing state, then

Qij(x, t) =

{
1 for i = j,
0 for i 6= j.

Therefore

pij(x, t) = δij (5)

When i is transient and j is an absorbing state, then

pij(t) = Qij(x, t) +
4∑
k 6=i

∫ t

x
wi(x, τ)pik(x, τ)pkj(τ, t)dτ (6)

The time in equation (4) is continuous, which is applicable in laboratory sit-
uation. For HIV disease, we assume that the observational time is discrete
, therefore we model the evolution as Discrete time non-homogeneous Semi-
Markov process. The discrete time semi-Markov model is given by

pij(x, t) = δij[Hi(x, t)] +
4∑
k 6=i

t∑
τ=0

Qik(x+ τ, t− τ)pkj(x, τ)

= δij[Hi(x, t)] +
4∑
k 6=i

t∑
τ=0

Qik(x, τ)pkj(x+ τ, t− τ) (7)

= δij[1−Qi(x, t)] +
4∑
k 6=i

t∑
τ=0

wi(x, τ)pik(x, τ)pkj(x+ τ, t− τ)

The first term on the right hand side of equation (7) is the probability that an
HIV patient being in state i never leaves state i until the end of the period t.
In this case i = j and δij = 1. Therefore Hi(x, t) = 1−Qi(x, t) is the survival
probability in state i.

In the second term, it collects all cases in which the transition from i to j
occurs via another state say k 6= i applying the renewal argument. First, the
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probability that the patient stays in state i for a period of length τ and then
passes to state k is captured by Qik(x, τ) = wi(x, τ)pik(x, τ). Passing to this
new state k can be interpreted as a renewal of the process. Hence the proba-
bility that the patient who is in state k at time τ will be in state j at time t
is captured by pkj(τ, t). As the transition from state i to state k could occur
any time between 0 and t, all possible transition times τ have been covered
by summation over t and the states covered under summation over all states
k. The summation in equation (4) must be made over transient states since
pkj(t− τ) is zero whenever k is an absorbing state.

Equation (7) gives the probability that a patient starting in state i will be in
j by time t. The probabilities in equation (7) are real quantities of interest
in the medical practice and are called the interval transition probabilities of
the semi-Markov process. Equation (7) when fitted with data will give the
conditional probability of a patient moving from one disease state to another,
given the current state. This model will also give the probability of a patient’s
survival given the current state.

4 HIV patient management model

A large fraction of the economic burden of HIV/AIDS is the medical costs of
treating persons with HIV. Medical cost estimates are often based on health
care utilization by persons with HIV disease. The costs associated with health
care utilization in each disease stage are summed across all disease stages from
infection to death.

Let ci be cost incurred by maintaining an HIV patient in state i, then ci(t) is
the cost incurred in maintaining an HIV patient in state i for a period of time
t. Also ci(x, t) is the cost incurred in maintaining an HIV patient in state i
given that the patient enters this state at time s and stays in state i until time
t. Let cij be the cost incurred by treating an HIV patient to move from state i
to state j, then cij(t) is the cost incurred by treating an HIV patient to move
from state i to state j at time t. Hence, cij(x, t) is the cost incurred in treating
an HIV patient to move from state i to state j given that the patient entered
state i at time s and goes to the state j at time t.

Suppose an HIV patient incurs lump sum treatment cost of di while in state i.
Let wi be the mean sojourn time in state i. Then the average treatment cost
per unit time of the patient in state i is

ci =
di
wi

(8)
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Now let C be the total treatment cost incurred by a patient during their
lifetime, then using equations 1, 3 and 8 we have

C(x, t) =
4∑
j 6=i

Qji(x, t)cji(x, t) +Hi(x, t)
di
wi

(x, t)

=
4∑
j 6=i

Qji(x, t)cji(x, t) + [1−Qi(x, t)]ci(x, t) (9)

where 1 − Qi(x, t) is the probability that the patient stayed in state i during
the period of time t and cji is the cost of moving the patient from worse state
to state i.

C(x, t) in equation (9) is the total Lifetime Treatment Cost. This model when
applied to real data will give the cost of managing an HIV patient given the
starting state, the treatment combination which incurs minimum cost and also
the treatment combination which is most effective at each state.

5 HIV patient treatment reward model

Let ri be the reward gained by an HIV patient for remaining in state i; this
reward doesn’t change with time and the future transition, ri(t) be the reward
an HIV patient gains for remaining in state i at time t, ri(s, t) is the benefit
gained by an HIV patient for remaining in state i given that the patient enters
this state at time s and goes to the state j at time t (non-homogeneity). Let
rij be reward gained by an HIV patient for transition from state i to state j,
rij(t) be the reward an HIV patient gains for transition from state i to state j
at time t, rij(s, t) is the benefit gained by an HIV patient for transition from
state i to state j given that the patient entered state i at time s and goes to
the state j at time t (non-homogeneity).

Let wi be the mean sojourn time in state i. Then the average reward of the
patient in state i is

ri =
ri
wi

(10)

In this paper, the HIV treatment reward is regarded as the quality-adjusted
lifetime of a patient. Now let R be the total reward gained by an HIV patient
through treatment during their lifetime, then using equations 1, 3 and 10 we
have
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Ri(s, t) =
4∑
j 6=i

Qji(x, t)rji(x, t) +Hi(x, t)
ri
wi

(x, t)

=
4∑
j 6=i

Qji(x, t)rji(x, t) + [1−Qi(x, t)]ri(x, t) (11)

Where 1−Qi(t) is the probability that the patient stayed in state i during the
period of time t.

Ri(s, t) in equation (11) is the reward a patient gains in remaining in state i.
This model when applied to real data will give the state, which a patient should
be maintained so that they remain healthy, non-infectious and productive to
the society. Also the model will show the optimal/effective time to initiate
treatment, which can be used to give advice on how to handle the HIV infecteds
given their states.

6 Conclusion

In this study, stochastic models were formulated and analyzed for HIV evolu-
tion dynamics using Non homogeneous Semi-Markov processes with the aim
of evaluating the cost of anti-retroviral therapy (ART) for an HIV infected
patient under ART follow-up.

Semi-Markov process was used to determine the conditional probability of an
HIV patient moving from one disease state to another. The transition proba-
bility model shows the probability that a patient starting in state i will be in
state j within the tth year of their life, which when fitted with data will give the
conditional probability of a patient moving from one disease state to another,
given the current state. This model also gives the probability of a patient’s sur-
vival. The disease management cost model is formulated, which gives the cost
of managing an HIV patient to a certain disease state. The HIV cost model
when applied to real data will give the treatment combination which incurs
minimum cost and also the treatment combination which is most effective at
each state. Treatment reward model was formulated using non-homogeneous
semi-Markov reward process (NHSMRP). This reward model when applied to
real data will give the state, which a patient should be maintained so that
they remain healthy, non-infectious and productive to the society. The model
will show the optimal or effective time to initiate treatment, which can be
used to give advice on how to handle the HIV infecteds given their states and
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also it might uncover new intervention strategies to help prevent or eradicate
infection.
The study does not utilize all the possibilities of the semi-Markov process, by
means of backward recurrence time process, it is possible to assess different
transition probabilities as a function of the duration inside the states. Further
more, it is recommended that real data may be used in order to test the
efficacy of the models. Moreover, considering the patient’s age in formulating
semi-Markov model for HIV evolution dynamics can be the object of future
research.
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