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Abstact

This study is concerned with the mathematical modeling for human immunodefi ciency

virus (HIV) transmission epidemics. The mathematical models are specified by sto

chastic differential equations. The differential equations are solved by use of Generating

Functions (GF).In the process of literature review, a conceptual framework is drawn

which summarizes the literature on HIV/ AIDS transmission epidemic models. Models

based on Mother to child transmission (MTCT) (age group 0-5 years), Heterosex

ual transmission (age group 15 and more years) and combined case (incorporating all

groups and the two modes of transmission) are developed and the expectations and

variances of Susceptible (S) persons, Infected (I) persons and AIDS cases found. It

is shown from the combined model that MTCT and Heterosexual models are special

cases of the combined model.

General aspects of modeling HIV/ AIDS are described in chapter 1, Chapter 2 focuses

on the literature review. MTCT model is formulated in chapter 3. Heterosexual model

is developed in chapter 4, Chapter 5 focuses on the development of the Combined

model. Chapter 6 concludes the study.



Chapter 1

GENERAL INTRODUCTION

1.1 BACKGROUND OF THE STUDY

This chapter deals with the general introduction of HIV/ AIDS and how it is spread.

Generating function (GF) which is the main tool used to solve the differential equations

derived in the study is introduced in this chapter. several Epidemic models are also

introduced in this chapter.

1.1.1 Introduction

Mathematical modeling plays an essential role in bridging the gap between the math

ematical theory and public health practice, and it is this aspect that motivates the

present discussion. We attempt to promote the use of mathematical modeling that

provides practical insight and guidance for the disease control, with emphasis on iden

tifying issues that have not been addressed adequately. While deterministic models

can serve as a guide towards parameter estimates,the need to quantify the precision of

estimates and the variation in data imply that stochastic models are the natural basis

for the analysis of infectious disease data. The approach to modeling HIV/ AIDS is to

1



use HIV transmission dynamics models which include the progression to AIDS. These

models often have the population divided into compartments consisting of those who

are Susceptible(persons without the HIV virus), infected but without symptoms and

those who have developed the full blown symptoms (it can take around 7-10 years to

develop full blown AIDS symptoms after infection with HIV). In deterministic trans

mission- models,· .the movements .between these· compartrrrents' by ·becomihg infected,

progressing to the next stage or AIDS, migrating or dying are specified by systems of

difference or differential equations. Some HIV transmission dynamics models are sto

chastic with probabilities of moving to the next stage at each time step. The study of

HIV/ AIDS requires various aspects of academic disciplines. Developing mathematical

modeling is therefore important in understanding or explaining the progression of HIV

from Susceptible to infective and then to AIDS case (those who have developed full

blown AIDS symptoms).

1.1.2 Modes of HIV/ AIDS Transmission

Introduction

The last ten years has witnessed a veritable explosion of research on disease called

acquired immunodificiency syndrome (AIDS) that was first identified in the summer

of 1981 in USA. vVe realize that a large range of problems remain to be resolved. Un

derstanding and controlling the H I V epidemic is a paticularly difficult challenge .The

long and variable period between H I V infection and clinical diseases makes it difficult

both to forecast the future magnitude of the epidermic , which is important for health

care planning , and to estimate the number infected in the last several years , which

is equally important for monitoring the current status of the epidemic. In such a sit

uation mathematical and statistical modeling are of help. HIV is transmitted through

shared bodily fluid such as semen and vaginal fluids, infected blood and blood products.
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Modes of transmission

Sexual Transmission

Sexual Transmission is the most important mode of transmission of AIDS infection

and accounts for 75 percent of cases of AIDS globally. AIDS could be transmitted by

both heterosexual and homosexual transmission.

• Heterosexual intercourse

Heterosexual transmission is the dominant mode of transmission of AIDS infection in

Asia and Africa. The current worldwide expansion of the AIDS epidemic is primarily

driven by the sexual transmission of human immunodeficiency virus (HIV) , and its

future will be determined largely by the degree to which sexual transmission can be

reduced.

• Homosexual intercourse

Homosexual transmission of AIDS is another mode of sexual transmission and occurs

when a male has anal intercourse with another male. As this virus is carried in the

semen, if one male is already having AIDS, the second male contacts this disease. This

mode of transmission is more common in Europe and United States as compared to

Asia and Africa.

Transfusion of infected blood or blood products

This occurs when infected HIV positive blood is transfused into a normal patient.

Many blood products in common use today such as platelet concentrates, factor VIII

concentrate, etc. also can transmit the virus. Therefore it is important to screen all

blood for presence of HIV before transfusion is given. Transfusions are given to in

crease the blood's ability to carry oxygen, restore the body's blood volume, improve

immunity, and correct clotting problems.The transfusion of blood can transmit an in

fectious disease carried in the donor's blood. That's why health officials have stepped
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up their screening of blood donors and made blood testing more thorough. Today,

all blood donations are tested for viral hepatitis, AIDS, syphilis, and selected other

viruses. There is a very high probability of infection through the transmission of blood

and other blood products if the original product is HIV-infected. Thus the rate of tran

sition from uninfected to infected depends upon the number of transfusions received

a .person and the conditional probability that if a transfusion takes place it involves

infected blood or blood products. The probability of becoming infected during the

time interval (t, t + tlt) is proportional to the fraction of the total population eligible

for blood donation who are infected. Blood transfusion now is very rarely in countries

where blood is screened for HIV antibodies)

Vertical transmission (Mother-to-child)

Mother-to-child transmission (MTCT) is by far the largest source of HIV infection in

children under the age of 15.In the absence of preventive intervention, the probability

that an HIV-positive woman's baby will become infected ranges from 15% to 25% in

industrialized countries and 25% to 35% in developing countries. The virus may be

transmitted to the newborn babies during pregnancy(foetus) , labor, delivery(in utero)

(through contamination by blood or other fluids during birth), or after the child's birth

during breastfeeding. Among infected infants who are not breastfed, about two-thirds

of cases of MTCT occur around the time of delivery and the rest during the pregnancy

(mostly during the last 2 months). In populations where breastfeeding is the norm,

it accounts for more than one-third of all transmission.Thus the rate of transmission

from uninfected to infected depends upon the health status of the mother and the

conditional probability that an infected mother will transmit the virus to either the

foetus or newborn in utero, during or shortly after delivery.

Intravenous (IV) drug users

These comprise an important group in the chain of transmission of HIV. Drug users

usually inject a variety of substances into the blood and often use or share the same
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needle. If anyone of the drug users has HIV, this virus is transmitted to all those who

use the same syringe and needle. Also as the drug users get infected and they pass this

infection to their spouse. Thus a male drug abuser who has AIDS can infect his wife,

she in turn infects the children born after she has contracted AIDS. Thus the whole

family could be involved, if either the husband or wife abuses The children born

before the wife is infected will not develop AIDS by mother to child transmission; only

those children born after the wifes infection acquire HIV from their mother. This is

discussed in detail below (mother to infant transmission).

1.1.3 Generating functions (GF)

Generating functions are important tools for some areas of applied probability and

statistics. since GF is going to be the core tool in this study, it is in order to describe

it briefly.

The method of generating functions is one of the most important analytic tools in the

study of stochastic processes with discrete sample spaces. It has been used in differ

ential and integral calculus and in combinatorial analysis. The generating function of

an integer-valued random variable completely determines its probability distribution

and provides convenient ways to obtain the moments of the distribution. Furthermore,

certain important relations among random variables may be simply expressed in terms

of generating functions. In population studies, the generating function technique has

been used to study life tables, the effects of family size under various controlling condi

tions, the survival of family names, kinship theory, stable population theory, the impact

of family planning programmes on fertility, the human reproduction process, etc. Use

of Generating functions has also been made in studying group-screening designs with

random group-sizes and with repeated testing.
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Definition

let ao, aI, a2, ... be a sequence of real numbers. If A(s) = al + a2s2 + asss + ... =

L,~o aksk converges/exists in some interval -so < s < Sl, then

00

A(s) = l: aksk
k=O

is called the Generating function of the sequence {ak}.

Probability Generating Function(PGF)

Definition

(1.1)

Probability generating function (pgf) is a special case of a generating function.

Let the sequence {ad satisfy the following two conditions:

(i) 0 :s; ak < 1

(ii) L,k=O ak = 1

This means that {.ak} is a probability mass function. Then the corresponding A(s) is

called a probability generating function of {ad.

Mean and Variance of generating functions

getting the derivative of equation (1.1) we have

00

A'(s) = l: kakSk- l

k=O

Putting s = 1 we have
00

A/( l ) == l: kak = E(X)
k=O

This is the expectation of the distribution.

To obtain variance of X we have to add E(X) - E2(X) which leads us to

var(X) = A"(l) + A/(l) - AI2(1)

1.1.4 Partial Differential Equations (PDE)

The partial differential equations encountered in this project are linear differential

equations of the first order with two independent variables. The typical equation
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involving two independent variables is

(1.2)

subject to appropriate secondary conditions, where P, Q, and R are functions of x.y,

and z. Corresponding to (1.2), there are two ordinary differential equatiolls, known as

auxiliary or subsidiary equations

dx dy dz
P Q R

(1.3)

any function u(x, y, z) = constant or vex, y, z) = constant that satisfies (1.3) is also a

solution of (1.2). Therefore, instead of solving the partial differential equation directly,

we solve the ordinary differential equations. To obtain the general solution, we make

one constant a function of the other, that is,

u = ¢(v)

the particular solution is determined by the appeal to the initial boundary conditions.

1.1.5 Epidemic models

Introduetion

It is in order to briefly review the basic ideas involved in the epidemiology of infectious

diseases before we discuss HIV/ AIDS transmission models.

to begin with we suppose that we have a group of Susceptible (non-infected)individuals

all mixing homogeneously together. One or more from this group then contracts a cer

tain infectious disease which may in due course be passed on to the other Susceptibles.
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In general we assume that after the receipt of infectious material, there is a latent

period during which the disease develops purely internally within the infected person.

The latent period is followed by an infectious period, during which the infected person

or infective as he is then called, is able to dicharge infectious matter in some way and

possibly communicate to other susceptibles. Sooner or later the symptoms appear in

the infective andHe is .removed from circulation amongst the Infectives until he either

dies or recovers. This removal brings the infectious period effectiveness or an end (at

least so far as the possibility of spreading the disease is concerned). The time interval

between the receipt of the infection and the appearance of symptoms is the incubation

period.

The Epidemiology of infectious diseases

A number of epidemic models have been developed for various infectious diseases. With

the emergence of HIV/ AIDS, it has been necessary to re-examine these models so as

to come up with appropriate models for HIV/ AIDS transmission. A brief description

of these models follow:

I. 81 Models with vital dynamics

In this model,the study population in SI model is divided into two compartments;

Susceptibles (S):-those persons who are free of the disease but can contract it from an

infected person, and Infectives (1);- those persons who have the disease and can pass

it on to susceptible persons. In the simple SI model with no cure, everyone eventually

gets the disease no matter what treatment strategy is applied. The infected is assumed

to die.
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Figure 1.1: SI model

u

Susceptible

Death

f------~ Infected

The equations for SI models with vital dynamics are:

where N = 5+1

d5jdt

d1jdt

U - VB - (35,

(35 - IJJ,

(3 = Ac51
N

Application of the SI model is in Influenza disease spread, where the model divides the

population into two groups:Susceptibles or those who may contract the disease, and

infecteds or those infected and experiencing severe symptoms.

II. SIS Models with vital dynamics

This model is an improvement of the SI model. it is not true for all diseases that

infected persons die, in most diseases, the infected recover and again they become

susceptibles. The study population is divided into two classes; Susceptible and Infected

in which susceptibles (S) become infected (1) and recover without immunity and so are

again susceptible. Assume S are the susceptibles and I are the infecteds and infectious

individuals. The connectivity diagram is as shown below. The rate of recovery per

infected is {, a constant and the rate coefficient for infection, called the force of infection

(3, where

(3 = AC
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Figure 1.2: SIS model

Infected
l------~

10

Immune



The equations for SIS model are given by:

dS/dt

dl/dt

U - JiS - j31S/N,

j31S/N - Jil - '"'(1

where Set), and let) are the numbers in these classes, so that Set) + let) = N(t)

Application of this model SIS is in the spread of GOIlorrhea, where the model divides

the population into two groups: susceptibles or those who may contract the disease,

infecteds or those infected and experiencing severe symptoms,the infecteds recover

without immunity and so are again susceptible.
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III. SIR Model with vital dynamics

The most fundamental mathematical model of the spread of disease is the susceptible/

infective/recovered or SIR model. In this model a population is divided into three

classes according to their status in relation to the disease of interest: susceptible (S),

meaning they are free of the disease but can catch it, infective (I), meaning they have

can pass on and recovered (R), meaning they have recovered

from the disease and can not longer pass it on. There is a fixed probability per unit

time that an infective individual will pass the disease to a susceptible individual with

whom they have contact, rendering that individual infective. Individuals who contract

the disease remain infective for a certain time period before recovering and losing their

infectivity. This model is a bit more complicated in that there is a constant recruitment

of new susceptibles at rate U and there is a background mortality rate coefficient.u ,

which is the same for susceptibles, infecteds and immunes, i.e, there are no extra deaths

due to the disease. The force of infection.A , is a function of X, Y and Z. We shall use

the SIR model to show how one writes the equations and then use it to develop some

of the most important ideas in the epidemiology of infectious diseases. Suppose each

susceptible makes c contacts per unit of time that are of the disease transmitting type.

Then the susceptibles make cS contacts per unit time. Assume the contacts are at

random with members of the total population, N=S+I+R. Then only the fraction liN

of the contacts are with infectious individuals. Let;3 be the probability of transmission

in a contact between an infected and a susceptible. Then the rate susceptibles become

infected must be (3cSI, N

12



Figure 1.3: SIR model

1----------111>1 Infected

C:m.

1-------11>{ Recovered

The equations for SIR models are:

dS/dt

d1/dt

dR/dt

where

U - liB - )"S,

)..S - (f.-l + ,)1,

,R - p.H.

).. = (JcS1
N

This model can be applied in the spread of Measles, where the model divides the popu

lation into three groups: susceptibles or those who may contract the disease, infecteds

or those infected and experiencing severe symptoms, and partial immunes(recovered)

or those infected but experiencing only mild symptoms.

13



IV. SEIR Model with vital dynamics

This model is an extension of SIR model. Assume a given population may be divided

into the following categories:

Susceptibles-those capable of contracting the disease,

Expossed- those who are infected but not infectious,

Infectives- those capable of transmitting the disease,

Recovered- those who are immune.

The connectivity diagram shown below is for a constant, open population with births

and deaths.

Figure 1.4: SEIR model

G

I----+i InfectedJ----+i Exposed

Further modification of the SIR model is by adding an immediate return path, t5R,

back to the susceptibles following the concept that partial immunity is not immediately

acquired. The connectivity diagram is as shown below:
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Figure 1.5: SIRS model with vital dynamics
e

f------J>I Infected f--==---lI>l Recovered

The differential equations from the diagram are:

c;: u - fJ,S - AS+ bR;

~~ AS - (fJ, + ,)1;

c;: ,I - fJ,R - bR

Application of this model in in Malaria spread.
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V. SIA Model

These models are just like SIS models but instead of infectives recovering, they develop

AIDS symptoms.The population in this model is divided into three classes: Susceptibles

(S), Infective (I) and AIDS case (A).

Figure 1.6: SIA model

Death

/

1----------JtoI Infected 1--------.1 AIDS Case

A key characteristic of HIV is its long infection time (anywhere from a few months to

years) before the onset of AIDS. In fact, some individuals may carry the disease but

never develop AIDS. During this infection time the individual is infective and may infect

others. Here it will be assumed that once an individual progresses from this infective

stage to AIDS, the individual will no longer be sexually active and cannot infect others.

The big task now in most countries is to combat the spread of the epidemic. The age

structure of the population is changing drastically fast: the sexually active age-group

is the one most affected and, as a consequence, the workforce is being reduced and

the number of orphans is growing very fast. Thus, it is important, for the purpose of

economic and social planning, to have an idea of the age structure of a population. This

is what prompted the researcher to look at a three stage groups model, a population

under consideration is divided into three age-groups:

16



°- al (the pre-school age group), al - a2 (the age group between 5 and 15 years,

school age) and a2 and more years (From 15 years). In each age-group, the population

is divided into: S (Susceptible)[ An S person does not carry the AIDS virus but can

contract it from an I person] ,I (Infectives) [An I person has been transmitted with

the AIDS virus and carries the AIDS virus and can transmit the virus to S persons.

a he will develop AIDS symptoms to become an AIDS case or

remain non-infectious. Non-infectious person has the virus, which he can contract to

uninfected person, but he does not develop the AIDS symptoms] and A (AIDS case)

[An AIDS case person is a person who has developed AIDS symptoms, Since there

is no effective cure for AIDS at the present time, there is high probability that this

person will die from AIDS]. It is the third age group that is sexually mature and active

and, therefore, capable of reproduction. It is also this group that is responsible for the

horizontal transmission of the epidemic through heterosexual activities and for vertical

transmission to the first group by infected mothers. The other modes of transmission of

HIV, such as use of unsterilized needles or instruments in hospitals/clinics and through

blood transfusion has been reduced drastically to almost 0% presently. In group 1, the

only possible mode is the vertical transmission: HIV/ AIDS infected mothers pass the

virus to their newly born babies. In the model presented in this work, we shall assume

that all those born infected with the HIV will die before the school age al. Thus,

Group II will be free of the HIV/ AIDS. However, it should be noted that, according to

recent clinical research results, some children born with antibodies against the HIV do

lose the antibodies after some time and they never get the HIV [2]. In this case, those

who survive the developmental period (0, al) years can be accounted for by the value

of the parameter for the proportion of the newly born babies by infected mothers that

do not have the HIV.

17



1.2 STATEMENT OF THE PROBLEM

Generating functions have been applied extensively in population studies, especially in

branching processes, human reproduction process, Birth and Death process etc. There

is need to extend the application of generating functions to HIV transmission models.

In the literature, this approach has not been used extensively by researchers to study

epidemic processes. Most of the researchers have focused their research on deterministic

models. In this study we proceed to study the deterministic models, then develop a

stochastic differential equations from the deterministic models for the spread of the

HIV/ AIDS virus in a heterosexual population then solve them by using Generating

functions.

1.3 PURPOSE OF THE STOCHASTIC HIV/ AIDS

MODELING

Our research was basically motivated by the following considerations.

(i) Many biological factors such as incubation periods and social factors affecting

HIV/ AIDS spread are subjected to considerable random variation so that the spread

of the AIDS virus is in essence a stochastic process.

(ii) stochastic models provide more information than deterministic models; for exam

ple, besides the expected values, one may also compute the variances and covariances

and assess effects of various factors on these variances and covariances.

(iii) As we shall see, under some special conditions, the deterministic approach is equiv

alent to working with the expected values of the stochastic models. In this sense, then,

the deterministic approach is a special case of the stochastic models if one is only in

terested in the expected values.

18



1.4 OBJECTIVES OF THE STUDY

The primary objective of the study is to apply generating function (GF) technique

in modeling HIV/ AIDS transmission. The study has the following specific research

objectives.

'Io"identify some deterministic and stochastic models that have been developed For

HIV/ AIDS transmission dynamics.

(ii) Modify these equations and formulate stochastic differential equation versions from

these ordinary differential equations.

(iii) Apply Generating function technique (GF) in:

• Mother to child transmission model.

• Heterosexual Model.

• Combined model.

The major significance of the study is to show how Generating functions (GF) can be

applied in HIV/ AIDS transmission models. The models are tested by simulation so as

to study the patterns of the population; the susceptibles, infecteds and AIDS cases, by

changing parameter values under study. The study helps the author develop a proposal

for Ph.D work in this area.

The project's thoroughness and depth of coverage will make this area of research a

valuable reference for researchers at the frontiers of the field; since the field is full

of potential for future developments in mathematical modeling and empirical appli

cation.The work on stochastic process would also make the analysis of HIV/ AIDS

pandemic straightforward.
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Chapter 2

LITERATURE REVIEW

2.1 INTRODUCTION

In this chapter, we are highlighting various epidemic models on HIV/ AIDS by various

researchers and use of Generating functions. These models are based on homosexual

and heterosexual populations. For each population, we have considered deterministic

and stochastic approaches. From the literature, it is seen that little has been done on

the use of generating functions. It is only Tan and Hsu (1989) who used Generating

function but did not consider Mother-to-child Transmission(MTCT) which has become

a major mode of HIV/ AIDS transmission. Since lit le is done on use of generating

functions in epidemiology, the author tries to review the deterministic and stochastic

models which have been studied in HIV/ AIDS.

2.2 HOMOSEXUAL POPULATION

Many mathematical models for HIV transmission and AIDS incidence have dealt pri

marily with one homogeneously mixing risk group which usually consists of highly
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sexually-active homosexual men. Some of these modeling efforts are described below.

2.2.1 Deterministic Models

Anderson et al. (1986) described some preliminary attempts to use mathematical mod

els for HIV transmission in a homosexual community. The epidemic data available

on HIV infection and the incidence of AIDS was surveyed. After the risk groups and

transmission mechanisms were described, doubling times for AIDS incidence were given

for risk groups in various geographic locations. Some data were also given for the HIV

infection period, the proportion who develop AIDS, and measures of sexual activity.

Models of the early stages of the AIDS epidemic in homosexual men were used to find

the reproductive number from the distribution of the AIDS incubation period and the

initial doubling time. These more complex models showed that heterogeneity in sex

ual behavior can greatly influence the predictions, with more heterogeneity implying

decreased magnitude of the AIDS epidemic. This result is reasonable since high het

erogeneity implies that the few very sexually active people are removed rapidly from

the infectious pool. Anderson emphasized that uncertainty in parameter values implies

that the models are not suitable for prediction. The purpose of their modeling was to

investigate the effects of various parameters and help improve our general understand

ing of the transmission dynamics of HIV infection. Areas of biological uncertainty,

future data needs, and public health policy implications were discussed.

Pickering et al.(1986) formulated a model for the spread of HIV and AIDS incidence

in the homosexual male population in three large cities.They used a discrete time

nonlinear model for the sexual transmission of HIV with several possible courses of

progression after infection. They gave some preliminary forecasts for San Francisco,

Los Ageles and New York city but concluded that there were insufficient data to choose

between radically different forecasts.
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2.2.2 Stochastic models

May and Anderson (1987) presented some simple HIV transmission models to help

clarify the effects of various factors on the overall pattern of the AIDS epidemic.They

began by defining the basic reproductive number as the product of three parameters

and then obtained estimates of these three parameters frOm vari01.lsdata sources. They

showed that if the probability of developing AIDS increases linearly with tine since in

fection, then the distribution of the AIDS incubation period is a Weibull distribution.

Their calculations assumed that 30% of HIV infecteds eventually develop AIDS, but

we now know that this percentage is too low. They considered a model for heterosex

ual transmission where infection comes from the homosexual male population through

bisexuals and found that the doubling times would be significantly larger in the het

erosexual population than in the homosexual population. At present, this is not a

realistic model for the sexual transmission of HIV in Africa, since most heterosexual

transmission is to sexual partners (man and a woman). In their discussion, they em

phasized the uncertainty of the parameter values and the need for better data in several

areas.Anderson's(1992) epidemiological model has the form Ro = j3c5, where Ro is the

reproductive rate of the epidemic, that is, the number of new infectious that result from

each infected individual. (3 is the probability of the virus being transimited by sexual

patnership; c is the number of sexual patners or patner" changes" 5 is the duration of

infectiousness of seropositive individuals.

What this model indicate is HIV will spread more rapdely in a porpulation where the

per-patner probability of transimition is high where the number of sexual patners is

large, and where the duration of infectiousness is length.

The mean of c and its variance are positively correlated and the actual impact of c on

the transmission rate is:
52

c=m+
m

where m and 52 are the mean and variance of c respectively.

Blythe and Anderson (1988) considered HIV transmission models with four forms for
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the distribution of AIDS incubation period (exponential, Weibull, gamma and rectan

gular). As in most models, the HIV infections period was assumed to be equal to the

AIDS incubation period. The impact of the four distributions on HIV transmission

dynamics in male homosexual communities was assessed by examining the equilibrium

states and their local stability in a model with constant recruitment of susceptibles. In

merits of the four distributions of the AIDS incubation

period, they concluded that, for qualitative purposes, it may be sufficient to consider

only these four distributions(if their means coincided with the observed value).

Castillo-Chavez et al.(1989a,b,c) extended the above results to arbitrary distributions

and analyzed a model where the mean rate of acquisition of new partners depends

on the size of the sexually active population. Their results are further described in

Castillo-Chavezet al.(1989d). In his model, the sexually active homosexual population

is subdivided into three groups: S (Susceptible), I (HIV infectious), and A (AIDS

infectious). He assumed that A- individuals are sexually inactive and hence do not

contribute to disease dynamics. He also assumed that sexually active individuals choose

their partners at random. The demographic parameters are given by A, the recruitment

rate into S; u, the sexual activity removal rate; d, the AIDS-induced mortality rate,

and ,x, the transmission rate per infectious partner. C(T) denotes the mean number of

sexual partners that an average individual has per unit time, given that the sexually

active population is T = S +I. It is reasonable to expect that in general C (T) increases

linearly for small T and saturates for large T. He further assumed that the incidence

rate B(t)- the number of new cases per unit time is proportional to C(T), to S, and

to the sexually active infected fraction: B(t) = 'xC(T)S(t)f~~) . P(s) is the proportion

of individuals that are infected at time t and that, if alive, are still infectious at time

t + s. The distribute-delay model for the sexual spread of HIV/ AIDS is therefore given
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by the following systems of integro-differential equations:

d~t) A - B(t) - pS(t),

l(t) lo(t) + J5 B(x)e-p(t-x) pet - x)dx,

A(t) Ao(t) + Alcdt + J5 {J; B(x)Cp(r-x) [-P'(T - x)e-d(t-T)jdx }dT

This model generalizes the models developed by Anderson arid May(1987), and Blythe

and Anderson(1988). Later Castillo-Chaves reduced the above model to the following

system of ordinary differential equations:

d~t) A - B(t) - pS(t) ,

dI~t) B(t) - (al + P)ll(t),

dI~t) alll(t) - (a2 + p)l2(t),

dI~~t) a2 l2(t) - (as + p)ls(t) ,

d~t) asls(t) - dA(t)

Where eli, i 1,2,3 denote the rate at which new AIDS cases occur.

Bailey (1989) presented a model for HIV infection and AIDS in which infected people

proceeded through a sequence of stages to AIDS and then to Death.The model is given

by a system of m + 2 nonlinear differential equations with mass-action incidence term

and negative exponential waiting times in the infected stages, which correspond to a

gamma distribution for the AIDS incubation period. He used data on HIV prevalence

in the San Francisco city Clinic cohort of 7, 000 people and the reported AIDS incidence

in all San Francisco and obtained a best (minimum chi-square) fit of his model. The

best fit yielded a gamma distribution with m = 7 for the AIDS incubation period.

Mode et al. (1989) considered a stochastic population model of an AIDS epidemic in

a population of male homosexuals. Computer intensive methods were used to study

more properties of the model statistically. A numerical factorial experiment was used

to study three factors of importance in the evaluation of the AIDS epidemic. These

factors were the distribution of the latent period of HIV, the probability of infection

with HIV per sexual contact with an infected individual, and the distribution of the

number of contacts per sexual partner per month. They found that the latent period

24



of the HIV infection had a decisive impact, but the impact depended crucially on the

other factors. The monte Carlo experiment showed that the deterministic.nonlinear

differential equations using expected values gave more pessimistic predictions than the

stochastic population process. Their latent period of HIV would more properly be

called the incubation period for AIDS. They used the Weibull and gamma distribu

tions for this AIDS incubation period. The infectivity of HIV-positive individuals was

taken to be constant and then zero when they developed AIDS. Since longer mediam

AIDS incubation period implies a longer infectious period, their conclusion that the

HIV prevalence is much higher for longer median AIDS incubation period seems rea

sonable.

Tan and Hsu (1989) used a stochastic model for the spread of the AIDS virus in a

homosexual population. In this model, susceptible (S) persons become HIV latent

(L), infective (I) and then develop AIDS (A). Transitions between these groups were

governed by probabilities with constant rate and two transmission rates. The proba

bility generating function (PGF) of the number of Latent persons, Infective persons,

and AIDS case was derived. The expected numbers, and variances and covariances of

these persons satisfy some ordinary differential equations. These equations are solved

numerically to assess the effects of various factors on AIDS spread.

Kaplan (1989) developed dynamic models that apply to needle sharing populations. He

made the assumption that a susceptible individual using an infected needle removes

the virus from the needle. Kaplan performed extensive simulations illustrating the

sensitivity of the model to various parameters and computed the basic reproduction

number for this model. He also discussed the effect of possible intervention strategies.

the model described by Kaplan is similar to the model considered by Hethcote and

Van Ark (1987). at time t, the population contains net) gay men. This population

is divided into m subpopulations, with ni(t) men in subpopulation i.Immigration to

subpopulation i occurs at a constant rate of N, men per year, fJ, is the mortality rate

per man per year.

A general model for HIV transmission and AIDS has been formulated by Hethcote
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(1987, 1989a).The comprehensive model proposed contains all known transmission

routes including homosexual and heterosexual intercourse, needle sharing among in

travenous drug users, blood transfusions, blood factor concentrates to hemophiliacs,

and perinatal infections. The primary risk groups in the model were sexually active

homosexual and bisexual men, prostitutes, sexually active heterosexual women and

men, intravenous using women and men. The secondary risk groups were

transfusion recipients,hemophiliacs, monogamous partners and children born to women

in a previous risk group. For each risk group, there was a differential equation incor

porating the inflow and out flow. The progression from HIV infection to AIDS was

modeled by a unidirectional flow in a sequence of stages. No attempt was made to

estimate parameter values or to apply the model.

Hethcote (1989b) formulated an HIV transmission and AIDS model as a system of non

linear difference equations with a time step of one month.Parameters were estimated

and Hethcote (1989c) estimated more parameters and applied the model to Homosex

ual males in San Francisco. Jan P. Medlock (2000) formulated an SIR model for the

Transmission of HIV. he considered a population of homosexual men, this population

was subdivided into S (Susceptibles), I (infectives), and R (individuals removed from

infective class) .He assumed a constant migration of individuals into the high-risk pop

ulation as new susceptibles, that is, into S, IJSa > O.Further, he assumed a constant

natural death rate which is proportional to the number of individuals in the group,

IJS, IJI and IJR, where IJ > O. The number of individuals removed from the infective

class into the removed class (by progression from HIV to AIDS) is proportional to the

number of individuals in the infective class, "(land the infection rate, A, depends on

the number of partners per individual per unit time, r > 0, the transmission proba

bility per partner, j3 > 0, and the proportion of infected individuals to sexually active

individuals, 1/(S +1). Note here that the removed individuals are taken to be sexually

inactive so that there are no new infections due to the removed class. The following is

the flow diagram which he came up with.
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Figure 2.1: SIR model

The following system of ODEs describes this SIR model:

where

dS
dt

dI
dt

dR
di

j.L(SO - S(t)) - A(t)S(t),

A(t)S(t) - (j.L + ,)I(t),

,I(t) - j.LR(t)

A(t) _ r/3 I( t)
- S(t) + I(t)

Note that most of these models are continous in nature and not descrete.

2.3 HETEROSEXUAL POPULATION

The AIDS models described above have involved only one population. Clearly, HIV

transmission takes place in populations that are heterogeneous in a variety of ways.

The contacts between people can be homosexual, heterosexual, or by needle sharing

among intravenous drug users; some groups have higher contact rates than others;

people may have contacts primarily with others who are similar or with a wide variety

of partners; and behavior is not uniform geographically or temporally. One way in

which this heterogeneity can be modeled is to consider models with multiple groups.

Another possibility is to use continuous distributions of behaviors instead of discrete

groups with different behaviors. Some recent models of these types for sexually trans

mitted diseases and AIDS will now be described.
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Recently, multigroup models have been used for AIDS by several different authors.

Hyman and Stanley (1988,1989) formulated and used several models to study ques

tions related to the AIDS epidemic. Their T-dependent model, where T denotes time

since infection, includes variable infectivity as a function of T. This model is given

by a system of nonlinear integro-differential equations for the distribution of infecteds

and AIDS cases as a function of time and age since infection. Sample calculations

showed that the infectivity profile could dramatically change the rate at which the

susceptible population is infected. In their models, they used a Weibull distribution

for the AIDS incubation period, and initial cubic growth of the AIDS cases and inverse

quartic distributions for the number of sexual partners per unit time. They also used

risk-based models with random (proportionate) mixing and biased (preferred) mixing.

With random mixing, their numerical simulations showed that the disease progresses

rapidly in both the high and low risk populations, but with biased (like-to-like) mixing,

the disease progresses rapidly in the high risk populations and more slowly in the low

risk populations. The random mixing result seems inconsistent with data. They also

noted that if the difference between the male-to-female and female-to-male infectivi

ties is large, then the lower of these two infectivities tends to determine heterosexual

spread. The number of infected people as a function of time can be determined by a

convolution integral from the AIDS incidence as a function of time and the distribution

of the AIDS incubation period. They found that, if people select partners with very

similar risk behavior, then the epidemic grows much more slowly than if they were

more random in selecting partners.

Blower S. M.,et al.(1991) formulated a data-based mathematical model to assess the

epidemiological consequences of heterosexual, intravenous drug use and perinatal trans

mission in New York City. The model was analyzed to clarify the relationship between

heterosexual and IVD Use transmission and to provide qualitative and quantitative

insights into the HIV epidemic in New York City. The results demon strated the

significance of the dynamic interaction of heterosexual and intravenous drug use trans

mission. Scenario analysis of the model was used to suggest a new ex planation for the
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stabilization of the seroprevalence level that has been observed in the New York City

intravenous drug use community; the proposed explanation does not rely upon any

intravenous drug use or sexual behavioural changes. Gender-specific risks of hetero

sexual transmission in intravenous drug users were also explored by scenario analysis.

The model was used to predict future numbers of adult and pe diatric AIDS cases;

a. sensitivity analysis of the model showed that the confidence intervals on these esti

mates were extremely wide. This prediction variability was due to the uncertainty in

estimating the values of the model's thirty variables. However,the sensitivity analysis

revealed that only a few key variables were significant in con tributing to the AIDS

case prediction variability; partial rank correlation coefficients were calculated and used

to identify and to rank the importance of these key variables. The model consists of

thirty-four ordinary differential equations.

Luboobi(1994) formulated a three age-groups model for the HIV/ AIDS epidemic. In his

model, he subdivided each age group into susceptibles, infecteds, and AIDS cases.The

equations of his model are delayed differential equations.He used the method of steps

in obtaining bounding functions for the HIV prevalence.

Jacquez and Koopman [6] used multi -group compartmental models for HIV with con

stant recruitment into the susceptible classes and variable infectivity in the infectious

stages to analyze the effects of different mixing pattern.

Hyman and Stanley [7] have considered both continuous and discrete HIV/ AIDS mod

els with heterogeneity and different mixing structures. They have analyzed the spread

from high to low risk groups, the effects of variable infectivity and the instability of

the back calculation procedure. The formulation of the models in this study is similar

to that of Hethcote et al. [1].

Hethcote (2000) came up with a MSEIR epidemiological model for Infectious Dis

eases.He assumed a constant birth rate b and death rate d, so the population size

N(t) satisfies N'(t) = (b - d)N. Thus the population is growing, constant, or decaying

if the net change rate q = b - d is positive, zero, or negative, respectively. In this

MSEIR epidemiological model, the transfer out of the passively immune class is fJ M,
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the transfer out of the exposed class is EE, and the recovery rate from the infectious

class is ,I.)" is the force of infection, hence the number of new cases per unit time is

)..S = ~,. Below is the flow diagram:

The system of differential equations for the numbers in the epidemiological classes

Figure 2.2: Transfer diagram for the MSEIR model with the passively immune class

M, the susceptible class S, the exposed class E, the infective class I, and the recovered

class R.

and the population size is:

dM
dt
dB
dt

dE
dt
dI
dt

dR
dt
dN
dT

b(N - S) - (8+ d)M,

bS + 8M - @§.!.. - dS
N '

f3~I _ (E + d)E,

EE - h+ d)I,

,I - dR,

(b - d)N.
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2.4 A General Framework for HIV/ AIDS model

studies

From the above literature, a number of issues emerging can be summerized in the fol

lowing framework.

Figure 2.3: A Framework for HIV/ AIDS epidemic Models
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From above framework, We can see which route each researcher followed. Most of the

researchers have followed the deterministic route,that is:

Figure 2.4: A Framework for Deterministic HIV/ AIDS Models
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From the literature, it is seen that little has been done on generating functions. It is

only Tan and Hsu (1989) who used Generating function but did not consider Mother

to-child Transmission(MT CT) which has become a major mode of HIV/ AIDS trans

mission. The author bases the study on this and on what Luboobi did. It is clear from

the general framework that this study will follow the stochastic route.the following

Framework summarizes. the authors study:

Figure 2.5: A Framework for Sthochastic HIV/ AIDS models
>- Hetesosex ual

:;. H eter osex uel contact
>- V ertice1 tran~i$:iO:n.

>- Kclmo gcrcrv equeficers
> Birth.-Dea.th process
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source: Author
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Chapter 3

MTCT MODELS

3.1 Introduction

The purpose of this chapter is to develop the Mother-to-child Transmission (MTCT)

model also called Vertical transmission model. The study population consists of the

pre-school age group (0-5 years), these are the children born of infected and Susceptible

mothers in group three(15 and more years) and the mothers in the age group (15 and

more years).The population is divided into those children born free of HIV virus (sus

ceptibles), those who contact the virus from their infected mothers (Infectives), and

the former infectives who develop full blown symptoms (AIDS cases).

The mode of HIV/ AIDS transmission in this group is Mother-to-child transmission

(MTCT). The virus may be transmitted to the newborn babies during pregnancy(in

utero), labor, delivery (through contamination by blood or other fluids during birth),

or after the child's birth during breastfeeding. Among infected infants who are not

breastfed, about two-thirds of cases of MTCT occur around the time of delivery and

the rest during the pregnancy (mostly during the last 2 months). In populations where

breastfeeding is the norm, it accounts for more than one-third of all transmission.Thus

the rate of transmission from uninfected to infected depends upon the health status of

34



the mother and the conditional probability that an infected mother will transmit the

virus to either the foetus or newborn in utero, during or shortly after delivery which

is 21-43%.

Assumptions and notations

The pre-school age group (0-5 years) at time t is subdivided into Sl(t) Non-infected

(those infants free of HIV) , I1(t) infectives (infected by infected mothers), and A 1(t )

AIDS cases (those who have developed full blown AIDS symptoms but are still alive).

Let the rate at which an infected mother does not tran~itting the HIV virus to the

newborn be ,B.Thus the probability that a child born by infected mother will not con

tract the HIV virus during (t, t + ~t) is ,B)..~t + o(~t), where X is the birth rate. The

probability that the child born by infected mother is HIV positive is (1-,B)a)..~t+o(~t),

where a= transmission during pregnancy (which is 15-30%), delivery or breastfeeding

(which is 10-15%).

Let the transition rate from infective to AIDS case ,. Thus, during (t, t + ~t) , the

probability of that a transition will occur is ,llt+ o(~t) so that the incubation (infec

tious) period is 1/,

Let the death(death unrelated to HIV/ AIDS) rate be f.11 per person per time. Thus

an individual existing at time t has a chance f.11~t + o(~t) of dying during the time

interval (t, t + ~t). Hence the mean life expectancy is 1/f.11.

since the rate of natural death is very much smaller than the rate of death from AIDS,

we assume that those children with full blown symptoms die at the same rate f.11
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Let survival rate from age group 1 to group 2 be pl,thus , during (t, t + !::It) , the

probability that a person in age group 1 will survive the development period (0-5)years

to age group 2 is p1!::lt+o(!::lt) Total population for the age group 1 at time t is assumed

to be N(t) = S, (t) + II (t) + Al (t)

3.2 Susceptible population model

In this model, changes in the numbers of Susceptible persons are treated as a birth

and death process; the "birth" are the births by both non and infected mothers and

"death" are the natural deaths and the proportion of children who survive the develop

ment period to the next age group. The probability that there are n individuals in the

Susceptible population during the time interval (t, t + !::It) is equal to the probability;

(i)That there are n individuals by time t and nothing happens during the time interval

(t, t + !::It)

(ii)That there are n - 1 individuals by time t and 1 is added by birth from non or

infected mothers during the time interval (t, t + !::It)

(iii) That there are n + 1 individuals by time t and 1 dies or survives to the next age

group during the time interval (t, t + !::It)

In the model, we study the Mother-to-child transmission (MTCT). The change in pop

ulation size during the time interval (t, t + !::It) is governed by the following conditional

probabilities;

Pr{Sl(t+!::lt) n+1/S1(t)=n}

Pr{Sl (t + !::It) '2 n + 2/XU) = n}

Pr{Sl(t + !::It) = n - 1/S1(t) = n}

Pr{Sl(t + !::It) ::; n - 2/S1(t) = n}

Pr{Sl(t + !::It) = n/Sl(t) = n}

nS3A!::lt + nh/3 A!::lt + o(!::It)

o(!::It)

np1Sl + nSlf11!::lt + o(!::lt)

o(!::It)

1 - nS3A!::lt - nI3/3A!::lt - np1Sl - nSlf11!::lt - o(!::lt)

Let the probability distribution of the population size at time t be denoted by

Sln(t) Pr{Sl(t) = n/Sl(O) i}, i < n and i = 0, 1, .
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We seek to find this distribution by deriving a system of differential equations from the

assumptions above. Now

).,n(t) nS3)., + nI3f]).,

!-1n(t) np1Sl + nSl!-11

Where

h = h(t), and A k = Ak(t)
n n

proportions of Susceptibles, infecteds, and AIDS case respectively, where k = 1,2,3

Let Sln(t) be the probability that the population size N1(t) has the value n at time t,

Sln-l(t) the probability that the population size N1(t) has the value n - 1 at time t,

and Sln+l(t) the probability that the population size N1(t) has the value n+ 1 at time

t, then from the given rules it follows that:

Sln(t + !::::.t) [1 - nSg).,!::::.t - nI3(3).,!::::.t - np1Sl - nSl!-11!::::.t - o(!::::.t)lSln(t)

+ [(n - 1)S3).,!::::.t + (n - 1) Is(3).,!::::.t + o(!::::.t)lSln-l (t)

+ [(n + 1)P1Sl + (n + 1)Sl!-11!::::.t + o(!::::.t)lSln+l (t)

which gives

Sln(t + !::::.t) - Sln(t) [-nS3).,!::::.t - nI3(3).,!::::.t - np1Sl - nSl!-11!::::.t - o(!::::.t)lSln(t)

+ [(n - 1)S3).,!::::.t + (n - 1)I3{3).,!::::.t + o(!::::.t)lSln-l(t)

+ [(n + 1)P1Sl + (n + l)Slj1,l!::::.t + o(!::::.t)1Sln+1 (t)

Proceeding to the limit as !::::.t -t 0, we have the following Kolmogorov forward equa

tions:

Sl~(t) -[nS3)., + nSl!-11 + nI3(3)., + np1SllSln(t)

+ [(n - 1)S3)., + (n - 1)I3{3).,lSln-l (t) for n> 1

+ [(n + 1)P1Sl + (n + 1)Sl!-11]Sln+l (t),

(3.2.1)

(3.2.2)

Where the primes indicate differentiation with respect to t In equation (3.2.1), there

are 3 unknown probabilities; Sln(t), Sln-l(t), and Sln+l(t). Therefore these equation
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cannot be solved directly. We resort to the method of Probability generating function

(PFC) defined by
00

Gs(Z, t) = L Sln(t)zn
n=O

. With n = O,in equation (3.2.2) SI-I(t) is identically Zero. The coefficient of Sln-l(t)

arises from considering the conditional probability of "birth" into the population given

that the population size is n - 1. Multiplying equation (3.2.1) by Z" and sum over

n = 1, we have

L:~=I SI~(t)zn -[S3A+ 13(3A + SI!-ll +PISI] L:~=I nSIn(t)zn

+ [S3 A+ 13(3A] L:~=I(n - l)Sln_l(t)zn

+ (PI + !-l1)SI L:~=I (n + l)Sln+l(t)zn

Define

(3.2.3)

&C
at
&C
&Z

G(Z, t)

Therefore equation (3.2.3) becomes

L:~=O SI~(t)zn

L:~=o nSIn(t)zn

L:~=oSIn(t) zn

~~ - Sb(t) -[S3A + h(3A+ SI!-ll + PISI]Z~~

+ (S3A + h(3A)Z2~~

+ [PI + !-l1]SI(~~ - SI(t))

From equation (3.2.2) we have

&J: -[S3A+ h(3A+ SI!-ll + PISl]Z~~

+ (S3A + 13(3A)Z2~~

+ (PI + !-l1)SI ~~

Therefore
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The auxiliary equations are:

dt dZ dG

1 (1 - Z)[(83-\ + 13fJ-\)Z - (PI + /11)81] 0

Considering
dG dt
o 1

Therefore

G(Z, t) = C1

Next we consider

dt dZ

1 (1 - Z)[(83-\ + hfJ-\)Z - (PI + 111)81J

On integration and using partial fractions we have

Where C1 and C2 are constants of integration. Setting C1 as a function of C2 ,we arrive

at the most general solution

Where f is an arbitrary differentiable function. We had denoted that 81(t) is the size

of the population at time t for 0 :s; t 2:: oo, let the initial population at time t = 0 be

81 (0) = i then

Therefore

Let

and
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then equation (3.2.4) becomes

f{ 1- Z }
[1]SZ - J.Ls]

This is for !ZI < 1. For any (),
1-Z

()=---
1]sZ - J.Ls

We have
Z = 1 + J.Ls()

1+ 1]s()

Hence we have

Now replacing () by i Z we have'7S -/-lS

Rewriting equation (3.2.5) in a suitable form, we get

(

J.Ls ( e('7s - /-ls )t - 1) - (J.Lse('7S-/-ls)t _1]S)Z)i
G(Z t) =

, (1]se('7S-/-ls)t - J.Ls) -1]sZ(e('7S-/-ls)t - 1)

but

and

(3.2.5)

(3.2.6)

Then equation (3.2.6) becomes

G Z t _ ( (PI + J.LI)SI(e((SsA+1s(3A)-(Pl+Jtl)Sl)t - 1) - ((PI + J.LI)SIe((SsA+Is(3A)-(Pl+Jtl)Sl)t - (S3A + 1 ~

( , ) - ((S3A + Is{3A)e((SsA+Is(3A)-(Pl+/-ll)Sl)t - (PI + J.LI)SI) - (S3A + 13{3A ) Z (e((SsA+Is (3A)- (Pl + /-l l )

(3.2.7)

We let

1 - e(SsA+Is(3A)-(Pl+Jtl)Sl)t

A(t) = (PI + J.LI)SI (PI + J.LI)SI - S3 A + 13{3A ) e(SsA+Is (3A)- (Pl + M )Sl )t

and
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(3.2.8)

Hence equation (3.2.7) becomes

G (Z ) = (A(t) + (1- A(t) - B(t)]Z)i
81 .t 1 _ B(t)Z

This is the PGF of the differential equation (3.2.1)

Now it is a simple matter of expanding the PGF to obtain the probability distribution

SI (t)o

Differentiating the PGF in (302.7) with respect to Z, we find the expectation and

variance of SI(t):

and

·1-A(t)
Z,1-B(t)

ie(T/S- /1s)t (3.2.9a)

. (I-A(t))(A(t)+B(t))
Z, (I-B(t))2

i(T/s+/l:S)e(T/S-/1s)t[e(T/S-/1s)t - 1]
ns r t-e

i( 83 >..+Isf3>')+ (PI+/11)81 ) e(83A+I3f3>')-(Pl+/ll)81)t [e(83).+I3f3>')-(Pl+/11)81)t - 1]
83A+Isf3>')-(Pl+/11)81 .

(302.9b)

by taking the limits as (PI + JLl)SI -'t S3>' + 13f3>') ( where S3>' + Isf3>') is birth rate

for both infected and Susceptible mothers) we find that

(3.2.9a)

and

(3.209b)

Thus when S3>' + 13f3 >') = (PI + JLl)SI the population size has a constant expectation

but an increasing variance.

3.3 Asymptomatic (Infection) Model

In this model, changes in the numbers of persons infected are treated as a birth and

death process; the "birth" are the new infections from infected mother to child and
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"death" are the children who develop AIDS symptoms or die. The probability that

there are n individuals in the infective population during the time interval (t, t + tlt)

is equal to the probability;

(i)That there are n individuals by time t and nothing happens during the time interval

(t, t + tlt)

(ii)That there are n - 1 individuals by time t and 1 is added by HIV transmis

sion.immigration or Mother-to child transmission during the time interval (t, t + tlt)

(iii) That there are n + 1 individuals by time t and 1 dies or converts to AIDS during

the time interval (t, t + tlt)

The change in population size during the time interval (t, t + tlt) is governed by the

following conditional probabilities;

Pr{X(t + tlt) = n + 1/X(t) = n}

Pr{X(t + tlt) 2': n + 2/X(t) = n}

Pr{X(t + tlt) = n - 1/X(t) = n}

Pr{X(t + tlt) ::;. n - 2/X(t) = n}

Pr{X(t + tlt) = n/X(t) = n}

nI3(1- (3LAtlt + o(tlt)

o(tlt)

nhliItlt +nIntlt + o(tlt)

o(tlt)

1 - nI3(1- (3)aAtlt - n1ntlt - nIl/J,ltlt - o(tlt)

Let the probability distribution of the population size at time t be denoted by

I1n(t) = Pr{I1(t) = n/11(O) = I} , We seek to find this distribution by deriving a

system of differential equations from the assumptions above. Now

An(t) nI3(1 - (3)aA

fJ,n(t) nIn +nhfJ,l

Let I1n(t) be the probability that the population size N1(t) has the value n at time t,

hn-l(t) the probability that the population size N1(t) has the value n - 1 at time t,

and hn+l(t) the probability that the population size N1(t) has the value n+ 1 at time

t, then from the given rules it follows that:

In(t + tlt) [1 - (nI1fJ,1 + n13(1- (3)aA + nIn)tlt + o(tlt)]In(t)

+ ([(n - 1)13(1 - fJ)aA]tlt +o(tlt))11n- 1(t)

+ ([(n + 1)1n + (n + 1)11fJ,dtlt + o(tlt))11n+1(t)
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Proceeding to the limit as t:.t -t 0, we have the following Kolmogorov forward equa

tions:

I~(t) -[nIIMI + nh(l - f3)aA + nIn]In(t)

+ [en - 1)13(1 - ,B)aA+]Iln-1(t) for n 2: 1

+ [en + 1)11/ + (n + l)IIJh]Iln+1(t),

(3.3.1)

(3.3.2)

Where the primes indicate differentiation with respect to t In equation (3.3.1), there

are 3 unknown probabilities; In(t) , Iln- l(t), and hn+l (t). Therefore these equation

cannot be solved directly. We resort to the method of Probability generating function

(PFG) defined by
00

Gs(Z, t) = I: In(t)zn
n=O

. With n = O,in equation (3.3.2) II-I(t) is identically Zero. The coefficient of hn-l(t)

arises from considering the conditional probability of "birth" into the population given

that the population size is n - 1. Multiplying equation (3.3.1) by Z" and sum over

n 1, we have

L~=l I~(t)zn -[IIMI + 13 (1 - f3)a A+ In] L~=l nIn(t)zn

+ ((1 - ,B)aA)II L~=l (n - l)Iln_l(t)zn

+ (Ml + ;r]Il L~l(n + l)Iln+l(t)zn

Define

(3.3.3)

BG
7ft
BG
BZ

G(Z, t)

Therefore equation (3.3.3) becomes

L~=O I~(t)zn

L~=o nIn(t)zn

L~=o In(t)zn

e;: - Ib(t) -(hMl + h(l - ,B)aA+ In)Z~~

+ ((1 - ,B)aA)hZ2~~

+ (Ml + ;r)(~~ - II (t))
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From equation (3.3.2) we have

Off -(13(1 - {J)aA+ IrlLl + 1l/)Z~~

+ ((1 - {J)aA)1lZ2~~

+ (ILl + ,)11~~

8G 8Gat = -(1 - Z)[((l - {3)a A)1lZ - (ILl + ,)11 ] 8Z

Therefore

The auxiliary equations are:

dt dZ dG
1 (1 - Z)[((l- {3)aA)1lZ - (ILl + ,)11] 0

Considering
dG dt
o 1

Therefore

G(Z, t) = Ci

Next we consider

dt dZ
1 (1 - Z)[((l - {J)aA)1lZ - (ILl + ,)Ir]

On integration and using partial fractions we have

(
1 - Z ) e[(l-,B)aA)h -(/11+'Y)h]t = C

2
(1 - {J)aA)1lZ - (ILl + ,)Ir

Where C, and C2 are constants of integration. Setting Cl as a function of C2,we arrive

at the most general solution

Where f is an arbitrary differentiable function. We had denoted that 1l(t) is the size

of the population at time t for 0 :::; t 2:: 00, let the initial population at time t = 0 be

Ir(O) = 1 then
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Therefore

f{ 1- Z } = Z
[((1 - j3)aA)hZ - (fJ,1 + /,)11]

Let 7]I = 13 (1 - (3)aA and fJ,I = h(fJ,I + /,) then equation (3.3.4) becomes

f{ 1- Z } - Z
[rlJZ - v] -

This is for IZI < 1. For any (J,

(J= _l_-_Z_
1]IZ - fJ,I

We have

Hence we have

Now replacing (J by ~Z we have
"II -IN

Rewriting equation (3.3.5) in a suitable form, we get

(
fJ,I(l - e(7/I-;.tI)t) - (1]I - fJ,Ie(w-J-lI)t)

G(Z t) =
, fJ,I -1]Ie(7/I-PI)t -1]IZ(1- e(7/rJ-lI)t)

(3.3.4)

(3.3.5)

(3.3.6)

but 1]I = Is(l - (3)aA and fJ,I = II (fJ,I + /,) Then equation (3.2.6) becomes

G Z t _ ( h(fJ,I + /')(1- e(Is(I-(3)aA-h(w+'Y))t) - (Is(l - (3)aA - h(fJ,I + /,)e(I3(1-(3)a A-h(w+'Y))t )

( , ) - h(fJ,I + /,) - 13 (1 - (3)aAe(!s(I-(3)aA-h(PI+'Y))t - Is(l - j3)aAZ(l - e(I3(l-(3)aA-h(PI+'Y))t)

(3.3.6)

We let
1 - e(I3(l-(3)aA-h(PI+'Y))t

B(t) = I 1(fJ,I+ /,) I 1(fJ,I+ /,) _ 1
3

(1 - (3)aAe(I3(1-(3)a A-h(/k!+'Y))t

and

Hence equation (3.3.6) becomes

G (Z ) = (B(t) + [1 - B(t) - C(t)]Z)
i. ,t 1 _ C(t)Z
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This is the PGF of the differential equation (3.3.1)

Now it is a simple matter of expanding the PGF to obtain the probability distribution

I 1(t).
Differentiating the PGF in (3.3.7) with respect to Z, we find the expectation and

variance of II (t):

and

E[I (t)] = 1 - B(t) = e(Is(I-;3)a A-h(f1I+-y))t

1 1 - C(t)

(1-B(t) )(B(t)+C(t))
(I-C(t))2

( Is(I-f3)aMh(fLI+-Y) )e(I3(1-f3)aA-11(f1I+-y))t [e(I3(1-;3)a A-h(fLr+-y))t - 11
Is(I-;3)a A-!I(fLI+-Y) J.

(3.3.8)

(3.3.9)

by taking the limits as 11(111+ 1) -+ 13(1 - f3)aA ( where 13 (1 - f3)aA is birth rate for

both infected and Susceptible mothers) we find that

and

Thus when the I3(1-(3)aA = 11(111+1), the population size has a constant expectation

but an increasing variance.

3.4 Symptomatic (AIDS case) model

In this model, changes in the numbers of AIDS case are treated as a birth and death

process; the "birth" are the children who become symptomatic and "death" are the

deaths. The probability that there are n individuals in the symptomatic stage during

the time interval (t, t + ,6.t) is equal to the probability;

(i)That there are n individuals by time t and nothing happens during the time interval

(t, t + ,6.t)

(ii)That there are n-1 individuals by time t and 1 is added by developing the symptoms
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during the time interval (t, t + !:It)

(iii) That there are n + 1 individuals by time t and 1 dies during the time interval

(t, t + !:It)

The change in population size during the time interval (t, t + !:It) is governed by the

following conditional probabilities;

Pr{X(t + !:It) n + I/X(t) = n}

Pr{X(t+!:lt)?n+2/X(t) n}

Pr{X(t + !:It) = n - 1/X(t) = n}

Pr{X(t + !:It) s:; n - 2/X(t) = n}

Pr{X(t+ !:It) n/X(t) = n}

nIn!:lt o(!:It)

o(!:It)

nAI/-lI!:lt + o(!:lt)

o(!:lt)

1 - nIn!:lt - nAI/-lI!:lt - o(!:lt)

Let the probability distribution of the population size at time t be denoted by

AIn(t) = Pr{AI(t) = n/AI(O) = O} ,

We seek to find this distribution by deriving a system of differential equations from the

assumptions above. Now

An(t) nIn

/-In (t) nAI/_l}

Let AIn(t) be the probability that the population size NI(t) has the value n at time

t, AIn-l(t) the probability that the population size NI(t) has the value n - 1 at time

t, and AIn+l(t) the probability that the population size NI(t) has the value n + 1 at

time t, then from the given rules it follows that:

AIn(t + !:It) [1 - nIn!:lt - nAI/-lI!:lt - o(!:lt)]AIn(t)

+ (n - 1)In!:lt + o(!:lt)]AIn-l(t)

+ [(n + l)AI/-lI!:lt + o(!:lt)]AIn+1(t)

which gives

AIn(t + !:It) - AIn(t) [-nIn!:lt - nAI/-lI!:lt - o(!:lt)]AIn(t)

+ nIn!:lt +o(!:lt)]AIn- 1(t)

+ [(n + l)AI/-lI!:lt + o(!:lt)]AIn+l(t)
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Proceeding to the limit as ~t ---7 0, we have the following Kolmogorov forward equa-

tions:

AI~(t) -[nIn + nAItLI]AIn(t)

+ [(nIn]AIn-1 (t) for n 2:: 1

+ (n + l)AIfJIAIn+l(t),

A~(t) = [AIfJI]AI(t), for n = °

(3.4.1)

(3.4.2)

'Where the primes indicate differentiation with respect to t In equation (3.4.1), there

are 3 unknown probabilities; AIn(t), AIn-1(t), and AIn+1(t). Therefore these equation

cannot be solved directly. We resort to the method of Probability generating function

(PFG) defined by
00

GA(Z, t) = L AIn(t)zn
n=O

. With ti = O,in equation (3.4.2) AI-I(t) is identically Zero. The coefficient of AIn-l(t)

arises from considering the conditional probability of "birth" into the population given

that the population size is n - 1. Multiplying equation (3.4.1) by Z" and sum over

n = 1, we have

L~=I AI~(t)zn -[In + AIfJI] L~=I nAIn(t)zn

+ InL~=I(n - l)AIn_l(t)zn

+ AIfJI L~=I(n + l)AIn+ l(t)zn

Define

(3.4.3)

8G
7ft
8G
8Z

G(Z, t)

Therefore equation (3.4.3) becomes

L~=O AI~(t)zn

L~=onAIn(t)zn

L~=oAIn(t)zn

a:; - A~(t) -[In + AIfJI]Z~~

+ II1Z2~~

+ AIfJI(~~ - Al (t))
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From equation (3.4.2) we have

a:; -[In + Al/-tl]Z~~

+ InZ2~~

A BG+ l/-tlBZ

8G 8G
- = -(1 - Z)[InZ - A1!Jl]8t 8Z

Therefore
8G 8G
fit + (1 - Z)[I1'(Z - A1!Jl] 8Z = 0

The auxiliary equations are:

dt dZ dG
1 (1- Z)[InZ - A1!Jl] 0

Considering
dG dt
o 1

Therefore

G(Z, t) = C1

Next we consider
dt dZ
1 (1 - Z)[InZ - A1!Jl]

On integration and using partial fractions we have

Where C1 and C2 are constants of integration. Setting C1 as a function of C2,we arrive

at the most general solution

Where f is an arbitrary differentiable function. We had denoted that Al (t) is the size

of the population at time t for 0 ~ t 2: 00, let the initial population at time t = 0 be

A1(O) = 0 then
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Therefore

(3.4.4)

This is for IZI < 1. For any 0,
1-Z

0= --
InZ - JL

We have
Z = 1+ A1JL10

1+ InO

Hence we have

f(O) = 1

Therefore

3.5 NUMERICAL ILLUSTRATIONS

To demonstrate the applications of results of sections 2-4, in this section we assume

some parameter values and solve for the expectations numerically. By this approach,

one may then assess effects of various factors on the expected values, and the variance

of the numbers of S persons, I persons and AIDS cases. To see the effects of drugs on

the MTCT, we vary the value of {3 and compute the expected values of S persons, and

I persons. Use of the drugs say, Azidovudine (AZT) and Nevirapine, reduces the rate

at which the babies contract the virus from their infected mothers, that is it reduces

(1 - {3) which is the same as increasing {3. From figure (3.1), we can see that with the

introduction of the drugs for Prevention of mother to child Transmission (PMTCT),

the number of Susceptible infants born by infected mothers increase. Figure (3.2)

below shows that with PMTCT, MTCT decrease. That is there are few newborns who

contract the disease from their infected mothers. Numerically we have:
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Table 3.1: Effects Changing f3

1 ~ PI ~ t=Monlhs E[SI(t)] E[I1 (t)] E[AI (~)]

0.36 0.112 0.5 0.32 20 8,650 118
0.36 0.112 0.5 0,60 20 14,310 71
0.36 0.112 0.5 0.73 20 18,090 56
0.36 0.112 05 091 20 25,010 41
S(tO)=100,000, I(ill =100, Sk=Sk(t)/n=0.60, Ik=0.25, Ak=0,15 where k= 1,2,3
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Chapter 4

HETEROSEXUAL MODELS

4.1 Introduction

In this chapter,we consider a population consisting of the adults(15 and more years).

It is this group that is sexually mature and active and, therefore, capable of repro

duction. It is also this group that is responsible for the horizontal transmission of

the HIV virus through heterosexual activities and for vertical transmission by infected

mothers to their children. Since the age group 2 consists of HIV free population and

it is the survivors of this subgroup over the developmental period (5,15) that generate

age group 3, hence we include its formulation in this chapter as a section.

Assumptions and notations

The population for this group at time t is subdivided into S3(t) and S2(t) Suscep

tibles(those free of HIV) , 13 (t) infectives (contacted the virus through heterosexual

intercourse), and A3 (t ) AIDS cases (those who have developed full blown AIDS symp

toms but are still alive).

Let the sexual contact rate between a mutually sexual S person and an I person be w

where w 2: O. Thus the probability of a sexual contact between an S person and an I

person during (t, t + llt) is wllt + o(llt) where limLlt-->o o~) = 0
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• Given a sexual contact between an S person and an I person during (t, t + t:.t) , we

let 6 be the probability that this I person will transmit the AIDS virus to the S person.

This event converts the S person to an I person. Then the probability of an S person

contracting HIV/ AIDS virus from an I person by sexual contact is w6t:..t + o(t:.t) and

w6 = JWm6mWf6f Where wm6m is the probability that an I male transmit the AIDS

virus to an S female and wf6f is the probability that an I female transmit the AIDS

virus to an Smale.

Let the transition rate from infective to AIDS case i. Thus, during (t, t + t:.t) , the

probability of that a transition will occur is it:.t + o(t:.t) so that the incubation (infec

tious) period is l/i

Let the death(death unrelated to HIV/ AIDS) rate be /L3 per person per time. Thus the

probability that a person will die during the time interval (t, t + t:..t) is Iht:..t + o(t:.t)

Hence the mean life expectancy is 1//L3

Since the rate of natural death is very much smaller than the rate of death from AIDS,

we assume that those children with full blown symptoms die at the same rate /L3

Let survival rate from age group 2 to group 3 be P2,thus , during (t, t + t:..t) , the prob

ability that a person in age group 2 will survive the development period (5-15)years to

age group 3 is p2t:..t +o(t:.t)

4.2 Susceptible population model

4.2.1 S2(t) Model

In this section.we consider a population consisting of early non infecteds (5-15 years).

It is assumed that the infected of group 1 will die before the age of 5 years. The

population consists only of the non infecteds S;(t).

The population increases due to children from group 1 surviving to this group and

decreases due to natural death or persons in this group surviving to the next group.
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The change in population size during the time interval (t, t + 6.t) is governed by the

following conditional probabilities;

Pr{S~(t+ 6.t) = n + l/S~(t) = n}

Pr{S~(t+ 6.t) 2 n + 2/S~(t) = n}

Pr{S~(t+ 6.t) = n l/S~(t) - n}

Pr{S~(t+ 6.t) :::; n - 2/S~(t) = n}

Pr{S~(t+ 6.t) = n/S~(t) = n}

PISI6.t + o(6.t)

o(6.t)

nS~(p2 + J-l2)6.t + o(6.t)

o(6.t)

1 - PISI6.t - nS~(P2 + J-l2)!::,.t - o(6.t)

Let the probability distribution of the population size at time t be denoted by

S~n(t) = Pr{S~(t) = n/S~(O) = i} , i < n and i = 0,1, .

We seek to find this distribution by deriving a system of differential equations from the

assumptions above. Now

An(t) PISI6.t

J-ln(t) nS~(P2 + J-l2)6.t

Hence

S;n(t + 6.t) [1 - nS~(p2 + J-l2)6.t - PISI6.t - o(6.t)]S~n(t)

+ [PISI6.t + o(6.t)]S~n_l(t)

+ (n + 1)S~(P2 + J-l2) + o(!::"t)]S~n+l(t)

which gives

S~n(t + 6.t) - S~n(t) [-PISI6.t - nS~(P2 + J-l2)6.t - o(6.t)]S~n(t)

+ [PISI6.t + o(6.t)]S~n-I (t)

+ [en + 1)S~(P2 + J-l2)6.t + O(!::"t)]S~n+l(t)

The Kolmogorov forward equations are:

S~~(t) -[PISI + nS~(P2 + J-l2)]S~n(t)

+ PISIS~n_l (t) for n 2 1

+ (n + 1)S~(P2 + J-l2)S~n+l(t),

S~(t) = -P1SlS;o(t) + S;(P2 + J-l2)S;1(t), for n = °
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Where the primes indicate differentiation with respect to t In equation (1), there are 3

unknown probabilities; S~n(t), Sn-I(t), and S~n+1(t). Therefore these equation cannot

be solved directly. We resort to the method of Probability generating function (PFG)

defined by
00

Gs(Z, t) = L S;n(t)zn
n=O

. With ti = O,in equation (4.2.1.2) S-I(t) is identically Zero. The coefficient of Sn-I(t)

arises from considering the conditional probability of "birth" into the population given

that the population size is n - 1. Multiplying equation (4.2.1.1) by Z" and sum over

ti = 1, we have

-[S~(P2 + tL2)] ~=I nS~n(t)zn

+ PISI I:~=I S~n(t)zn

+ PISI I:~=I S;n-I (t)zn

+ S~(P2 + tL2) I:~=I (n + l)S;n+I (t)zn

(4.2.1.3)

Define
8G
fit
8G
8Z

G(Z, t)

Therefore equation (4.2.1.3) becomes

I:~o S~~(t)zn

I:~o nS2n(t)zn

I:~=o S;n(t)zn

a:; - SMt) -S2(P2 + tL2)Z~~

PISI[G(Z, t) - So(t)] +PISIZG(Z, t)

+ S;(P2 + tL2)(~~ - S2(t))

From equation (4.2.1.2) we have

OJ: -S2(P2 + tL2)Z~~

PISIG(Z, t) + PISIZG(Z, t)

+ S2(P2 + 1J,2)~~
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Therefore

The auxiliary equations are:

dt dZ

1 (Z - 1)S2(P2 + 112)

Considering
dG

Therefore

dG

dZ

(Z - 1)S2(P2 + 112)

Next we consider
dt dZ

1 (Z - 1)S2(P2 + 112)

On integration we have

Where C1 and C2 are constants of integration. Setting C1 as a function of C2 ,we arrive

at the most general solution

Where f is an arbitrary differentiable function. We had denoted that S~(t) is the size

of the population at time t for 0 S t 2: 00, let the initial population at time t = 0 be

S2(0) = i then

Therefore

This is for IZ! < 1. For any (),

() = (Z - 1)

We have
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Hence we have

but

(4.2.1.6)

Now replacing eby Z - 1 we have

Gs*(Z, t) = (1 + (Z _1)e-S2' (P2+JL2)t ) i exp{ -( * PISI )(Z _1)(e-S2' (P2+ JL2)t -In
2 S2(P2 + J1,2)

(4.2.1.5)

Now it is a simple matter of expanding the PGF to obtain the probability distribution

S;(t).

Differentiating the PGF in equation (4.2.1.5) with respect to Z, we find the expectation

and variance of S~(t):

E[S;(t)] = * PISI (1 _ e-S2' (P2+J1-2)t ) + ie-S2' (P2+ J1-2)t
S2(P2 + J1,2)

and

(4.2.1.7)

4.2.2 S3(t) Model

In this model, changes in the numbers of Susceptible persons corresponds to immigra

tion and death process; the "immigration" are the proportion of persons from age group

2 who survive the development period to age group three. "death" are the natural death

and persons who contact the HIV virus to become HIV infected. The probability that

there are n individuals in the Susceptible population during the time interval (t, t + flt)

is equal to the probability;

(i)That there are n individuals by time t and nothing happens during the time interval

(t, t + flt)

(ii)That there are n - 1 individuals by time t and 1 is added by persons from age group
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2 entering age group 3 during the time interval (t, t + 6t)

(iii) That there are n + 1 individuals by time t and 1 dies or becomes infected during

the time interval (t, t + 6t)

In the model, we study the heterosexual transmission mode. The change in population

size during the time interval (t, t + 6t) is governed by the following conditional prob

abilities;

Pr{Ss(t + 6t) = n + l/Ss(t) = n} P2S;6t + o(6t)

Pr{Ss(t + 6t) 2 n + 2/S3(t) = n} o(6t)

Pr{Ss(t + 6t) = n - l/Ss(t) = n} nSs(wb + fJ,s)6t + o(6t)

Pr{Ss(t + 6t) ::::; n - 2/Ss(t) = n} o(6t)

Pr{Ss(t + 6t) = n]Ss(t) = n} 1 - pzS~6t - nS3(wb+ fJ,3)6t - o(6t)

Let the probability distribution of the population size at time t be denoted by

S3n(t) = Pr{S3(t) = n/S3(0) = i} , i < n and i = 0,1, .

We seek to find this distribution by deriving a system of differential equations from the

assumptions above. Now

\.Jt) = PzS;6t

fJ,n(t) = nSs(wb + fJ,3)6t

Let S3n(t) be the probability that the population size of age group 3 N3(t) has the

value n at time t, S3n-l (t) the probability that the population size N« (t) has the value

n - 1 at time t, and S3n+l(t) the probability that the population size Ns(t) has the

value n + 1 at time t, then from the given rules it follows that:

S3n(t + 6t) (1 - nS3(wb+ fJ,s)6t - PzS~6t - o(6t)]Ssn(t)

+ [P2S;6t + o(6t)]SSn_l(t)

+ (n + l)Ss(wb + fJ,3) + o(6t) ]SSn+l (t)

which gives

SSn(t + 6t) - SSn(t) (-PzS;6t - nS3(wb+ fJ,3)6t - o(6t)]S3n(t)

+ [PzS;6t + o(6t)]S3n_l(t)

+ [(n+ 1)S3(wb + fJ,s)6t + o(6t)]SSn+l(t)
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Proceeding to the limit as !:It ---+ 0, we get the following Kolmogorov forward equations:

SS~(t) -[P2S2' + nSs(w5 + ItS)]SSn(t)

+ P2S2'SSn-l (t) for n 2:: 1

+ (n + 1)Ss(w5 + ItS)SSn+1(t) ,

(4.2.2.1)

(4.2.2.2)

Where the primes indicate differentiation with respect to t In equation (4.2.2.1), there

are 3 unknown probabilities; SSn(t) , Sn-l(t), and SSn+l(t). Therefore these equation

cannot be solved directly. We resort to the method of Probability generating function

(PFG) defined by
00

Gs(Z, t) = I: SSn(t)zn
n=O

. With n = O,in equation (4.2.2.2) S-l(t) is identically Zero. The coefficient of Sn-l(t)

arises from considering the conditional probability of immigration into the population

given that the population size is ti - 1. Multiplying equation (1) by Z" and sum over

ti = 1, we have

-[Ss(w5 + tis)] I:~=l nSSn(t)zn

+ P2S~ I:~=l SSn(t)zn

+ P2 S2' I:~l SSn_l(t)zn

+ Ss(w5 + Its) I:~=l (n + l)SSn+l (t)zn

(4.2.2.3)

Define
BG
7ft
BG
BZ

G(Z, t)

Therefore equation (4.2.2.3) becomes

I:~=O Ss~ (t)zn

I:~=onSSn(t) zn

I:~=oSSn(t)zn

&f{ - Sb(t) -Ss(w5 + 1t3)Z~~

p2S2' [G(Z, t) - So(t)] +P2S~ZG(Z, t)

+ Ss(w5 + 1t3)(~~ - Ss(t))
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From equation (4.2.2.2) we have

8J: -8s(w8 + JLs)Z~;

P28;G(Z, t) +P28;ZG(Z, t)

+ 8s(w8+ JLs) ~;

Therefore

The auxiliary equations are:

dt dZ
1 (Z - 1)8s (w8 + JLs)

dG

Considering

Therefore

dG dZ

Next we consider

On integration we have

dt dZ
1 (Z - 1)8s(w8 + JLs)

Where C1 and C2 are constants of integration. Setting C1 as a function of C2 ,we arrive

at the most general solution

Where f is an arbitrary differentiable function. We had denoted that 83 (t) is the size

of the population at time t for 0 :s:; t 2: 00, let the initial population at time t = 0 be

8s(0) = i then
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Therefore

(4.2.2.4)

This is for IZI < 1. For any (),

() = (Z - 1)

We have

Z=l+()

Hence we have

but

Gss(Z, t) f(()e-Ss(wO+ttS)t)

(1 + ()e-SS(wO+ttS)t) i ex p{ -Cs(~~;tts))(l+ ()e-Ss(wO+tts)tn

Now replacing () by Z - 1 we have

Gss(Z, t) = (1 + (Z _l)e-SS(wO+ttS)t)iexp{-( P2S~ )(Z - 1) (e-Ss(wO+tts)t - In
s3(wc5 + !L3)

(4.2.2.5)

Now it is a simple matter of expanding the PGF to obtain the probability distribution

S3(t).

Differentiating the PGF in equation (4.2.2.5) with respect to Z, we find the expectation

and variance of S3(t):

and

c52(S3(t)) = ie-Ss(wO+tts)t[1 _ e-Ss(wO+tts)tj + P2S~ [1 _ e-Ss(wO+J-ts)tj
s3(wc5 + !L3)

4.3 Asymptomatic (Infected) Model

(4.2.2.6)

(4.2.2.7)

In this model, changes in the numbers of persons infected are treated as a birth and

death process; the "birth" are the new infections and "death" are the persons who de-
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velop AIDS symptoms or die. The probability that there are n individuals in the

infective population during the time interval (t, t + b..t) is equal to the probability;

(i)That there are n individuals by time t and nothing happens during the time interval

(t, t + b..t)

(ii)That there are n - 1 individuals by time t and 1 is added by HIV transmission

during the time interval (t, t + b..t)

(iii) That there are n + 1 individuals by time t and 1 dies or develops the AIDS symp

toms during the time interval (t, t + b..t)

The change in population size during the time interval (t, t + .6.t) is governed by the

following conditional probabilities;

Pr{h(t + b..t) = n + 1/I3(t) = n}

Pr{I3(t + .6.t) 2: n + 2/I3(t) = n}

Pr{I3(t + b..t) = n - 1/I3(t) = n}

Pr{h(t + b..t) :; n - 2/I3(t) = n}

Pr{h(t + b..t) = ti]h(t) = n}

+nI3w5b..t + o(b..t)

o(b..t)

nI3fL3b..t + nI3/.6.t + o(b..t)

o(b..t)

1 - nI3w5b..t - nI3/.6.t - nI3fL3.6.t - o(b..t)

Let the probability distribution of the population size at time t be denoted by

I3n(t) = Pr{h(t) = n/h(O) = I} , We seek to find this distribution by deriving a

system of differential equations from the assumptions above. Now

An(t) nhw5

fLn(t) nI3b5 + fL3)b..t

Let hn(t) be the probability that the population size of age group 3 N3(t) has the

value n at time t, hn-1(t) the probability that the population size N3(t) has the value

n - 1 at time t, and I3n+l (t) the probability that the population size N3 (t) has the

value n + 1 at time t, then from the given rules it follows that:

In(t + b..t) [1 - (nhfL3 + nI3w5 + nI3/)b..t + o(.6.t)]In(t)

+ ([(n - 1)hw5]b..t + o(b..t»In-1(t)

+ ([(n + l)hb + fL3»)b..t + o(b..t»In+1(t)
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Proceeding to the limit as !:::,.t -t 0, we get the difference equations:

I~(t) -[nI3M3 + nI3wfJ + nI3,]In(t)

+ [en - 1)I3wfJ+]In- 1(t) for n 2:: 1

+ [en + 1)13(, + M3)]In+1(t) ,

I~(t) = [13M3 + I3,]I3(t), for n = °

(4.3.1)

(4.3.2)

Where the primes indicate differentiation with respect to t In equation (4.3.1), there are

3 unknown probabilities; In(t) , In- 1(t), and In+1(t). Therefore these equation cannot

be solved directly. We resort to the method of Probability generating function (PFC)

defined by
00

Gs(Z, t) = I: In(t)zn
n=O

With n = O,in equation (4.3.2) L 1(t) is identically Zero. The coefficient of I n - 1(t )

arises from considering the conditional probability of immigration into the population

given that the population size is n - 1. Multiplying equation (1) by Z" and sum over

n = 1, we have

2:::::='=1 I~(t)zn -[13M3 + IswfJ + 13,] 2::~1 nIn(t)zn

+ (wfJ) 132:::::='=1 (n - 1)In_1(t)zn

+ [M3+,]I32:::::='=1(n+ 1)In+1(t)zn

Define

(4.3.3)

8G
fit
8G
8Z

G(Z, t)

Therefore equation (4.3.3) becomes

2::~0 I~(t)zn

2:::::='=0 nIn(t)zn

2:::::='=0 In(t)zn

a:; - IMt) -(I3M3 + I3wfJ + Is,)Z~~

+ (wfJ)I3Z2~~

+ Is(M3 + ,)(~~ - I3(t))
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From equation (4.3.2) we have

8G
7ft -(Isw5 + Isl-ts + Is')')Z~~

+ (w5)IsZ2~~

+ (l-ts + ')') Is ~~

BG BGfit = -(1- Z)[(w5)IsZ - (l-ts + ')')Is]BZ

Therefore
BG BG
fit + (1 - Z)[(w5)IsZ - (l-ts + ')')Is] BZ = 0

The auxiliary equations are:

dt dZ dG
1 (1 - Z)[(w5)IsZ - (l-ts + ')')Is] 0

Considering
dG dt
o 1

Therefore

G(Z, t) C1

Next we consider
dt dZ
1 (1 - Z)[(w5)IsZ - (l-ts + ')')Is]

On integration and using partial fractions we have

Where C1 and C2 are constants of integration. Setting C1 as a function of C2 ,we arrive

at the most general solution

Where f is an arbitrary differentiable function. We had denoted that Is(t) is the size

of the population at time t for 0 ::s; t 2': 00, let the initial population at time t = 0 be

Is(O) = 1 then
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Therefore

f( 1- Z ) - Z
[(wb")IsZ - (/Lg + ,)Is] -

Let r; = Igwb" and v = Is(/Lg +,) then equation (4.3.4) becomes

(
1-Z )

f [r;Z -v]

This is for IZI < 1. For any (),
1-Z

()= --
r;Z-v

We have

Hence we have

f(()) = (1 + V())
1 + r;()

Now replacing () by ?11i !v we have

We let
1 - e(?1- v )t

at)=v----
( u - r;e(?1- v )t

and
r;

w(t) = -a(t)
u

Hence equation (3.3.5) becomes

(4.3.4)

(4.3.5)

(4.3.6)G (Z ) = (a(t) + [1 - a(t) - w(t)]Z)
Is , t 1 _ w (t)Z

This is the PGF of the differential equation (4.3.1)

Now it is a simple matter of expanding the PGF to obtain the probability distribution

19(t).

Differentiating the PGF in (4.3.6) with respect to Z, we find the expectation and

variance of Ig(t):

E[lg(t)]
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(4.3.8)



and
(I-a(t)) (a(t)+w(t))

(I-w(t))2

(;~~)e(?7-v)t[e(?7-V)t- 1].

by taking the limits as

Where 1] = I 3wb and v = h(fJ3+ 'Y) we find that

and

(4.3.9)

Thus when the birth rate is equal to the death rate, the population size has a constant

expectation but an increasing variance.

4.4 Symptomatic (AIDS Case) model

In this model, changes in the numbers of AIDS case are treated as a birth and death

process; the "birth" are the persons who become symptomatic and "death" are the

deaths. The probability that there are n individuals in the symptomatic stage during

the time interval (t, t + !:1t) is equal to the probability;

(i)That there are n individuals by time t and nothing happens during the time interval

(t, t + 6t)

(ii)That there are n - 1 individuals by time t and 1 is added by developing the symp

toms during the time interval (t, t + 6t)

(iii) That there are n + 1 individuals by time t and 1 dies during the time interval

(t, t + !:1t)

The change in population size during the time interval (t, t + 6t) is governed by the
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following conditional probabilities;

Pr{As(t+ ~t) = n+ 1jAs(t) = n}

Pr{As(t + ~t) ~ n + 2jAs(t) = n}

Pr{As(t + ~t) = ri - 1jAs(t) = n}

Pr{As(t + ~t) S; ri - 2jAs(t) = n}

Pr{As(t + ~t) - njAs(t) = n}

nIsr~t + o(~t)

o(~t)

nAsf-Ls~t + o(~t)

o(~t)

1 ~ nIsr~t -'-- nAsfJs~t - o(~t)

Let the probability distribution of the population size at time t be denoted by

AIn(t) = Pr{As(t) = njAs(O) = O} ,

We seek to find this distribution by deriving a system of differential equations from the

assumptions above. Now

An(t) nIsr
f-Ln(t) nAsf-Ls

Let A3n(t) be the probability that the population size of age group 3 N3(t) has the

value n at time t, A3n- 1(t) the probability that the population size N3(t) has the value

n - 1 at time t, and A3n+1(t) the probability that the population size Ns(t) has the

value n + 1 at time t, then from the given rules it follows that:

AIn(t + ~t) [1 - nIsr~t - nAsf-Ls~t - o(~t)]AIn(t)

+ (n - l)Isr~t + o(~t)]AI(n-I)(t)

+ [(n + 1)A3f-Ls~t + o(~t)]AI(n+I)(t)

which gives

AIn(t + ~t) - AIn(t) [-nIsr~t - nAsf-L3~t - o(~t)]AIn(t)

+ nIsr~t + o(~t)]AI(n-I)(t)

+ [(n + l)Asf-Ls~t + o(~t)]AI(n+l) (t)

Proceeding to the limit as ~t --+ 0, we get the Kolmogorov forward equations:

A~n(t) -[nIsr + nAsf-Ls]AIn(t)

+ [(nIsr]AI(n-l) (t) for n ~ 1

+ (n + 1)Asf-L3AI(n+l) (t),
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(4.4.2)

Vv11ere the primes indicate differentiation with respect to t In equation (4.4.1), there are

3 unknown probabilities; Aln(t) , AI(n-l) (t), and A1(n+l)(t). Therefore these equation

cannot be solved directly. We resort to the method of Probability generating function

(PFG) defined by
00

GA(Z, t) = 'L A1n(t)zn
n=O

. With n = O,in equation (4.4.2) A_I(t) is identically Zero. The coefficient of An-l(t)

arises from considering the conditional probability of immigration into the population

given that the population size is n - 1. Multiplying equation (4.4.1) by Z" and sum

over n = 1, we have

L~=l Ain(t)zn -[Is! + AsltsJ L~l nA1n(t)zn

+ IS!L~=l(n - l)An_I(t)zn

+ Aslts L~=l (n + 1)An+1(t)zn

Define

(4.4.3)

8G
7ft
8G
8Z

G(Z, t)

Therefore equation (4.4.3) becomes

L~O Ain (t) zn

L~onA1n(t)zn

L~=oAln(t)zn

OJ{ - AS(t) -[Is! + Aslts]Z~~

+ Is!Z2~~

+ Aslts(~~ - As(t))

From equation (4.4.2) we have

~~ -[Is! + AsltsJZ~~

+ Is!Z2~~

A 8G+ sits 8Z
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Therefore

The auxiliary equations are:

dt dZ dG
1 (1 - Z)[Is1'Z - As!-Ls] 0

Considering
dG dt
o 1

Therefore

G(Z, t) = C1

Next we consider
dt dZ

1 (1 - Z) [Is1'Z - AS!-Ls]

On integration and using partial fractions we have

Where C1 and C2 are constants of integration. Setting C1 as a function of C2 ,we arrive

at the most general solution

Where f is an arbitrary differentiable function. We had denoted that As(t) is the size

of the population at time t for 0 :::; t 2: 00, let the initial population at time t = 0 be

As(O) = 0 then

Therefore

(
1- Z )f -1

[Isl'Z - As!-Ls] -

This is for IZ! < 1. For any B,
B= _l_-_Z_

Is1'Z - jJ.

71

(4.4.4)



\Ve have

z = 1+ A3!J3B

1+ I3iB

Hence we have

f(B) = 1

Therefore

4.5 NUMERICAL ILLUSTRATIONS

In this section, we assume some parameter values and solve for the expectations nu

merically.The spread of the virus depends more on the number of sexual contacts with

different sexual partners per unit time. The use of condoms reduces 6 by a factor 0.90

.if the condoms are used properly and increases the sexual contact rate(w) because in

dividuals would think that they are protected through the use of condoms.So,because

of the possibility of failure of condoms, the improper use of condoms and an increase

in w, there is a possibility that w6 may not reduce much through the use of condoms in

a community. Thats why in the figures (4.1) and (4.2), there is no observable changes.
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Table 4.1: Effects of Changing w

(0) IJ. PI ~ 15 t=Months E(SI (t)] E[I1 (f)] E[AI (f)]
0.01 0.0912 0.5 0.1 0.01 20 33440 38
0.009 0.0912 05 0.1 0.01 20 33440 38
0.0004 0.0912 0.5 0.1 0.01 20 33440 38
0.00008 0,0912 05 0.1 0.01 20 33440 38
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Table 4.2: Effects of Changing wand 6

(0) I-L P1 ~ 8 t=Months E[Sl (t)] E[11 (t)] E[A1(t)]
0.01 0.0912 0.5 0.1 0.D1 20 33480 38
0.009 0.0912 0.5 0.1 0.006 20 33480 38
0.0004 0.0912 0.5 0.1 0.00001 20 33480 38
0.00008 0.0912 0.5 0.1 0.000009 20 33480 38
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Chapter 5

COMBINED MODEL

5.1 Introduction

In this chapter,we consider a model which combines both the two modes of transmis

sion( that is, Heterosexual transmission and the Mother-to-child transmission (MTCT)

and the age groups. The population is subdivided into Susceptibles, Infectives and

AIDS cases. We assume that there is homogeneous mixing among S persons and I

persons. This is equivalent to assuming that there is an equal probability for each S

person to contact any I person.

Let:

8(t): denote the number of persons in group S at time t

1(t): denote the number of persons in group I at time t

A(t): denote the number of persons in group AIDS case at time t

It is reasonable to assume that at the beginning of the epidemic, at t = 0, that 8(0)

is large, that 1(0) is fairly small, and that A(O) = o. At time t, let N(t) represent the
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size of the population. Therefore the total population consists of

N(t) = S(t) + I(t) + A(t)

Assumptions and notations

(a) If the population size is n(n > 0) at time t, during the small interval of time

(t, t + 6.t), the probability that "birth" (an increase to the population) will occur

is An(t)6.t + o(6.t). The probability of no "birth"occuring in that small interval is

1 - An(t)6.t + o(6.t) and the probability of more than one"birth"occurring is o(6.t).

"birth" occuring in (t, t + 6.t) are independent of time since the last occurence.

(b) With the same population size n(n > 0) at time t, the probability that "death"will

occur in a small interval of time (t, t + 6.t) is Mn(t)6.t + o(6.t),the probability of

no "death"occuring is 1 - Mn(t)6.t + o(6.t) and the probability that more that one

"death" occurs is o(6.t). "death" occuring in (t, t + 6.t) are independent of time since

the last occurence.

(c) n = 0 is an absorbing state of the process.

(d) For the same population size, the "birth" and "death" occur independently of each

other.

(i)Let the birth rate for sexually mature persons be A per person per time. Thus

the probability that a birth will occur in the heterosexual population during the time

interval (t, t + 6.t) is A6.t + o(6.t)

(I)Let the death(death unrelated to HIV/ AIDS) or emigration rate (migrate out of the

population because of fear of HIV/ AIDS) be Mk per person per time, where k = 1, 2,3

(the different age groups have different per capita mortality rates), thus an individual

existing at time t has a chance Mk6.t+ o(6.t) of dying during the time interval (t, t+ 6.t).

Hence the mean life expectancy is 1/Mk

(Ii)Let the immigration rate for the sexually mature persons be a per time, this is
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independent of the population, thus the probability that there will be immigration in

to the heterosexual population during the time interval (t, t + ~t) is a~t + o(!::"t) in

the absence of HIV infection, the subpopulations n;(t) will approach the steady value

of N = AIJ-lk

(iv) Assumptions regarding HIVI AID8 spread (8-1): We let the sexual contact rate

between a matually sexual 8 person and an I person be W where W 2: o. Thus the

probability of a sexual contact between an 8 person and an I person during (t, t + !::"t)

is w!::,.t + o(!::"t) where limllt->O o~t) = 0

• Given a sexual contact between an 8 person and an I person during (t, t + !::"t) , we

let 6 be the probability that this I person will transmit the AID8 virus to the 8 person.

This event converts the 8 person to an I person. Then the probability of an 8 person

contracting HIVI AID8 virus from an I person by sexual contact is w6~t + o(!::"t) and

w15 = JWm6mWf6f Where wml5m is the probability that an I male transmit the AID8

virus to an 8 female and wf6f is the probability that an I female transmit the AID8

virus to an 8 male.

• Let the rate at which an infected mother does not transmitting the HIV virus to

the newborn be /3, thus the probability that a child born by infected mother will not

contract the HIV virus during (t, t + !::"t) is /3A!::"t + o(!::"t)

The probability that the child born by infected mother is HIV positive is (1- /3)aA!::,.t+
o(!::"t)

(v)Assumptions regarding incubation (I-A): Let the transition rate from infective to

AID8 case "'{, thus, during (t, t + !::"t) , the probability of that a transition will occur

is "'{!::"t + o(!::"t) so that the incubation (infectious) period is 1/"'{
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Figure 5.1: HIV/ AIDS Epidemic model
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From the figure 1 above, Infants who did not get infected from their infected mothers

enter the class S of susceptible individuals; that is, those who can become infected.

When there is an adequate contact of a susceptible with an infective so that transmis

sion occurs, then the susceptible enters the exposed class L of those in the latent period,

who are infected but not yet infectious. After the latent period ends, the individual

enters the class I of infectives, who are infectious in the sense that they are capable of

transmitting the infection. When the infectious period ends, the individual enters the

AIDS class A consisting of those who have acquired full-blown symptoms.

5.2 SUSCEPTIBLE POPULATION MODEL

In this model, changes in the numbers of Susceptible persons are treated as a birth

and death process; the "birth" are the immigrants or births by both non and infected

mothers and "death" are the natural death, persons who contact the HIV virus or the

emigrants. The probability that there are n individuals in the Susceptible population

during the time interval (t, t + !:It) is equal to the probability;

(i)That there are ri individuals by time t and nothing happens during the time interval

(t, t + !:It)

(I)That there are ri - 1 individuals by time t and 1 is added by immigration or birth

during the time interval (t, t + !:It)

(Ii) That there are n + 1 individuals by time t and 1 dies, contracts the HIV virus or

migrates from the population during the time interval (t, t + !:It)

In the model, we study the two modes of transmission of the HIV virus: Heterosex

ual transmission and the Mother-to-child transmission(That is Horizontal and vertical

transmission). The change in population size during the time interval (t, t + 6.t) is
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governed by the following conditional probabilities;

Pr{X(t + L).t) = n + 1/X(t) = n}

Pr{X(t + L).t) 2: n + 2/X(t) = n}

Pr{X(t + L).t) = n - 1/X(t) = n}

Pr{X(t + L).t) :::; n - 2/X(t) = n}

Pr{X(t + L).t) = n]X(t) = n}

o;L).t + nSaAL).t + nlafJAL).t + o(L).t)

o(L).t)

nSMlkL).t + nlaw(jL).t + o(L).t)

o(L).t)

1 - nSaAL).t - o;L).t - nIafJAL).t - nSk/-l,kL).t - nlaw(jL).t - c

Let the probability distribution of the population size at time t be denoted by

Sn(t) = Pr{S(t) = n/S(O) = m} , m < nand m = 0,1, .

We seek to find this distribution by deriving a system of differential equations from the

assumptions above. Now

An(t) nSaA + 0; + nlafJA

fJ.,n(t) nSMlk+ nlaw(j

Let Sn(t) be the probability that the population size N(t) has the value ri at time t,

Sn-l(t) the probability that the population size N(t) has the value n - 1 at time t,

and Sn+1(t) the probability that the population size N (t) has the value n + 1 at time

t, then from the given rules it follows that:

Sn(t + L).t) [1 - nSaAL).t - o;L).t - nlafJAL).t - nSkfJ.,kL).t - nIaw(jL).t - o(L).t)]Sn(t)

+ [o;L).t + (n - I)SaAL).t + (n - l)IafJAL).t + o(L).t)]Sn-l (t)

+ [(n + l)SkfJ.,kL).t + (n + l)Iaw(jL).t + o(L).t)]Sn+l(t)

which gives

Sn(t + L).t) - Sn(t) [-nSaAL).t - o;L).t - nIafJAL).t - nSkfJ.,kL).t - nlaw(jL).t - o(L).t)]Sn(t)

+ [o;L).t + (n - l)SaAL).t + (n - I)IafJAL).t + o(L).t)]Sn-l(t)

[(n + l)SkfJ,kL).t + (n + l)Iaw(jL).t + o(L).t)]Sn+l(t)

Proceeding to the limit as L).t -+ 0, we get the following Kolmogorov forward equations:

S~(t) -[nSaA + 0; + nSkfJ,k + nlafJA + nIaw(j]Sn(t)

+ [0; + (n - I)S3A + (n - l)IafJA]Sn-l(t) for n 2: 1

+ [(n + I)SkfJ.,k + (n + l)Iaw(j]Sn+l(t),
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(5.2.2)

Where the primes indicate differentiation with respect to t In equation (5.2.1), there

are 3 unknown probabilities; Sn(t) , Sn-1(t) , and Sn+1(t). Therefore these equation

cannot be solved directly. We resort to the method of Probability generating function

(PFG) defined by
00

Os(Z, t) = L Sn(t)zn
n=O

. With n = O,in equation (5.2.2) S-l(t) is identically Zero. The coefficient of Sn-1(t)

arises from considering the conditional probability of "birth" into the population given

that the population size is n - 1. Multiplying equation (5.2.1) by Z" and sum over

n = 1, we have

-[S3 A+ 13(3A + 13wb] ~=1 nSn(t)zn

- a L:~=1 Sn(t)zn + a L:~1 Sn-1(t)zn

+ S3A L:~1 (n - 1)Sn-1(t)zn + Is(3A L:~=1 (n - 1)Sn-1(t)zn

+ Skf-lk L:~=1 (n + 1)Sn+1 (t)zn + 13wb L:~=1 (n + 1)Sn+1 (t)zn
(5.2.3)

Define
Be
7ft
Be
8Z

O(Z, t)

Therefore equation (5.2.3) becomes

L:~=O S~ (t)zn

L:~onSn(t)zn

L:~oSn(t)zn

a;; - Sb(t) -a[O(Z, t) - SO(t)] - [S3 A+ 13(3A + 13wb + Skf-lkJZ~~

+ (S3A + 13(3A)Z2~~ + aZO(Z, t)

+ [Skf-lk + IswbJ(~~ - Sl (t»

From equation (5.2.2) we have

~~ -aO(Z, t) - [S3A + Is(3A + Skf-lk + Iswb]Z~~

+ (S3A + Is(3A)Z2~~ + aZO(Z, t)

+ (Skf-lk + 13wb) ~~
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8G 8Gat = (Z - l)aG(Z, t) + (Z - 1)[(83 '\ + hfJ,\)Z - (8Ml k + 13wc5)] 8Z

Therefore

8G 8Gat - (Z - 1)[(83 '\ + 13fJ'\)Z - (8 k fLk + 13wc5)] 8Z = (Z - l)aG(Z, t)

The auxiliary equations are:

dt
1

dZ

(Z - 1)[(83 '\ + 13fJ'\)Z - (8k fLk + hwc5)]
dG

(Z - l)aG(Z, t)

[(83 '\ + hfJ'\)Z - (8k fLk + hwc5)]

and On integration we have

Considering
dZ dG

aG(Z, t)

Next we consider

dt dZ

1 (Z - 1)[(83'\ + hfJ'\)Z - (8k fLk + hwc5)]

On integration we have

(
[((83 '\ + 13fJ,\)Z - (8k fLk + 13wc5)])e-[CCS3A+Is,BA)-CSkt.tk+IsWO)]t = C

Z -1 2

Where C1 and C2 are constants of integration. setting C1 as a function of C2 ,we arrive

at the most general solution

[((83 '\ + 13fJ'\)Z - (8k fLk + hwc5)r/CCS3A+Is,BA)G(Z, t)

= f { C((83,\ + hfJ,\):~1(8k fLk 13wc5)])e-[CCS3A+Is,BA)-CSkf.tk+I3WO)]t}

We had denoted that 8(t) is the size of the population at time t for 0 :s; t ?:: 00, let the

initial population at time t = 0 be 8(0) = m then

G(Z, 0) = zm
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Therefore

[((S3A+h8A)Z-(SkJ.Lk+I3w6)]al(S3A+Isf1A) zm = f(l(S3 A+ Isj3A)~=iSkJ.Lk + 13W6)])

(5.2.4)

Let TJ = ((S3A + Isj3A) and u = (SkJ.Lk + 13w6) then equation (5.2.4) becomes

(TJZ - v)a/17 zm = f(TJZ - V)
Z -1

This is for IZI < 1. For any (J,
TJZ - v

(J= Z-l

We have
v-(J

Z=--
TJ-(J

Hence we have

but

Therefore

G(Z, t) = (TJZ - v) -a/17 [(Je-(17-v)t]a/17 (v - TJ)a/17 (TJ - (Je-(17-v)t) -(a/17+m) (v - (Je-(17-v)t)m

(5.2.5)

Now replacing (J by 17;~; we have

G Z t = (TJ - v)a/17[(ve(17-v)t - v) - Z(ve(17-v)t - TJ)]m
( , ) [(TJe(17-v)t - v) _ TJZ(e(TJ-v)t _ l)]aITJ+m (5.2.6)

Differentiating the PCF in (5.2.6) with respect to Z, we find the expectation and

variance of S(t):

(5.2.7)

and

(5.2.8)
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5.3 ASYMPTOMATIC (INFECTED) MODEL

In this model, changes in the numbers of persons infected are treated as a birth and

death process; the "birth" are the new infections(including infected mother to child)

and those who migrate to the population , and "death" are the persons who develop

AIDS symptoms or die or migrate. The probability that there are n individuals in the

infective population during the time interval (t, t + 6.t) is equal to the probability;

(i)That there are n individuals by time t and nothing happens during the time interval

(t, t + 6.t)

(I)That there are n - 1 individuals by time t and 1 is added by HIV transmis

sion,immigration or Mother-to child transmission during the time interval (t, t +6.t)

(Ii) That there are n + 1 individuals by time t and 1 dies or converts to AIDS during

the time interval (t, t + 6.t)

The change in population size during the time interval (t, t + 6.t) is governed by the

following conditional probabilities;

Pr{X(t+ 6.t) = n+ I/X(t) = n}

Pr{X(t + 6.t) 2: n + 2/X(t) n}

Pr{X(t + 6.t) = n - 1/X(t) n}

Pr{X(t + 6.t) ::; n - 2/X(t) = n}

Pr{X(t + 6.t) = n/X(t) = n}

a6.t + nh(1 - (3)aA6.t + n13wb6.t + o(6.t)

o(6.t)

nhJLk6.t + n13"/6.t + o(6.t)

o(6.t)

1 - nh(1 - (3)aA6.t - a6.t - nI3'Y6.t - nSkJLk6.t - n13wb

Let the probability distribution of the population size at time t be denoted by

In(t) = Pr{1(t) = n/1(O) = I} ,

We seek to find this distribution by deriving a system of differential equations from the

assumptions above. Now

An(t) a + nh(1 - (3)aA

JLn(t) nhJLk + nh'Y

Let 1n(t) be the probability that the population size N(t) has the value n at time t,

1n-1(t) the probability that the population size N(t) has the value n - 1 at time t,
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and In+l(t) the probability that the population size N(t) has the value n + 1 at time

t, then from the given rules it follows that:

In(t + !:It) [1 - (nIk/JJk + a + nIs(1 - {3)a).. + nIswfJ + nIsry)!:lt + o(!:lt)]In(t)

+ {[en - l)Is{3 )" + (n - l)IswfJ + a]!:lt + o(!:lt)} In-l(t)

+ {[en+ l)Isry + (n + l)htLk]!:lt + o(!:It)} In+l(t)

Proceeding to the limit as !:It ---+ 0, we get the following Kolmogorov forward equations:

I~(t) -[nhtLk + a + nIs(l - {3)a).. + nIswfJ + nIsry]In(t)

+ [en - l)Is(1 - f3)a).. + (n - l)IswfJ + a]In- l (t) for n > 1 (5.3.1)

+ [en + l)Isry + (n + l)htLk]In+l (t),

I~(t) = -aIo(t) + (htLk + ISry]Sl(t), for n = ° (5.3.2)

Where the primes indicate differentiation with respect to t In equation (5.3.1), there are

3 unknown probabilities; In(t) , In-l(t), and In+l(t). Therefore these equation cannot

be solved directly. We resort to the method of Probability generating function (PFC)

defined by
00

Gs(Z, t) = L In(t)zn
n=O

With n = O,in equation (5.3.2) Ll(t) is identically Zero. The coefficient of In-l(t)

arises from considering the conditional probability of "birth" into the population given

that the population size is n - 1. Multiplying equation (5.3.1) by Z" and sum over

n = 1, we have

I:~l I~(t)zn -[nhtLk + nIs(l - f3)a).. + nIswfJ + nIsry] I:~=l nIn(t)zn

a I:~=l In(t)zn

+ a I:~l In_l(t)zn

+ ((1 - {3)a).. + wfJ)Is I:~l (n - l)In_l(t)zn + (tLk + ry]h I:~=l (n + 1)In+ 1(t)zn
(5.3.3)

Define
8G
8t

8G
&Z

G(Z, t)

I:~=o I~(t)zn

I:~=o nSn(t)zn

I:~=o Sn(t)zn
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Therefore equation (5.3.3) becomes

a:; - 1b(t) - -a[G(Z, t) - 1o(t)] - (h/-Lk + h(l - (3)a A+ hwb + h,)Z~~

+ ((1 - (3)aA + wb)hZ2~~ + aZG(Z, t)

+ (ILk + ,)(~~ - h(t))

From equation (5.3.2) we have

&0
&t -

+
+

&0
&t -

Therefore

-aG(Z, t) - ((1 - (3)aA + /-Lk + wb+ ,)IsZ~~

((1 - (3)aA + wb)1sZ2~~ + aZG(Z, t)

(ILk + ,)h~~

(Z - l)aG(Z, t) + (Z - 1)[((1 - (3)aA wb)1sZ - (ILk + ,)h]~~

BG BGfit - (Z - 1)[((1 - (3)a A+ wb)hZ - (/-Lk + ,)h] BZ = (Z - l)aG(Z, t)

The auxiliary equations are:

dt
1

Considering

dZ

(Z - 1)[((1 - (3)aA + wb)hZ - (ILk + ,)1 - k]
dG

(Z - l)aG(Z, t)

dZ dG
------------
[((1 - (3)aA + wb)1sZ - (/-Lk + ,)h] aG(Z, t)

and On integration we have

Next we consider

dt dZ
1 (Z - 1)[((1 - (3)aA + wb)1sZ - (/-Lk + ,)h)

On integration we have

(
[((1 - (3)a A+ wb)1sZ - (/-Lk + ,)h))e-[((l-,s)aMWO)h-(Mk+Y)Iklt = c

Z-l 2

Where C1 and C2 are constants of integration. setting C1 as a function of C2 ,we arrive

at the most general solution

[((l-(3)aA+wb)1sZ-(/-Lk+,)1kr/[(l-,s)aMwolhG(Z, t) = f{ (l((1- (3)aA+ w:)~s~ - (ILk + ,)h])e
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We had denoted that 1(t) is the size of the population at time t for 0 ::; t 2: 00, let

there be one infected person at time t = 0 that is, 1(0) = 1 then

G(Z, 0) = Z

Therefore

[((l-,6)a A+WO)h Z - (ILk+l )h ]a/[(l- (3)aMw<> jIs Z = fC((l - ,6)aA+ W:)~3~ - (ILk + I)h])

Let p = ((1 - ,6)aA + wo) and f), = (ILk + I) then

(pZ _ K,)a/PZ = f(PZ - K,)
Z -1

This is for !Z! < 1. For any e,
e pZ - K,

Z-l

We have

Hence we have

but

therefore

K,-e
Z=--p-e

Now replacing eby pf~lx we have

(p - K,)a/p[K,e(p-x)t - 1) - Z(K,e(p-x)t - 1)]
G(Z,t) = [( () (())] / (5.2.6)pe p-x t - f), - pZ e p-x t - 1 l+a p
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(5.2.7)
e(p-K)t - 1

E[S(t)] = e(p-K)t + a--
(p - f),)

Differentiating the PGF in (5.2.6) with respect to Z, we find the expectation and

variance of S(t):

and

(5.2.8)

5.4 SYMPTOMATIC (AIDS CASE) MODEL

In this model, changes in the numbers of persons with AIDS symptoms are treated as

a birth and death process; the "birth" are the immigrants and persons who transit from

infective to AIDS case and "death"" is the death due to AIDS. The probability that

there are ti individuals in the AIDS case population during the time interval (t, t + llt)

is equal to the probability;

(i)That there are n individuals by time t and nothing happens during the time interval

(t, t + llt)

(I)That there are n-1 individuals by time t and 1 is added by immigration or transition

from infective during the time interval (t, t + llt)

(Ii) That there are n + 1 individuals by time t and 1 dies from the population during

the time interval (t, t + llt)

The change in population size during the time interval (t, t + llt) is governed by the

following conditional probabilities;

Pr{X(t + llt) = n + 1/X(t) = n}

Pr{X(t + llt) 2:: n + 2/X(t) = n}

Pr{X(t + llt) = n - 1/X(t) = n}

Pr{X(t + llt) ~ n - 2/X(t) = n}

Pr{X(t + llt) = n]X(t) = n}

allt + nI,llt + o(llt)

o(llt)

nA/-Lkllt+ o(llt)

o(llt)

1 - nA/-Lkllt - a/s: - nI,llt - o(llt)

Let the probability distribution of the population size at time t be denoted by

An(t) = Pr{A(t) = n/A(O) = O{
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We seek to find this distribution by deriving a system of differential equations from the

assumptions above. Now

rn(t) nIr + a

fin (t) nAfJk

Let An(t) be the probability that the population size N(t) has the value ri at time t,

An---1(t) the probability that the population size N(t) has the value n - 1 at time t,

and An+l(t) the probability that the population size N(t) has the value n + 1 at time

t, then from the given rules it follows that:

An(t + ~t) [1 - nAfJk~t - nIr~t - a~t - o(~t)]An(t)

+ [a~t + (n - l)Ir~t + o(~t)]An-l(t)

+ [AfJk~t + o(~t)](n + l)An+l (t)

which gives

An(t + ~t) - An(t) -[nAfJk~t +nIr~t +a~t+ o(~t)]An(t)

+ [a~t + (n - l)Irt3.t + o(t3.t)]An- 1(t)

+ [/-lkt3.t + o(~t)](n + 1)AAn+1(t)

Proceeding to the limit as t3.t ---+ 0, we get the following Kolmogorov forward equations:

A~(t) = -[nA/-lk +a + nIr]An(t) + [a + (n - 1)Ir]An- 1(t) + A/-lk(n + l)An+l(t), for n ~ 1

(5.4.1)

A~(t) = -aAo(t) + A/-lkA1(t), for n = ° (5.42)

Where the primes indicate differentiation with respect to t In equation (5.4.1), there

are 3 unknown probabilities; An(t) , An-1(t), and An+1(t). Therefore these equation

cannot be solved directly. We resort to the method of Probability generating function

(PFG) defined by
00

GA(Z, t) = L An(t)zn
n=O

. With n = O,in equation (5.4.2) A_1(t) is identically Zero. The coefficient of An-1(t)

arises from considering the conditional probability of "birth" into the population given
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that the population size is n - 1. Multiplying equation (5.4.1) by Z" and sum over

n = 1, we have

I:~=I A~(t)zn - -[Apk + I,] I:~=I nAn(t)zn - a I:~=I An(t)zn

+ aI:~1 An- I(t)zn

+ I,I:~=I(n - l)An_l(t)zn

+ APk I:~I (n + l)An+l(t)zn

-a I:~=I An(t)zn - [Apk + I,] ~=I nAn(t)zn

+ a I:~=I An_l(t)zn

+ I, I:~=I(n - l)An_l(t)zn + APk I:~=I (n + l)An+l(t)zn
(5.4.3)

Define

a:; - I:~o A~(t)zn

~~ - I:~=o nAn(t)zn

G(Z, t) - I:~=o An(t)zn

Therefore equation (5.4.3) becomes

~~ - Ab(t) -a[G(Z, t) - Ao(t)] - [Apk + I,]Z~~

+ ,Z2~~ + aZG(Z, t)

+ Pk(~~ - Al (t))

From equation (5.4.2) we have

a:; - -aG(Z, t) - [AI-lk + I,]Z~~

+ ,Z2~~ + aZG(Z, t)
aG+ Pkaz

a:; (Z - l)aG(Z, t) + (Z - 1)[I,Z - Apk]~~

Therefore
BG BG
- - (Z - 1) [I,Z - Apk]- = (Z - l)aG(Z t)
at az '

The auxiliary equations are:

dt
1

dZ
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Considering

and On integration we have

dZ dG

aG(Z, t)

Next we consider

On integration we have

dt dZ

1 (Z - 1)[1,Z - Al1k]

Where C1 and C2 are constants of integration. setting C1 as a function of C2,we arrive

at the most general solution

We had denoted that S(t) is the size of the population at time t for 0 :S t 2: 00, let

there be no individual who has developed full blown symptoms at time t = 0 that is,

A(O) = 0 then

G(Z,O) = 1

Therefore

[1 Z - A ]Ct/h] - f([1,Z - Al1k])
, 11k - Z - 1

This is for IZI < 1. For any 9,

We have

Hence we have Hence we have
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but

[T-yZ - AMk]a/h]G(Z, t) = f(¢e-(I'Y-A/L)t)

Now replacing ¢ by h;=tfl: we have

(
I ry - AM ) a/h [ _Z_1-:.'Y-;,(e:-(I_'Y-;---,-A,-/L)_t_-,-1....'-)] - a/h

G(Z, t) = 1'Ye(I~-A/L)t _ AM 1 - 1'Ye(h-A/L)t - AM

This is a negative binomial distribution, with

and

(5.4.4)

It is of some interest to consider the limiting form of equation (5.4.4) when 1'Y < AM

and the time t tends to infinity. The limiting generating function is

and so the mean population size for large t is

This is related to the stable distribution of population which immigration can just

maintain against the excess of AM over 1'Y.

The variance of the population size for large t is

aAM

When AM = O,(that is, when there are only births and immigration and new infections)

it is clear from equation (5.4.4) that the distribution will still be negative binomial for

every finite value of t.
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On the hand, when I, = O,(that is, when there is immigration, emigration and

HIV infection)where emigration and HIV infection depends on the population, the

distribution assumes a Poisson process.

G(Z, t)

When t -+ 00, it gives

G(Z)

When I, = O,Afl = °(that is, when there is only immigration ), the distribution

assumes a Poisson process with parameter at.

G(Z, t) = eoot(Z-l)

5.5 SPECIAL CASES

By assigning values to the parameters , we arrive at some special cases. Allowing a

to take the value zero, (that is, no migration into the population a = 0) we obtain

Generating function, Expectation and Variance for Susceptibles, Infectives and AIDS

cases similar to the corresponding Generating function, expectation and Variance of

the MTCT model. Hence MTCT models are special cases for the Combined model.

Assuming that. A 0, (that is, the birth rate is zero,the population increases due to

migration into the population) then the model assumes similar generating function,

expectation and variance of the Susceptibles, Infectives and AIDS cases as those of the

Heterosexual model. Therefore Heterosexual model is a special case of the Combined

model. The simulation of the model will be exactly like for Heterosexual and MTCT

models.
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Chapter 6

CONCLUSION

6.1 Introduction

In this thesis, our objective was to develop HIV/ AIDS epidemic models by using Gen

erating functions (GF). In trying to achieve the goals, the author came up with a

conceptual framework which summarizes all the literature on HIV/ AIDS transmission

models. Stochastic models based on Mother to child transmission(MTCT), Heterosex

ual transmission and Combined models are developed. By using the stochastic models

formulated, we have also demonstrated how various factors affect the expectations of

Susceptible and infective persons. It is shown from the combined model that MTCT

and Heterosexual models are special cases of the Combined model. However, in the

process of achieving the author's goal, some problems were encountered; based on the

initial condition, it was found that when the initial condition is assumed to be zero

(0), in the case of AIDS case, most of the models showed that the Generating function

is one (1), this need further investigation and the author has recommended for further

investigation. To test the models, the author used some randomly chosen parame

ters, which produced some funny results, further work is recommended to study ranges

where the parameters work best.
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6.2 Further work

• From the study above, the parameters were independent of time, re examination of

the models with parameters dependent on time is recommended.

• Since infection in MTCT model can occur in three stages; during pregnancy, during

delivery and after birth (breast milk), recommended area or research is to look at the

Markov model approach where the transition probability can be dependent of time.

Same approach can be applied on the stages of infection in an infected population.

Markov chain can be applied in the Combined model where the stages will be the age

groups.

• Further investigation is recommended to study why the generating function is unity

for some models assuming initial condition to be zero. Also the author recommend

further study to find ranges where the model parameters could work best. Generating

functions can also be applied Markov transition chain models, especially when consid

ering.

• So far the resulting partial differential equations for probability generating functions

have turned out to be of a linear type which is frequently soluble, or at least tractable

to yield a number of useful properties. On the other hand, the transition probabilities

are usually non-linear functions of the population size, and this leads, even with models

that are descriptively very simple to mathematical analyses of considerable complexity.

• So far we have used univariate generating functions. For suitably defined markov

chains, there will be need to use multivariate generating functions (Chiang, 1980).

• For literature review, a critical analysis of use of generating functions (both univari

ate and multivariate in nature) in infectious diseases or in epidemic processes will be

necessary since very little has been in the use of generating functions to HIV/ AIDS

models (Bailey, 1975).
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