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Abstract: In this paper, numerical solutions to thermally radiating Marangoni convection

of dusty fluid flow along a vertical wavy surface are established. The results are obtained

with the understanding that the dust particles are of uniform size and dispersed in opti-

cally thick fluid. The numerical solutions of the dimensionless transformed equations are

obtained through straightforward implicit finite difference scheme. In order to analyze the

influence of various controlling parameters, results are displayed in the form of rate of

heat transfer, skin friction coefficient, velocity and temperature profiles, streamlines and

isotherms. It is observed that the variation in thermal radiation parameter significantly

alters the corresponding particle pattern and extensively promotes the heat transfer rate.

Nomenclature

ā Dimensional amplitude of the vertical wavy surface (m)

a Dimensionless amplitude of the vertical wavy surface

Cf Skin friction coefficient

cp Specific heat at constant pressure for fluid-phase (J/kgK)

cs Specific heat at constant pressure for particle-phase (J/kgK)

Dρ Mass concentration parameter

g Acceleration due to gravity (m/s2)

~ Surface tension (N/m)

~m Reference surface tension (N/m)

~T Rate of change of surface tension with temperature (N/mK)

GrL Grashof number

L Characteristic length associated with wavy surface surface (m)

Ma Marangoni number

Nu Nusselt number coefficient

Pr Prandtl number

p̄ Dimensional pressure of carrier phase (N/m2)

p̄p Dimensional pressure of particle phase (N/m2)

p Dimensionless pressure of the carrier phase

1Corresponding author.
Email: saadiasiddiqa@gmail.com, Ph: +923335297152
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pp Dimensionless pressure of the particle phase

Pr Prandtl number

~qr Radiation heat flux (W/m2)

Rd Thermal Radiation parameter

T Dimensional temperature of fluid-phase (K)

T∞ Ambient fluid temperature (K)

Tp Dimensional temperature of particle-phase (K)

ū, v̄ Dimensional fluid-phase velocity components (m/s)

ūp, v̄p Dimensional particle-phase velocity components (m/s)

u, v Dimensionless fluid-phase velocity components

up, vp Dimensionless particle-phase velocity components

x̄, ȳ Dimensional cartesian coordinates (m)

x, y Dimensionless coordinate system

Greek letters

α Thermal diffusivity (m2/s)

αr Rosseland mean absorption coefficient (1/m)

αd Dusty fluid parameter

βT Volumetric expansion coefficient (1/K)

γ Ratio of cp to cs
κ Thermal conductivity (W/mK)

θ Dimensionless fluid-phase temperature

θp Dimensionless particle-phase temperature

Θw Surface temperature parameter

ρ Density of fluid-phase (kg/m3)

ρp Density of particle-phase (kg/m3)

λ Marangoni parameter

µ Dynamic viscosity of fluid (kg/ms)

ν Kinematic viscosity of fluid (m2/s)

τm Velocity relaxation time of the particles (s)

τT Thermal relaxation time of the particles (s)

τw Shear stress at the surface

Qw Rate of heat transfer at the surface

σ̄(x̄) Dimensional surface profile function (m)

σ(x) Dimensionless surface profile function

σx First derivative of the function σ w.r.t x

σxx Second derivative of the function σ w.r.t x

σs Scattering coefficient (1/m)

σ∗ Stephan-Boltzmann constant (W/m2K4)

Subscripts

w surface condition

∞ ambient condition

p particle phase

Superscripts
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− dimensional system

1 Introduction

The analysis of radiative heat transfer is significant in the framework of space and nu-

clear technology and numerous applications of thermal radiation can be found in chemical

reaction phenomenon, storage of radioactive materials, chips in electronic devices, semi-

conductor wafers, magnetohydrodynamics electrical power generation, geophysics, nuclear

power plants, various propulsion devices for aircraft and gas turbines. Numerous math-

ematical models have been discussed in literature in which thermally radiating heat flux

either appears in the boundary conditions or sometimes in the energy equation. The in-

clusion of thermally radiative heat flux term in energy equation results in computational

difficulties for solving the partial differential equations. However, some significant approx-

imation, for instance, Rosseland diffusion approximation can be proposed to investigate

the solution of governing equations with radiative heat transfer. Initially, the problem of

radiative heat transfer together with convection and conduction was reported by Sparrow

and Cess [1] and Özisik et al. [2]. Later on, Cess [3] investigated the thermal radiation

heat transport in the boundary-layer region and obtained the solutions for system of non-

linear partial differential equations by incorporating the singular perturbation technique.

Apraci [4] analyzed the non-equilibrium interaction between the laminar convective flow

and thermal radiation. In later years, by utilizing the Rosseland diffusion approximation,

numerous authors [5]-[7] discuss the free and/or mixed convective flows across/along the

heated surfaces of various geometries, for example, flat plate (vertical/horizontal), rotating

and non-rotating axisymmetric surfaces, sphere, channel and wavy surfaces under different

boundary conditions.

The class of problems having Marangoni convection (or surface-tension-driven con-

vection), is of major interest in biomedicine, industry and numerous practical applications

like technology of coating flows, process of drying the semi-conductor wafers in microelec-

tronics, film drainage in emulsions and foams, surfactant replacement therapy for neonatal

infants and in various branches of space processing and micro-gravity. Napolitano [8]-[9]

was the first who observed the existence of such dissipative layers in surface driven flows,

which may usually be generated at the interface of two immiscible fluids. In this context,

it was proved by Napolitano [10] that the governing set of equations in the bulk fluids have

no explicit dependence on interface’s geometry if arc length and the perpendicular distance

to the interface are used as coordinates. However, this includes the average curvature of

its dynamical and hydrostatical shapes and produces the kinematic, thermal and pressure

couplings for the flow fields of two fluids. Afterwards, it was shown in [11] that, such cou-

pling of the fields may be removed, when i) the viscosity ratio of the two fluids and ii)

the momentum and thermal resistivity ratios of the two layers are strictly less than unity.

Christopher and Wang [12] have investigated the influence of Prandtl number to visualize

the relative change in thickness of boundary layers. Furthermore, the detailed numerical as

well as analytical solutions for Marangoni boundary layers were discussed by several authors

under various practical situations (for example see [13]-[17]).

The interest in studying the dynamics of heat transfer problems involving fluids
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containing spherical particles has mainly been increased in the past half century, because

of its wide range of applications in many problems of engineering, physiological and atmo-

spheric fields (see [18]). Initially, the analysis on gas-particulate suspension flow was done

by [19]-[21] and after that numerous investigations were reported for the physical insight of

contaminated flows (see Refs. [22]-[26]) under different physical circumstances. Particulate

suspension flows have also been studied together with the interaction of irregular surfaces,

which may promote rate of heat transfer extensively. In this regard, Siddiqa et al. [30]-[32]

was the first to exploit the rough surfaces for the analysis of heat transfer in dusty fluid

flow. In these papers, the author reported significant effects of surface non-uniformities for

the natural convection of air and water particulate suspensions.

The interaction of thermal radiation on Marangoni convection flow of dusty fluid

along a vertical wavy surface is not considered so far in the literature. Primitive variable

formulation (PVF) is used for transforming the set of boundary layer equations of dusty fluid

flow into a convenient system. Numerical solutions for the underlying coupled, nonlinear

system is then obtained with the aid of implicit finite difference method together with

the Thomas algorithm. In order to understand the particle behavior in the thermally

radiating surface-tension driven flow, the results are presented graphically as coefficient

of skin friction, rate of heat transfer, velocity and temperature profiles, streamlines and

isotherms under the influence of important physical parameters.

2 Mathematical Formulation

In this paper, considerations has been given to 2D, incompressible, steady Marangoni con-

vection of radiating dusty fluid along an heated vertical wavy surface, as shown in Fig. 1.

The surface shape, σ̄ (x̄), is described by the sinusoidal function of the form:

ȳw = σ̄ (x̄) = ā sin

(
2πx̄

L

)
(1)

where ā is the dimensional amplitude of the wavy surface and L the characteristic length

associated with the irregular surface. The wavy surface is heated with an isothermal temper-

ature Tw, which is higher than the ambient fluid temperature, T∞. Within the framework

of this type of convection, a shear stress is developed in the interface, which is caused by the

variation of surface tension. By taking into account the assumptions for two-phase dusty

fluid flow presented in [23] and [24], the mathematical model is established as:

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0 (2)

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= −1

ρ

∂p̄

∂x̄
+ ν∇2ū+ gβT (T − T∞) +

ρp
ρτm

(ūp − ū) (3)

ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
= −1

ρ

∂p̄

∂ȳ
+ ν∇2v̄ +

ρp
ρτm

(v̄p − v̄) (4)

ρcp

(
ū
∂T

∂x̄
+ v̄

∂T

∂ȳ

)
= κ∇2T −∇.~qr +

ρpcs
τT

(Tp − T ) (5)

∂ūp
∂x̄

+
∂v̄p
∂ȳ

= 0 (6)
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ρp

(
ūp
∂ūp
∂x̄

+ v̄p
∂ūp
∂ȳ

)
= −∂p̄p

∂x̄
− ρp
τm

(ūp − ū) (7)

ρp

(
ūp
∂v̄p
∂x̄

+ v̄p
∂v̄p
∂ȳ

)
= −∂p̄p

∂ȳ
− ρp
τm

(v̄p − v̄) (8)

ρpcs

(
ūp
∂Tp
∂x̄

+ v̄p
∂Tp
∂ȳ

)
= −ρpcs

τT
(Tp − T ) (9)

where (ū, v̄) are the velocity components in the (x̄, ȳ) direction, T the temperature, βT the

volumetric expansion coefficient, cp the specific heat at constant pressure, κ the thermal

conductivity, ρ the density and µ the kinematic viscosity of fluid phase. On the similar

fashion, (ūp, v̄p), Tp, cs and ρp represent the the velocity components, temperature, specific

heat and density for the particle phase, respectively. In addition, g is the gravitational

acceleration, τm the momentum relaxation time and τT the thermal relaxation time for

dust particles. The radiative heat flux ~qr in Eq. (5) is expressed by using Rosseland

diffusion approximation and is given as:

~qr = − 4σ∗

3κ (αr + σs)
∇T 4 (10)

where σ∗, σs and αr are the Stephan-Boltzmann constant, the scattering coefficient and

Rosseland mean extinction coefficient, respectively. The physical model is to be solved

under the following set of boundary conditions:

µ∂ū∂ȳ (x̄, ȳw) = ~T ∂T∂x̄ (x̄, ȳw), v̄(x̄, ȳw) = 0, T (x̄, ȳw)− T∞ = T0

ū(x̄,∞) = 0, T (x̄,∞) = T∞.
(11)

µ
∂ūp
∂ȳ (x̄, ȳw) = ~T ∂Tp∂x̄ (x̄, ȳw), v̄p(x̄, ȳw) = 0, Tp(x̄, ȳw)− T∞ = T0

ūp(x̄,∞) = 0, Tp(x̄,∞) = T∞.
(12)

where ~T = − ∂~
∂T̄

is the rate of change of surface tension with temperature and ~ is the

surface tension, which is assumed to be given by the linear relation:

~ = ~m − ~T (T − T∞) (13)

~m is the surface tension at a reference temperature T∞ and is assumed to be constant.

The following variables are now introduced in Eqs. (1)-(13) in order to make the system

dimensionless:

(u, up) =
ρL

µ
Gr
−1/2
L (ū, ūp), (v, vp) =

ρL

µ
Gr
−1/4
L ((v̄, v̄p)− σx (ū, ūp)) , x =

x̄

L
, a =

ā

L
,

y =
ȳ − σ̄ (x̄)

L
Gr

1/4
L , (θ, θp) =

(T, Tp)− T∞
T0

, T0 = Tw − T∞, (p, pp) =
L2

ρν2GrL
(p̄, p̄p),

σx =
dσ̄

dx̄
=
dσ

dx
, σ(x) =

σ̄(x̄)

L
, GrL =

gβTT0L
3

ν2
, γ =

cs
cp
, Pr =

ν

α
, Θw =

Tw
T∞

,

Rd =
4σ∗T 3

∞
κ (αr + σs)

, λ =
Ma

Gr
3/4
L

, Ma =
~TT0L

µν
, τT =

3

2
γτmPr, Dρ =

ρp
ρ
, αd =

L2

τmνGr
1/2
L

(14)
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After introducing the above variables in Eqs. (1)-(13), we get:

∂u

∂x
+
∂v

∂y
= 0 (15)

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ σxGr

1/4
L

∂p

∂y
+
(
1 + σ2

x

) ∂2u

∂y2
+ θ +Dραd(up − u) (16)

σx

(
u
∂u

∂x
+ v

∂u

∂y

)
+ σxxu

2 = −Gr1/4
L

∂p

∂y
+ σx

(
1 + σ2

x

) ∂2u

∂y2
+ σxDραd(up − u) (17)

u
∂θ

∂x
+ v

∂θ

∂y
=

(
1 + σ2

x

)
Pr

[
∂2θ

∂y2
+

∂

∂y

([
4

3
Rd (1 + (Θw − 1) θ)3

]
∂θ

∂y

)]
+

2

3Pr
Dραd(θp − θ)

(18)

∂up
∂x

+
∂vp
∂y

= 0 (19)

up
∂up
∂x

+ vp
∂up
∂y

= −∂pp
∂x

+ σxGr
1/4
L

∂pp
∂y
− αd(up − u) (20)

σx

(
up
∂up
∂x

+ vp
∂up
∂y

)
+ u2

pσxx = −Gr1/4
L

∂pp
∂y
− αdσx(up − u) (21)

up
∂θp
∂x

+ vp
∂θp
∂y

= − 2

3γPr
αd(θp − θ) (22)

The transformed boundary conditions are:

∂u
∂y (x, 0) = −λ ∂θ∂x(x, 0), v(x, 0) = 0, θ(x, 0) = 1

u(x,∞) = 0, θ(x,∞) = 0
(23)

∂up
∂y (x, 0) = −λ∂θp∂x (x, 0), vp(x, 0) = 0, θp(x, 0) = 1

up(x,∞) = 0, θp(x,∞) = 0
(24)

The terms Gr
1/4
L ∂p/∂y and Gr

1/4
L ∂pp/∂y in Eqs. (16) and (20) depicts the fact that the

order of pressure gradient along the y direction is O(Gr
−1/4
L ). This implies that the lowest

order x directional pressure gradient can be calculated from the inviscid-flow solution. As

there is no externally induced free stream in the present problem, therefore, this pressure

gradient is zero. Therefore, eliminating the term ∂p/∂y from Eqs. (16) and (17), one gets:

u
∂u

∂x
+ v

∂u

∂y
+

σxσxx
(1 + σ2

x)
u2 =

(
1 + σ2

x

) ∂2u

∂y2
+

θ

(1 + σ2
x)

+Dραd (up − u) (25)

Similarly, by removing ∂pp/∂y from Eqs. (20) and (21), we have:

up
∂up
∂x

+ vp
∂up
∂y

+
σxσxx

(1 + σ2
x)
u2
p = −Dραd (up − u) (26)

Numerical solutions of the above problem are obtained after transforming the above system

of equations into the following form:

1

2
U +X

∂U

∂X
− 1

4
Y
∂U

∂Y
+
∂V

∂Y
= 0 (27)
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(
1

2
+
XσXσXX(

1 + σ2
X

) )U2 +XU
∂U

∂X
+

(
V − 1

4
Y U

)
∂U

∂Y
=
(
1 + σ2

X

) ∂2U

∂Y 2
+

Θ(
1 + σ2

X

)
+DραdX

1/2(Up − U)

(28)

XU
∂Θ

∂X
+

(
V − 1

4
Y U

)
∂Θ

∂Y
=

(1 + σ2
X)

Pr

∂

∂Y

[(
1 +

4

3
Rd (1 + (Θw − 1) Θ)3

)
∂Θ

∂Y

]
+

2

3Pr
DραdX

1/2 (Θp −Θ)

(29)

1

2
Up +X

∂Up
∂X
− 1

4
Y
∂Up
∂Y

+
∂Vp
∂Y

= 0 (30)(
1

2
+
XσXσXX(

1 + σ2
X

) )U2
p +XUp

∂Up
∂X

+

(
Vp −

1

4
Y Up

)
∂Up
∂Y

= −αdX1/2(Up − U) (31)

XUp
∂Θp

∂X
+

(
Vp −

1

4
Y Up

)
∂Θp

∂Y
= − 2

3γPr
αdX

1/2 (Θp −Θ) (32)

∂U
∂Y (X, 0) = −λX−1/4 ∂Θ

∂X (X, 0), V (X, 0) = 0,Θ(X, 0) = 1
U(X,∞) = 0,Θ(X,∞) = 0.

(33)

∂Up

∂Y (X, 0) = −λX−1/4 ∂Θp

∂X (X, 0), Vp(X, 0) = 0,Θp(X, 0) = 1
Up(X,∞) = 0,Θp(X,∞) = 0.

(34)

where

x = X, y = x
1
4Y, (u, up) = x

1
2 (U,Up), (v, vp) = x−

1
4 (V, Vp), (θ, θp) = (Θ,Θp) (35)

In order to solve the non-linear system of partial differential equations (27)-(34) implicit

finite difference method is employed. The discretization procedure and numerical scheme

is carried out by considering the details given in [7]. After determining all the unknown

of the system, the dimensionless expressions for the physical quantities of interest like skin

friction coefficient τw and heat transfer rate Qw are obtained as:

τw = Cf

(
Gr−3

L

X

)1/4

=
√

1 + σ2
X

(
∂U

∂Y

)
Y=0

Qw = Nu

(
GrL
X

)−1/4

= −
√

1 + σ2
X

(
1 +

4

3
RdΘ

3
w

)(
∂Θ

∂Y

)
Y=0

(36)

In the upcoming section, the numerical results are graphed and discussed.

3 Results and Discussion

The prime purpose of present study is to analyze the Marangoni convection boundary-layer

flow of a two-phase dusty fluid. In the analysis, contaminated fluid flows along a verti-

cal wavy surface and Rosseland diffusion approximation is used to elucidate the effects of

thermal radiation. The two-dimensional simulations are performed for non-linear coupled

system by employing the implicit finite difference method. The computed results are re-

ported for the overall effectiveness of presence of thermal radiation and mass concentration

of dust particles in a surface-tension driven convection. The solutions are presented to

7



record the influence of radiation parameter, Rd, mass concentration parameter, Dρ, surface

temperature parameter, Θw and the amplitude of wavy surface parameter, a, on rate of heat

transfer and skin friction coefficient, velocity and temperature profiles and streamlines and

isotherms. Specifically, the results are established for the contaminated water i.e, Pr = 7.0,

Dρ = 10.0 and γ = 0.1 and these particular parametric values for dusty water are taken

from study of Apazidis [33], whereas the overall range of the other parameters is set as:

Rd = 0.0, 1.0, 2.0, 3.0, Θw = 1.0, 1.1, 1.2, 1.3, αd = 0.1, λ = 1.0 and a = 0.2, 0.3, 0.4, 0.5.

The effect of thermal radiation parameter is entered in Table 1 for the quantities τw
andQw. The quantitative data clearly shows much influence of thermal radiation parameter,

Rd, on the rate of heat transfer as compared to the skin friction coefficient. Particularly,

the values of Qw indicates that Rd participates sufficiently in increasing the rate of heat

transfer near the leading edge.

Table 1: Numerical values of τw and Qw for Rd = 0.0, 2.0, while Dρ = 5.0, Pr = 7.0, γ = 0.1,
αd = 0.1, λ = 1.0, Θw = 1.1 and a = 0.3.

X
τw Qw

Rd = 0.0 Rd = 2.0 Rd = 0.0 Rd = 2.0

0.01999 0.00162 0.00134 0.90981 2.06639
1.00900 0.00162 0.00140 0.93683 2.15625
3.00700 0.00177 0.00152 0.93366 2.12870
5.00500 0.00190 0.00166 0.92337 2.11096
7.00300 0.00203 0.00183 0.91330 2.10182
9.00100 0.00218 0.00203 0.90425 2.09792

In order to ensure the accuracy of our scheme and computational results, a com-

parison is also being done with the available published data. It should be noted that the

numerical results obtained herein reduce to those reported by Yao [27] for sinusoidal wavy

surface provided that the radiation effects and thermal Marangoni convection is ignored.

In [27], Keller box method is used to obtain solutions over the whole range of axial coordi-

nate ξ, while the present computational results are obtained from implicit finite difference

method. Still the solutions can be compared graphically for heat transfer coefficient by

keeping the physical parameters as: Pr = 1.0, a = 0.1, 0.3 for pure fluid in the absence

of radiation and Marangoni convection effects. Therefore, the comparison shown quite an

excellent agreement between the two studies and this also validates our numerical scheme.

The effect of mass concentration parameter Dρ on τw and Qw is presented in Fig. 3.

For the purpose of comparison, the skin friction coefficient and the rate of heat transfer are

also plotted for pure fluid i.e. water without inert particles. It is observed from Fig. 3 that

both the skin friction coefficient and rate of heat transfer are minimum for non-zero values

of the mass concentration parameter Dρ. Specifically, the effect of Dρ is more pronounced

for Qw and reduces considerable owing to an increase in the values of Dρ. This may happen

due to the collision of dispersed particles which resist the flow they can exchange momentum

and energy. As a result the velocity of contaminated fluid reduces as compared to the pure

fluid. Further, the shear stress at the wall will be correspondingly smaller.

Contribution of thermal radiation parameter, Rd, on τw and Qw is depicted in Fig. 4.

The variation in skin friction is given in Fig. 4(a), which shows the reduction in magnitude
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due to the increase in thermal radiation parameter Rd. Therefore, skin friction is maximum

for Rd = 0.0 and decreases when Rd is increased from 0.0 to 3.0. The amplitude of the

curves representing the τw also reduces when Rd grows. Like the typical behavior of thermal

radiation, it is observed that the rate of heat transfer increases significantly when thermal

radiation is increased. Fig. 4(b) reveals the fact that the rate of heat transfer is very

low when the fluid is non-radiating (i.e, when Rd = 0.0) and promoted extensively when

radiation parameter is penetrated into the mechanism. This is expected because Rd raised

the temperature of the dusty fluid in the boundary-layer region. In the present situation,

it can be concluded that the thermal radiation acts as a heat source and large values of Rd
contributes in magnifying the amplitude of the waves representing Qw. Further, in case of

heat transfer rate, the shape of the wavy surface also changes for non-zero values of Rd.

Figure 5 is presenting the variation in τw and Qw by varying the values of surface

temperature parameter, Θw, for the flow of the contaminated water. The surface tempera-

ture parameter do not contributes anything in skin friction coefficient as it shows a uniform

behavior for all Θw while on the other hand the rate of heat transfer shows a remarkable

increase within the boundary layer region when Θw increases. It is important to mention

here that Θw = 1.0 corresponds to the case when the fluid will be non-radiating. It can

be seen from Fig. 5(b) that the rate of heat transfer is very low for Θw = 1.0 and is

boosted up when Θw >> 1.0. The reason for such behavior is similar to the previous result.

That is, temperature of the fluid increases sufficiently and as a result the fluid accelerates

more rapidly in the boundary-layer regime. Moreover, the shape of the curves also tends to

change as soon as fluid moves in the stream-wise direction.

The influence of thermal radiation parameter Rd is also shown on the velocity and

temperature profiles in Fig. 6 for the carrier phase and the particle phase. It is seen

that the thermal radiation parameter Rd participates significantly in increasing the velocity

profiles for both phases (see Fig. 6(a)). It is interesting to observe that the velocity profiles

for Rd = 0.0 quickly acquires the asymptotical state in the momentum boundary layer

region. In addition, similar behavior is recorded in the distribution of temperature profiles

in Fig. 6(b). The thermal and viscous layers grow sufficiently by magnifying the values

of conduction-radiation parameter, Rd. Thus, it can be concluded from this study that

the non-zero values of thermal radiation parameter Rd increases the thermal as well as

momentum boundary layer thickness.

The effect of mass concentration of dust particles parameter, Dρ on streamlines

and isotherms for water-particle mixture is shown in Fig. 7. It is interesting to see that

by loading the dust particles the velocity and the temperature distribution of carrier fluid

increases considerably whenDρ increases. When particles are loaded in the fluid at relatively

high ratio, i.e, Dρ = 10.0, the momentum and energy is exchanged with the base fluid

and particles collide as well to increases the overall velocity and temperature within the

boundary-layer region. It is further noted that the amplitude of the waves also increases at

the outer edge of the boundary layer.

4 Conclusion

In this article, we have studied the interaction of thermal radiation on Marangoni convec-

tion of two phase dusty fluid. The water particulate mixture is considered to flows along

the semi-infinite vertical wavy surface. Coordinate transformations (primitive variable for-
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mulations) are applied to switch the governing equations of the carrier and the dispersed

phase into another set of equations, which are then integrated by finite difference method.

Influence of various emerging parameters are explored by expressing their relevance on skin

friction coefficient and rate of heat transfer. Velocity distribution, temperature distribution,

streamlines and isotherms are also plotted to visualize the flow behavior. From this analysis,

it is concluded that increase in the values of radiation parameter or surface temperature

parameter leads to an increase in the rate of heat transfer, velocity distribution and the

temperature distribution.
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