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Background information and motivation

Martingale Representation Theorem

If we assume that Xt ∈ Rn and that B̃(t) ∈ Rn (recipe for
completeness), then the value of portfolio Θ ∈ Rn is
V (t) = V (0) +

∫ t
0 Θ(s)dX (s).

It can be shown that e−ρT V (T ) = z +
∫ T

0 φ(t)dB̃(t) =

z +
∫ T

0
∑n

j=1 φj(t)dB̃j(t) z ∈ R (∗∗)
Thus EQ[e−ρT V (T )] = z and φ(t) is related to Θ(t) in a
special way. It turns out that z = EQ[e−ρT F (ω) in a
complete market and z = v(0, x) is the price at time 0 of
the contingent claim.
Therefore a market is complete iff there exists z ∈ R and
Θ(.) such that (∗∗) is satisfied.
What if we fail to find z or Θ(.)?
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Background information and motivation

Incomplete markets

If there is more than one risk neutral measure,
The market is incomplete.
Not every contingent claim F (ω) is attainable in the form of
(∗∗)
There is an infinite number of prices for each contingent
claim.
This implies that buyers and sellers do not agree on a
unique price
It was proved that pb

0(F ) ≤ p0(F ) ≤ ps
0(F )

The problem is to find the “best" price and “perfect hedge"
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Background information and motivation

Many ideas behind pricing
relative entropy minimizer Q which minimizes

I(Q\P) =

{
EP

[
dQ
dP ln

(
dQ
dP

)]
if Q << P

+∞ otherwise
General f− divergence

If (Q\P) =

{
EP

[
f
(

dQ
dP

)]
if Q << P

+∞ otherwise
where f is convex

on [0,∞[

Essecher transform dQX(T ),h
dP = ehX(T )

EP [ehX(T )]

Mean variance-measure EQ [V (T )− F ]2

Utility theory ...Nash equilibrium
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A different direction: Complete the market!

Completion of a Lévy market: Nualart et al’s idea!

Completing an incomplete market due to jumps were
studied by Nualart et al. For any Lévy process
Zt = cBt + Xt , where Xt =

∫
R zÑ(dt ,dz) + αt

(α = E [X1]−
∫
|z|≥1 zν(dz) ). Let ∆Zs = Zs − Zs− be the

jump process

Set Z (i)
t =

∑
0≤s≤t (∆Zs)i and by default let Z (1)

t = Zt

It turns out that E [Xt ] = E [X (1)
t ] = ta = tm1 <∞ and

E [X (i)
t ] = E

[∑
0<s≤t (∆Xs)i

]
= t

∫
R x iν(dx) = mi t <

∞, i ≥ 2

Denote by Y (i)
t = Z (i)

t − E [Z (i)
t ] = Z (i)

t −mi t , i ≥ 1
(Teugels martingales of order i) and
T (i) = ci,iY (i) + ci,i−1Y (i−1) + · · ·+ ci,1Y (1), i ≥ 1
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A different direction: Complete the market!

The market of stock ,Zt and bond and normalized
processes H̃(i)

t = ertT (i)
t , i ≥ 2 is complete.

But if Xt ≡ 0, then ∆Zs ≡ 0 and this method fails!
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asset prices

Mathematical preliminaries

Consider a filtered probability space (Ω,F ,Ft ,P)
bond price:

dS0(t) = ρ(t)S0(t)dt (1)

Stock:

dS1(t) = S1(t) [α(t)dt + σ1(t)dB1(t) + . . . σm(t)dBm(t)] (2)

Girsanov theorems:
~u(t) = (u1(t),u2(t), . . . ,um(t))Tr

so that
m∑

j=1

σj .uj(t) = α(t)− ρ(t)

The equivalent martingale measure is Q, given by
dQ
dP

= Z (T ) where

Z (t) = exp
[
−
∫ t

0
u(s)dB(s)− 1

2

∫ t

0
u2(s)ds

]
is not

unique.
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The f q -variance minimizer

The f q-variance minimizer

Recall that the f q-divergence is defined by
f q(Q\P) = EP [f q(Z (T ))] = EP [Z (T )q].
The f q-variance minimizer is then the martingale measure
Qq∗

such that
f q(Qq∗\P) = min

Q∈M
EP [Z (T )q], whereM is the set of

equivalent martingale measures and q ∈ I is arbitrary and
I ∈ (−∞,0) ∪ (1,∞).

uj = uq
j =

σj (α− ρ)

∆
where ∆ =

m∑
j=1

σ2
j which does not

depend on q.
Let Qq∗

be the equivalent martingale measure induced by
~u = ~uq =

(
uq

1 ,u
q
2 , . . . ,u

q
m
)Tr

Then with respect to Qq∗
, we have

dS1(t) = S1(t)
[
ρdt + σ1dB̃1(t) + . . . σmdB̃m(t)

]
(3)
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The f q -variance minimizer

Summary

From now on, we consider that with respect to Qq∗
,all

asset parameters are constant. One can then use the
measure Qq∗

to price any contingent claim F such that
Vt = EQq∗

[
e−ρ(T−t)F (ω)|Ft

]
.

However, what is not guaranteed here is for the hedging
portfolio of F to exist, in other words, it is possible that for
some contingent claim F, there is no self-financing portfolio
such that the terminal value of the portfolio at least equals
F with positive probability
A quick example in this case is any payoff which depends
on the terminal value of one of the standard Brownian
motions, that is, if F (ω) = f (B̃j(T )), 0 ≤ j ≤ m, say, for
some measurable function f



Introduction Our idea of completeness: The market model Variation processes Market Completeness Our Results/Contribution Summary

Asset prices

Stock price and generated variation assets

We now construct the i th− variation processes as follows:

We know that e−ρtS1(t) is a Qq∗
-martingale. Now, let

W1(t) = e−ρtS1(t)− S0, then

EQq∗

[
W 2

1 (t)
]
<∞ (4)

LetM2 be the set of all Qq∗
-martingales such that (4)

holds. Then W1(t) ∈M2 and W 2
1 (t)− < W1 >t is a

Qq∗
-martingale.

Let Z1(t) = W 2
1 (t)− < W1 >t and define S2(t) by

S2(t) = eρtZ1(t) and W2(t) = e−ρtS2 is a Qq∗
-martingale

We continue like this so that the process
Zi(t) = W 2

i (t)− < Wi >t is a Qq∗
-martingale for any i ≥ 1 .
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Asset prices

Explicit solutions

Note here that

dSk (t) = ρSk (t)dt + 2(k−1)e−(k−1)ρt
k−1∏
j=1

Sj(t).S1(t)
m∑

j=1

σjdB̃j(t)

k ≥ 1

and

dZk (t) = 2ke−(k+1)ρt
k∏

j=1

Sj(t).S1(t)
m∑

j=1

σjdB̃j(t), k ≥ 1

so that

e−ρtSk (t) = Sk (0) +

∫ t

0
2k−1e−ρku

k−1∏
j=1

Sj(u)S1(u)
m∑

j=1

σjdB̃j(u) (5)
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Asset prices

The Oksendals

and

Zk (t) = Zk (0) +

∫ t

0
2ke−(k+1)ρu

k∏
j=1

Sj(u)S1(u)
m∑

j=1

σjdB̃j(u) (6)

we define the following processes Yi as

Yi = ai,iZi + ai,i−1Zi−1 + . . . · · ·+ ai,1Z1, i ≥ 1 (7)

The coefficients ai,j , i , j ≥ 1 through an orthogonalization
process as in Nualart et al
The processes Ỹk = eρtYk , k ≥ 1 (where Yk , given in (7))
will be the orthonomal versions of the processes Sk (t).
We shall call the processes Ỹi(t), the Oksendals



Introduction Our idea of completeness: The market model Variation processes Market Completeness Our Results/Contribution Summary

Martingale Representation Theorem in Complete Markets

Review of market completeness

If a market is complete, then any contingent claim F (ω)
can be replicated by a self-financing portfolio of stocks and
bonds in that F (ω) = V (T ).
Moreover, by the martingale representation theorem
(MRP) there exists a real number z and an adapted
process φ(t , ω) ∈ Rm×1 such that,

F (ω) = z +

∫ T

0
φ(t , ω)dB̃(t) (8)

where B̃(t) =
(

B̃1(t), . . . , B̃m(t)
)Tr

In incomplete markets, it is possible to find some
contingent claims F (ω) such that there exists no φ(t , ω)
such that equation (8) holds
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Martingale Representation Theorem for the enlarged market

Proposition (Martingale Representation Theorem)

Let F = e−ρT V (T ) ∈ L2
(

Ω,Qq∗
)

where V (T ) is the terminal

value of a portfolio of bond, stock and i th-variation processes.

Assume further that E

[ ∞∑
i=2

∫ T

0
hi(s)dYi(s)

]2

<∞. Then there

exist processes h(t) and hi(t), i ≥ 2 such that F can be written
as

F = z +

∫ T

0
h(s)

m∑
j=1

σjdB̃j(s) +
∞∑

i=2

∫ T

0
hi(s)dYi(s) (9)



Introduction Our idea of completeness: The market model Variation processes Market Completeness Our Results/Contribution Summary

Martingale Representation Theorem for the enlarged market

where z ∈ R,and h(t) and hi(t), i ≥ 2 are adapted processes
such that

E
[∫ t

0
|h(s)|ds

]
<∞ and E

[∫ t

0

∞∑
i=2

|hi(s)|2ds

]
<∞ (10)

PROOF OMITTED
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Market Completeness

Theorem

An incomplete market model with more noise terms than stocks
can be completed by variation processes in the sense that any
T-claim F such that EQq∗ [F ] <∞ can be replicated by a
portfolio of bond, stock and ith-variation processes.

PROOF OMITTED
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Hedging Portfolio

The Greeks

Theorem
Let
Y (t) =

(
S1(t), Ỹ1(t), . . . , Ỹn(t)

)Tr
=
(

Y0(t), Ỹ1(t), . . . , Ỹn(t)
)Tr

with Y (0) = y0, Ỹi(0) = ỹi , for 1 ≤ i ≤ n
and Y0(0) = S1(0) = s1 = y0. 6

Then
dY (t) = b

(
Y0(t), . . . , Ỹn(t)

)
dt + σ

(
Y0, Ỹ1(t), . . . , Ỹn(t)

)
dB̃(t)

where
b
(

Y0(t), . . . , Ỹn(t)
)

=(
b0(Y0(t), . . . , Ỹn(t)), . . . ,bn(Y0(t), . . . , Ỹn(t))

)Tr
=(

ρS1(t), ρỸ1(t), . . . , Ỹn(t)
)Tr

and

6 Note that we shall (with some abuse of notation) also use y0, ỹi for
respectively the process Y(t) and Ỹi(t) starting at any other point t ≥ 0
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Hedging Portfolio

σ
(

Y0, Ỹ1(t), . . . , Ỹn(t)
)

=
S1σ1 S1σ2 . . . S1σm

S1σ1γi S1γ1σ2 . . . S1γ1σm
...

...
...

...
S1γnσ1 S1γnσ2 . . . S1γnσm

.

Consider a function h ∈ C2
0 then we have

h(t) =
∂

∂s1
(t ,Y (t))Ey

Qq∗ [h(Y (T − t))] S1(t) (11)

i .e ε(t) = eρt ∂

∂s1
(t ,Y (t))Ey

Qq∗ [h(Y (T − t))] and

hi(t) = eρt ∂

∂ỹi
(t ,Y (t))Ey

Qq∗ [h(Y (T − t))] , i = 1,2, . . . ,n (12)

PROOF OMITTED:
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Summary

Note that if v(t ,Y (t)) is the value of portfolio Θ(t) of stock,
bond and i th-variation processes, and if
h(Y (t)) = e−ρtv(t ,Y (t)), then

∆(t) = ε(t) =
∂

∂s1
Ey

Qq∗ [v(t ,Y (T − t))] and

∆̃i(t) = βi(t) =
∂

∂ỹ1
Ey

Qq∗ [v(t ,Y (T − t))] i = 2,3, . . . ,n

and these are the “deltas" of the securities.

Definition (African option)
An option whose payoff is not attainable in a market of stocks
and bonds but which can be hedged by a portfolio of stocks,
bonds and Oksendals is called an African option.
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