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Abstract. We study the length (number of summands) in partitions of
an integer into primes, both in the restricted (unequal summands) and
unrestricted case. It is shown how one can obtain asymptotic expansions
for the mean and variance (and potentially higher moments), which is in
contrast to the fact that there is no asymptotic formula for the number
of such partitions in terms of elementary functions. Building on ideas of
Hwang, we also prove a central limit theorem in the restricted case. The
technique also generalizes to partitions into powers of primes, or even
more generally, the values of a polynomial at the prime numbers.
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1. Introduction

Prime partitions (partitions into primes) of an integer n are ways to write n
as a sum of primes. We say that a partition is restricted if repetitions are not
allowed, and unrestricted otherwise.

For ordinary partitions (partitions into arbitrary summands), Erdős and
Lehner [4] proved that the limit distribution for the number of summands is
Gaussian in the restricted case and the so-called double exponential (Gumbel)
distribution in the unrestricted case. In their proof they made use of the well
known Hardy-Ramanujan asymptotic formula [9] for the number of integer
partitions:

P (n) ∼ 1
4n
√

3
exp(π

√
2n/3)
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as n→∞. The analogue of this result for primes is quite complicated as the
asymptotic formula cannot be expressed in terms of elementary functions,
see [18] for more details. However, in this case Hardy and Ramanujan [8, 9]
proved the following asymptotic formula

log p(n) ∼ 2π
√
n/(3 log n),

where p(n) is the number of partitions of n into primes.
There are also more general results concerning the number of summands in
so-called λ-partitions (unrestricted), which are partitions whose summands
belong to a given increasing sequence of positive integers λ. The sequence λ
must satisfy some technical conditions, and it has been shown that one can
apply the result to the sequence of primes (see Section 4). This was found in a
paper by Haselgrove and Temperley in [10] and later improved independently
by Lee [13] and Richmond [15]. Their theorems give a generalization of the
Erdős-Lehner result for unrestricted partitions.

On the other hand, Hwang developed general theorems for restricted λ-
partitions, showing that the limit distribution remains Gaussian under certain
technical conditions (see [12] for details). Efforts have been made to reduce
these conditions, see for instance [14], but yet the sequence of primes fails to
satisfy these conditions, as also mentioned explicitly in Hwang’s paper.

With some modifications of the method used in [12] one can prove the
following for primes:

Theorem 1. The number of summands in a random restricted partition of
n into distinct primes is asymptotically normally distributed with mean and
variance satisfying the following asymptotic formulas:

µn =
2 log 2
π

√
6n

log n

(
1− log log n

2 log n
+O

( 1
log n

))
and

σ2
n =
√

6
π

(
1− 12 log2 2

π2

)√ n

log n

(
1− log log n

2 log n
+O

( 1
log n

))
respectively as n→∞.

Further examples of central limit theorems in the context of partitions
include those by Goh and Schmutz [7] for the number of distinct parts and by
Brennan, Knopfmacher and Wagner [2] for ascents of size d or more (equiv-
alently, parts of multiplicity d or more).

In principle, the presented method can be used to determine even more
terms of an asymptotic expansion. Let us mention that the main asymptotic
term of µn (and also of mean and variance in the unrestricted case) already
occurs in [16], but with the factor log n missing.

We shall prove this theorem in detail in Section 3, and then later on, in
Section 4 we give an asymptotic formula for mean and variance for the distri-
bution of the number of summands in a random unrestricted prime partition
of n. Finally, in Section 5, we discuss how our results can be generalized to a
wider variety of sequences involving primes.
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2. Definitions and preliminary results

In this section we gather important information about primes that are funda-
mental for the proof of our main results. But first, let us agree on notations
and conventions that will be used throughout the paper.

Notation. Assume that all partitions of n into distinct primes are equally
likely. Let $n denote the number of summands in a random partition, the
mean and standard deviation are denoted by µn and σn respectively. The
random variable $∗n , its mean µ∗n and variance σ∗n are defined analogously
for unrestricted prime partitions. We shall use

∏
p and

∑
p as abbreviations

for the product and sum over all primes respectively. The Dirichlet series
associated to the sequence of primes is defined by

D(s) :=
∑
p

p−s

for complex numbers s with Re(s) > 1.

The first result that we need is the following about the exponential sum

g(τ) :=
∑
p

e−pτ .

The result states that:

Lemma 2. For any constant 1/3 < c < 1/2 there is a constant c1 > 0 such
that

g(r)− Re g(τ) ≥ c1 log2 1
r

for τ = r + iy with r1+c ≤ |y| ≤ π as r → 0+.

A major part of this result has already been proved by Roth and Szekeres
in [17, last section]. Since it is a fundamental result and its proof is not too
long, we shall give a complete proof here.

Proof. First, let us assume that πr ≤ |y| ≤ π. We have

g(r)− Re g(τ) =
∑
p

e−pr(1− cos py) (1)

≥
∑
p≤r−1

e−pr(1− cos p|y|) (2)

≥ 8e−1
∑
p≤r−1

∥∥∥∥p|y|2π

∥∥∥∥2

(3)

where ‖.‖ denotes the distance from the nearest integer. To simplify our
notation let us define α = α(y) to be |y|/2π, then we have r/2 ≤ |α| ≤ 1/2.
First, if α is rational, say α = a/q, where a and q (with q > 1) are coprime,
then ∑

p≤r−1

∥∥∥∥paq
∥∥∥∥2

�
∑
p≤r−1

1
q2
� 1

q2r log 1/r
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for sufficiently small r. This is sufficient for small values of q, say q ≤ r−1/3.
Now suppose that 2r−1 ≥ q ≥ r−1/3. Then there are� 1/(r log 1/r) elements
in {pa : p ≤ r−1}, and each residue class modulo q contains at most d 1

qr e
elements from this set . It follows that at least c2q/(log(1/r)) distinct residue
classes occur in {pa : p ≤ r−1}, where c2 is a positive constant. Therefore,
the sum in (3) is at least

1
q2

bc3q/ log 1/r)c∑
j=1

j2 > c4
r−1/3

log3 1/r

for some positive constants c3 and c4. That settles the case where α is a
rational of the form a/q with q ≤ 2r−1. Otherwise we approximate α by
rational in the following way: we choose relatively prime integers a and q
such that q ≤ 2br−1c and ∣∣∣α− a

q

∣∣∣ ≤ 1
2qbr−1c

.

Then we claim that for any p ≤ r−1

‖pα‖ ≥ 1
2
‖pa/q‖ .

The claim follows from the fact that if

|x− y| ≤ ‖y‖
2

then ‖x‖ ≥ ‖y‖2 , using the triangle inequality for ‖.‖. Now the desired estimate
follows from the case of rational α.

For the remaining part, that is for r1+c ≤ |y| ≤ πr

g(r)− Re g(τ) =
∑
p

e−pr(1− cos py) ≥
∑
p≤r−1

e−pr(1− cos p|y|).

The latter sum can be estimated as follows: since p ≤ r−1 we have p|y| ≤ π,
and so

1− cos p|y| ≥ 2
π2
p2y2.

Therefore,∑
p≤r−1

e−pr(1− cos p|y|) ≥
∑
p≤r−1

e−1 2
π2
p2y2 ≥ c1r−1+2c/ log 1

r ,

which completes the proof. �

One of the methods that we are using here is the so-called Mellin trans-
form method which is quite powerful in determining asymptotic formulas for
harmonic sums. Our main interest here are harmonic series over primes for
which the Dirichlet series D(s) plays a fundamental role. First of all, the
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series D(s) is absolutely convergent in the half-plane Re(s) > 1 and therefore
analytic in that region. But we can also express D(s) as

D(s) = log ζ(s) +
∑
p

(log(1− p−s) + p−s) (4)

where ζ(s) is the Riemann zeta function, so D(s) can be continued analyti-
cally to some bigger cut-plane not containing any zeros of ζ(s). The sum on
the right-hand side of (4) is absolutely convergent for Re(s) > 1/2.

Note that if f̂(s) is the Mellin transform of a function f(x) then the
Mellin inversion formula says that

f(x) =
1

2πi

∫ c+i∞

c−i∞
f̂(s)x−sds (5)

for any real c in the fundamental strip of f̂(s). The next lemma gives us
asymptotic formulas for some integrals of type (5).

Lemma 3. Let F (s) be an analytic function in Re(s) > 1/2 admitting the
following Taylor expansion around s = 1:

F (s) = a0 +
N∑
k≥1

ak
k!

(s− 1)k +O((s− 1)N+1),

and assume furthermore that F (σ + it) decays exponentially when |t| → ∞,
uniformly for δ−1 ≤ σ ≤ δ for some fixed δ > 1. Then we have

1
2iπ

∫ c+i∞

c−i∞
F (s)D(s)r−sds =

N∑
k=0

(−1)kak
r(log 1

r )k+1
+O(log log 1

r/(r(log 1
r )N+2))

for any c > 1.
If F (s) is meromorphic admitting only a single pole at s = 1 with residue 1
and if the rest of the above conditions are satisfied then we have

1
2iπ

∫ c+i∞

c−i∞
F (s)D(s)r−sds =

log log 1
r

r
+
B1

r
+O(1/(r log 1

r ))

where B1 is Mertens’s constant, defined as

B1 := γ +
∑
p

(log(1− 1/p) + 1/p) ,

where γ is the Euler–Mascheroni constant.

Similar results are quite common in this context, so we do not give
detailed proof here and only provide the main steps.

Proof. The Dirichlet series D(s) admits the following bound

|D(σ + it)| = O(log log(t))

for large t, uniformly for σ ≥ 1. This comes from the fact that ζ(σ + it)
is bounded above and bellow by powers of log t for σ ≥ 1. Therefore, the
function |F (s)D(s)| decays exponentially along a vertical line and uniformly
for Re(s) ≥ 1, so we may safely shift the path of integration to the left
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without changing the value of the integral. Hence, for sufficiently small r we
may consider the path P defined as the union of the following parts (see
Figure 1):

• P0 = {s = 1 + 1

log
1
r

eiθ : −π/2 ≤ θ ≤ π/2} ∪ {s = 1 + x ± i 1

log
1
r

:

−1r
log

1
r

≤ x ≤ 0},

• P1 = {s = 1− 1r
log

1
r

+ it : 1

log
1
r

≤ |t| ≤ log 1
r},

• P2 = {s = 1 + it : |t| ≥ log 1
r} ∪ {s = 1 + x± i log 1

r : −1r
log

1
r

≤ x ≤ 0}.

1

i log 1
r

−i log 1
r

P

Figure 1. Path of integration P .

For r sufficiently small, this path is included in the interior of the zero-
free region of the Riemann zeta function (for more details on the zero-free
region of the Riemann zeta function see [6]).

On P1, one can say that |D(s)| also grows slowly , since the logarithmic
derivative ζ ′(σ + it)/ζ(σ + it) is bounded above by a power of log t close to
the line Re(s) = 1 (see for instance [1]). Therefore, the contribution from the
integrals over P1 and P2 are both exponentially small in log 1/r.

On P0, one uses Taylor expansion for the first case , or Laurent expansion
for the second case of the function F (s) around s = 1. Thus the integrals that
we need to compute are integrals of the form

1
2πi

∫
P0

log(s− 1)(s− 1)kr−sds
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for k = −1, 0, 1, 2, 3, · · · . Then use the change of variable

s = 1 +
z

log 1
r

.

to change the path of integration into the so-called Hankel contour (see for
example [5]). The rest of the proof consists of straightforward calculations.

�

3. Proof of the main theorem

To obtain the central limit theorem, we basically follow the ideas in Hwang’s
paper [12] but first we would like to compute asymptotic formulas for the
mean and variance of the random variable $n. Recall that restricted parti-
tions are partitions without repetitions, so the following bivariate generating
function is the generating function for the number of restricted partitions
with given length:

Q(u, z) =
∏
p

(1 + uzp),

i.e., the coefficient of ukzn in Q(u, z) is the number of ways of writing n as a
sum of exactly k distinct primes. In other words

[zn]Q(u, z) = q(n)E(u$n)

where q(n) = [zn]Q(1, z) is the total number of ways of writing n as sum of
distinct primes. Note that for any u in a fixed bounded interval containing
1, the infinite product Q(u, z) is convergent for |z| < 1 and so it is analytic
in the unit disc. Let us then define the following function

f(u, τ) := logQ(u, e−τ ) =
∑
p

log(1 + ue−pτ ), (6)

where we always use the principal branch of the logarithm function. The next
lemma provides an asymptotic formula for q(n) for large n.

Proposition 4. The number of unequal partitions of n into primes has the
asymptotic formula

q(n) =
enr√

2πf2(r)
Q(1, e−r)(1 +O(n−1/7)) (7)

as n→∞, where r > 0 is the solution of the equation

n =
∑
p

pe−pr

1 + e−pr
. (8)

Proof. We know that q(n) is the coefficient of zn in Q(1, z), so

q(n) =
enr

2π

∫ π

−π
exp(nit+ f(1, r + it))dt, (9)

for any r > 0. Then we choose r as defined in Equation (8). The series in
(8) is a monotone decreasing function of r, so the solution r = r(n) of (8)
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exists and is unique, and it tends to zero as n tends to infinity. Now, we split
the integral in (9) as follows: first the integral in the center for |t| ≤ r1+β

and then the tails for r1+β < |t| ≤ π, where β is any constant such that
1/3 < β < 1/2. For |t| ≤ r1+β the function f(1, r + it) admits an expansion

f(1, r + it) = f(1, r) + if1(r)t− f2(r)
t2

2
+O(t3 sup

0≤t0≤t
|f3(r + it0)|)

where fk(r) denotes the kth derivative of f(1, τ) with respect to τ at τ =
r. We use Lemma 3 to find an asymptotic formula for fk(r). The Mellin
transform of fk(r) is given by

M(fk(r), s) = (−1)k+1 Lis−k+1(−1)Γ(s)D(s− k),

where the function Lis(−1) is the polylogarithm function regarded as a func-
tion of s. For Re(s) > 0 one can represent Lis(−1) as

Lis(−1) =
∑
k≥1

(−1)k

ks

and it can be continued analytically to the whole s-plane as

Lis(−1) = (21−s − 1)ζ(s).

Therefore by Lemma 3 one gets

fk(r) = (−1)kk!
π2/12

rk+1 log 1
r

(
1 +O

( 1
log 1

r

))
(10)

as r → 0. To estimate the third derivative f3(r + it) we have

|f3(r + it)| �
∑
p

p3e−pr

|1 + e−p(r+it)|3
.

For any prime p and |t| ≤ r1+β we have

|1 + e−p(r+it)| ≥ 1− e−1

since if p ≥ r−1 , then

|1 + e−p(r+it)| ≥ 1− e−pr ≥ 1− e−1

and if p < r−1 then

|1 + e−p(r+it)| ≥ 1 + Re(e−p(r+it)) = 1 + e−pr cos(pt) > 1.

Therefore
|f3(r + it)| �

∑
p

p3e−pr � 1
r4 log 1/r

Hence one has

nit+ f(1, r + it) = f(1, r)− f2(r)
t2

2
+O(r3β−1/ log 1

r ).

Thus∫ r1+β

−r1+β
enit+f(1,r+it)dt =

∫ r1+β

−r1+β
e−f2(r)t

2/2dt(1 +O(r3β−1/ log 1
r )),
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and ∫ r1+β

−r1+β
e−f2(r)t

2/2dt =
∫ +∞

−∞
e−f2(r)t

2/2dt+ 2
∫ +∞

r1+β
e−f2(r)t

2/2dt.

The first integral on the right hand side gives the asymptotic formula, the
second integral is smaller than any power of r, as r → 0. It remains to show
that the tails are small, and for that we make use of Lemma 2. In fact,

|Q(1, e−(r+it))|2

Q(1, e−r)2
=
∏
p

(
1− 2e−pr(1− cos(pt))

(1 + e−pr)2

)
≤ exp

(
− 1

2

∑
p

e−pr(1− cos(pt))
)
.

Thus, for r1+β < |t| ≤ π Lemma 2 applies and we deduce that the tails of
the integral in (9) are exponentially smaller than the main term. Then the
asymptotic formula in Equation (7) follows by choosing any β > 3/7. �

Mean and variance. The mean µn of the random variable $n can be obtained
as

µn =
∂

∂u
E(u$n)|u=1.

So we may express µn in terms of Q(u, z) as follows:

q(n)µn = [zn]Q(1, z)
∑
p

zp

1 + zp
. (11)

By the Cauchy formula we have

q(n)µn =
enr

2π

∫ π

−π
exp(nit+ f(1, r + it))g(r + it)dt (12)

for any r > 0, where

g(τ) :=
∑
p

e−pτ

1 + e−pτ
.

We choose r = r(n) as defined in Proposition 4. We shall now estimate the
following integral rather than working directly on the integral in (12)

q(n)(µn − g(r)) =
enr

2π

∫ π

−π
exp(nit+ f(1, r + it))(g(r + it)− g(r))dt. (13)

In fact, we want to show that the integral in Equation (13) is of small order
compared to the order of g(r). We apply the saddle point technique again to
the integral (13), it is not hard to show that the tails here are also small. So
the main term comes from the integral in the center for which |t| ≤ r1+β with
the same β defined above. Then g(r + it) admits the following expansion

g(r + it)− g(r) = ig1(r)t− g2(r)
t2

2
+O(t3 sup

0≤t1≤t
|g3(r + it1)|). (14)



10 Dimbinaina Ralaivaosaona

By means of the Mellin transform method we can show that the kth derivative
gk(r) of g(τ) satisfies the following asymptotic formula

gk(r) = (−1)kk!
log 2

rk+1 log 1
r

(
1 +O

( 1
log 1

r

))
for small r. One can also prove in a similar way as we did for f3(r+ it), that
the error term in Equation (14) is a O(r3β−1/ log 1

r ). On the other hand we
have

enit+f(1,r+it) = e−f2(r)t
2/2

(
1− if3(r)

t3

6
+O(r6β−2/ log 1

r

2)
)
.

Therefore, as in the proof of Proposition 4, we can extend the integration to
the whole range of real numbers, and we deduce that

q(n)(µn − g(r)) = q(n)
(
f3(r)g1(r)− f2(r)g2(r)

2f2(r)2
+O(r7β−3/ log 1

r ))
)
.

To make the error term small, we choose 3/7 < β < 1/2, which implies that

µn =
∑
p

e−pr

1 + e−pr
+

3 log 2
π2

+O
( 1

log 1
r

)
. (15)

Note that we have the following estimate for r:

r = r(n) =
π√

6n log n

(
1− log log n

2 log n
+O

( 1
log n

))
as n → ∞. It is possible to expand the formula even further and get more
terms in the expansion. Then the estimate of µn in (15) implies the formula
in Theorem 1. We do the same for the variance, which is given by the formula

σ2
n =

∂2

∂2u
E(u$n)|u=1 − µ2

n + µn.

The second derivative of the function Q(u, z) with respect to u is

∂2

∂2u
Q(u, z)|u=1 = Q(1, z)

(∑
p

zp

1 + zp

)2

−Q(1, z)
∑
p

z2p

(1 + zp)2
.

One can derive the following integral, using equation (11) followed by the
Cauchy theorem:

q(n)(σ2
n + µ2

n) =
enr

2π

∫ π

−π
exp(int+ f(1, r + it))(g(r + it)2 + h(r + it))dt,

where

h(τ) =
∑
p

e−pτ

(1 + e−pτ )2
.

Then by same method that we used for µn , one may show that the variance
satisfies the asymptotic formula

σ2
n = h(r)− g1(r)2

f2(r)
+O(r3β−2/ log2 1

r ).
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which in turn implies the formula for σ2
n in Theorem 1.

Distribution function

Just like the mean and variance, one can also represent the moment gener-
ating function of the normalized random variable ($n − µn)/σn in terms of
Q(u, z). The moment generating function is by definition

Mn(t) = E(e($n−µn)t/σn) (16)

= exp
(
−µnt
σn

)
Qn(et/σn)
Qn(1)

(17)

where Qn(u) = [zn]Q(u, z), and so Qn(1) = q(n). We shall study the behavior
of Qn(u) for u in a fixed bounded interval containing 1, say 1− δ ≤ u ≤ 1 + δ
for a fixed small δ > 0. Throughout this section we will always assume that
u is as such, and say that an approximation is uniform in u if it is uniform
for u in that interval. We start by an analogue of Proposition 4.

Proposition 5. The following asymptotic formula holds for the coefficient of
zn in Q(u, z):

Qn(u) =
1√

2πf2(u, r)
enr+f(u,r)

(
1 +O

(
n−1/7

))
.

uniformly in u, as n → ∞. Here, r = r(u, n) is now the unique positive
solution of the equation

n =
∑
p

pue−pr

1 + ue−pr
.

Before we prove this result, let us first introduce the function Y (u, s)
defined to be the Mellin transform of the function log(1 + ue−x). Then the
following lemma can be found in [12, Lemma 1]:

Lemma 6. For any fixed u lying in the cut-plane C r (−∞,−1], the function
Y (u, s) can be meromorphically continued to the whole s-plane with simple
poles at s = 0,−1,−2,−3, · · · . Moreover, Y (u, s) satisfies the estimate

|Y (u, σ + it)| � e−(π/2−ε)|t|

for any ε > 0 and |t| → +∞, uniformly as σ and u are restricted to compact
sets.

This property follows from the fact that the function Y (u, s) can be
written as a product of a polylogarithm and the Gamma function.

Proof. (of Proposition 5) We follow the lines in the proof of Proposition 4,
so by the Cauchy theorem we have

Qn(u) =
enr

2π

∫ π

−π
exp(int+ f(u, r + it))dt
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for any r > 0. The saddle-point method suggests to choose r a solution of
the equation

n = −f1(u, r) =
∑
p

p

u−1erp + 1
. (18)

The sum on the right hand side is a strictly decreasing function of r tending
to 0 when r → +∞ and∞ when r → 0. Therefore, the solution r = r(u, n) of
the equation (18) exists and it is unique for u and n fixed. Also, r(u, n) tends
to 0 uniformly in u as n → ∞. The next step is to split the integral into a
central part which is the integral over the interval [−r1+β , r1+β ], where β is
a constant such that 1/3 < β < 1/2, and the tails. Let us first evaluate the
integral in the center, for which |t| ≤ r1+β and the function int+ f(u, r+ it)
admits the Taylor expansion

int+ f(u, r + it) = f(u, r)− f2(u, r)
t2

2
+O(|t3| sup

0≤t0≤t
|f3(u, r + it0)|).

Note that

Y (u, 1) =
∫ +∞

0

log(1 + ue−t)dt

is strictly positive for any value of u > 0. By the Mellin transform method
and Lemma 6 along with this observation, the function f2(u, r) is of order
r−3/ log 1

r and |f3(u, r+it)| is a O(r−4/ log 1
r ); these estimates are uniform in

u. One can use the same technique as in the proof of Proposition 4 to justify
the bound on |f3(u, r + it)| provided that u is close enough to 1 (that is to
choose a relatively small δ). Therefore, as in Lemma 4 the integral in the
center gives the term we want. The tails are small as a result of the following
observation combined with Lemma 2:

|Q(u, e−(r+it))|2

Q(u, e−r)2
=
∏
p

(
1− 2ue−pr(1− cos(pt))

(1 + ue−pr)2

)
≤ exp

(
− 2u

(1 + u)2
∑
p

e−pr(1− cos(pt)
)
.

Finally, from Equation (18) and from the Mellin transform method we derive
the asymptotic formula for r

r = r(u, n) ∼

√
2Y (u, 1)
n log n

uniformly in u as n→∞. Thus, the result follows by choosing β > 3/7. �

Until the end of this section let us use the following abbreviations: r =
r(u, n), r0 := r(1, n), u = et/σn and

fij(u, r) =
∂i

∂iτ

∂j

∂ju
f(u, τ)|τ=r.

Then it follows easily from Proposition 5 that
Qn(u)
Qn(1)

= exp
(
n(r − r0) + f(u, r)− f(1, r0)

)(
1 +O

( |t|
σn

+ n−1/7
))
.
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By implicit differentiation we have

r − r0 = − g1(r0)
f2(1, r0)

(u− 1) +O(r0(u− 1)2) = O(r0(u− 1)).

Therefore,

f(u, r)− f(u, r0) = f1(u, r0)(r − r0) + f2(u, r0)
(r − r0)2

2
+O(t3

√
r0 log 1

r0
).

Also,

f1(u, r0)(r − r0) = f1(1, r0)(r − r0) + f11(1, r0)(u− 1)(r − r0)

+O(t3
√
r0 log 1

r0
)

= −n(r − r0) + g1(r0)(u− 1)(r − r0) +O(t3
√
r0 log 1

r0
),

and for the second term we have

f2(u, r0)
(r − r0)2

2
= f2(1, r0)

(r − r0)2

2
+O(t3

√
r0 log 1

r0
).

Finally,

f(u, r0)− f(1, r0) = g(r0)(u− 1) + f02(1, r0)
(u− 1)2

2
+O(t3

√
r0 log 1

r0
).

Thus the function in the exponent can be written as

g(r0)(u− 1) +
(
f02(1, r0)− g1(r0)2

f2(1, r0)

)
(u− 1)2

2
+O(t3

√
r0 log 1

r0
).

On the other hand

u− 1 =
t

σn
+

t2

2σ2
n

+O(t3/σ3
n)

so the exponent becomes

g(r0)
t

σn
+
(
g(r0) + f02(1, r0)− g1(r0)2

f2(1, r0)

)
t2

2σ2
n

+O(t3
√
r0 log 1

r0
)

= g(r0)
t

σn
+
(
h(r0)− g1(r0)2

f2(1, r0)

)
t2

2σ2
n

+O(t3
√
r0 log 1

r0
)

The error terms in the above expansions can be verified using the same
method we used to bound the |f3(r + it)| in the proof of Proposition 4.
Replacing µn and σn by their respective values in Equation (17), we get the
asymptotic formula we expected:

Mn(t) = et
2/2(1 +O((|t|+ |t|3)n−1/4+ε + n−1/7)) (19)

as n → ∞, for any ε > 0. By Curtiss’ theorem [3] the limit distribution is
indeed Gaussian.
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Remark. The asymptotic formula we get in (19) is very similar to those we
find in [12] or [14] and therefore, the following bounds hold for the tails

P
($n − µn

σn
≥ x

)
≤

e
−x2/2

(
1 +O(1/ log3 n)

)
if 0 ≤ x ≤ n1/12−ε,

e−n
1/12−εx/2

(
1 +O(1/ log3 n)

)
if x ≥ n1/12−ε,

for any small constant ε > 0. Similar bounds hold for

P
($n − µn

σn
≤ −x

)
.

4. Unrestricted partitions

Recall that unrestricted partitions are those whose parts are allowed to re-
peat. The appropriate bivariate generating function for the unrestricted case
is given by

Q(u, z) =
∏
p

(1− uzp)−1.

The infinite product converges only if |uz| < 1, unlike the restricted case
where we had convergence for |z| < 1 , for any u restricted in a bounded in-
terval containing 1. As before, we consider the logarithm of the above infinite
product

f(u, τ) = logQ(u, e−τ ) =
∑
p

log(1− ue−pτ ).

Mean and Variance

For the mean and variance, we have formulas rather similar to those for the
restricted case. The analogue of the integral representation for the mean is

p(n)µ∗n =
enr

2π

∫ π

−π
exp(int+ f(1, r + it))g(r + it)dt (20)

for any r > 0, where p(n) is the total number of ways of writing n as a sum
of primes, and

g(τ) :=
∑
p

e−pτ

1− e−pτ
.

For the variance,

p(n)(σ∗2n +µ∗2n ) =
enr

2π

∫ π

−π
exp

(
int+f(1, r+it)

)
(g(r+it)2+h(r+it))dt (21)

where

h(τ) =
∑
p

e−pτ

(1− e−pτ )2
.

The Mellin transform of the kth derivatives of f(1, τ) and g(τ) at τ = r are
given by

M(fk(1, r), s) = (−1)kζ(s− k + 1)Γ(s)D(s− k)
and

M(gk(r), s) = (−1)kζ(s− k)Γ(s)D(s− k).
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So, by Lemma 3 the orders of fk(1, r) and gk(r) differ from r−(k+1) only by
factors of log 1/r or log log 1

r , where we take r = r(n) > 0 to be the solution
of the equation

n =
∑
p

pe−rp

1− e−rp
.

Thus, we only have to repeat the procedures in the previous section to com-
pute the mean. For the variance, the Mellin transform of the function h(r) is
given by

M(h(r), s) = ζ(s− 1)Γ(s)D(s)
which has a simple pole at s = 2 from the zeta function. Therefore, the order
of h(r) is r−2 which is greater than the contribution from the g(τ)2 in the
integral for the variance. The asymptotic formulas for the mean and variance
follow:

Theorem 7. The mean and variance of the distribution of the number of
summands in an unrestricted partition of an integer n into primes satisfy the
following asymptotic formulas:

µ∗n =
∑
p

e−rp

1− e−rp
+O(log2 1

r )

As a function of n,

µ∗n =
√

3
π

(log log n+B1 − log 2)
√
n log n

(
1 +

log log n
2 log n

+O
( 1

log n

))
.

Likewise,

σ∗2n =
∑
p

e−rp

(1− e−rp)2
+O

( log2 1
r

r

)
.

As a function of n,

σ∗2n =
3D(2)n log n

π2

(
1 +

log logn
log n

+O
( 1

log n

))
as n→∞.

For comparison, the mean number of summands of a partition into ar-
bitrary parts is

√
6n

2π

(
log n+ 2γ − log(π2/6)

)
+O(log n),

see [11].

Remark. We also have a central limit theorem in the unrestricted case: it is
known from [10] that the limit as n→∞ of the normalized random variable
$∗
n−µ

∗
n

σ∗n
has the following moment generating function:

M(t) =
∏
p

(
1− t̃

p

)−1

e
− t̃p

where t̃ = t/
√
D(2).
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5. Generalization

A natural question one can ask is whether the result remains true for powers
of primes or more generally for polynomials f(p) of primes. But one needs to
be careful here since, for example, p2 + p is always even for any prime p so
we need to impose some additional conditions on the polynomial. From the
result of [17] and a slight modification of our proof of Lemma 2 we can get

Lemma 8. Let f(x) be a strictly increasing polynomial which takes only inte-
gral values for integer x and has the property that for every prime p there is
a positive integer x such that p - xf(x). For any constant 1/3 < c < 1/2 and
r1+c ≤ |y| ≤ π we have the inequality∑

p

e−f(p)r(1− cos f(p)y) ≥ c′ log2 1
r

for an absolute constant c′ > 0 as r → 0+.

The associated Dirichlet series is closely related to the Dirichlet series
of primes. Suppose that the dominant term in our polynomial f(x) is of the
form axd where a is a positive integer and d is the degree of f(x). Then

Df (s)− a−sD(ds) = a−s
∑
p

(
aspds − (f(p))s

pds(f(p))s

)
.

The series on the right hand side is absolutely convergent for Re(s) > 1/(2d).
Therefore our method applies, and the limit distribution of the number of
summands in partitions of n into distinct primes is Gaussian with mean and
variance

µn ∼ C1(a, d)
(

n

logd n

) 1
1+d

and σ2
n ∼ C2(a, d)

(
n

logd n

) 1
1+d

,

where Ci(a, d) can be determined explicitly. As for unrestricted partitions,
the mean and variance follow the asymptotic formulas:

µ∗n ∼ C ′1(a, d) (n log n)
d

1+d and σ∗2n ∼ C ′2(a, d) (n log n)
2d

1+d

when d ≥ 2, again the C ′i(a, d) can be determined explicitly.
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