
SURPRISING APPLICATIONS AND POSSIBLE
EXTENSIONS OF DELSARTE’S METHOD

MÁTÉ MATOLCSI

Abstract. This is a short informal survey on some surprising
applications of Delsarte’s method, written for anyone being inter-
ested. I try to keep it as short and as informative as possible.

1. Introduction

Everything written here is joint work with I. Ruzsa or M. Weiner
(or both of them, in some of the problems).

The aim of the project is twofold:

• Identify problems in different branches of mathematics where
Delsarte’s linear programming method could be applied. Apply Del-
sarte’s method in these problems to the best possible extent (to
achieve this is already far from obvious in some of the problems – as
we shall see).

• More challengingly, identify extensions and generalizations of
Delsarte’s method (such as the application of semi-definite pro-
gramming described in [1, 13]) in order to get sharper upper bounds.
It is very well possible that the results of [1] can be applied, but i will
need some time to digest them.

Achieving these goals could lead to the solution of prestigious con-
jectures – see below.

2. Difference sets and Delsarte’s method

In this section we describe Delsarte’s method in a form convenient
to us (i was introduced to this form of the method by I.Ruzsa). It is
not the most general form (as far as i know, the most general form is
given by commutative association schemes), but it has two advantages:

– It is general enough to encompass many interesting applications.

– Delsarte’s linear programming bound in this case reduces to Fourier
analysis, so that the method is very simple (in principle) to apply.
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Let us turn to the description of the scheme. Let G be a compact
Abelian group, and let a symmetric subset A = −A ⊂ G, 0 ∈ A be
given. We will call A the ’forbidden’ set. We would like to determine
the maximal cardinality of a set B = {b1, . . . bm} ⊂ G such that all
differences bj − bk ∈ Ac ∪ {0} (in other words, all differences avoid the
forbidden set A). Some well-known examples of this general scheme are
present in coding theory ([3]), sphere-packings ([2]), and sets avoiding
square differences in number theory ([12]).

We now describe Delsarte’s method in this scenario.

We are looking for a ’witness’ function h : G→ R with the following
properties.

• h is an even function, h(x) = h(−x), such that the Fourier inversion
formula holds for h (in particular, h can be any finite linear combination
of characters on G).

• h(x) ≤ 0 for all x ∈ Ac

• ĥ(γ) ≥ 0 for all γ ∈ Ĝ

• ĥ(0) = 1. (For this normalization we also need to agree how the
measure is normalized on G. Of course, we normalize it so that the
measure of the whole group G is 1.)

Lemma 2.1. (Delsarte’s method)
Given a function h : G→ R with the properties above, we can conclude
that for any B = {b1, . . . bm} ⊂ G such that bj − bk ∈ Ac ∪ {0} the
cardinality of B is bounded by |B| ≤ h(0).

Proof. For any γ ∈ Ĝ define B̂(γ) =
∑m

j=1 γ(bj). Now, evaluate

(1) S =
∑
γ∈Ĝ

|B̂(γ)|2ĥ(γ).

All terms are nonnegative, and the term corresponding to γ = 0 (the

trivial character, i.e. γ(x) = 1 for all x ∈ G) gives |B̂(0)|2ĥ(0) = |B|2.
Therefore

(2) S ≥ |B|2.

On the other hand, |B̂(γ)|2 =
∑

j,k γ(bj − bk), and therefore S =∑
γ,j,k γ(bj − bk)ĥ(γ). Summing up for fixed j, k we get∑
γ γ(bj − bk)ĥ(γ) = h(bj − bk) (the Fourier inversion formula), and

therefore S =
∑

j,k h(bj − bk). Notice that j = k happens |B|-many
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times, and all the other terms (when j 6= k) are non-positive because
bj − bk ∈ Ac, and h is required to be non-positive there. Therefore

(3) S ≤ h(0)|B|.
Comparing the two estimates (2), (3) we obtain |B| ≤ h(0). �

Remark 2.2. One advantage here is that any witness function gives an
upper bound. We may not be able to find the ”best” witness function,
but nevertheless we may still be able to prove strong upper bounds.

Remark 2.3. Notice that all conditions on h are linear. Therefore,
on finite groups (of relatively small cardinality) one can find the best
witness function by linear programming. This is very convenient.

Definition 2.1. Let us introduce the notation λ−(A) as the infimum
of the possible values of h(0) (i.e. the extremal value in our linear pro-
gramming problem; this is the theoretical limit of Delsarte’s method).

And here we come to the possibly most important point of the
project:

Problem 2.4. Beat this linear programming bound. Using semi-definite
programming find a generalization of Delsarte’s bound in this scenario.
Preferably identify a ”witness object” which testifies an upper bound as
does the function h above. My feeling is that Delsarte’s method should
be ”level 1” of some more general semi-definite programming scheme.
At level k we should identify a witness object hk which gives a better
upper bound than hk−1.

3. Duality

The other huge advantage of the linear conditions on h is the follow-
ing duality. Informally speaking: if a ’good’ witness function h does
not exist, it is because some ’generalized set’ B of large cardinality
exists. More precisely, note the following properties of the function
f(x) = 1

|B|2 (1B ∗ 1−B)(x). (We think of G as being finite. If G is not

finite, then f is a measure, rather than a function; in that case it is
more convenient to remove the mass at zero, i.e. to consider the mea-
sure f = 1

|B|2 (1B ∗ 1−B)− 1
|B|δ0. In that case the properties of f below

change accordingly. I just mention this, because this is what we will
do in describing the duality in Littlewood’s conjecture.)

• f(x) is a nonnegative, even function.

• f(x) is supported on Ac ∪ {0}.
• The Fourier transform f̂(γ) is nonnegative for each γ.
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• Finally, f̂(0) = 1 and f(0) = 1
|B| .

In order to look for a ’generalized set’ B (in fact, rather a generalized
difference set B − B), we might as well look for a function f with
the properties above, and minimize the value of f(0) (because this
corresponds to maximizing the size of |B|, as f(0) = 1

|B|). This gives

us another linear programming problem.

Definition 3.1. Let us introduce the notation λ+(Ac) for the infimum
of the possible values of f(0) above.

The two linear programming problems are connected by the following
nice duality:

Proposition 3.1. λ−(A)λ+(Ac) = 1.

I skip the proof but it is not very hard. The main point is that
this duality introduces a dichotomy: either Delsarte’s method works
well (i.e. we get a strong upper bound on |B| by the linear program
on h), or we can detect its failure (by the linear program on f). In
principle, that is... In practice, the only problem that can occur is that
possibly we cannot determine either of λ−(A), λ+(Ac). The situation
is particularly intriguing in the case of the Littlewood conjecture – see
below.

4. Applications of Delsarte’s method

In this section i describe some applications that we have in mind.
Further applications are likely to emerge in the future.

4.1. Well-known applications. Let me start by some well-known
applications.

1. Binary codes with prescribed Hamming distance. This is
the original setting of Delsarte. The group is G = Zn

2 and the forbidden
subsetA is the set of words with weight less than d. We have not worked
on this.

2. Sphere-packing in Euclidean spaces. It is quite surprising
that it was only realized fairly recently that Delsarte’s method can
be used to good effect in this case, [2]. It should have been obvious
immediately... The group G = Rn is not compact, but a simple limiting
argument shows that one can consider the n-dimensional torus G =
Tn = [−1/2, 1/2)n instead, and the forbidden set A = B(0, r) the ball
of some small radius r around zero. Some of the best upper bounds on
density of sphere-packings are obtained by Delsarte’s method [2]. We
have not worked on this.
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3. Integer sets without prescribed differences. In number
theory it is a famous problem to give bounds on the cardinality of a
set B ⊂ {0, 1, . . . , N} such that the differences bi − bj avoid certain
sets. For example, the differences bi − bj are never square numbers (as
described in [12]). It is clear that Delsarte’s method can be applied,
but it is not at all clear how to find the ”best” witness function h, and
what upper bound it gives. We are working on it [10].

If you follow Delsarte’s method you conclude that the aim is to con-
struct non-negative cosine polynomials with square frequencies only
(in principle non-square frequencies are also allowed with negative co-
efficients, but we cannot make any use of them at the moment). An
old argument of Imre Ruzsa (unpublished; not hard but rather clever),
proves that if we use positive coefficients only then we cannot get any
better bound than N

logN
which is far inferior to the best currently known

bound of [11]. However, some current calculations show that allowing
negative weights will improve the upper bound considerably. We will
need to write it up and work out all the details.

Update: The problem of avoiding the cubes seems to be a lot easier.
The reason is that a direct product construction can be used in the
modular case. We get a power gain in the modular case, and we hope
to carry it over with a ”black-box” theorem to the case of the integers.
The black-box should work all the same for the squares, but we cannot
get a power-gain in the modular case.

4.2. New applications. Here I will list three surprising applications.

4. Littlewood’s conjecture. This is a rather surprising applica-
tion. Also, it is a very prestigious open problem in number theory, and
the solution of it is a great challenge. Let me describe the problem and
its reformulation in terms of Delsarte’s method:

Littlewood’s conjecture states that for all real numbers α, β we have
lim inf n‖nα‖‖nβ‖ = 0, where ‖x‖ denotes the distance of x from the
closest integer. This conjecture has been open for some 80 years and
the strongest result so far asserts that the set of possible exceptions
α, β has Hausdorff dimension 0 in the plane [5].

One can see the relevance of Delsarte’s method after reading a combi-
natorial reformulation of the problem on Tim Gowers’ web-blog on this
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topic: http://gowers.wordpress.com/2009/11/17/ problems-related-to-
littlewoods-conjecture-2/ (Actually, i was introduced to the same re-
formulation by I. Ruzsa.) Following Gowers, let us assume by contra-
diction that there exists a counterexample α, β to Littlewood’s con-
jecture. Then there exists a δ > 0 such that n‖nα‖‖nβ‖ > δ, for
all n. Now, consider a large even integer M , and take the points
Pj = (j/M, {ja}, {jb}) in the 3-dimensional torus T3 = [−1/2, 1/2)3,
for j = 1, . . .M/2. (Here {x} denotes the fractional part of x.) There
are M/2 such points Pj and they have the property that the differ-
ence of any two of them lies outside the hyperboloid Hε = {(x, y, z) :
|xyz| < ε}, where ε = δ/M . This leads to the fact that for every
ε > 0 there must exist c/ε points in the 3-dimensional torus T3 such
that the difference of any two of them falls outside the hyperboloid
Hε = {(x, y, z) : |xyz| < ε}. Therefore, in the language of Delsarte’s
scheme the underlying group isG = T3 and the forbidden set is A = Hε.
(The funny thing is that even after reading this reformulation not a sin-
gle one of the many comments mentioned that Delsarte’s method could
be used here. Somehow mathematicians are not aware of it.)

What is the maximum number of points in T3 such that all the
pairwise differences lie outside Hε? In order to prove Littlewood’s
conjecture we must show that this quantity is o(1/ε). To do so, it
is sufficient to exhibit witness functions hε on the torus T3 such that
hε(x) = hε(−x), hε|G\Hε ≤ 0, ĥ(γ) ≥ 0 for all γ ∈ Ĝ = Z3, and

h(0)/ĥ(0) = o(1/ε). Of course, it is not at all obvious how to construct
such functions, but neither is it obvious that such witness functions
cannot exist.

In fact, using the duality principle described in the section above,
we can also see what is needed to refute Delsarte’s method in this set-
ting (i.e. to prove that it cannot lead to the solution of Littlewood’s
conjecture; but be aware that such a refutation would only mean the
failure of Delsarte’s method and not the falsity of Littlewood’s conjec-
ture). We should find witness functions fε on the torus T3 such that

fε(x) = fε(−x), fε is supported on Hc
ε , f̂ε(0) = 1, and f̂(γ) ≥ −cε for

all γ.

Starting from scratch it is not at all obvious whether the witnesses
hε or fε will exist. We know by duality that either one or the other.
Tim Gowers ventured to call it a ”win-win” situation. The only way
we can ”lose” is if we cannot decide whether hε or fε exists. And this
is exactly the situation right now, unfortunately. Nevertheless, this
remains a promising approach to Littlewood’s conjecture.
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5. Mutually unbiased bases. This is another unexpected ap-
plication. It is well-described in my preprint [9]. However, I will use
slightly different and more convenient notations here to make things
more transparent.

Recall that given an orthonormal basis A = {e1, . . . , ed} in Cd, a

unit vector v is called unbiased to A if |〈v, ek〉| =
1√
d

for all 1 ≤

k ≤ d. Two orthonormal bases in Cd, A = {e1, . . . , ed} and B =

{f1, . . . , fd} are called unbiased if for every 1 ≤ j, k ≤ d, |〈ej, fk〉| =
1√
d

.

A collection B0, . . .Bm of orthonormal bases is said to be (pairwise)
mutually unbiased if every two of them are unbiased. What is the
maximal number of pairwise mutually unbiased bases (MUBs) in Cd?
This question originates from quantum information theory and has
been investigated thoroughly over the past decades (see [4] for a recent
comprehensive survey on MUBs). The following result is well-known
(see e.g. [4] and references therein for the original proofs; i will not try
to give a comprehensive list of references here):

Theorem 4.1. The number of mutually unbiased bases in Cd cannot
exceed d+ 1.

The other important well-known result concerns prime-power dimen-
sions (see e.g. [8] for a particularly simple construction).

Theorem 4.2. A collection of d+ 1 mutually unbiased bases (called a
complete set of MUBs) can be constructed if the dimension d is a prime
or a prime-power.

However, if the dimension d = pα1
1 . . . pαk

k is composite then very little
is known except for the fact that there are at least p

αj

j + 1 mutually

unbiased bases in Cd where p
αj

j is the smallest of the prime-power
divisors. In some specific square dimensions there is also a construction
based on orthogonal Latin squares which yields more MUBs than p

αj

j +1
(see [14]). The following basic problem, however, remains open for all
non-primepower dimensions:

Problem 4.3. Does a complete set of d + 1 mutually unbiased bases
exist in Cd if d is not a prime-power?

The answer is not known even for d = 6, despite considerable efforts
over the past few years. The case d = 6 is particularly tempting because
it seems to be the simplest to handle with algebraic and numerical
methods. As of now, some infinite families of MUB-triplets in C6 have
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been constructed ([15, 7]), but numerical evidence suggests that there
exist no MUB-quartets.

To reformulate the problem in Delsarte’s scheme, it will be impor-
tant for us to recall that mutually unbiased bases are naturally related
to complex Hadamard matrices. Indeed, if the bases B0, . . . ,Bm are

mutually unbiased we may identify each Bl = {e(l)
1 , . . . , e

(l)
d } with the

unitary matrix

[Hl]j,k =

[〈
e

(0)
j , e

(l)
k

〉
1≤k,j≤d

]
,

i.e. the k-th column of Hl consists of the coordinates of the k-th vector
of Bl in the basis B0. (Throughout the paper the scalar product 〈., .〉
of Cd is conjugate-linear in the first variable and linear in the second.)
With this convention, H0 = I the identity matrix and all other matrices
are unitary and have entries of modulus 1/

√
d. Therefore, the matrices

H ′l =
√
dHl have all entries of modulus 1 and complex orthogonal rows

(and columns). Such matrices are called complex Hadamard matrices.
It is thus clear that the existence of a family of mutually unbiased
bases B0, . . . ,Bm is equivalent to the existence of a family of complex
Hadamard matrices H ′1, . . . , H

′
m such that for all 1 ≤ j 6= k ≤ m,

1√
d
H

′∗
j H

′
k is again a complex Hadamard matrix.

How do mutually unbiased bases fit into Delsarte’s scheme? The
answer is that they almost perfectly do, except for the fact that the
underlying group is not Abelian. Indeed, let G = Ud×d the group of
d × d unitary matrices, and let H ⊂ Ud×d denote the set of complex
Hadamard matrices (rescaled by the factor 1/

√
d)) in Ud×d. Let the

’forbidden’ set A be the complement of H. Of course, the group op-
erations + and − in the Delsarte scheme are now replaced by matrix
multiplication and inverse. Also, the role of zero element is taken by the
identity matrix. Then, the maximal number of mutually unbiased bases
in Cd is exactly the maximal cardinality of a set {U0, U1, . . . Um} ⊂ G
such that all ’differences’ U∗j Uk (0 ≤ j, k ≤ m) lie in the prescribed
subset Ac ∪ {I}.

Unfortunately, we do not know how to generalize Delsarte’s method
to the case of non-commutative groups, in particular to G = Ud×d. Nev-
ertheless, we can still use Delsarte’s scheme if we rephrase the problem
appropriately, as follows.

Assume that a family H1, . . . Hm of m mutually unbiased complex
Hadamard matrices exists. Then all entries of all matrices are of mod-
ulus 1, and the columns (and thus the rows) within each matrix are
complex orthogonal, and we have the unbiasedness condition: for any
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two columns u,v coming from different matrices we have |〈u,v〉| =
√
d.

(Recall that we have re-normalized the matrices by a factor of
√
d.)

Each column vector z of each matrix Hj can be regarded as an ele-
ment of the group G = Td. (In this case T is regarded as the complex
unit circle, and the group-operation in Td is coordinate-wise multipli-
cation.) Also, note that each column can be multiplied by any complex
number of modulus 1, without changing orthogonality or unbiased con-
ditions. Therefore, each z can be regarded as an element of the factor
group G0 = G/C where C denotes the subgroup of coordinate-wise

constant vectors. The dual group is then Ĝ0 = Zd
0 the set of integer

vectors of dimension d with coordinate sum equal to 0.

Let us introduce the orthogonality set ORTd in G0 as the set of
vectors {z = (z1, . . . zd) : z1 + · · · + zd = 0}. Also, introduce the

unbiased set UBd = {z = (z1, . . . zd) : |z1 + · · · + zd| =
√
d}. We see

that any two column-vectors z1, z2 appearing in the matrices Hj satisfy
that z1/z2 belongs either to ORTd or UBd. Therefore, if we define the
forbidden set Ad ⊂ G0 as the complement Ad = (ORTd ∪ UBd)

c, then
we have arrived to Delsarte’s scheme.

Actually, Delsarte’s method with an appropriate witness function
immediately gives a new proof of Theorem 4.1 (in a slightly more gen-
eral form; see [9]). The witness function is:
h(z) = |z1 + · · ·+ zd|2(|z1 + · · ·+ zd|2 − d).

Remark 4.4. Clearly, this witness function is best possible if d is a
prime power. There is some hope that better witnesses exist if d = 6,
for example. But upon numerical evidence, I am inclined to doubt it.
Here again, any improvement on Delsarte’s method by semi-
definite programming would lead to the solution: a complete
system of MUB’s does not exist for d = 6.

Remark 4.5. The forbidden set (or rather its complement) naturally
breaks up as a union of ORTd and UBd. Somehow it looks like a waste
to simply take the union, and handle them together. We are losing
information: originally we know how many orthogonal and unbiased
pairs of vectors should be, but we cannot handle them separately in
Delsarte’s method. However, we have made some good progress in this
direction: we have introduced a ”generalization” of Delsarte’s scheme
for the situation when Ac breaks up into two parts. And we have been
able to prove all the results known in the literature up to dimension 5,
but dimension 6 still eludes us. I will not describe this generalization
here.
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6. Mutually orthogonal Latin squares. Somehow MUBs and
MOLs go hand-in-hand, so by now it may be less surprising that Del-
sarte’s scheme applies also to the problem of MOLs.

The idea is to build up a complete analogy between MUBs and
MOLs. Assume that a complete system S1, . . . Sn−1 of MOLs of or-
der n exist. (This is well-known to be equivalent to the existence of a
finite affine (or projective) plane of order n. We will exploit this equiv-
alence, without explicitly mentioning it.) For notational convenience
we agree that the matrices Sj are filled with entries ranging from 0 to
n − 1 (instead of the usual 1 to n), and the indexing of the rows and
columns also ranges from 0 to n − 1. Now, add an additional n × n
square S0 to the system of MOLs, where all the coordinates of the jth
column of S0 are j (j = 0, . . . , n− 1).

We will now associate to the system S0, S1, . . . Sn−1 a system of vec-
tors in the group G = Zn

n (where Zn = {0, 1, . . . n − 1} denotes the
cyclic group of order n). As an analogy, we will think of each square
Sj as the analogue of an orthonormal basis in the MUB problem, and
two such squares Si, Sj are thought to be ”unbiased” to each other.
Consider the square Sj (j = 0, 1, . . . n − 1). We will associate n dif-
ferent vectors to Sj. Let vk

j ∈ G (k = 0, 1, . . . n − 1) be constructed
in the following way: the square Sj contains exactly n entries equal to
k – one in each row (this is also true for S0). Let the mth coordinate
(m = 0, 1, . . . , n − 1) of vk

j be the index of the column in which the
number k appears in the row of index m of Sj. For example, if the en-
tries k of Sj form the main diagonal of the matrix, then the associated
vector is vk

j = (0, 1, 2, . . . , n− 1).

Applying the definition to S0 we obtain vk
0 = (k, k, . . . , k). Also, it

is easy to see from the fact that all other squares Sj are Latin squares,
that each vector vk

j (j 6= 0) will be a permutation of the numbers
0, 1, . . . n− 1.

Let us continue with our analogy to the MUB problem. Two vectors
from the ”same basis” are ”orthogonal” to each other: that is, if you
take vk

j and vr
j (coming from the same square Sj), then their difference

(coordinate-wise modulo n) will not contain 0 as a coordinate. Indeed,
if there was a 0 in vk

j − vr
j at position m, it would mean that the mth

row of Sj contains the numbers k and r in the same positions – clearly
nonsense. So, in our analogy, the orthogonality set ORTn will be given
as the set of vectors with no 0 coordinates.

If we take two vectors vk
i and vr

j from different squares (i 6= j), then
they must be ”unbiased” to each other: that is, their difference will
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contain exactly one 0 coordinate. (This is a consequence of the fact
that the squares Sj form a complete system of MOLs.) Therefore, our
unbiased set UBn will consist of vectors with exactly one 0 coordinate.

Finally, in the scheme of Delsarte, we ask for the maximal number
of vectors in G = Zn

n such that each two have a difference either in
ORTn or in UBn. We can also formulate this in terms of usual coding
terminology. We are looking for An(n, n − 1), where Aq(n, d) denotes
the maximal number of codewords made up from a q-element alphabet
such that each pair has Hamming distance at least d. Exactly this
problem was dealt with in [6], and I wonder what bound we get for
A6(6, 5) with the semi-definite programming method.

Remark 4.6. The Delsarte bound gives exactly the trivial bound n2,
so that at most n2 vectors in G can exist such that each difference lies
in ORTn ∪UBn – this means exactly the trivial upper bound n− 1 on
the number of MOLs. (Exercise: find a witness function h.) But again,
one can introduce some modification of Delsarte’s method exploiting
the fact that the prescribed set ORTn ∪ UBn naturally breaks up into
two parts, and try to use this additional information. We have done
steps in this direction, but we could not go beyond n = 6 due to
computational complexity. Again, it would be interesting to see
what upper bounds the extensions of the Delsarte scheme by
semi-definite programming give. It would be quite a challenge to
prove the non-existence of projective planes of order 12, for example.
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