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Abstract

Longevity risk and the modeling of trends and volatility for mortality improve-
ment has attracted increased attention driven by ageing populations around the world
and the expected financial implications. The original Lee-Carter model that was used
for longevity risk assessment included a single improvement factor with differential
impacts by age. Financial models that allow for risk pricing and risk management
have attracted increasing attention along with multiple factor models. This paper
investigates trends, including common trends through co-integration, and the factors
driving the volatility of mortality using principal components analysis for a number
of developed countries including Australia, England, Japan, Norway and USA. The
results demonstrate the need for multiple factors for modeling mortality rates across
all these countries. The basic structure of the Lee-Carter model can not adequately
model the random variation and the full risk structure of mortality changes. Trends
by country are found to be stochastic. Common trends and co-integrating relation-
ships are found across ages highlighting the benefits from modeling mortality rates as
a system in a Vector-Autoregressive (VAR) model and capturing long run equilibrium
relationships in a Vector Error-Correction Model (VECM) framework.
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Introduction

Longevity risk has been recognized as one of the significant risks impacting

on the financing of ageing populations around the world. It has implications

for insurance companies issuing life annuity and other products providing

longevity insurance, pension funds as well as governments with social security

pension obligations. Mortality rates have been declining globally at different

rates and with volatilities varying by age-group and country (Tuljapurkar et

al 2000). There has also been observed decreasing improvements with age

and increasing trends in rates of change by age (Wong Fupuy-and Haberman

2004).

The Lee-Carter model (Lee and Carter 1992) has become a standard

model for estimating and projecting mortality improvement. It has the ben-

efit of modeling trends and volatilities by age and includes a common factor

for the general level of improvement. Singular value decomposition is used to

estimate the common factor and future projections are extrapolated based on

trends in past data. The Lee-Carter model assumes a specific form of trend

and of factors driving the underlying observed dynamics. It also assumes a

common factor across ages. There have been proposed improvements to the

model by including more factors, allowing for cohort effects, including more

general error distributions and applying more efficient estimation techniques.

Wills and Sherris (2008) provide a discussion of these model developments.

Modeling mortality series across time for multiple ages and for many coun-

tries requires an understanding of the nature of trends in the data, common

factors driving volatility or changes in mortality rates as well as an assess-

ment of the number of significant factors to include in the model.

Econometric, and time series, analysis of data is based on an assessment

of the nature of trends and volatility in the data and has been well developed

in the application to modeling economic and financial time series (Juselius

2006, Pagan and Pesaran 2008 and Pfaff 2008). Trends may be either de-

terministic or stochastic and differentiating between these cases is critical to

the modeling of the series. Unit-root tests, such as the Dickey-Fuller and

Phillips-Perron tests, are used to determine if the historical series show evi-

dence of stochastic trends (Pfaff 2008). For multiple series an analysis of the

number of factors driving the volatility of the series allows a dimension reduc-

tion for the estimation of the series as well as providing valuable information

about the factors driving changes in mortality. Econometric techniques also
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allow the modeling of multiple series and the estimation of long-run equilib-

rium relationships in the historical series as well as short term variations as

the series move towards the long-run equilibrium. This can provide valuable

insights into mortality changes across ages, across countries and across other

factors such as sex.

This paper provides an assessment of longevity risk using econometric

analysis of age-specific death rates in a number of developed countries in-

cluding Japan and Australia from the Asia-Pacific region. The analysis con-

siders the statistical evidence in the data in order to determine if models for

longevity risk should assume trend or difference stationary processes and to

understand if these vary across country. It also provides estimates of the

number of factors driving the changes in the age-specific death rates for dif-

ferent countries and considers the extent to which these factors are common

across the countries. Certain factors impacting changes to mortality rates

would be expected to be common to certain age-groups, certain cohorts and

the entire population, even though such changes may only be temporary

(Pitacco 2007).

The investigation of mortality rates is based on population data obtained

from the Human Mortality Database, University of California, Berkeley

(USA) and Max Planck Institute for Demographic Research (Germany) for

Australia, England and Wales, Japan, Norway and USA. These countries

were selected because they provide a coverage of different parts of the world,

are all developed countries with similar economic and social environments

and generally expected to exhibit consistent mortality patterns (Tuljapurkar

2000).

The aim of the paper is to provide an analysis of trends and volatility

of the historical longevity data across ages and for a number of countries

expected to have experienced similar longevity improvements. There has

been no previous econometric analysis of mortality for a range of countries

investigating the nature of trends, number of factors driving volatility as

well as applying cointegration models. McNown and Rogers (1989) apply

univariate ARIMA time series models to mortality data but do not consider

multivariate models. Recent developments in econometric modeling allow

multivariate techniques to be applied.

The first section of the paper considers the econometric analysis of the

trends in the data. Following that the results from a principal components
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analysis (PCA) for the number of factors that affect mortality across age and

country are discussed. Cointegration as a modeling approach is reviewed and

applied to assess cross country common trends and common trends by age

for the Australian data.

Modeling Mortality Trends

Average mortality rates have been declining globally. Figure 1 represents av-

erage rates of mortality across the countries in this study for all the years of

data that are available. It shows this trend and it is noticed that for the coun-

tries whose data dates back to the 19th century, the decline in mortality rates

has been very significant over the past 50-80 years. Lee (2000) attributes the

improvements in life expectancies to greater reductions in mortality rates at

lower ages rather than at higher ages. Figure 2 shows this clearly for the

Australian data.

Figure 1: Average Death Rates for Five Countries in the Study

To show the overall level of mortality for each country a simple average

of the population mortality rates was used in Figure 1. However, in order to

compare across countries standardized mortality rates are a better indicator

of trends for comparison. For this purpose rates were standardised using

the World Health Organization (WHO) World standard population given in

Table 1.

The time series plots of the female and male standardized population
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Figure 2: Age Specific Death Rates at Different Ages (Australia)

Age Group World Average
0-4 8.86
5-9 8.69

10-14 8.6
15-19 8.47
20-24 8.22
25-29 7.93
30-34 7.61
35-39 7.15
40-44 6.59
45-49 6.04
50-54 5.37
55-59 4.55
60-64 3.72
65-69 2.96
70-74 2.21
75-79 1.52
80-84 0.91
85-89 0.44
90-94 0.15
95-99 0.04
100+ 0.005

Table 1: WHO World Standardized Population
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Figure 3: Standardized Female Mortality Rates
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Figure 4: Standardized Male Mortality Rates

mortality rates for common time periods, mt are shown in Figures 3 and 4

respectively. These figures show the possibility that mortality improvement

across these countries, for both females and males, has common trends. They

also show significant variability in the trends.

When modeling mortality rates by age across time a system of equations is

often used for discrete ages. The trends by age are captured by an age based

model such as the Lee-Carter model. Mortality rates exhibit trends across

time for a given age. At any given time there are trends across age. However

as individuals age trends occur for a cohort of individuals born in the same

year. Trends for a cohort reflect changes in time as well as changes in age.

The mortality rates of most interest are the cohort rates since these are used

to project future mortality based on each cohort year of birth. These are a

combination of trends across time and by age.

To examine trends in mortality, two types of differences can be considered:

∆hm(x, t) = m(x, t)−m(x, t− 1) Horizontal Differences (1)

∆dm(x, t) = m(x, t)−m(x− 1, t− 1) Diagonal Differences (2)

∆hm(x, t) shows how mortality rates change over time for a given age x.

They reflect time trends only for any given age. When all ages are considered

they allow common trends to be identified across time for levels of mortality.

∆hm(x, t) =

 m(x0,t2) m(x0,t3) ... m(x0,T )
m(x1,t2) m(x1,t3) ... m(x1,T )

...
...

...
...

m(xN ,t2) m(xN ,t3) ... m(xN ,T )

−
 m(x0,t1) m(x0,t2) ... m(x0,T−1)

m(x1,t1) m(x1,t2) ... m(x1,T−1)

...
...

...
...

m(xN ,t1) m(xN ,t2) ... m(xN ,T−1)


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Figure 5: Time ordered errors for Diagonal
Differences

Figure 6: Distribution of errors for Horizon-
tal Differences

∆dm(x, t) shows how mortality for a given age cohort changes from one

year to the next. These are mortality changes for a set of individuals born

in the same year and who experience common factors through time. The

changes in the cohort rates include effects from age and from time.

∆dm(x, t) =

 m(x1,t2) m(x1,t3) ... m(x1,T )
m(x2,t2) m(x2,t3) ... m(x2,T )

...
...

...
m(xN ,t2) m(xN ,t3) ... m(xN ,T )

−
 m(x0,t1) m(x0,t2) ... m(x0,T−1)

m(x1,t1) m(x1,t2) ... m(x1,T−1)

...
...

...
m(xN−1,t1) m(xN−1,t2) ... m(xN−1,T−1)


Figure 5 shows the diagonal or cohort differences and Figure 6 shows the

period differences for the Australian data. The changes in cohort mortality

in Figure 5 vary by age although they generally fluctuate around a constant

level. Modeling mortality rates by cohort requires an allowance for trends

varying by age but otherwise the graphs are not inconsistent with stationary

differences in the mortality rates. The changes in the mortality rates by

fixed age over time that are given in Figure 6 indicate that the differences

of the age specific mortality rates appear stationary with an approximately

normal distribution from the histograms at various ages. Formal modeling

and testing of model assumptions is required to confirm these observations.

The stationarity or non-stationarity of a time series is very important in

developing an appropriate model. A mortality rate series may have a deter-

ministic trend around which the series fluctuates and the trend-stationary

time series has the form

yt = µ+ φyt−1 + ut (3)
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with |φ| < 1. After fitting the trend the model errors would then be station-

ary.

Alternatively the mortality rates may have a stochastic trend and the rate

of change in mortality would be stationary with drift or trend. The random

walk with drift takes the form

yt = µ+ yt−1 + ut. (4)

Using the backshift operator B such that Byt = yt−1 the difference op-

erator is ∆yt = (1 − B)yt = yt − yt−1. The random walk with drift can be

written as:

yt = µ+ yt−1 + ut (5)

yt − yt−1 = µ+ yt−1 − yt−1 + ut (6)

(1−B)yt = µ+ ut (7)

∆yt is a stationary variable and stationarity has been induced by differencing

once. The characteristic equation is (1− x) = 0 and has a root x = 1, hence

yt is referred to as having a unit root.

Differentiating between these two situations is important in fitting mortal-

ity trends since the nature of the trends and shocks will have quite different

implications for modeling future rates. To illustrate the importance of this

consider a stationary AR(1) mean adjusted series yt as:

yt = φyt−1 + ut (8)

where ut is a random mean zero shock. This can be written in terms of

lagged values as:

yt = φ(φyt−2 + ut−1) + ut (9)

= φ2yt−2 + φut−1 + ut (10)

= φ2(φyt−3 + ut−2) + φut−1 + ut (11)

= φ3yt−3 + φ2ut−2 + φut−1 + ut (12)

which becomes

yt = φT+1yt−(T+1) + φTut−T + φT−1uT−1 + . . .+ φ2ut−1 + φut−1 + ut (13)
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If φ < 1 then as T → ∞ the effect of the past random shocks gradually

diminishes since limT→∞ φ
T = 0, which implies yt is stationary.

If φ = 1 then the series has a unit root and as T → ∞ the effect of the

shocks persist since limT→∞ φ
T = 1 and they accumulate as stochastic trends

in the series:

yt = y0 +
∞∑
t=0

ut (14)

For the trend stationary model it is necessary to estimate the trend as

part of a stationary model using the levels of the series. In the case of the

series with the unit root it is necessary to take differences and to model the

differences as a stationary series. For the difference stationary series, the

series is said to be integrated of order 1 or I(1). Unit root tests are critical

in determining the model assumptions. For difference stationary models,

shocks to the series have permanent effects and the variance increases with

time. With a trend stationary model the shocks around the trend have

constant variance and shocks are transitory.

Lee and Carter 1992

Lee and Carter (1992) model the age-specific death rates as a time series

using:

lnm(x, t) = α(x) + β(x)k(t) + ε(x, t) (15)

where α(x) is the age pattern of mortality averaged over time, β(x) are the

age specific deviations from the time factor k(t) and ε(x, t) are short term

fluctuations assumed to be normally distributed in the classical Lee-Carter

Model. Trends are modeled with a random factor k(t) determining common

time trends. The age-specific reaction to the random time trend, b(x), is fixed

over time and only varies by age. The Lee-Carter model mortality index k(t)

is usually modeled with a random walk or an AR(1) process.

The Lee-Carter (1992) model can be re-written in the following form for

age x with a random walk assumption for trends given by k(t) = µ + k(t −
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1) + ξ(t):

lnm(t) = a+ bk(t) + ε(t)

lnm(t− 1) = a+ bk(t− 1) + ε(t− 1)

lnm(t)− lnm(t− 1) = b(µ+ ξ(t)) + ε(t)− ε(t− 1)

lnm(t) = bµ+ lnm(t− 1) + ε∗(t)

where ε∗(t) = bξ(t) + ε(t)− ε(t− 1)

Only in this case, with the random common mortality trend for the log of

the rates assumed to be a random walk, will the Lee-Carter (1992) model

correspond to a difference stationary model. Volatility is modeled with a

single common factor k(t) and independent noise ε(x, t) (Ahlo 2000; Lee

2000).

The results of fitting the Lee-Carter model to the mortality data from the

countries in this study are presented in Figure 7. In the first column the mor-

tality trends from the Lee-Carter model are given. The patterns across the

countries vary and, although there is evidence of a common downward trend

reflecting mortality improvement across these countries, an examination of

the second column showing the model error structure indicates that there

are trends not captured by the Lee-Carter model. This visual display of the

Lee-Carter model results for these countries indicates the need to assess if

the mortality improvement trends are stochastic, whether there are common

trends across countries and also how many factors are required to explain

the variation in mortality rates.

Unit Root Tests

To determine if the series are trend or difference stationary there are econo-

metric tests that have been developed in the econometric and financial liter-

ature since this is a common feature in many economic and financial series.

There exist various statistical tests for unit roots including the Dickey-Fuller

(Dickey and Fuller 1979) and the Augmented Dickey Fuller Test as well as

the Phillips-Perron test (Phillips and Perron 1988). These tests consider the

null hypothesis that the series is non-stationary and require evidence to reject

the null hypothesis.

The assumptions for the standard Dickey Fuller test is to write the series

9



Australia

Years

1920 1940 1960 1980 2000

-4
-2

0
2

4
kt mortality parameter from Lee-Carter SVD for Australia

20

40

60

80

X5

10

15

20

Y

-0
.6

-0
.4

-0
.2

 0
0.

2
0.

4
Z

Where the model does not fit for Australia

Japan

Years

1950 1960 1970 1980 1990 2000

-4
-2

0
2

4
6

kt mortality parameter from Lee-Carter SVD for Japan

10
20

30
40

50
60

X5

10

15

20

Y

-0
.6

-0
.4

-0
.2

 0
0.

2
0.

4
0.

6
Z

Where the model does not fit for Japan

England

Years

1850 1900 1950 2000

-6
-4

-2
0

2
4

kt mortality parameter from Lee-Carter SVD for England

50

100

150

X5

10

15

20

Y

-1
-0

.5
 0

0.
5

1
1.

5
Z

Where the model does not fit for England

Norway

Years

1850 1900 1950 2000

-6
-4

-2
0

2
4

kt mortality parameter from Lee-Carter SVD for Norway

50

100

150

X5

10

15

20

Y

-2
-1

 0
1

2
3

Z

Where the model does not fit for Norway

USA

Years

1940 1960 1980 2000

-2
-1

0
1

2
3

kt mortality parameter from Lee-Carter SVD for USA

20

40

60

X5

10

15

20

Y

-0
.8

-0
.6

-0
.4

-0
.2

 0
0.

2
0.

4
0.

6
Z

Where the model does not fit for USA

Figure 7: Lee-Carter Model - Trends and model errors
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with a deterministic linear trend as:

yt = φyt−1 + α + βt+ ut (16)

which after subtracting yt−1 from each side becomes:

∆yt = (φ− 1)yt−1 + α + βt+ ut (17)

The null hypothesis is that the coefficient on yt−1 is zero. If this null is

rejected then the series is modeled as stationary but if it is not rejected then

the series is modeled as difference stationary. Non-standard test statistics

are required under the null hypothesis.

The standard Dickey Fuller test is only valid if the white noise ut terms

are not autocorrelated. This situation is handled in the augmented Dickey

Fuller model by including a number of lags, p, for yt and the model becomes:

∆yt = ψyt−1 +

p∑
i=1

αi∆yt−i + ut , ψ = φ− 1 (18)

where the number of lags, p are usually selected either based on the frequency

of the data, where for monthly data 12 lags would be used or for quarterly

data 4 lags, or based on an information criterion to select the number of lags

that minimizes the value of the information criterion.

It is important to select the number of lags with care since including too

few lags will not remove all the autocorrelation while including too many

lags reduces the power of the test. The mortality rate time series were found

to be sensitive to the lag length.

Phillips and Perron (1988) and Perron (1988) introduce a test that allows

for autocorrelated residuals. In the Dickey Fuller Test ut are assumed to

be independent and identically distributed while in the Phillips-Perron test

ut are assumed to be serially correlated. The Phillips-Perron test is usually

more powerful than the Augmented Dickey-Fuller test but it is also more

sensitive to miss-specification of the order of the lag of its autoregressive and

moving average components.

These tests have been known to have low power if the process is stationary

but with root close to 1. For these series it is difficult to determine if they

have long run trends or are random walks with stochastic trends. Tests such

as the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS, 1992) test are then
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used since they assume stationarity as the null hypothesis (H0 : yt ∼ I(0))

and require evidence of non-stationarity. The joint use of unit root tests and

stationarity tests places checks on the standard unit root tests and provides

a stronger basis for determining if trends are deterministic or stochastic.

There are four possible outcomes of this analysis using both unit root tests

along with stationarity tests:

1. Unit root test - Reject H0; Stationarity test - Do not reject H0 (Sta-

tionary)

2. Unit root test - Do not reject H0; Stationarity test - Reject H0 (Non-

stationary)

3. Unit root test - Reject H0; Stationarity test - Reject H0 (Inconclusive)

4. Unit root test - Do not reject H0; Stationarity test - Do not reject H0

(Inconclusive)

Unit root and stationarity tests were performed on the mortality rate time

series for the period from 1963-2004. The period from 1963-2004 is considered

because there is a very drastic improvement in mortality for Japan between

1947 and 1962 which may distort the effects of common trends. Differences

are considered for fixed ages across time in order to model time trends. The

unit root tests and stationarity test were conducted in Eviews. The ADF test

was conducted with Schwartz Information Criterion used to determine the

appropriate lag length, p. The Phillips and Perron test was also conducted.

Table 2 and Table 3 present the ADF and PP test results as well as the

stationarity tests for females and males respectively for the countries in this

study. The unit root tests confirm that the population level mortality rates

are all non-stationary and are integrated of order one, I(1). For both the

males and the females, the ADF and PP test p-values do not reject the

null hypothesis of the existence of a unit root for the country mortality time

series but they all reject this null hypothesis for the first differences. The test

statistic is greater than the critical value for the country mortality series but

is smaller than the critical value for the differenced mortality series, hence

the tests confirm that the series are integrated of order one for both the

males and the females. The country level tests for both males and females

for the KPSS tests and these confirm the conclusion that differences of the

mortality rates at the country level are stationary and not the levels.
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Females

ADF Test P-Values

Constant Lags DW Stat. Constant, Trend Lags DW Stat.
Australia 0.796 2 1.946 0.9312(1) 2 1.954
∆ Australia 0 0 2.116 0 1 1.946
England 0.9323 2 1.974 0.005 0 1.595
∆ England 0 0 2.567 0 1 1.977
Japan 0 2 1.778 0.5992(1) 2 1.778
∆ Japan 0 0 1.835 0 0 2.156
Norway 0.128 0 1.940 0.0068 0 1.933
∆ Norway 0 0 2.204 0 0 2.167
USA 0.0335 0 2.123 0.9286(1) 0 2.111
∆ USA 0 0 2.046 0 0 1.894

Phillips-Perron Test P-Values

Constant Bandwidth DW Stat. Constant, Trend Bandwidth DW Stat.
Australia 0.8998 1 2.983 0.1875(1) 4 2.504
∆ Australia 0 4 2.116 0 4 2.135
England 0.6655 0 2.364 0.002 4 1.595
∆ England 0 5 2.567 0 5 2.564
Japan 0 8 2.965 0.897(1) 3 2.889
∆ Japan 0 4 1.835 0 26 2.156
Norway 0.1253 3 1.940 0.0089 4 1.933
∆ Norway 0 2 2.204 0 1 2.167
USA 0.0334 2 2.123 0.9281(1) 2 2.112
∆ USA 0 3 2.046 0 2 1.894

KPSS Test Test Stat. Test Stat.

Constant Bandwidth DW Stat. Constant, Trend Bandwidth DW Stat.
Australia 0.789 5 0.024 0.145 5 0.654
∆ Australia 0.110 1 2.997 0.104 1 2.998
England 0.813 5 0.024 0.117 4 1.319
∆ England 0.110 1 2.317 0.047 1 2.378
Japan 0.790 5 0.013 0.216 5 0.136
∆ Japan 0.812 4 2.408 0.101 8 2.969
Norway 0.805 5 0.026 0.172 4 0.393
∆ Norway 0.315 3 1.773 0.125 2 1.895
USA 0.761 5 0.013 0.200 5 0.077
∆ USA 0.514 4 1.765 0.097 1 2.145

Critical Val. Critical Val.
1% 0.739 1% 0.216
5% 0.463 5% 0.146
10% 0.347 10% 0.119

Table 2: Unit Root and Stationarity Tests on Female Standardized Mortality Rates 1963-2004
(1) Significant Trend in Unit Root Test
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Males

ADF Test P-Values

Constant Lags DW Stat. Constant, Trend Lags DW Stat.
Australia 0.9809 1 1.952 0.2383 1 1.858
∆ Australia 0 0 1.947 0 0 1.951
England 0.998 2 1.973 0.0345 0 1.833
∆ England 0 1 1.861 0 1 1.994
Japan 0.0129 1 1.988 0.9374(1) 1 1.984
∆ Japan 0 0 1.809 0 0 2.002
Norway 0.9999 1 1.887 0.9275(1) 1 1.894
∆ Norway 0 0 1.759 0 0 1.900
USA 0.8311 0 2.008 0.8487(1) 0 1.903
∆ USA 0 0 1.89 0 0 1.883

Phillips-Perron Test P-Values

Constant Bandwidth DW Stat. Constant, Trend Bandwidth DW Stat.
Australia 0.9927 17 2.999 0.005 1 2.430
∆ Australia 0 2 1.947 0 1 1.951
England 0.9558 2 2.562 0.0185 4 1.833
∆ England 0 2 2.517 0 2 2.644
Japan 0.002 10 2.865 0.9217(1) 4 2.786
∆ Japan 0 3 1.809 0 10 2.002
Norway 0.9985 1 2.615 0.9326(1) 2 2.382
∆ Norway 0 3 1.760 0 2 1.900
USA 0.8319 2 2.008 0.7899(1) 3 1.903
∆ USA 0 2 1.890 0 2 1.883

KPSS Test Test Stat. Test Stat.

Constant Bandwidth DW Stat. Constant, Trend Bandwidth DW Stat.
Australia 0.795 5 0.022 0.083 4 0.938
∆ Australia 0.234 15 2.987 0.201 20 3.021
England 0.809 5 0.022 0.147 5 1.072
∆ England 0.074 2 2.572 0.060 2 2.574
Japan 0.780 5 0.015 0.211 5 0.145
∆ Japan 0.749 3 2.512 0.108 9 2.877
Norway 0.785 5 0.031 0.175 5 0.354
∆ Norway 0.312 1 2.502 0.077 1 2.605
USA 0.793 5 0.019 0.150 5 0.225
∆ USA 0.131 2 1.999 0.087 2 2.012

Critical Val. Critical Val.
1% 0.739 1% 0.216
5% 0.463 5% 0.146
10% 0.347 10% 0.119

Table 3: Unit Root and Stationarity Tests on Male Standardised Mortality Rates 1963-2004
(1) Significant Trend in Unit Root Test
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Phillips Perron tests were applied to age specific mortality rates for groups

of ages across the countries in the study. The results are presented for the

total population as well as male and females separately for the time period

1947-2004 in Tables 4, 5 and 6. These results do not reject the null hypothesis

of unit roots and stochastic trends in the mortality data for most age groups

with the excepton of the older age groups for many of the countries. There

are also exceptions at the young ages. The mortality rates for most age

groups are difference stationary and have stochastic trends, however some

age groups in the younger and older age ranges have stationary levels.

Australia England Japan Norway USA
0 0.3683 0.01 0.3322 0.5111 0.911

1-4 0.84 0.07918 0.265 0.09366 0.7684
5-9 0.3601 0.08038 0.3388 0.01877 0.5006

10-14 0.3656 0.08188 0.407 0.01 0.5124
15-19 0.6379 0.07935 0.2577 0.01647 0.5159
20-24 0.0823 0.3417 0.4527 0.0991 0.3376
25-29 0.07799 0.5787 0.5797 0.2643 0.276
30-34 0.3097 0.6166 0.5555 0.1737 0.3263
35-39 0.4348 0.5174 0.5491 0.02134 0.4275
40-44 0.7201 0.2305 0.5353 0.02136 0.6426
45-49 0.8174 0.5781 0.572 0.2523 0.7928
50-54 0.8685 0.8203 0.6028 0.7026 0.5869
55-59 0.7903 0.937 0.6509 0.9597 0.4241
60-64 0.866 0.9067 0.3533 0.99 0.6304
65-69 0.8224 0.7357 0.3979 0.9459 0.5768
70-74 0.6152 0.04969 0.01261 0.9076 0.2339
75-79 0.1427 0.01 0.01 0.4163 0.5245
80-84 0.01 0.01 0.01 0.4151 0.5244
85-89 0.01 0.01 0.01 0.01 0.4517

Table 4: Phillips-Perron Test P-values on Total Population data from 1947-2004

The analysis demonstrates that mortality rates for fixed ages across time,

based on the historical population data for the countries in this study, are

mostly difference stationary with stochastic trends. Time trends in mortality

rates for fixed ages across time should be modeled as difference stationary

where they have unit roots. Shocks across time are permanent for these ages

and the volatility of mortality rates increases across time. Thus uncertainty

about future mortality will increase with increased forecast horizons in con-

trast to trend stationary models that assume a long run stationary level of

volatility.
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Australia England Japan Norway USA
0 0.1326 0.01 0.3486 0.6304 0.877

1-4 0.5765 0.1035 0.288 0.07433 0.8269
5-9 0.341 0.0821 0.3603 0.01 0.5457

10-14 0.03578 0.2025 0.4586 0.01 0.5425
15-19 0.01 0.379 0.3624 0.02191 0.2712
20-24 0.02417 0.3826 0.5149 0.1088 0.1774
25-29 0.06419 0.5619 0.6263 0.2963 0.2705
30-34 0.137 0.6129 0.6267 0.2433 0.3935
35-39 0.09029 0.4809 0.6658 0.02405 0.6009
40-44 0.3017 0.08191 0.6646 0.0939 0.8282
45-49 0.45 0.4498 0.7449 0.01 0.7071
50-54 0.2743 0.6414 0.7754 0.06642 0.3745
55-59 0.4196 0.7426 0.8399 0.1686 0.4122
60-64 0.5061 0.6442 0.5281 0.0389 0.5427
65-69 0.06818 0.01 0.686 0.01 0.7691
70-74 0.04692 0.01 0.04052 0.01 0.745
75-79 0.02268 0.01 0.01 0.01 0.8868
80-84 0.01 0.01 0.01 0.0925 0.7888
85-89 0.01 0.01 0.01 0.01 0.6491

Table 5: Phillips-Perron Test P-values on Female Population data from 1947-2004

Australia England Japan Norway USA
0 0.3727 0.01 0.318 0.2529 0.9317

1-4 0.7266 0.0503 0.2427 0.0812 0.7007
5-9 0.04955 0.07487 0.3158 0.01 0.439

10-14 0.01 0.02417 0.3406 0.01 0.4076
15-19 0.6014 0.02812 0.1184 0.01 0.7237
20-24 0.1032 0.1948 0.3769 0.03618 0.6611
25-29 0.01457 0.5947 0.5261 0.09808 0.6728
30-34 0.1085 0.6172 0.4862 0.03422 0.5582
35-39 0.4073 0.5041 0.4342 0.01 0.4662
40-44 0.678 0.2925 0.4101 0.01 0.5346
45-49 0.854 0.5702 0.3739 0.9473 0.8249
50-54 0.9175 0.7995 0.3743 0.9217 0.8142
55-59 0.815 0.902 0.3544 0.9815 0.8295
60-64 0.902 0.8852 0.08068 0.99 0.9281
65-69 0.9149 0.9067 0.05159 0.99 0.9227
70-74 0.8324 0.9504 0.01 0.99 0.9714
75-79 0.7246 0.6394 0.01 0.99 0.9015
80-84 0.07159 0.04272 0.01 0.6428 0.8649
85-89 0.1651 0.01 0.01 0.01 0.383

Table 6: Phillips-Perron Test P-values on Male Population data from 1947-2004
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Principal Components Analysis

A basic VAR time series model of age-specific death rates can be written as

a system of equations for ages from 0 to N including a drift µ(·).

 m(0,t)
m(1,t)

...
m(N,t)

 =

[ µ0
µ1

...
µN

]
+ Φ̃

 m(0,t−1)
m(1,t−1)

...
m(N,t−1)

+

 ε(0,t)
ε(1,t)

...
ε(N,t)

 Φ̃ =

 Π0 0 0 ...
0 Π1 0 ...
...

...
...

...
0 0 ... ΠN

 (19)

where Πi is the coefficient of the lagged mortality rate time series for age

i.

The errors have covariance matrix:

cov
[
ε(t), ε(t)T

]
=

 σ1,1 σ1,2 ... σ1,N
σ2,1 σ2,2 ... σ2,N

...
...

...
...

σN,1 σN,2 ... σN,N



Principal Components Analysis (PCA) can then be used to identify factors

driving the volatility after removing the trend through the drift term. The

number of factors is determined by the eigenvalues of the variance-covariance

matrix of the errors. The effects of the factors across age is given by the

eigenvectors of the variance-covariance matrix.

Dimension reduction is necessary for efficient handling of large data sets

such as mortality rates for many time periods. Principal components analysis

or singular value decomposition (Martinez and Martinez 2005) are a means

of doing this dimension reduction leading to a more parsimonious model for

practical applications.

Singular value decomposition (SVD) gives the minimum number of di-

mensions required to represent an mxn data matrix, say, A that can be

decomposed as:

A = UΣV T (20)

such that

U and V T are orthogonal matrices

Σ is a diagonal matrix with the singular values of A as the diagonal

elements.

If some entries {σi,i} on the diagonal of Σ are zero, then for some d,
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σ1 ≥ σ2 ≥ · · · ≥ σd ≥ σd+1 = . . . = σm = 0. Then ΣV T is a dxn matrix with

dimension d < n.

Hotelling (1933) suggests PCA for quantifying factors that affect the data

when the factors are not explicitly given. PCA determines the eigenvectors

corresponding to the largest eigenvalues of the covariance matrix. One way

to determine the number of principal components to use is by looking at the

percentage of variance explained or the characteristics of the singular values.

The first step in PCA is to center the data around its mean, then compute

the covariance matrix of the data. The total variance of mxn matrix A with

element ai,j is:

E[A− µA]2 =
m∑
i=1

V ar[ai] =
m∑
i=1

σii = trΣρ; µA = E[A] (21)

Σρ ≥ 0 , the covariance matrix, can be written as Σρ = HDHT where

D = diag(λ1 ≥ λ2 ≥ . . . ≥ λm) for the ordered eigenvalues λi of Σρ and H =

(h1,h2, . . .hm) with hi as orthogonal matrices. The principal components

are computed as the eigenvectors of the variance-covariance matrix Σρ and

the associated variance is described by the corresponding eigenvalues.

Figure 8 gives the PC’s for the mortality rate levels of Female, Male and

Total age specific death rates for Australia. In order to explain 90% of the

variance in the data, the number of principal components required are 4, 5

and 4 for females, males and the total population respectively. Each principal

component also explains a different percentage of the variance. For example,

the first component explains 72.8%, 50.3% and 69.1% of the variation of each

of the three groups respectively.
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Figure 8: Principal Components for Australia and Mortality rate levels

PCA was carried out for the time trends, based on errors for horizontal

differences of the mortality rates, from the simple VAR model for the age

based mortality data. This determines the number of factors that affect
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mortality over time for the various ages. PCA was performed for each country

on the time differences of the levels of the mortality data assuming a first

order stochastic trend. A summary of the results is in Table 7 giving the

number of PC’s that explain 98% of the variation.

Models based on deterministic trends for the level of mortality rates should

include a larger number of factors driving mortality changes than the one

common factor assumed in the Lee-Carter model. There is also a similar

number of factors across the countries suggesting the possibility of common

factors across countries. This similar number of factors holds for both time

trends (horizontal differences) and cohort trends (diagonal differences). This

is not surprising since the cohort trends include the time trends along with

an age effect. The number of factors is much higher in the differences of the

levels than in the levels themselves.

Country Difference Number of Factors Percentage Variation
Australia Diagonal 8 98.7

Horizontal 8 98.6
England Diagonal 7 98.6

Horizontal 7 98.9
Japan Diagonal 6 98.8

Horizontal 5 98.1
Norway Diagonal 9 98.4

Horizontal 8 98.1
USA Diagonal 10 97.4

Horizontal 10 97.7

Table 7: PCA Factors using for differences in rates for countries in study

Figure 9 gives a plot of the principal components for different countries.

Each principal component affects mortality at different ages in a different

way. The common feature for the different countries is that for the lower

ages the effects are fairly constant but at different intensities. At the higher

ages (above age 75) there is a lot more variability in the way each principal

component affects a specific age’s mortality change. The first principal com-

ponent has a similar general effect in all five countries being initially fairly

constant and then decreasing as age increases. The second principal com-

ponent for Japan and the third principal component for USA both increase

as age increases. This may be the same principal component but its order

differs for each country. For some countries, such as Japan, the PC’s are

more variable, while for the other countries they appear relatively constant

between age 75 and age 85.
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Figure 9: Multiple PCA Factors for Mortality Differences

Cointegration

Variables are said to be cointegrated if they have a common stochastic trend

(Lütkepohl and Krätzig 2004). Cointegrated time series are affected by com-

mon factors and their permanent trends lead the time series to eventually

attain an equilibrium (steady state). This is useful in modelling mortality

rates. There exist shocks that drive the mortality system. These shocks are

generally unobservable. In multivariate cointegration analysis all variables

are assumed to be stochastic and a random shock to one variable is trans-

mitted to all the other variables in the system until the system moves to a

new equilibrium position. Treating mortality at each age as a non-stationary

variable, cointegration allows the determination of the ages that have ex-

perienced similar persistence of random shocks. The unit root tests show

that the trends in mortality improvement should be modeled as difference
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stationary. They have stochastic trends through time and the major shocks

to mortality rates accumulate in the series. These non-stationary time series

require a transformation such as differencing to obtain stationarity.

The underlying long-run information of a non-stationary time series is

removed if the data is detrended or differenced. Cointegration analysis can

be used to model the long-run relationship and retain statistical information.

We can therefore use cointegration analysis to study if there exist long-run

relationships between age specific death rates and for different countries.

Non-stationary time series variables possess the property of cointegra-

tion when a linear combination of the time series is stationary (Engle 1987,

Juselius 2006, Pfaff 2008) and these variables should not wander arbitrarily

far from each other (diverge) in the long run.

A linear combination of two I(1) variables is usually I(1). Generally, a

combination of variables with different orders of integration has an order

of integration equal to the largest order of integration. This implies that

a linear combination of non-stationary mortality time-series should also be

non-stationary with an order of integration equal to the largest order of

integration of the mortality time-series.

In the simplest case, two I(1) time series, {Yt} and {Zt}, are said to

be cointegrated if for a linear combination of the two series there exists

a cointegrating parameter, β, such that the difference, εt = Zt − βYt, is

stationary. Zt = βYt is defined as the long run or equilibrium relationship

between {Yt} and {Zt}.
Some studies have analyzed cointegration in mortality but with emphasis

on how cointegration affects Lee-Carter (Chan 2008) and the cointegration of

the parameters in the Lee-Carter model (Darkiewicz and Hoedemakers 2004;

Lazar 2004). Darkiewicz and Hoedemakers (2004) suggest that cointegration

analysis can be used as a diagnostic check of the validity of the Lee-Carter

model. They do cointegration analysis of England and Wales log-mortality

rates. Lazar (2004) finds that for Romanian mortality rates at high ages

(63+) and given Lee-Carter’s lnm(x, t) and k(t), if the ages are pairwise

cointegrated then the Lee-Carter model is the cointegration relation. The

Lee-Carter model can be written as a cointegration relation when x is fixed:

zt = a+ byt + εt (22)
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as compared with

lnm(x, t) = α(x) + β(x)k(t) + ε(x, t) (23)

zt (or lnm(x, t)) and yt (or k(t)) evolve together in time with a long term

equilibrium disturbed by random shocks with short-term effects.

Following Pfaff (2008), once it has been established that there exists a

unit root, it is necessary to specify an error correction model (ECM) where

the changes in the value of a time series variable are explained in terms of its

own past values, lagged changes in other time series variables in the system

and residuals. The VAR(p) model explains endogenous variables using their

own history. In order to analyse the cointegration structure vector error

correction models (VECM) are used because cointegration relations do not

appear explicitly in VAR(p) models for time series with stochastic trends.

A VAR(p) for p lags is written as:

mt = A0 + A1mt−1 + A2mt−2 + · · ·+ Apmt−p + et

where mt = (m1t, . . . ,mkt, . . . ,mKt) for k = 1, . . . , K time series. The key

assumptions in the VAR(p) model are that there is no serial correlation and

no heteroscedasticity in the residuals and that the residuals are normally dis-

tributed. A VAR(p) model is stable if it generates stationary time series over

a long time period (Pfaff (2008) and this stability is indicated by eigenvalues

of A0 that are less that one. Choice of VAR(p) is largely influenced by the

lag order, p. The optimal lag length is determined by use of information

criteria such as Akaike’s AIC and Schwarz’s SIC or by use of Akaike’s final

prediction error (FPE) whereby the most accurate model has the smallest

FPE.

Several VAR(p) models are usually estimated then analysed to check that

the models assumptions hold based on diagnostic tests. To test for serial

correlation of the residuals a Portmanteau test is performed (Harvey 1991),

to test for heteroscedasticty ARCH tests are performed while to test for

normality of the residuals normality tests such as the Jarque-Bera test are

performed.

Once the appropriate VAR(p) has been estimated then it is converted to

a vector error correction model. The long-run specification of the VECM is:

∆mt = Γ1∆mt−1 + · · ·+ Γp−1∆mt−p+1 + Πmt−p + A0 + et (24)
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where

Γi = −(I − A1 − · · · − Ai), i = 1, . . . , p− 1 Π = −(I − A1 − · · · − Ap)

Alternatively, the transitory specification of the VECM is:

∆mt = Γ1∆mt−1 + · · ·+ Γp−1∆mt−p+1 + Πmt−1 + A0 + et (25)

where

Γi = −(Ai+1 + · · ·+ Ap), i = 1, . . . , p− 1 Π = −(I − A1 − · · · − Ap)

In the long-run form of the VECM the levels of the components of mt

enter the model lagged at t − p while in the transitory specification they

enter the model lagged by 1.

Vector Error Correction Models for a VAR(p) can be described in either

a long-run form or a transitory (short-run) form. Each includes lagged dif-

ferences of mt and an error correction term that must be stationary for the

VECM to be balanced (stationary on both the right hand side and the left

hand side of the equation). For mt whose components are at most I(1) time

series, the left hand side of the VECM is stationary due to first differences

and the right hand side is stationary due to the stationary error correction

terms.

The long run equilibrium, Π, is the same in both specifications of the

VECM hence it does not matter which form of VECM is used in order to

analyse Π (Juselius 2006, Pfaff 2008, Lütkepohl and Krätzig 2004). The

stationarity of the error correction terms depends on characteristics of the

matrix Π. The rank of the matrix rk(Π) = r gives the maximum number

of linearly independent rows/colomns of the matrix, Π. This rank, r, (the

cointegration rank of the system mt) is the number of cointegration relation-

ships present in the system (Lütkepohl and Krätzig 2004). In cointegration

studies there are 3 cases to consider:

Case 1. r = K, all linear combinations are stationary and a VAR model in levels

should be used

Case 2. r = 0, there are no linear combinations that are stationary except for

any trivial solution and a VAR model in differences should be used

Case 3. 0 < r < K, so that there exist two matrices α and β such that Π = αβ′.
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Π is of reduced rank and cointegrating relations must be incorporated

in the VAR through a VECM.

Since ∆mt is stationary the only term that may not be stationary is Πmt−p

(Juselius 2006). It is necessary to select Π such that Πmt−p = αβ′mt−p is

stationary or alternatively β′mt−p is stationary. Since β may not be unique,

one element of β is usually normalised to one. The parameters α give the sen-

sitivity to the long-run equilibrium and is referred to as the loading matrix.

An initial step in testing for cointegration involves testing the alternative hy-

pothesis H1 : Π = αβ′ by computing trace and eigenvalue statistics. These

statistics are discussed in Juselius (2006) and Lütkepohl and Krätzig (2004).

For a VAR(2) model the VECM would be:

∆mt = Γ1∆mt−1 + Πmt−2 + A0 + et (26)

where

Γ1 = −(I − A1), Π = −(I − A1 − A2) = αβ′

The cointegrating vector, β is the long-run equilibrium of the error cor-

rection model. The α can be considered as a measure of how much each

cointegration equation (stationary linear combination) impacts changes in

each of the variables.

Cross-Country Mortality Rate Cointegration

Population mortality rates across countries are expected to contain com-

mon stochastic trends and to be cointegrated based on the previous analysis.

The mortality rates for males and females differ and are analysed separately

based on the standardized age specific mortality rates for Australia, England,

Japan, Norway and USA from 1947-2004.

This analysis is carried out for the standardized country mortality rates

to estimate long run equilibrium common stochastic trends by estimating a

VAR model, and if required, a VECM model that incorporates those long

run stochastic trends. This allows data to be combined across countries

leading to more efficient estimates of future mortality rates and providing

information about the relationship between the different countries mortality

improvement and longevity risk.

For mortality rates that are cointegrated econometric models can be used
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to estimate the long run relationships between the countries and how changes

in country mortality rates respond to departures from the long run equilib-

rium between the mortality rates. The technique used is Johansen’s Method-

ology (Juselius 2006). After determining the number of lags, p, a VAR(p)

model is estimated. The number of cointegrating relations in the estimated

model is then determined. This is used to estimate the VECM and the coin-

tegrating coefficients. The analysis was implemented in R-statistical using

the methodology outlined in Pfaff (2008).

Denoting A = Australia, E = England and Wales, J = Japan, N = Norway

and U = USA, then a VAR(1) model for this system would be specified as:

mt = A0 + A1mt−1 + ut

where

mt =

( mA,t
mE,t
mJ,t
mN,t
mU,t

)
; ∆mt = A0 + Πmt−1 + ut

Π = αβ′ = −(I − A1)

β = (βA, βE, βJ , βN , βU) (27)

The matrix Pi gives the long-run equilibrium parameters. Cointegration

implies that Π is of reduced rank with rk(Π) = r where r is the number

of cointegration relationships that exist between the variables referred to as

the cointegration rank. The α parameters are the loading matrix while β

contains the coefficients of the long run relationships such that β′mt−1 is the

cointegrating relations.

The unit root tests indicated there may be cointegration of the mortality

rates for the five countries. A VAR model is estimated then diagnostic tests

are performed to assess the assumptions of the VAR model. There should

be no serial correlation and no heteroscedasticity in the residuals and the

residuals should be normally distributed.

The VAR model was initially applied to the levels of the mortality rates.

The optimal lag length, p, for an unrestricted VAR model to analyse the

cointegration was determined. A range of information criteria including the

AIC and the final prediction error were used but it is also important to have

a parsimonious model with as few lags as possible. For the time period from

1963 to 2004 a VAR model was estimated including a constant and a trend as

the deterministic regressors. The estimates for VAR(1) and VAR(2) models
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for the levels of the Australian standardized mortality rates are given in

Figure 10 and Figure 11. These show that a VAR(1) model for the Australian

mortality rates is appropriate and that the ACF and PACF demonstrate

the model captures autocorrelation. However, based on the test statistics,

the errors were serially correlated which makes inference for parameters and

goodness of fit unreliable based on the assumption of no serial correlation.
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Figure 10: Estimated Australian Male Mortality rates using VAR(1)
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Figure 11: Estimated Australian Male Mortality rates using VAR(2)

Similar figures can be produced for each of the countries to confirm the model

fit. However the serial correlation of the errors suggests a transform of the
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data. A similar analysis using a log transform of the standardized rates for

each country also showed that the non-seriality assumption for the residuals

holds. The Box-Cox transform is often used in econometrics and a special

case is the log transform. Models were also fitted for lags p = 1 and p = 2.

Diagnostic tests were conducted on the estimated models to determine which

transformation and which number of lags, p, would yield the best VAR(p).

A Portmanteau Test was performed to test for autocorrelation of the dis-

turbances. The null hypothesis is that the coefficients of the lags of distur-

bances are zero up to a given lag, h, (H0: the disturbances are not autocor-

related). The test statistic of the Portmanteau Test, Q, is computed and the

p-value reported in Table 8. If the null hypothesis is rejected then at least

one value of the coefficients of the disturbances is statistically different from

zero at the specified significance level. These results were based on a maxi-

mum lag of 7. These tests illustrate that the logarithm of the standardized

rates along with a VAR(1) model capture the auto-correlation in the series.

This is not the case for the levels of the standardized rates. In the VAR(2)

statistics report that the model performs worse in terms of serial correlation.

A Jarque-Bera Test is performed on the residuals of the estimated VAR(p)

models to determine which model has residuals that are close to normality.

Deviation from normality increases the Jarque-Bera Test statistic.

The analysis demonstrates that a VAR(1) model is appropriate for both

males and females based on the logarithms of the standardized rates. For

this model the normality assumption for the residuals is not rejected and the

model captures all significant serial correlations. Plots are shown in figures

12 and 13 for Males and Females respectively.

The VAR(1) model estimated has Π = −(I − A1) with determinant dif-

ferent from zero so that r = k = 5 and there are no cointegration relations.

From Triacca (2002), if the elements of mt are not cointegrated then Πmt−1 is

I(1). This means that ut are I(1). From the unit root tests it was found that

∆ lnmt are stationary so that Π is the null matrix and hence, ∆ lnmt = ut.

It is sufficient to model the differences of lnmt for these countries in a VAR

model. There are no common stochastic country trends based on these re-

sults.

This analysis has demonstrated how the standardized mortality rates

across countries have stochastic trends based on the historical data. These

stochastic trends are not common to all the countries in this analysis. Model-
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Males Females
VAR(1)

Log-Likelihood Level 1521.399 1604.207
Log-level 571.404 555.344

Portmanteau Test Level 0.006157 0.0079
Log-level 0.1194 0.2256

Jarque-Bera Test Level 0.3508 0.7489
Log-level 0.5329 0.9033

VAR(2)
Log-Likelihood Level 1527.921 1609.767

Log-level 586.789 567.241
Portmanteau Test Level 0.0001125 0.0019

Log-level 0.0115 0.0410
Jarque-Bera Test Level 0.388 0.6947

Log-level 0.2797 0.8976

Table 8: Diagnostic results for VAR(p) for cross country model
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Figure 12: Estimated Australian Male Log-Mortality rates using VAR(1)

ing the differences of the standardized mortality rates is sufficient to capture

trends for each country at the aggregate level. This has implications for in-

ternational diversification of longevity risk since there are no common long

run relationships between countries mortality improvement and potential for

risk diversification across countries.
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Figure 13: Estimated Australian Female Log-Mortality rates using VAR(1)

Australian Mortality Rate Trends and Volatilities

In this section the application of VECM and VAR models to Australian male

and female age specific mortality rates is developed. Earlier analysis indi-

cated the need for up to 8 random factors and that some ages are potentially

cointegrated. There have been no studies applying multivariate econometric

modeling techniques to mortality data allowing for cointegration and non-

stationarity for a range of ages. Early application of time series to mortality

data appears in McNown and Rogers (1989). In order to reduce the num-

ber of random factors driving mortality changes over time a parameterized

mortality model is cross sectionally estimated at a series of points in time

and the evolution of the parameters is modeled as a VAR/VECM system.

This not only reduces the dimension of the random variability but allows for

smoothing across ages and improved forecasting performance of the model.

Following McNown and Rogers (1989) a modification of the eight param-

eter model proposed by Heligman and Pollard (1980) is used to model the

probability of death of an individual aged x in the next year, qx as:

qx = A(x+B)C

+D exp[−E(log{ x
F
})2] +

GHx

1 +GHx
(28)

The resulting curve is continuous over the entire age range.

Each of the three terms in Equation 28 represents a distinct component

of mortality and each of the parameters has a demographic interpretation.
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A(x+B)C
is a rapidly declining exponential that reflects the fall in mortality

during the early childhood years. In particular, A is a measure of mortality

at age 1; B is an age displacement factor that accounts for infant mortality;

and C is a measure of the rate of mortality decline in childhood.

D exp[−E(log{ x
F
})2] reflects young adult mortality and for males mainly

reflects the accident mortality whereas it reflects also maternal mortality for

females. The accident hump usually lies between age 10 and 40. F measures

the location of the accident hump, E measures its spread and D measures

its severity.
GHx

1+GHx is the Gompertz exponential mortality for older ages. It captures

the incease in mortality due to the natural aging process of the body, referred

to as senescence. G measures the base level of older age mortality and H is

the rate of increase in G with age.

The Heligman-Pollard model was fitted to the central mortality rates de-

rived by transforming mx to qx using:

qx =
2mx

2 +mx

The mortality rates qx for x=0,1,. . . ,90 were used to fit the Heligman-

Pollard model for the years 1946-2004 for Australia for both males and fe-

males. The parameters were estimated by minimizing the weighted sum of

squared errors between observed, qx and the fitted, q̂x:

S2 =
90∑
x=0

1

q2
x

(q̂x − qx)2 (29)

Hartmann (1987) discusses estimation issues for the Heligman-Pollard model.

In the following figures, the dotted line represents the observations while the

continuous (red) line represents the fitted Heligman Pollard model for various

years fitted to the male Australian mortality data. The figures on the left are

qx and those on the right are log(qx) which more clearly shows the accident

hump.

The model fits the data well and provides a consistent basis for smoothing

across age. The fitted parameters are shown in the following graphs. They

show how the trends in the different mortality experiences for different ages

have varied through time and also highlight the variability in the trends.

Declining A shows how mortality at age one has been declining through
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the period. The rate of decline was quite rapid from the mid 1950s to the

early 1960s and has since slowed down. Changes in B show how the mortality

trends in the first years of age have been variable. Mortality in childhood

is reflected in C and shows a downward trend between the mid 1950s and

the mid 1980s with considerable volatility. The intensity of young adult

mortality, D, for males was low immediately post world war II, rose sharply

in the early 1950s, dropped again in the mid 1960s then rose sharply during
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the 1970s. E is inverse to the spread of the accident hump. As E gets smaller,

the accident hump is more spread out. Since the mid 1970s the accident hump

spread has been increasing. F gives the modal age or location of the accident

hump and this has been increasing. G captures the base level of senescent

(old age) mortality and has has a steady downward trend. H reflects the

rate of increase in mortality due to senescence (G) as age increases. This has

been increasing so that although the overall level of old age mortality has
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been declining, the rate of increase by age has been increasing. For females,

the parameters were also estimated in a similar way (see Figure 14).

The correlation matrix of the parameters are shown in tables 9 and 10:

A B C D E F G H
A 1.00 -0.03 0.65 0.07 0.24 -0.68 0.89 -0.85
B -0.03 1.00 0.60 -0.17 -0.44 0.37 -0.29 0.32
C 0.65 0.60 1.00 0.09 0.05 -0.37 0.51 -0.47
D 0.07 -0.17 0.09 1.00 0.72 -0.55 0.25 -0.29
E 0.24 -0.44 0.05 0.72 1.00 -0.76 0.57 -0.62
F -0.68 0.37 -0.37 -0.55 -0.76 1.00 -0.87 0.90
G 0.89 -0.29 0.51 0.25 0.57 -0.87 1.00 -0.98
H -0.85 0.32 -0.47 -0.29 -0.62 0.90 -0.98 1.00

Table 9: Male Parameters Correlation Matrix - Heligman Pollard Model and Australian
Data

Unit root tests for the parameters indicate they are at most I(1) with a

constant and a trend.

The parameters are modeled as a stochastic system using a VAR(p). In

order to improve the model fit and to ensure the parameters are positive the

logs of the parameters are modeled. The diagnostic tests show that a VAR(2)

for the logs of the parameters is adequate for both males and females.

The tests show that a VECM with one or, in the case of females, two

cointegration relations is required. The parameters of the Heligman-Pollard

Model when modeled as a system are affected by at least one common
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Figure 14: Female Heligman Pollard Model Parameters for Australian Data

stochastic trend.

Conclusions

This paper has presented the results of an analysis of longevity trends and

volatility for a number of major countries using econometric techniques. This

provides a basis for the development of country and age-based longevity risk
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A B C D E F G H
A 1.00 0.40 0.73 0.62 -0.13 0.44 0.80 -0.54
B 0.40 1.00 0.81 0.11 -0.11 0.12 0.16 -0.03
C 0.73 0.81 1.00 0.33 -0.02 0.21 0.59 -0.39
D 0.62 0.11 0.33 1.00 -0.19 0.54 0.33 -0.15
E -0.13 -0.11 -0.02 -0.19 1.00 -0.69 0.35 -0.58
F 0.44 0.12 0.21 0.54 -0.69 1.00 -0.04 0.36
G 0.80 0.16 0.59 0.33 0.35 -0.04 1.00 -0.90
H -0.54 -0.03 -0.39 -0.15 -0.58 0.36 -0.90 1.00

Table 10: Female Parameters Correlation Matrix - Heligman Pollard Model and Australian
Data

models that capture trends including common trends across age, sex and

country and provide a basis for assessing longevity risk in a consistent model-

ing framework. Stochastic common trends can be included in the Lee-Carter

model consistent with a difference stationary model but the Lee-Carter model

does not include sufficient random factors driving mortality changes.

Mortality rates are found to have stochastic trends for almost all ages

and across all the countries in the study. This means that trends in the

historical rates are stochastic and shocks are permanent. Volatility increases

through time as shocks accumulate in the series. Multiple factors are driving

mortality changes. The number of factors driving changes in the mortality

rates is similar across the countries. More factors are required than is usually

assumed in models such as the Lee-Carter model and extensions.

The single country model developed for Australia shows that within the

country there are common stochastic trends across ages and that a VECM

model with either one, or at most two, cointegrating relationships to capture

common stochastic trends. The model allows for volatilities and correlations

between the parameters and provides a relatively parsimonious structure.

These models allow the quantification of the benefits of diversification in

portfolios as well as a consistent framework for modeling multivariate risk

factors where some of these risk factors are non-stationary and others are

stationary.
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Males

ADF Test P-Values

Constant Lags DW Stat. Constant, Trend Lags DW Stat.
A 0.2715 1 2.1829 0.4119(1) 1 2.1014
∆ A 0 0 2.1673 0 0 2.1973
B 0 0 2.0826 0 0 2.0470
∆ B 0 2 1.9910 0 2 1.9938
C 0.0530 1 2.1049 0 0 2.0158
∆ C 0 1 2.0670 0 1 2.0689
D 0.3564 0 2.1215 0.5266 0 2.2177
∆ D 0 0 1.9578 0 0 1.9911
E 0.8250 1 2.0747 0.8632 1 2.0831
∆ E 0 0 2.0999 0 0 2.1206
F 1 3 2.0580 0.9826 3 2.1085
∆ F 0.6815 6 2.0739 0 2 2.1222
G 0.7406 1 1.7964 0.8126 1 1.7704
∆ G 0 0 1.7906 0 0 1.7979
H 0.7756 1 1.9960 0.6150 1 1.9278
∆ H 0 0 2.0012 0 0 2.0041

Females

ADF Test P-Values

Constant Lags DW Stat. Constant, Trend Lags DW Stat.
A 0.5885 4 1.5817 0.9710 4 1.5756
∆ A 0 3 1.5772 0 3 1.5864
B 0 0 2.0231 0 0 2.0034
∆ B 0 2 1.9133 0 2 1.9149
C 0.0955 1 2.1297 0 0 1.9960
∆ C 0 2 1.9556 0 2 1.9555
D 0 1 2.4196 0.0075 0 2.3638
∆ D 0 0 2.0061 0 0 2.0797
E 0.2784 1 1.9165 0.2689(2) 1 1.9389
∆ E 0 0 1.9589 0 0 1.9582
F 0.9540 10 1.7405 0.6648 5 2.3690
∆ F 0.2343 9 1.7404 0 4 2.3124
G 0.8861 1 2.3407 0.3957 1 2.2482
∆ G 0 0 2.3612 0 1 1.9383
H 0.8189 1 2.2398 0.5102 1 2.1932
∆ H 0 0 2.2851 0 1 1.9441

Table 11: Unit Root Tests on Male and Female Heligman-Pollard Parameters 1946-2004
(1) Significant Trend in Unit Root Test. (2) No constant and No Trend.
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Males Females
VAR(1)

Portmanteau Test 0.2793 0.9930
Jarque-Bera Test 0.0720 0.0260

VAR(2)
Portmanteau Test 0.9560 0.9906
Jarque-Bera Test 0.1139 0.8533

Table 12: Diagnostic tests for VAR(p) model for Heligman-Pollard parameters

H0 Test 10pct 5pct 1pct
r<=7 0.11 6.50 8.18 11.65
r<=6 6.99 12.91 14.90 19.19
r<=5 9.70 18.90 21.07 25.75
r<=4 15.73 24.78 27.14 32.14
r<=3 19.11 30.84 33.32 38.78
r<=2 30.16 36.25 39.43 44.59
r<=1 43.46 42.06 44.91 51.30
r = 0 56.48 48.43 51.07 57.07

Table 13: Tests for cointegration for Heligman-Pollard parameters -Male

H0: Test 10pct 5pct 1pct
r<=7 0.38 6.50 8.18 11.65
r<=6 9.34 12.91 14.90 19.19
r<=5 14.18 18.90 21.07 25.75
r<=4 22.03 24.78 27.14 32.14
r<=3 23.94 30.84 33.32 38.78
r<=2 28.66 36.25 39.43 44.59
r<=1 47.75 42.06 44.91 51.30
r = 0 63.02 48.43 51.07 57.07

Table 14: Tests for cointegration for Heligman-Pollard parameters -Female
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