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Abstract. Let k an algebraically closed field and R the homogeneous coordinate ring
of P™ and Qpn the cotangent bundle of P™. In this paper I prove that for a given set S of
s general points in P" then the evaluation map H(P™, Qpn (1)) — @;_, Qpn(1)|p, is of
maximal rank. Implying that ag = 0 or by = 0 so that agby = 0 as conjectured by Anna
Lorenzini [4, 5] see below
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1. INTRODUCTION

For a general set of points { Py, ..., Ps} € P", with s > n + 1, then the homogeneous ideal

of the sub-scheme of the union of these points, Is C R = k[xy, ..., z,], k an algebraically
closed field and R the homogeneous coordinate ring of P", has the following expected
form:

0 —— F,.q —— -+ F, £y Ig 0
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F, = R(—d—p)**»* @ R(~d —p—1)",

d being the smallest integer satifying s < h°(P", Opn(d)), with
4y = max{0, KO(P™, OB (d + p + 1)) — Tk(QB)s),

by = max{0, tk(Qp')s — hO(P", 51 (d + p + 1))}, and

(d—l—n—l) <s< (d+n)'
n n

The problem can be reduced to showing the following; for all 0 < p < n — 1 and non-
negative integer [ then existence of the above resolution is the same as saying the evalu-
ation map below is of maximal rank i.e. it is surjective or injective or both; see [1].
S
+1 +1
HO(P", Qi (1)) — €D Ol (D).
i=1

For this consider the exact sequence
Here, W = HY(Opx (1)), the set of linear forms and k|xg, 71, ..., z,] = Sym(W)

Tensoring the sequence above with Tg(d) gives
0 —— Ts@Qpu(d+1) —— W®Ts(d) — Ts(d+1) — 0

Now taking global sections we get;

0— HY(Ts®@Qpa(d+1) — WL — 5 Iy

|

HY(Ts ® Qpn(d+ 1))
0

Thus H'(Ts ® Qpa(d+1)) = I411/W - Iy, corresponds to the minimal generators of I of
degree d + 1, and its dimension is by i.e. h'(Ts® Qpn(d+ 1)) = bo.
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Similarly, H°(Ts ® Qpn(d + 1)) is the space of linear relations among the generators of
degree d, whose dimension is ag i.e. h°(Tgs ® Qpa(d + 1)) = ao.

Now consider the exact sequence

Tensoring it by Qpn(d + 1) gives;

and now taking global sections yields

0 — HY(Ts ® Qpn(d + 1)) — HO(Qpn(d + 1)) —— H(Qpn(d + 1))

|

HY(Ts® Qpn(d+ 1))
0

We will prove that p is of maximal rank for a general set S of s points in P™.

As result, if p is injective then its kernel is null i.e. ag = h°(Tg @ Qpn(d+ 1)) = 0 and
the cokernel is not null that is by = h'(Ts ® Qpn(d+ 1)) as expected. On other hand, if p
is surjective then we have the cokernel of p being null i.e. by = h'(Ts ® Qpa(d+1)) =0
and the kernel of x4 is not null that is, ag = h°(Ts @ Qpn(d + 1)).

2. PRELIMINARIES

We use the statements (the so called Enonces) as in [1] by Hirschowitz and Simpson which
F Lauze used in [2] to proof maximal rank for Tpn.

Let X a smooth projective variety and X’ non-singular divisor of X. Let F be a locally
free sheaf on X and

0 F” Fix: F’ 0

be a exact sequence of locally free sheaves on X’. The kernel E of F — F’ is a locally
free sheaf on X and we have another exact sequence of locally free sheaves on X’

0 — F(-X') — Ex — F' —— 0
and as well exact sequences of coherent sheaves on X

0 B F F’ 0
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and

0 —— F(=X) E F” 0.

We have the following hypotheses:
R(F,F,y;a,b,c)

RD(F,F' y;a,b,c)

RD(E,F" y;a' b, )

2.1. Notation. Set X = P", X' = P" 1| F = Qpn, F/ = Qpu1, E = 057(-2), F” =
OPn—l(—l).
The exact sequences of the elementary transformations after twisting by d + 1 are:

0 0

Qpu(d) =——  Qp(d)

l

0 —— Opa(d—1)" Qpn(d+1) —— Qpai(d+1) —— 0

O —_— OPn—l(d) —_— QPn‘Pn—l(d—i_ 1) — Qpn—l(d“—l) —_— 0

0 0
From which we have the hypotheses:
Hg, (d+1;a,6,7) = HQpn(d+ 1), Qprn1(d + 1),a,5,7) and
Hy,(d—1;p,0,7) = H(Opn(d — 1)%", Opn-1(d); p,0,7) and
Hg,n(d - 1; P, 0, T) = H(OP" (d - 1)@71’ OP”—1 (d)v P50, T)'

For the plane divisorial, with H C P™ a hyperplane isomorphic to P"~! we shall utilize
the sequence;

0 —— Opa(d—2)®" —— Opn(d—1)®" —— Oy(d—1)"" —— 0..

Hypothesis 2.1. Hq ,(d+ 1;0,3,7)
The hypothesis H/Q,n(d + L;a, 3,7) asserts that for non-negative integers «, (3, v and e
satisfying the conditions:

0<~y<1l,andl1<e<n-—2,
na+n— 18+ ey =h%(Qpn(d+ 1)), and
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(n—1)8+ey < h’(Qpn-1(d+ 1)) having for v =1 a quotient T then the map

B
n: HO(P", Qpn(d +1)) @QpndHM @Qpnldﬂ)w ® Lo

is bijective with h®(Qpn(d + 1)) = d(iﬂ) and for o general points Ay ... A, € P", 5+ 1

general points By ... Bz, C € P"7 1.

Hypothesis 2.2. Hq ,(d+ 1)
The hypothesis Hq,(d + 1) asserts that H’Qm(d + Lo, B,7) is true for all a, B and 7
satisfying the conditions above.

Hypothesis 2.3. H, (d—1;p,0,7)
The hypothesis an(d — 1;p,0,7) asserts that for non-negative integers p, o, T and 0
satisfying the conditions:

0<7<1land2<0<n-—1,
np + o+ 01 = h°(Opn(d — 1)*"), and
o+ 01 < h°(Opn-1(d)) having for 7 =1 a quotient T then the map

qb - HO° (P”7 Opn( — 1 @” @ OPn 1)%72 D @ Opn-1 (d)‘sj D F(S)‘T
=1

is bijective with h°(Opn(d — 1)®") = n(dZﬁfl) and for p general points Ry ... R, € P,

o+ 1 general points S, ...S,, T € P*71.

Hypothesis 2.4. Hy,(d — 1)

The hypothesis Ho ,(d — 1) asserts that Hy ,,(d — 15 p,0,7) is true for any p, o, and T
satisfying the conditions above.

Hypothesis 2.5. Hy, (d—1;p,0,7)

A wvariant version of the hypothesis an(d — 1;p,0,7) with T independent of I takes
the form Hy , (d—1;p,0,7) and it makes the same assertion as the hypothesis H ,,(d —
L; p,0,7) the only difference being quotient dependency.

3. THE METHODS OF HORACE

Méthode d’Horace simple[3] lemme 1

Lemma 3.1. Suppose we have a bijective morphism of vector spaces~y : H*(X',F') —— L
and that we have H'(X,E) = 0. Let p: H*(X,F) —— L be a morphism of vector

spaces. Then for H*(X,F) — M@ L to be of mazimal rank it suffices that H*(X,E) —
M is of maximal rank.



394 D. M. Maingi

Differential méthode d’Horace([1] lemme 1)

Lemma 3.2. Suppose we are given a surjective morphism of vector spaces,
A HO P Qpua(d+1)) — L and suppose there exists a point Z' € P" such that

HOP™ !, Qpnoi (d+ 1)) L & Qpn1(d + 1) 5 and suppose HY(P", Opn(d — 1)%") =
0. Then there exists a quotient Opn(d—l)‘@g} — D(\) with kernel contained in Qpn-1(d)|z
of dimension dim(D(\)) = rk(Qpn(d + 1)) — dim(ker \) having the following property.
Let o : HY(P",Qpn(d + 1)) — M be a morphism of vector spaces then there erists
Z € P! such that if H*(P", Opa(d — 1)®") — M & D(\) is of maximal rank then
HO(P™ Qpn(d+1)) — M & L@ Qpn(d+ 1)|z is also of mazimal rank.

The sequences for the quotient are as follows:

0 0
dimn — 1 Qpn—\l:\(d)|z ljiz dimn — 3 (n —2)
dimn OP"(dV— 1)‘69; —» Dz = OP:—I\Z ® D, dimn —2 (n—1)
dim 1 OP”—T(d>|Z ——— OP3\(d>|Z dim 1
0 0

3.1. The Vectorial Methods.

Lemma 3.3. Vectorial Method 1
Let o, B, v, d and € be non-negative integers satisfying the conditions of Hypothesis 2.1
and p, o, T and 0 non-negative integers satisfying the conditions of Hypothesis 2.3 then

the Hypothesis Hyy, (d — 1; p,0,7) implies Hg,, (d+ 1; ., 3,7).

Proof. Consider the exact sequence;

00— Opa(d—1)®" — Qpn(d+ 1) — Qpn-1(d+1) — 0

and let B and C be general subsets of P"~!. We specialize A to RUS UT with R a
general set of p points in P™ and S and T sets of o and 7 general points in P"~!. To run
points to P"~!, consider the map, v : H(Qpn-1(d + 1)) — H(Qpn-1(d + 1)) @ T, if
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the number of points we have satisfy h°(Qpn-1(d + 1)) then v is bijective, if not then we
specialize as many more points as we need to P"~! in order for v to become bijective.

Taking global sections for the exact sequence above and evaluating we construct;

0 0

H(Qpni(d+ 1)) —— HO(Qpn-1(d + D)jpusy) @ T, ® T,

~

H(Qpn(d+1)) £, HO(Qpn(d + 1) |pusur=a) @ H(Qpn-1(d+1)15) & T

lo

HO(Opn(d — 1)) —2— H°(Opn(d = 1)3) @ H(Opn1(d)js) ® T,

0 0
From the above diagram of exact sequences, by Inductive hypothesis on P*~! and Lemma
3.2 the map 7 is bijective and hence if « is bijective then [ is bijective as well and this
gives Hy ,,(d — 1; p,0,7) implies H, ,(d+ 1;, 3,7) O

Lemma 3.4. Vectorial Method 2

Let p, o, T and 6 non-negative integers satisfying the conditions of Hypothesis 2.3 and @,
B, 7 and E be non-negative integers satisfying conditions similar to those of Hypothesis
2.1 wnth the Hypothesis H'Qyn(d; a, 3,7) being the same as Hypothesis 2.1 but twisted by
1, then the Hypothesis H, , (d; @, B,7) implies Hy, (d—1;p,0,71).

Proof. Consider the exact sequence;

0 —— Qpn (d) —— Opn(d — 1)® —— Opns(d) — 0

and let S and T general sets of ¢ and 7 points in P"~!, specialize R to AU B, where A
is a general set of @ points in P™ and B is a general set of 8 points in P"~! with C' = T.

Now consider the evaluation map, v : H°(Opn-1(d)) — H®(Opn-1(d)|sur), if the number
of points we have are enough to satisfy h%(Opn(d)) then 7 bijective, if not then we spe-
cialize as many more points, 3, in this case, to P*! in order for 7 to become bijective.

Taking global sections for the exact sequence above and evaluating at corresponding points
we construct a diagram of exact sequences as follows;
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HO(Opn-1(d))

_~

H%(Opn-1(d)gsuruny)

o~

2l

H(Opn(d = 1)®") ——— H(Opn(d — 1)) & H(Opr-1(d)js) & T'r

o~ ~

HO(Qpn (d) ——— HO(Qpa(d + 1)4) © H(Qpoi (d+ 1) 5 & Te

o~ ~

The map 7 is bijective giving the Hypothesis Hy, ,(d; @, 3,7) implies Hy ,(d — 1; p,0, 7).
When the number of points we have in P"~! are few relative to d we use the plane
divisorial method in preference to this method. O

Lemma 3.5. Plane Divisorial

Let p, o, 7 and 0 non-negative integers satisfying the conditions of Hypothesis 2.3 and set
o =p—0"0pn-s(d—1)). If p > 0 and o + 7 < h®(Opn-1(d — 1)) then the Hypothesis
Hy,(d—2;p,0,7) implies Ho,(d — 1;p,0,7).

Proof. Let R be a general set of p points in P, .S and T be general sets of o and 7 points
in P"! such that they are fewer relative to d (i.e. when Vectorial Method 2 fails). We
choose a hyperplane H C P" disjoint from S and T with H = P! and specialize p/
points from P" to H (i.e. R’ is the set we have after specializing from R in P™) so that
HO(H,0p(d—1)%") — H°(Ou(d—1);) is bijective that is set p—p' = h(Opn-1(d —1))
and so taking global sections for the sequence

0 —— Opn(d—2)¥" —— Opn(d—1)%" —— Oy(d—1)%" —— 0
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we construct a diagram of exact sequences:

0 0
HO(H, 0p(d — 1)°") —— HO(O(d — 1))

®

HOP", Opn(d — 1)) 2 HO(Opn(d — )& & H(Opn1(d))s) ® Tjr

HO(P™, Opn(d — 2)%") —X— HO(Opn(d — 2)|R\R,@H (Opn-1(d=1)s @ Ip

0 0
Since « is bijective then ~ bijective implies [ is also bijective and this gives the Hypothesis
Hy,(d—2;p,0,7) implies Hy ,,(d — 1;p,0,7). O

3.2. Hypercritical methode d’Horace.

Lemma 3.6. Consider H,O,n(d_ 1581, 82,0) with d > 1, s1, and sy being non-negative in-
tegers that satisfy: ns;+ sy = h°(Opn(d—1)*") and sy < h°(Opnu-1(d)). Now suppose that
the H°(Qpn(d)) — H°(Qpn(d)|s,) is injective and H°(Opn(d — 1)*") — H°(Opn(d —
1)®"s,) is surjective with a general Sy € P™ then the Hypothesis Hy, (d — 1; 51, 52,0) is
true.

This Lemma is for when we have no quotient.

Proof. See [6] Lemma 1.11. O

Lemma 3.7. Consider H(Dn(d — 1;51,89,1) where d > 1,81, s and 2 <0 < n—1 are
non-negative integers such that, ns;+se+60 = h°(Opn (d—1)%") and s3+0 < h°(Opn-1(d)).
Under the same Hypotheses as Lemma 2.1 i.e. H*(Qpn(d)) — H°(Qpn(d)|s,) is injective
and H°(Opn (d—1)%") — H®(Opn(d—1)%"|s,) is surjective then the Hypothesis Hy , (d—
1; 51, 82, 1) is true.

Proof. See [6] Lemma 1.12. O
3.3. The Main Theorem.

Theorem 3.8. Suppose Hgq,,(d+1) is true. Then for any non-negative integer m, there
exists a set, M = {Py, Py,..., P} of m points in P™ such that the evaluation map, p, is
of mazximal rank.

o H(P™, Qpn(d+ 1)) @Qpndﬂ
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Proof. (a) If h°(Qpn(d + 1)) =0 (mod n) then r is the critical number of points needed
for bijectivity i.e. the map HO(P",Qpn(d + 1)) — @_, Qpn|p, is bijective. Set m =
770 (Qpn(d +1))]

we now have the following cases:

(i) if m = r then our map is bijective since we have the same number of points as the
critical number i.e. the map « is bijective and ~ an identity map and so p is bijective see
below:

1%

H(P",Qpn(d+1)) DL, Qpnyp,
x T'V
@?:1 QP”|P'L @ @::n—&-l QP”\Pi

(ii) if m > r i.e. we have more points than the critical number and our map is injective
i.e. since «v is bijective and ~ surjective then our map p has to inject see below:

@z 1 QP”‘P

1%

(P, Qpn

Q

@i:l QP‘*\Pi D EBz':rJrl QP“\Pi

(iii) if m < r then we have the less points than the critical number thus our map surjects
i.e. since «v is bijective and 7y surjective then our map p is surjective. O
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