International Mathematical Forum, Vol. 6, 2011, no. 8, 389 - 398

Maximal Rank for $\Omega_{\mathbf{P}^n}$

Damian M. Maingi

The School of Mathematics University of Nairobi P.O. Box 30197 00100 Nairobi, Kenia dmaingi@uonbi.ac.ke & Laboratoiré J A Dieudonne

Université de Nice–Sophia Antipolis 06108 Nice Cedex 02 France dmaingi@unice.fr

Abstract. Let **k** an algebraically closed field and R the homogeneous coordinate ring of \mathbf{P}^n and $\Omega_{\mathbf{P}^n}$ the cotangent bundle of \mathbf{P}^n . In this paper I prove that for a given set S of s general points in \mathbf{P}^n then the evaluation map $H^0(\mathbf{P}^n, \Omega_{\mathbf{P}^n}(l)) \longrightarrow \bigoplus_{i=1}^s \Omega_{\mathbf{P}^n}(l)_{|P_i|}$ is of maximal rank. Implying that $a_0 = 0$ or $b_0 = 0$ so that $a_0b_0 = 0$ as conjectured by Anna Lorenzini [4, 5] see below

 $\cdots \longrightarrow R(-d-2)^{b_1} \bigoplus R(-d-1)^{a_0} \longrightarrow R(-d-1)^{b_0} \bigoplus R(-d)^{\binom{d+n}{n}-s} \longrightarrow I_S \longrightarrow 0$

Mathematics Subject Classification: 13D02, 16E05

Keywords: Elementary Transformations, Cotangent Vector Bundle

1. INTRODUCTION

For a general set of points $\{P_1, \ldots, P_s\} \in \mathbf{P}^n$, with $s \ge n+1$, then the homogeneous ideal of the sub-scheme of the union of these points, $I_S \subset R = \mathbf{k}[x_0, \ldots, x_n]$, **k** an algebraically closed field and R the homogeneous coordinate ring of \mathbf{P}^n , has the following expected form:

 $0 \longrightarrow F_{n-1} \longrightarrow \cdots \longrightarrow F_p \longrightarrow \cdots \longrightarrow F_0 \longrightarrow I_S \longrightarrow 0,$

D. M. Maingi

$$F_p = R(-d-p)^{a_{p-1}} \bigoplus R(-d-p-1)^{b_p},$$

d being the smallest integer satisfying $s \leq h^0(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(d))$, with

$$a_{p} = \max\{0, h^{0}(\mathbf{P}^{n}, \Omega_{\mathbf{P}^{n}}^{p+1}(d+p+1)) - \operatorname{rk}(\Omega_{\mathbf{P}^{n}}^{p+1})s\},\$$

$$b_{p} = \max\{0, \operatorname{rk}(\Omega_{\mathbf{P}^{n}}^{p+1})s - h^{0}(\mathbf{P}^{n}, \Omega_{\mathbf{P}^{n}}^{p+1}(d+p+1))\}, \text{ and }$$

$$\binom{d+n-1}{n} < s \le \binom{d+n}{n}.$$

The problem can be reduced to showing the following; for all $0 \le p \le n-1$ and non-negative integer l then existence of the above resolution is the same as saying the evaluation map below is of maximal rank i.e. it is surjective or injective or both; see [1].

$$H^0(\mathbf{P}^n, \Omega^{p+1}_{\mathbf{P}^n}(l)) \longrightarrow \bigoplus_{i=1}^s \Omega^{p+1}_{\mathbf{P}^n}(l)_{|P_i}.$$

For this consider the exact sequence

$$0 \longrightarrow \Omega_{\mathbf{P}^n}(1) \longrightarrow W \otimes \mathcal{O}_{\mathbf{P}^n} \longrightarrow \mathcal{O}_{\mathbf{P}^n}(1) \longrightarrow 0$$

Here, $W = H^0(\mathcal{O}_{\mathbf{P}^n}(1))$, the set of linear forms and $\mathbf{k}[x_0, x_1, ..., x_n] = \text{Sym}(W)$

Tensoring the sequence above with $T_S(d)$ gives

$$0 \longrightarrow \mathbf{T}_S \otimes \Omega_{\mathbf{P}^n}(d+1) \longrightarrow W \otimes \mathbf{T}_S(d) \longrightarrow \mathbf{T}_S(d+1) \longrightarrow 0$$

Now taking global sections we get;

$$0 \longrightarrow H^{0}(\mathbf{T}_{S} \otimes \Omega_{\mathbf{P}^{n}}(d+1)) \longrightarrow W \otimes I_{d} \longrightarrow I_{d+1}$$

$$\downarrow$$

$$H^{1}(\mathbf{T}_{S} \otimes \Omega_{\mathbf{P}^{n}}(d+1))$$

$$\downarrow$$

$$0$$

Thus $H^1(\mathcal{T}_S \otimes \Omega_{\mathbf{P}^n}(d+1)) = I_{d+1}/W \cdot I_d$, corresponds to the minimal generators of I_S of degree d+1, and its dimension is b_0 i.e. $h^1(\mathcal{T}_S \otimes \Omega_{\mathbf{P}^n}(d+1)) = b_0$.

Similarly, $H^0(T_S \otimes \Omega_{\mathbf{P}^n}(d+1))$ is the space of linear relations among the generators of degree d, whose dimension is a_0 i.e. $h^0(T_S \otimes \Omega_{\mathbf{P}^n}(d+1)) = a_0$.

Now consider the exact sequence

 $0 \longrightarrow \mathbf{T}_S \longrightarrow \mathfrak{O}_{\mathbf{P}^n} \longrightarrow \mathfrak{O}_S \longrightarrow 0$

Tensoring it by $\Omega_{\mathbf{P}^n}(d+1)$ gives;

$$0 \longrightarrow \mathcal{T}_S \otimes \Omega_{\mathbf{P}^n}(d+1) \longrightarrow \Omega_{\mathbf{P}^n}(d+1) \longrightarrow \Omega_{\mathbf{P}^n}(d+1)_{|S|} \longrightarrow 0$$

and now taking global sections yields

We will prove that μ is of maximal rank for a general set S of s points in \mathbf{P}^n .

As result, if μ is injective then its kernel is null i.e. $a_0 = h^0(T_S \otimes \Omega_{\mathbf{P}^n}(d+1)) = 0$ and the cokernel is not null that is $b_0 = h^1(T_S \otimes \Omega_{\mathbf{P}^n}(d+1))$ as expected. On other hand, if μ is surjective then we have the cokernel of μ being null i.e. $b_0 = h^1(T_S \otimes \Omega_{\mathbf{P}^n}(d+1)) = 0$ and the kernel of μ is not null that is, $a_0 = h^0(T_S \otimes \Omega_{\mathbf{P}^n}(d+1))$.

2. PRELIMINARIES

We use the statements (the so called *Enonces*) as in [1] by Hirschowitz and Simpson which F Lauze used in [2] to proof maximal rank for $T_{\mathbf{P}^n}$.

Let X a smooth projective variety and X' non-singular divisor of X. Let F be a locally free sheaf on X and

$$0 \longrightarrow F'' \longrightarrow F_{|X'} \longrightarrow F' \longrightarrow 0$$

be a exact sequence of locally free sheaves on X'. The kernel E of $F \longrightarrow F'$ is a locally free sheaf on X and we have another exact sequence of locally free sheaves on X'

 $0 \longrightarrow \mathbf{F}'(-X') \longrightarrow \mathbf{E}_{|X'} \longrightarrow \mathbf{F}'' \longrightarrow 0$

and as well exact sequences of coherent sheaves on X

 $0 \xrightarrow{} E \xrightarrow{} F \xrightarrow{} F' \xrightarrow{} 0$

and

$$0 \longrightarrow F(-X) \longrightarrow E \longrightarrow F'' \longrightarrow 0.$$

We have the following hypotheses: $\mathbf{R}(\mathbf{F}, \mathbf{F}', y; a, b, c)$

2.1. Notation. Set $X = \mathbf{P}^n$, $X' = \mathbf{P}^{n-1}$, $\mathbf{F} = \Omega_{\mathbf{P}^n}$, $\mathbf{F}' = \Omega_{\mathbf{P}^{n-1}}$, $\mathbf{E} = \mathcal{O}_{\mathbf{P}^n}^{\oplus n}(-2)$, $\mathbf{F}'' = \mathcal{O}_{\mathbf{P}^{n-1}}(-1)$.

The exact sequences of the elementary transformations after twisting by d + 1 are:

From which we have the hypotheses:

$$\begin{split} \boldsymbol{H}_{\Omega,n}'(d+1;\alpha,\beta,\gamma) &= \boldsymbol{H}(\Omega_{\mathbf{P}^n}(d+1),\Omega_{\mathbf{P}^{n-1}}(d+1),\alpha,\beta,\gamma) \text{ and} \\ \boldsymbol{H}_{\mathcal{O},n}'(d-1;\rho,\sigma,\tau) &= \boldsymbol{H}(\mathcal{O}_{\mathbf{P}^n}(d-1)^{\oplus n},\mathcal{O}_{\mathbf{P}^{n-1}}(d);\rho,\sigma,\tau) \text{ and} \\ \boldsymbol{H}_{\mathcal{O},n}''(d-1;\rho,\sigma,\tau) &= \boldsymbol{H}(\mathcal{O}_{\mathbf{P}^n}(d-1)^{\oplus n},\mathcal{O}_{\mathbf{P}^{n-1}}(d);\rho,\sigma,\tau). \end{split}$$

For the plane divisorial, with $H \subseteq \mathbf{P}^n$ a hyperplane isomorphic to \mathbf{P}^{n-1} we shall utilize the sequence;

$$0 \longrightarrow \mathcal{O}_{\mathbf{P}^n}(d-2)^{\oplus n} \longrightarrow \mathcal{O}_{\mathbf{P}^n}(d-1)^{\oplus n} \longrightarrow \mathcal{O}_H(d-1)^{\oplus n} \longrightarrow 0.$$

Hypothesis 2.1. $H'_{\Omega,n}(d+1;\alpha,\beta,\gamma)$

The hypothesis $\mathbf{H}'_{\Omega,n}(d+1;\alpha,\beta,\gamma)$ asserts that for non-negative integers α , β , γ and ε satisfying the conditions:

 $0 \leq \gamma \leq 1$, and $1 \leq \varepsilon \leq n-2$, $n\alpha + n - 1\beta + \varepsilon\gamma = h^0(\Omega_{\mathbf{P}^n}(d+1))$, and

392

 $(n-1)\beta + \varepsilon\gamma \leq h^0(\Omega_{\mathbf{P}^{n-1}}(d+1))$ having for $\gamma = 1$ a quotient Γ' then the map

$$\eta: H^0(\mathbf{P}^n, \Omega_{\mathbf{P}^n}(d+1)) \longrightarrow \bigoplus_{i=1}^{\alpha} \Omega_{\mathbf{P}^n}(d+1)_{|A_i} \oplus \bigoplus_{j=1}^{\beta} \Omega_{\mathbf{P}^{n-1}}(d+1)_{|B_j} \oplus \Gamma'_{|C}$$

is bijective with $h^0(\Omega_{\mathbf{P}^n}(d+1)) = d\binom{d+n}{d+1}$ and for α general points $A_1 \dots A_\alpha \in \mathbf{P}^n$, $\beta + 1$ general points $B_1 \dots B_\beta, C \in \mathbf{P}^{n-1}$.

Hypothesis 2.2. $H_{\Omega,n}(d+1)$

The hypothesis $\mathbf{H}_{\Omega,n}(d+1)$ asserts that $\mathbf{H}'_{\Omega,n}(d+1;\alpha,\beta,\gamma)$ is true for all α,β and γ satisfying the conditions above.

Hypothesis 2.3. $H'_{\mathcal{O},n}(d-1;\rho,\sigma,\tau)$

The hypothesis $\mathbf{H}'_{0,n}(d-1;\rho,\sigma,\tau)$ asserts that for non-negative integers ρ , σ , τ and θ satisfying the conditions:

 $0 \leq \tau \leq 1 \text{ and } 2 \leq \theta \leq n-1,$ $n\rho + \sigma + \theta\tau = h^0(\mathcal{O}_{\mathbf{P}^n}(d-1)^{\oplus n}), \text{ and}$ $\sigma + \theta\tau \leq h^0(\mathcal{O}_{\mathbf{P}^{n-1}}(d)) \text{ having for } \tau = 1 \text{ a quotient } \Gamma \text{ then the map}$

$$\phi: H^0(\mathbf{P}^n, \mathfrak{O}_{\mathbf{P}^n}(d-1)^{\oplus n}) \longrightarrow \bigoplus_{i=1}^{\rho} \mathfrak{O}_{\mathbf{P}^n}(d-1)_{|R_i}^{\oplus n} \oplus \bigoplus_{j=1}^{\sigma} \mathfrak{O}_{\mathbf{P}^{n-1}}(d)_{|S_j} \oplus \Gamma(S)_{|T_i|}$$

is bijective with $h^0(\mathcal{O}_{\mathbf{P}^n}(d-1)^{\oplus n}) = n\binom{d+n-1}{d-1}$ and for ρ general points $R_1 \dots R_{\rho} \in \mathbf{P}^n$, $\sigma + 1$ general points $S_1 \dots S_{\sigma}, T \in \mathbf{P}^{n-1}$.

Hypothesis 2.4. $H_{\mathcal{O},n}(d-1)$

The hypothesis $\mathbf{H}_{0,n}(d-1)$ asserts that $\mathbf{H}'_{0,n}(d-1;\rho,\sigma,\tau)$ is true for any ρ , σ , and τ satisfying the conditions above.

Hypothesis 2.5. $H''_{O,n}(d-1;\rho,\sigma,\tau)$

A variant version of the hypothesis $\mathbf{H}'_{0,n}(d-1;\rho,\sigma,\tau)$ with Γ independent of Γ' takes the form $\mathbf{H}''_{0,n}(d-1;\rho,\sigma,\tau)$ and it makes the same assertion as the hypothesis $\mathbf{H}'_{0,n}(d-1;\rho,\sigma,\tau)$ the only difference being quotient dependency.

3. The methods of horace

Méthode d'Horace simple[3] lemme 1

Lemma 3.1. Suppose we have a bijective morphism of vector spaces $\gamma : H^0(X', F') \longrightarrow L$ and that we have $H^1(X, E) = 0$. Let $\mu : H^0(X, F) \longrightarrow L$ be a morphism of vector spaces. Then for $H^0(X, F) \longrightarrow M \oplus L$ to be of maximal rank it suffices that $H^0(X, E) \longrightarrow M$ is of maximal rank.

Differential méthode d'Horace([1] lemme 1)

Lemma 3.2. Suppose we are given a surjective morphism of vector spaces, $\lambda : H^0(\mathbf{P}^{n-1}, \Omega_{\mathbf{P}^{n-1}}(d+1)) \longrightarrow L$ and suppose there exists a point $Z' \in \mathbf{P}^{n-1}$ such that $H^0(\mathbf{P}^{n-1}, \Omega_{\mathbf{P}^{n-1}}(d+1)) \longrightarrow L \oplus \Omega_{\mathbf{P}^{n-1}}(d+1)_{|Z'}$ and suppose $H^1(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(d-1)^{\oplus n}) =$ 0. Then there exists a quotient $\mathcal{O}_{\mathbf{P}^n}(d-1)_{|Z'}^{\oplus n} \longrightarrow D(\lambda)$ with kernel contained in $\Omega_{\mathbf{P}^{n-1}}(d)_{|Z'}$ of dimension $\dim(D(\lambda)) = \operatorname{rk}(\Omega_{\mathbf{P}^n}(d+1)) - \dim(\ker \lambda)$ having the following property. Let $\mu : H^0(\mathbf{P}^n, \Omega_{\mathbf{P}^n}(d+1)) \longrightarrow M$ be a morphism of vector spaces then there exists $Z \in \mathbf{P}^{n-1}$ such that if $H^0(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(d-1)^{\oplus n}) \longrightarrow M \bigoplus D(\lambda)$ is of maximal rank then $H^0(\mathbf{P}^n, \Omega_{\mathbf{P}^n}(d+1)) \longrightarrow M \oplus L \bigoplus \Omega_{\mathbf{P}^n}(d+1)|_Z$ is also of maximal rank.

The sequences for the quotient are as follows:

3.1. The Vectorial Methods.

Lemma 3.3. Vectorial Method 1

Let α , β , γ , d and ε be non-negative integers satisfying the conditions of Hypothesis 2.1 and ρ , σ , τ and θ non-negative integers satisfying the conditions of Hypothesis 2.3 then the Hypothesis $\mathbf{H}'_{0,n}(d-1;\rho,\sigma,\tau)$ implies $\mathbf{H}'_{\Omega,n}(d+1;\alpha,\beta,\gamma)$.

Proof. Consider the exact sequence;

$$0 \longrightarrow \mathcal{O}_{\mathbf{P}^n}(d-1)^{\oplus n} \longrightarrow \Omega_{\mathbf{P}^n}(d+1) \longrightarrow \Omega_{\mathbf{P}^{n-1}}(d+1) \longrightarrow 0$$

and let *B* and *C* be general subsets of \mathbf{P}^{n-1} . We specialize *A* to $R \cup S \cup T$ with *R* a general set of ρ points in \mathbf{P}^n and *S* and *T* sets of σ and τ general points in \mathbf{P}^{n-1} . To run points to \mathbf{P}^{n-1} , consider the map, $\gamma : H^0(\Omega_{\mathbf{P}^{n-1}}(d+1)) \longrightarrow H^0(\Omega_{\mathbf{P}^{n-1}}(d+1)|_B) \oplus \Gamma'_{|_C}$, if

the number of points we have satisfy $h^0(\Omega_{\mathbf{P}^{n-1}}(d+1))$ then γ is bijective, if not then we specialize as many more points as we need to \mathbf{P}^{n-1} in order for γ to become bijective.

Taking global sections for the exact sequence above and evaluating we construct;

From the above diagram of exact sequences, by Inductive hypothesis on \mathbf{P}^{n-1} and Lemma 3.2 the map γ is bijective and hence if α is bijective then β is bijective as well and this gives $\mathbf{H}'_{\mathcal{O},n}(d-1;\rho,\sigma,\tau)$ implies $\mathbf{H}'_{\Omega,n}(d+1;\alpha,\beta,\gamma)$

Lemma 3.4. Vectorial Method 2

Let ρ , σ , τ and θ non-negative integers satisfying the conditions of Hypothesis 2.3 and $\overline{\alpha}$, $\overline{\beta}$, $\overline{\gamma}$ and $\overline{\varepsilon}$ be non-negative integers satisfying conditions similar to those of Hypothesis 2.1 with the Hypothesis $\mathbf{H}'_{\Omega,n}(d;\overline{\alpha},\overline{\beta},\overline{\gamma})$ being the same as Hypothesis 2.1 but twisted by 1, then the Hypothesis $\mathbf{H}'_{\Omega,n}(d;\overline{\alpha},\overline{\beta},\overline{\gamma})$ implies $\mathbf{H}'_{\Omega,n}(d-1;\rho,\sigma,\tau)$.

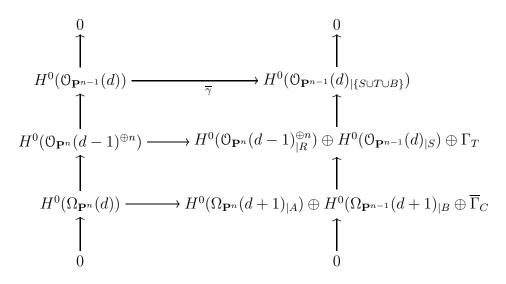
Proof. Consider the exact sequence;

$$0 \longrightarrow \Omega_{\mathbf{P}^n}(d) \longrightarrow \mathcal{O}_{\mathbf{P}^n}(d-1)^{\oplus n} \longrightarrow \mathcal{O}_{\mathbf{P}^{n-1}}(d) \longrightarrow 0$$

and let S and T general sets of σ and τ points in \mathbf{P}^{n-1} , specialize R to $A \cup B$, where A is a general set of $\overline{\alpha}$ points in \mathbf{P}^n and B is a general set of $\overline{\beta}$ points in \mathbf{P}^{n-1} with C = T.

Now consider the evaluation map, $\gamma : H^0(\mathcal{O}_{\mathbf{P}^{n-1}}(d)) \longrightarrow H^0(\mathcal{O}_{\mathbf{P}^{n-1}}(d)_{|S \cup T})$, if the number of points we have are enough to satisfy $h^0(\mathcal{O}_{\mathbf{P}^n}(d))$ then $\overline{\gamma}$ bijective, if not then we specialize as many more points, $\overline{\beta}$, in this case, to \mathbf{P}^{n-1} in order for $\overline{\gamma}$ to become bijective.

Taking global sections for the exact sequence above and evaluating at corresponding points we construct a diagram of exact sequences as follows;



The map $\overline{\gamma}$ is bijective giving the Hypothesis $H'_{\Omega,n}(d; \overline{\alpha}, \overline{\beta}, \overline{\gamma})$ implies $H'_{\mathcal{O},n}(d-1; \rho, \sigma, \tau)$. When the number of points we have in \mathbf{P}^{n-1} are few relative to d we use the plane divisorial method in preference to this method.

Lemma 3.5. Plane Divisorial

Let ρ , σ , τ and θ non-negative integers satisfying the conditions of Hypothesis 2.3 and set $\rho' = \rho - h^0(\mathcal{O}_{\mathbf{P}^{n-1}}(d-1))$. If $\rho' \ge 0$ and $\sigma + \tau \le h^0(\mathcal{O}_{\mathbf{P}^{n-1}}(d-1))$ then the Hypothesis $\mathbf{H}_{\mathcal{O},n}(d-2;\rho',\sigma,\tau)$ implies $\mathbf{H}_{\mathcal{O},n}(d-1;\rho,\sigma,\tau)$.

Proof. Let R be a general set of ρ points in \mathbf{P}^n , S and T be general sets of σ and τ points in \mathbf{P}^{n-1} such that they are fewer relative to d (i.e. when Vectorial Method 2 fails). We choose a hyperplane $H \subset \mathbf{P}^n$ disjoint from S and T with $H \cong \mathbf{P}^{n-1}$ and specialize ρ' points from \mathbf{P}^n to H (i.e. R' is the set we have after specializing from R in \mathbf{P}^n) so that $H^0(H, \mathcal{O}_H(d-1)^{\oplus n}) \longrightarrow H^0(\mathcal{O}_H(d-1)^{\oplus n}_{|R'})$ is bijective that is set $\rho - \rho' = h^0(\mathcal{O}_{\mathbf{P}^{n-1}}(d-1))$ and so taking global sections for the sequence

$$0 \longrightarrow \mathcal{O}_{\mathbf{P}^n}(d-2)^{\oplus n} \longrightarrow \mathcal{O}_{\mathbf{P}^n}(d-1)^{\oplus n} \longrightarrow \mathcal{O}_H(d-1)^{\oplus n} \longrightarrow 0$$

we construct a diagram of exact sequences:

Since α is bijective then γ bijective implies β is also bijective and this gives the Hypothesis $\boldsymbol{H}_{0,n}(d-2;\rho',\sigma,\tau)$ implies $\boldsymbol{H}_{0,n}(d-1;\rho,\sigma,\tau)$.

3.2. Hypercritical mèthode d'Horace.

Lemma 3.6. Consider $\mathbf{H}'_{0,n}(d-1; s_1, s_2, 0)$ with $d \ge 1, s_1$, and s_2 being non-negative integers that satisfy: $ns_1 + s_2 = h^0(\mathcal{O}_{\mathbf{P}^n}(d-1)^{\oplus n})$ and $s_2 \le h^0(\mathcal{O}_{\mathbf{P}^{n-1}}(d))$. Now suppose that the $H^0(\Omega_{\mathbf{P}^n}(d)) \longrightarrow H^0(\Omega_{\mathbf{P}^n}(d)|_{S_1})$ is injective and $H^0(\mathcal{O}_{\mathbf{P}^n}(d-1)^{\oplus n}) \longrightarrow H^0(\mathcal{O}_{\mathbf{P}^n}(d-1)^{\oplus n}|_{S_1})$ is surjective with a general $S_1 \subseteq \mathbf{P}^n$ then the Hypothesis $\mathbf{H}'_{0,n}(d-1; s_1, s_2, 0)$ is true.

This Lemma is for when we have no quotient.

Proof. See [6] Lemma 1.11.

Lemma 3.7. Consider $\mathbf{H}'_{\mathfrak{O},n}(d-1;s_1,s_2,1)$ where $d \geq 1, s_1, s_2$ and $2 \leq \theta \leq n-1$ are non-negative integers such that, $ns_1+s_2+\theta = h^0(\mathfrak{O}_{\mathbf{P}^n}(d-1)^{\oplus n})$ and $s_2+\theta \leq h^0(\mathfrak{O}_{\mathbf{P}^{n-1}}(d))$. Under the same Hypotheses as Lemma 2.1 i.e. $H^0(\mathfrak{O}_{\mathbf{P}^n}(d)) \longrightarrow H^0(\mathfrak{O}_{\mathbf{P}^n}(d)|_{S_1})$ is injective and $H^0(\mathfrak{O}_{\mathbf{P}^n}(d-1)^{\oplus n}) \longrightarrow H^0(\mathfrak{O}_{\mathbf{P}^n}(d-1)^{\oplus n}|_{S_1})$ is surjective then the Hypothesis $\mathbf{H}''_{\mathfrak{O},n}(d-1;s_1,s_2,1)$ is true.

Proof. See [6] Lemma 1.12.

3.3. The Main Theorem.

Theorem 3.8. Suppose $H_{\Omega,n}(d+1)$ is true. Then for any non-negative integer m, there exists a set, $M = \{P_1, P_2, \ldots, P_m\}$ of m points in \mathbf{P}^n such that the evaluation map, μ , is of maximal rank.

$$\mu: H^0(\mathbf{P}^n, \Omega_{\mathbf{P}^n}(d+1)) \longrightarrow \bigoplus_{i=1}^m \Omega_{\mathbf{P}^n}(d+1)_{|P_i|}$$

Proof. (a) If $h^0(\Omega_{\mathbf{P}^n}(d+1)) \equiv 0 \pmod{n}$ then r is the critical number of points needed for bijectivity i.e. the map $H^0(\mathbf{P}^n, \Omega_{\mathbf{P}^n}(d+1)) \longrightarrow \bigoplus_{i=1}^r \Omega_{\mathbf{P}^n|P_i}$ is bijective. Set $\pi = \lfloor \frac{1}{n} h^0(\Omega_{\mathbf{P}^n}(d+1)) \rfloor$

we now have the following cases:

(i) if m = r then our map is bijective since we have the same number of points as the critical number i.e. the map α is bijective and γ an identity map and so μ is bijective see below:

$$H^{0}(\mathbf{P}^{n}, \Omega_{\mathbf{P}^{n}}(d+1)) \xrightarrow{\mu} \bigoplus_{i=1}^{m} \Omega_{\mathbf{P}^{n}|P_{i}}$$

$$\uparrow^{\gamma}$$

$$\bigoplus_{i=1}^{n} \Omega_{\mathbf{P}^{n}|P_{i}} \oplus \bigoplus_{i=n+1}^{r} \Omega_{\mathbf{P}^{n}|P_{i}}$$

(ii) if m > r i.e. we have more points than the critical number and our map is injective i.e. since α is bijective and γ surjective then our map μ has to inject see below:

(iii) if m < r then we have the less points than the critical number thus our map surjects i.e. since α is bijective and γ surjective then our map μ is surjective.

References

- [1] A Hirschowitz and C Simpson: La résolution minimale de l'idéal d'un arrangement général d'un grand nombre de points dans \mathbf{P}^n . Invent. Math. **126**, 467–503 (1996).
- [2] F Lauze: Rang maximal pour $T_{\mathbf{P}^n}$. Manuscripta Math. 92, 525–543 (1997).
- [3] F Lauze: Sur la résolution des arrangements génèriques de points dans les espaces projectifs Thèse, Université de Nice-Sophia Antipolis, Septembre 1994.
- [4] A Lorenzini: The Minimal Resolution Conjecture. J Algebra 156, 5–35 (1993).
- [5] A Lorenzini: On the Betti numbers of points in projective space. Ph.D. thesis. Queen's University, Kingston, Ontario, 1987. J Algebra 156, 5–35 (1993).
- [6] D M Maingi: On the Application of the Method of Horace to get the number of generators for an ideal of s general points in P⁴ International Journal of Algebra, Vol. 4, 10, 477 - 500 (2010), to appear.

Received: September, 2010