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Abstract

This study is concerned with the mathematical modeling for human immun-
odeficiency virus (HIV) transmission epidemics. The mathematical models are
specified by stochastic differential equations that are solved by use of Generating
Functions (GF). Models based on Mother to child transmission (MTCT) (age
group 0-5 years), Heterosexual transmission (age group 15 and more years) and
combined case (incorporating all groups and the two modes of transmission) were
developed and the expectations and variances of Susceptible (S) persons, Infected
(I) persons and AIDS cases were found. The S1(t) Susceptible model produces
a constant expectation and increasing variance. It was shown that Mother to
Child transimission and Heterosexual models are special cases of the Combined
model.
Keywords: Generating Function, HIV Transmission, Stochastic compartmental
model, MTCT and Combined model.

1 Introduction

Generating functions have been applied extensively in population studies, especially
in branching processes, human reproduction process, birth and death process etc. In
this study, generating function (GF) technique was used in modeling HIV/AIDS trans-
mission. In the literature, this approach has not been used extensively by researchers
to study epidemic processes. There is need to extend the application of generating
functions to HIV transmission models in modern day work. Jewel (1990) studied com-
partmental and empirical modeling approaches. In recent time, most of the researchers
have focused on deterministic models and various approaches for studing epidemiology
of infectious diseases, AIDS inclusive, have also been developed. In this study we pro-
ceed to study the deterministic models, then develop a stochastic differential equations
from the deterministic models for the spread of the HIV/AIDS virus in a heterosexual
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population and then solve the equations by using the approach of probability generat-
ing functions. We are motivated by the following considerations.
(i) Many biological factors such as incubation periods and social factors affecting
HIV/AIDS spread are subjected to considerable random variation so that the spread
of the AIDS virus is in essence a stochastic process.
(ii) Stochastic models provide more information than deterministic models; for exam-
ple, besides the expected values, one may also compute the variances and covariances
and assess effects of various factors on these variances and covariances.
(iii) Under certain special conditions, the deterministic approach is equivalent to work-
ing with the expected values of the stochastic models. In this sense, the deterministic
approach is a special case of the stochastic models if one is only interested in the ex-
pected values.
The section two of the work focuses on Mother-to-Child Transmission Models while
section three examined the Heterosexual Model. In section four the combined model
was discussed and section five gave the concluding remarks.

1.1 Assumptions and notations for the models

Let
m1—Survival rate of children between ages 0− 5 years
m2—Survival rate of children in ages 5− 15 years
m3—Survival rate of young adults and obove
μ— the death(death unrelated to HIV/AIDS) or emigration rate (migrate out of the
population because of fear of HIV/AIDS),where k = 1, 2, 3 (the different age groups
have different per capita mortality rates).
ϑ−1

i —Average Incubation period in stage i
λ—birth rate for sexually mature persons per person per time.
α — the immigration rate for the sexually mature persons be α per time, this is
independent of the population
t—Present time
x1—starting time
x2—future time ( in years )
a(t)– The expected rate of new AIDS incidences at time t.
h(t)–The expected number of new incidences of HIV infection at time t.
Y (t)–Random variable corresponding to the number of newly diagnosed
AIDS incidences at time t
Thus the probability that a birth will occur in the heterosexual population during the
time interval (t, t + Δt) is λΔt + o(Δt)
Let the sexual contact rate between a matually sexual S person and an I person be ω
where ω ≥ 0.
S(t): denote the number of persons in group S at time t
I(t): denote the number of persons in group I at time t
A(t): denote the number of persons in group AIDS case at time t
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It is reasonable to assume that at the beginning of the epidemic, at t = 0, that S(0)
is large, that I(0) is fairly small, and that A(0) = 0. At time t, let N(t) represent the
size of the population. Therefore the total population consists of

N(t) = S(t) + I(t) + A(t)

(a) If the population size is n(n > 0) at time t, during the small interval of time
(t, t + Δt), the probability that “birth”(an increase to the population) will occur
is λn(t)Δt + o(Δt). The probability of no “birth”occuring in that small interval is
1 − λn(t)Δt + o(Δt) and the probability of more than one“birth”occurring is o(Δt).
“birth”occuring in (t, t + Δt) are independent of time since the last occurence.
(b)The probability that “death”will occur in a small interval of time (t, t + Δt) is
μn(t)Δt + o(Δt),the probability of no “death”occuring is 1− μn(t)Δt + o(Δt) and the
probability that more that one “death”occurs is o(Δt). “death”occuring in (t, t + Δt)
are independent of time since the last occurence.
(c) n = 0 is an absorbing state of the process.
(d) For the same population size, the “birth”and “death”occur independently of each
other.

Given a sexual contact between an S person and an I person during (t, t + Δt) , we
let δ be the probability that this I person will transmit the AIDS virus to the S person.

This event converts the S person to an I person. ωδ =
√

ωmδmωfδf where ωmδm is
the probability that an I male transmit the AIDS virus to an S female and ωfδf is the
probability that an I female transmit the AIDS virus to an S male.

Let the rate at which an infected mother does not transmitting the HIV virus to
the newborn be β
Let the transition rate from infective to AIDS case be γ.
The changes of the population for Susceptible,Infected and AIDS cases assume Birth
and Death process.

2 Mother-to-Child Transmission Models

The purpose of this Section is to develop the Mother-to-child Transmission (MTCT)
model. The study population consists of the pre-school age group (0-5 years), these
are the children born of infected and susceptible mothers in group three (15 and more
years). The population is divided into those children born free of HIV virus but can
contract the virus from their mothers through breast milk (susceptibles), those who
contact the virus from their infected mothers (infectives), and the former infectives
who develop full blown symptoms (AIDS cases).
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2.1 S1(t) Susceptible model

The change in population size during the time interval (t, t + Δt) is governed by the
following conditional probabilities;

Pr{S1(t + Δt) = n + 1/S1(t) = n} = nS3λΔt + nI3βλΔt + o(Δt)
Pr{S1(t + Δt) ≥ n + 2/X(t) = n} = o(Δt)
Pr{S1(t + Δt) = n− 1/S1(t) = n} = np1S1 + nS1μ1Δt + o(Δt)
Pr{S1(t + Δt) ≤ n− 2/S1(t) = n} = o(Δt)
Pr{S1(t + Δt) = n/S1(t) = n} = 1− nS3λΔt− nI3βλΔt

− np1S1 − nS1μ1Δt− o(Δt)

Now
λn(t) = nS3λ + nI3βλ
μn(t) = np1S1 + nS1μ1

then from the given rules we have the following Kolmogorov forward differential equa-
tions:

S1
′
n(t) = −[nS3λ + nS1μ1 + nI3βλ + np1S1]S1n(t)

+ [(n− 1)S3λ + (n− 1)I3βλ]S1n−1(t)
+ [(n + 1)p1S1 + (n + 1)S1μ1]S1n+1(t),

for n ≥ 1 (2.1)

S ′0(t) = [p1S1 + S1μ1]S1(t), for n = 0 (2.2)

where the primes indicate differentiation with respect to t. Using GF technique to
solve the differential equation gives:

GS1(Z, t) =
(

μS(e(ηS−μS)t − 1)− (μSe(ηS−μS)t − ηS)Z

(ηSe(ηS−μS)t − μS)− ηSZ(e(ηS−μS)t − 1)

)i

(2.3)

This is the PGF of the differential equation (2.1)
By expanding the PGF we shall obtain the probability distribution S1(t).
Differentiating the PGF in (2.3) with respect to Z, we find the expectation and variance
of S1(t):

E[S1(t)] = i
1− A(t)

1− B(t)
= ie(ηS−μS)t (2.4a)

and
δ2
S1

= i (1−A(t))(A(t)+B(t))
(1−B(t))2

= i(ηS+μS

ηS−μS
)e(ηS−μS)t[e(ηS−μS)t − 1].

(2.4b)

by taking the limits as μS → ηS ( where ηS is birth rate for both infected and Susceptible
mothers) we find that

E[S1(t)] = i (2.5a)

and
δ2
S1

= 2ηSt (2.5b)
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Thus when ηS = μS the population size has a constant expectation but an increasing
variance. Where

ηS = (S3λ + I3βλ)

and
μS = (p1 + μ1)S1

2.2 I1(t)(Infection) Model

The change in population size during the time interval (t, t + Δt) is governed by the
following conditional probabilities;

Pr{X(t + Δt) = n + 1/X(t) = n} = nI3(1− β)aλΔt + o(Δt)
Pr{X(t + Δt) ≥ n + 2/X(t) = n} = o(Δt)
Pr{X(t + Δt) = n− 1/X(t) = n} = nI1μ1Δt + nI1γΔt + o(Δt)
Pr{X(t + Δt) ≤ n− 2/X(t) = n} = o(Δt)
Pr{X(t + Δt) = n/X(t) = n} = 1− nI3(1− β)aλΔt− nI1γΔt

− nI1μ1Δt− o(Δt)

Now
λn(t) = nI3(1− β)aλ
μn(t) = nI1γ + nI1μ1

Then from the given rules we have the following Kolmogorov forward differential equa-
tions:

I ′n(t) = −[nI1μ1 + nI3(1− β)aλ + nI1γ]In(t)
+ [(n− 1)I3(1− β)aλ+]I1n−1(t)
+ [(n + 1)I1γ + (n + 1)I1μ1]I1n+1(t),

for n ≥ 1 (2.6)

I ′0(t) = [I1μ1 + I1γ]I1(t), for n = 0 (2.7)

Where the primes indicate differentiation with respect to t. GF was used to solve the
differential equations and the results are shown below:

GI1(Z, t) =
(

μI(1− e(ηI−μI )t)− (ηI − μIe
(ηI−μI)t

μI − ηIe(ηI−μI )t − ηIZ(1− e(ηI−μI )t)

)
(2.8)

This is the PGF of the differential equation (2.6)
. Now by simply expanding the PGF we obtain the probability distribution I1(t).
Differentiating the PGF in (2.8) with respect to Z, we find the expectation and variance
of I1(t):

E[I1(t)] =
1− B(t)

1− C(t)
= e(ηI−μI)t (2.9)

and
δ2
I1

= (1−B(t))(B(t)+C(t))
(1−C(t))2

= (ηI+μI

ηI−μI
)e(ηI−μI )t[e(ηI−μI)t − 1].

(2.10)
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by taking the limits as μI → ηI ( where ηI is birth rate for both infected and Susceptible
mothers) we find that

E[I1(t)] = 1

and
δ2
I1

= 2ηIt

Thus when the ηI = μI , the population size has a constant expectation but an increas-
ing variance. Where ηI = I3(1− β)aλ and μI = I1(μI + γ)

2.3 A1(t) (AIDS case) model

The change in population size during the time interval (t, t + Δt) is governed by the
following conditional probabilities;

Pr{X(t + Δt) = n + 1/X(t) = n} = nI1γΔt + o(Δt)
Pr{X(t + Δt) ≥ n + 2/X(t) = n} = o(Δt)
Pr{X(t + Δt) = n− 1/X(t) = n} = nA1μ1Δt + o(Δt)
Pr{X(t + Δt) ≤ n− 2/X(t) = n} = o(Δt)
Pr{X(t + Δt) = n/X(t) = n} = 1− nI1γΔt− nA1μ1Δt− o(Δt)

Now
λn(t) = nI1γ
μn(t) = nA1μ1

Then from the given rules we have the following Kolmogorov forward differential equa-
tions:

A1
′
n(t) = −[nI1γ + nA1μ1]A1n(t)

+ [(nI1γ]A1n−1(t)
+ (n + 1)A1μ1A1n+1(t),

for n ≥ 1 (2.11)

A′0(t) = [A1μ1]A1(t), for n = 0 (2.12)

Where the primes indicate differentiation with respect to t. By using the GF technique
to solve the differential equation gives:

GA1(Z, t) = 1

3 Heterosexual Models

In this section,we consider a population consisting of the adults(15 and more years).
Since the age group 2 consists of HIV free population and it is the survivors of this
subgroup over the developmental period (5,15) that generate age group 3, hence we
include the survivors in the Susceptible model.
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3.1 S3(t) Model

The change in population size during the time interval (t, t + Δt) is governed by the
following conditional probabilities;

Pr{S3(t + Δt) = n + 1/S3(t) = n} = p2S
∗
2Δt + o(Δt)

Pr{S3(t + Δt) ≥ n + 2/S3(t) = n} = o(Δt)
Pr{S3(t + Δt) = n− 1/S3(t) = n} = nS3(ωδ + μ3)Δt + o(Δt)
Pr{S3(t + Δt) ≤ n− 2/S3(t) = n} = o(Δt)
Pr{S3(t + Δt) = n/S3(t) = n} = 1− p2S

∗
2Δt− nS3(ωδ + μ3)Δt

− o(Δt)

Now
λn(t) = p2S

∗
2Δt

μn(t) = nS3(ωδ + μ3)Δt

Then from the given rules we get the following Kolmogorov forward diffeential equa-
tions:

S3
′
n(t) = −[p2S

∗
2 + nS3(ωδ + μ3)]S3n(t)

+ p2S
∗
2S3n−1(t)

+ (n + 1)S3(ωδ + μ3)S3n+1(t),
for n ≥ 1 (3.1)

S ′0(t) = −p2S
∗
2S30(t) + S3(ωδ + μ3)S31(t), for n = 0 (3.2)

where the primes indicate differentiation with respect to t. Using Gf technique we get:

GS3(Z, t) =
(
1 + (Z − 1)e−S3(ωδ+μ3)t

)i

{ exp{−(
p2S∗2

s3(ωδ+μ3)
)(Z − 1)(e−S3(ωδ+μ3)t − 1)}}

(3.3)

Now it is a simple matter of expanding the PGF to obtain the probability distribution
S3(t).
Differentiating the PGF in equation (3.3) with respect to Z, we find the expectation
and variance of S3(t):

E[S3(t)] =
p2S

∗
2

s3(ωδ + μ3)
(1− e−S3(ωδ+μ3)t) + ie−S3(ωδ+μ3)t (3.4)

and

δ2(S3(t)) = ie−S3(ωδ+μ3)t[1− e−S3(ωδ+μ3)t] +
p2S

∗
2

s3(ωδ + μ3)
[1− e−S3(ωδ+μ3)t] (3.5)
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3.2 I3(t) (Infected) Model

The change in population size during the time interval (t, t + Δt) is governed by the
following conditional probabilities;

Pr{I3(t + Δt) = n + 1/I3(t) = n} = +nI3ωδΔt + o(Δt)
Pr{I3(t + Δt) ≥ n + 2/I3(t) = n} = o(Δt)
Pr{I3(t + Δt) = n− 1/I3(t) = n} = nI3μ3Δt + nI3γΔt + o(Δt)
Pr{I3(t + Δt) ≤ n− 2/I3(t) = n} = o(Δt)
Pr{I3(t + Δt) = n/I3(t) = n} = 1− nI3ωδΔt− nI3γΔt− nI3μ3Δt− o(Δt)

Now
λn(t) = nI3ωδ
μn(t) = nI3(γδ + μ3)Δt

Then from the given rules we get the difference equations:

I ′n(t) = −[nI3μ3 + nI3ωδ + nI3γ]In(t)
+ [(n− 1)I3ωδ+]In−1(t)
+ [(n + 1)I3(γ + μ3)]In+1(t),

for n ≥ 1 (3.6)

I ′0(t) = [I3μ3 + I3γ]I3(t), for n = 0 (3.7)

where the primes indicate differentiation with respect to t. With the application of GF
technique we have:

GI3(Z, t) =
(

(ηZ − ν) + ν(1− Z)e(η−ν)t

(ηZ − ν) + η(1− Z)e(η−ν)t

)
(3.8)

We let

α(t) = ν
1− e(η−ν)t

ν − ηe(η−ν)t

and
ω(t) =

η

ν
α(t)

Hence equation (4.8) becomes

GI3(Z, t) =
(

α(t) + [1− α(t)− ω(t)]Z

1− ω(t)Z

)
(3.9)

This is the PGF of the differential equation (3.1)
Now it is a simple matter of expanding the PGF to obtain the probability distribution
I3(t).
Differentiating the PGF in (3.9) with respect to Z, we find the expectation and variance
of I3(t):

E[I3(t)] =
1−α(t)

1−ω(t)

= e(η−ν)t
(3.10)
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and
δ2
I3

=
(1−α(t))(α(t)+ω(t))

(1−ω(t))2

= (η+ν
η−ν

)e(η−ν)t[e(η−ν)t − 1].
(3.11)

by taking the limits as ν → η ( where η is birth rate for both infected and non infected
mothers) we find that

E[I3(t)] = 1

and
δ2
I3

= 2ηt

Thus when the birth rate is equal to the death rate, the population size has a constant
expectation but an increasing variance.

3.3 A3(t) (AIDS Case) model

The change in population size during the time interval (t, t + Δt) is governed by the
following conditional probabilities;

Pr{A3(t + Δt) = n + 1/A3(t) = n} = nI3γΔt + o(Δt)
Pr{A3(t + Δt) ≥ n + 2/A3(t) = n} = o(Δt)
Pr{A3(t + Δt) = n− 1/A3(t) = n} = nA3μ3Δt + o(Δt)
Pr{A3(t + Δt) ≤ n− 2/A3(t) = n} = o(Δt)
Pr{A3(t + Δt) = n/A3(t) = n} = 1− nI3γΔt− nA3μ3Δt− o(Δt)

Now
λn(t) = nI3γ
μn(t) = nA3μ3

Then from the given rules we get the Kolmogorov forward diffential equations:

A′1n(t) = −[nI3γ + nA3μ3]A1n(t)
+ [(nI3γ]A1(n−1)(t)
+ (n + 1)A3μ3A1(n+1)(t),

for n ≥ 1 (3.12)

A′0(t) = [A3μ3]A3(t), for n = 0 (3.13)

Where the primes indicate differentiation with respect to t. solving these equations by
GF technique we have:

GA3(Z, t) = 1

4 Combined Models

In this section,we consider a model which combines both the two modes of transmission
( that is, Heterosexual transmission and the Mother-to-child transmission (MTCT) and
the age groups. The population is subdivided into Susceptibles, Infectives and AIDS
cases. We assume that there is homogeneous mixing among S persons and I persons.
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4.1 S(t) MODEL

The probability that there are n individuals in the Susceptible population during the
time interval (t, t + Δt) is equal to the probability;
(i)That there are n individuals by time t and nothing happens during the time interval
(t, t + Δt)
(ii)That there are n− 1 individuals by time t and 1 is added by immigration or birth
during the time interval (t, t + Δt)
(iii) That there are n + 1 individuals by time t and 1 dies, contracts the HIV virus or
migrates from the population during the time interval (t, t + Δt)
The change in population size during the time interval (t, t + Δt) is governed by the
following conditional probabilities;

Pr{X(t + Δt) = n + 1/X(t) = n} = αΔt + nS3λΔt + nI3βλΔt + o(Δt)
Pr{X(t + Δt) ≥ n + 2/X(t) = n} = o(Δt)
Pr{X(t + Δt) = n− 1/X(t) = n} = nSkμkΔt + nI3ωδΔt + o(Δt)
Pr{X(t + Δt) ≤ n− 2/X(t) = n} = o(Δt)
Pr{X(t + Δt) = n/X(t) = n} = 1− nS3λΔt− αΔt− nI3βλΔt

− nSkμkΔt− nI3ωδΔt− o(Δt)

Let the probability distribution of the population size at time t be denoted by
Sn(t) = Pr{S(t) = n/S(0) = m} , m < n and m = 0, 1, .......
We seek to find this distribution by deriving a system of differential equations from the
assumptions above. Now

λn(t) = nS3λ + α + nI3βλ
μn(t) = nSkμk + nI3ωδ

Then from the given rules we have the following Kolmogorov forward diffrential equa-
tions:

S ′n(t) = −[nS3λ + α + nSkμk + nI3βλ + nI3ωδ]Sn(t)
+ [α + (n− 1)S3λ + (n− 1)I3βλ]Sn−1(t)
+ [(n + 1)Skμk + (n + 1)I3ωδ]Sn+1(t),

for n ≥ 1 (4.1)

S ′0(t) = −αS0(t) + [Skμk + I3ωδ]S1(t), for n = 0 (4.2)

where the primes indicate differentiation with respect to t.
Using the Generating Function technique we arrive at the generating function, expec-
tation and Variance of the Susceptible persons.

G(Z, t) =
(η − ν)α/η[(νe(η−ν)t − ν)− Z(νe(η−ν)t − η)]m

[(ηe(η−ν)t − ν)− ηZ(e(η−ν)t − 1)]α/η+m
(4.3)

Differentiating the PGF in (4.3) with respect to Z, we find the expectation and variance
of S(t):

E[S(t)] = me(η−ν)t + α
e(η−ν)t − 1

(η − ν)
(4.4)
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and

δ2
S = m(

η + ν

η − ν
)e(η−ν)t[e(η−ν)t − 1] + α

e(η−ν)t − 1

(η − ν)
. (4.5)

Where η = ((S3λ + I3βλ) and ν = (Skμk + I3ωδ)

4.2 I(t) MODEL

The change in population size during the time interval (t, t + Δt) is governed by the
following conditional probabilities;

Pr{X(t + Δt) = n + 1/X(t) = n} = αΔt + nI3(1− β)aλΔt + nI3ωδΔt + o(Δt)
Pr{X(t + Δt) ≥ n + 2/X(t) = n} = o(Δt)
Pr{X(t + Δt) = n− 1/X(t) = n} = nIkμkΔt + nI3γΔt + o(Δt)
Pr{X(t + Δt) ≤ n− 2/X(t) = n} = o(Δt)
Pr{X(t + Δt) = n/X(t) = n} = 1− nI3(1− β)aλΔt− αΔt

− nI3γΔt− nSkμkΔt− nI3ωδΔt

Now
λn(t) = α + nI3(1− β)aλ
μn(t) = nIkμk + nI3γ

Then from the given rules we get the following Kolmogorov forward diffrential equa-
tions:

I ′n(t) = −[nIkμk + α + nI3(1− β)aλ + nI3ωδ + nI3γ]In(t)
+ [(n− 1)I3(1− β)aλ + (n− 1)I3ωδ + α]In−1(t)
+ [(n + 1)I3γ + (n + 1)Ikμk]In+1(t),

for n ≥ 1 (4.6)

I ′0(t) = −αI0(t) + [Ikμk + I3γ]S1(t), for n = 0 (4.7)

Applying the Generating function technique we have:

G(Z, t) =
(κ− ρ)α/ρ[κe(ρ−κ)t − 1)− Z(κe(ρ−κ)t − 1)]

[(ρe(ρ−κ)t − κ− ρZ(e(ρ−κ)t − 1)]1+α/ρ
(4.8)

Differentiating the PGF in (4.8) with respect to Z, we find the expectation and variance
of S(t):

E[S(t)] = e(ρ−κ)t + α
e(ρ−κ)t − 1

(ρ− κ)
(4.9)

and

δ2
S = (

ρ + κ

ρ− κ
)e(ρ−κ)t[e(ρ−κ)t − 1] + α

e(ρ−κ)t − 1

(ρ− κ)
. (4.10)

where ρ = ((1− β)aλ + ωδ) and κ = (μk + γ)
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4.3 A(t) Model

The change in population size during the time interval (t, t + Δt) is governed by the
following conditional probabilities;

Pr{X(t + Δt) = n + 1/X(t) = n} = αΔt + nIγΔt + o(Δt)
Pr{X(t + Δt) ≥ n + 2/X(t) = n} = o(Δt)
Pr{X(t + Δt) = n− 1/X(t) = n} = nAμkΔt + o(Δt)
Pr{X(t + Δt) ≤ n− 2/X(t) = n} = o(Δt)
Pr{X(t + Δt) = n/X(t) = n} = 1− nAμkΔt− αΔt

− nIγΔt− o(Δt)

Now
γn(t) = nIγ + α
μn(t) = nAμk

Then from the given rules we get the following Kolmogorov forward differential equa-
tions:

A′n(t) = −[nAμk + α + nIγ]An(t)
+ [α + (n− 1)Iγ]An−1(t)
+ Aμk(n + 1)An+1(t),

for n ≥ 1 (4.11)

A′0(t) = −αA0(t) + AμkA1(t), for n = 0 (4.12)

Where the primes indicate differentiation with respect to t With the application of GF
technique we arrive at:

G(Z, t) =
(

Iγ − Aμ

Iγe(Iγ−Aμ)t − Aμ

)α/Iγ[
1− ZIγ(e(Iγ−Aμ)t − 1)

Iγe(Iγ−Aμ)t − Aμ

]−α/Iγ

(4.13)

This is a negative binomial distribution, with

p =
(

Iγ − Aμ

Iγe(Iγ−Aμ)t − Aμ

)

and
r = α/Iγ

It is of some interest to consider the limiting form of equation (4.13) when Iγ < Aμ
and the time t tends to infinity. The limiting generating function is

G(Z, t) = (1− Iγ/Aμ)α/Iγ(1− IγZ/Aμ)−α/Iγ

and so the mean population size for large t is

α

(Aμ− Iγ)

12



This is related to the stable distribution of population which immigration can just
maintain against the excess of Aμ over Iγ.
The variance of the population size for large t is

αAμ

(Iγ − Aμ)2

When Aμ = 0, ( that is, when there are only births and immigration and new infections)
it is clear from equation (4.1) that the distribution will still be negative binomial for
every finite value of t.

G(Z, t) = Iγα/Iγ
[
1− Z(1− e−Iγt)

]−α/Iγ

On the hand, when Iγ = 0,(that is, when there is immigration , emigration and
HIV infection)where emigration and HIV infection depends on the population, the
distribution assumes a Poisson process.

G(Z, t) = e

{
α

Aμ
(1−e−Aμt)(Z−1)

}

When t →∞, it gives

G(Z) = e{
α

Aμ
(Z − 1)}

When Iγ = 0,Aμ = 0 (that is, when there is only immigration ), the distribution
assumes a Poisson process with parameter αt.

G(Z, t) = eαt(Z−1)

5 Concluding Remarks

In this paper, we developed HIV/AIDS epidemic models by using Generating functions
(GF). We came up with a conceptual framework which summarizes all the concepts of
HIV/AIDS transmission models. Stochastic models based on Mother to child trans-
mission(MTCT), Heterosexual transmission and Combined models were developed. By
using the stochastic models formulated, we have also demonstrated how various factors
affect the expectations of susceptible and infective persons. It is shown from the com-
bined model that Mother to Child transmission and Heterosexual models are special
cases of the Combined model. However, in the process of achieving our goals, some
problems were encountered; based on the initial condition, it was found that when the
initial condition is assumed to be zero (0), in the case of AIDS case, most of the models
showed that the Generating function is one (1), this area need further investigation.
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