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A B S T R A C T

Modern computer devices exhibit transient hardware faults that dis-
turb the electrical behavior but do not cause permanent physical
damage to the devices. Transient faults are caused by a multitude
of sources, such as fluctuation of the supply voltage, electromagnetic
interference, and radiation from the natural environment. Therefore,
dependable computer systems must incorporate methods of fault tol-
erance to cope with transient faults. Software-implemented fault tol-
erance represents a promising approach that does not need expensive
hardware redundancy for reducing the probability of failure to an ac-
ceptable level.

This thesis focuses on software-implemented fault tolerance for op-
erating systems because they are the most critical pieces of software in
a computer system: All computer programs depend on the integrity
of the operating system. However, the C/C++ source code of com-
mon operating systems tends to be already exceedingly complex, so
that a manual extension by fault tolerance is no viable solution. Thus,
this thesis proposes a generic solution based on Aspect-Oriented Pro-
gramming (AOP).

To evaluate AOP as a means to improve the dependability of oper-
ating systems, this thesis presents the design and implementation of
a library of aspect-oriented fault-tolerance mechanisms. These mecha-
nisms constitute separate program modules that can be integrated au-
tomatically into common off-the-shelf operating systems using a com-
piler for the AOP language. Thus, the aspect-oriented approach facil-
itates improving the dependability of large-scale software systems
without affecting the maintainability of the source code. The library
allows choosing between several error-detection and error-correction
schemes, and provides wait-free synchronization for handling asyn-
chronous and multi-threaded operating-system code.

This thesis evaluates the aspect-oriented approach to fault tolerance
on the basis of two off-the-shelf operating systems. Furthermore, the
evaluation also considers one user-level program for protection, as
the library of fault-tolerance mechanisms is highly generic and trans-
parent and, thus, not limited to operating systems. Exhaustive fault-
injection experiments show an excellent trade-off between runtime
overhead and fault tolerance, which can be adjusted and optimized
by fine-grained selective placement of the fault-tolerance mechanisms.
Finally, this thesis provides evidence for the effectiveness of the ap-
proach in detecting and correcting radiation-induced hardware faults:
High-energy particle radiation experiments confirm improvements in
fault tolerance by almost 80 percent.

iii





P U B L I C AT I O N S

The ideas and findings presented in this dissertation have partly been
published in the following peer-reviewed journals and proceedings of
international conferences and workshops:

[26] Christoph Borchert and Olaf Spinczyk. Acceptance
rate: 44 %,
also appeared in
ACM Operating
Systems Review [27]

Hardening an L4 mi-
crokernel against soft errors by aspect-oriented programming
and whole-program analysis. In Proceedings of the 8th Workshop
on Programming Languages and Operating Systems (PLOS ’15).
ACM Press, October 2015. doi: 10.1145/2818302.2818304

[28] Christoph Borchert, Daniel Lohmann, and Olaf Spinczyk.
CiAO/IP: A highly configurable aspect-oriented IP stack. Acceptance

rate: 18 %
In

Proceedings of the 10th International Conference on Mobile Systems,
Applications, and Services (MobiSys ’12). ACM Press, June 2012.
doi: 10.1145/2307636.2307676

[29] Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk. Pro-
tecting the dynamic dispatch in C++ by dependability aspects.
In Proceedings of the 1st GI Workshop on Software-Based Meth-
ods for Robust Embedded Systems (SOBRES ’12). German Society
of Informatics, September 2012. URL: http://subs.emis.de/
LNI/Proceedings/Proceedings208/521.pdf

[30] Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk. Gen-
erative software-based memory error detection and correc-
tion for operating system data structures. Acceptance

rate: 20 %
In Proceedings of

the 43rd IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN ’13). IEEE Press, June 2013. doi:
10.1109/DSN.2013.6575308

[31] Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk.
Return-address protection in C/C++ code by dependability
aspects. In Proceedings of the 2nd GI Workshop on Software-Based
Methods for Robust Embedded Systems (SOBRES ’13). German So-
ciety of Informatics, September 2013. URL: http://subs.emis.
de/LNI/Proceedings/Proceedings220/2519.pdf

[32] Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk.
Generic soft-error detection and correction Open access,

journal impact
factor: 1.59

for concur-
rent data structures. IEEE Transactions on Dependable
and Secure Computing, 14(1):22–36, January 2017. doi:
10.1109/TDSC.2015.2427832

v

http://dx.doi.org/10.1145/2818302.2818304
http://dx.doi.org/10.1145/2307636.2307676
http://subs.emis.de/LNI/Proceedings/Proceedings208/521.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings208/521.pdf
http://dx.doi.org/10.1109/DSN.2013.6575308
http://dx.doi.org/10.1109/DSN.2013.6575308
http://subs.emis.de/LNI/Proceedings/Proceedings220/2519.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings220/2519.pdf
http://dx.doi.org/10.1109/TDSC.2015.2427832
http://dx.doi.org/10.1109/TDSC.2015.2427832


[109] Martin Hoffmann, Christoph Borchert, Christian Dietrich,
Horst Schirmeier, Rüdiger Kapitza, Olaf Spinczyk, and Daniel
Lohmann. Effectiveness of fault detection mechanisms in static
and dynamic operating system designs.Acceptance

rate: 63 %
In Proceedings of the

17th IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC ’14). IEEE Press, June 2014. doi:
10.1109/ISORC.2014.26

[159] Arthur Martens, Christoph Borchert, Tobias Oliver Geißler,
Daniel Lohmann, Olaf Spinczyk, and Rüdiger Kapitza. Cross-
check: Hardening replicated multithreaded services. In Pro-
ceedings of the 4th International Workshop on Dependability of
Clouds, Data Centers and Virtual Machine Technology (DCDV ’14).
IEEE Press, June 2014. doi: 10.1109/DSN.2014.98

[160] Arthur Martens, Christoph Borchert, Manuel Nieke, Olaf
Spinczyk, and Rüdiger Kapitza. CrossCheck: A holistic ap-
proach for tolerating crash-faults and arbitrary failures.

Acceptance
rate: 46 %

In Proceedings of the 12th European Dependable Computing
Conference (EDCC ’16). IEEE Press, September 2016. doi:
10.1109/EDCC.2016.29

[211] Thiago Santini, Christoph Borchert, Christian Dietrich, Horst
Schirmeier, Martin Hoffmann, Olaf Spinczyk, Daniel Loh-
mann, Flávio Rech Wagner, and Paolo Rech. Effectiveness of
Software-Based HardeningAcceptance

rate: 45 %
for Radiation-Induced Soft Errors

in Real-Time Operating Systems. In Proceedings of the 30th Inter-
national Conference on Architecture of Computing Systems (ARCS
’17), Springer, April 2017. doi: 10.1007/978-3-319-54999-6_1

[213] Horst Schirmeier, Christoph Borchert, and Olaf Spinczyk.
Rapid fault-space exploration by evolutionary pruning. In Pro-
ceedings of the 33rdAcceptance

rate: 27 %
International Conference on Computer Safety,

Reliability and Security (SAFECOMP ’14). Springer, September
2014. doi: 10.1007/978-3-319-10506-2_2

[214] Horst Schirmeier, Christoph Borchert, and Olaf Spinczyk.
Avoiding pitfalls in fault-injection based comparison of pro-
gram susceptibility to soft errors.Acceptance

rate: 22 %
In Proceedings of the

45th IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN ’15). IEEE Press, June 2015. doi:
10.1109/DSN.2015.44

[218] Muhammad Shafique, Philip Axer, Christoph Borchert, Jian-
Jia Chen, Kuan-Hsun Chen, Björn Döbel, Rolf Ernst, Hermann
Härtig, Andreas Heinig, Rüdiger Kapitza, Florian Kriebel,
Daniel Lohmann, Peter Marwedel, Semeen Rehman, Florian
Schmoll, and Olaf Spinczyk. Multi-layer software reliability for
unreliable hardware. it - Information Technology, 57(3):170–180,
June 2015. doi: 10.1515/itit-2014-1081

vi

http://dx.doi.org/10.1109/ISORC.2014.26
http://dx.doi.org/10.1109/ISORC.2014.26
http://dx.doi.org/10.1109/DSN.2014.98
http://dx.doi.org/10.1109/EDCC.2016.29
http://dx.doi.org/10.1109/EDCC.2016.29
http://dx.doi.org/10.1007/978-3-319-54999-6_1
http://dx.doi.org/10.1007/978-3-319-10506-2_2
http://dx.doi.org/10.1109/DSN.2015.44
http://dx.doi.org/10.1109/DSN.2015.44
http://dx.doi.org/10.1515/itit-2014-1081


C O N T E N T S

1 introduction 1

1.1 Motivation and Relevance 1

1.2 Objectives and Research Questions 3

1.3 Scientific Contributions 4

1.4 Outline of this Thesis 4

1.5 The Author’s Contribution 6

1.6 Typographical Conventions 8

2 reliability of computer hardware 9

2.1 Transient Faults in Semiconductor Devices 9

2.1.1 Sources and Composition of Natural Radiation 10

2.1.2 Effects of Radiation on Silicon Transistors 11

2.1.3 Single-Event Upsets in Memory Circuits 12

2.1.4 Single-Event Transients in CMOS Logic 15

2.1.5 Overview of Transient-Fault Rates 16

2.2 The Concept of Fault Tolerance 17

2.2.1 Terms and Definitions 17

2.2.2 Error Detection and Recovery 18

2.2.3 Redundancy 19

2.3 Hardware-Implemented Fault Tolerance 22

2.3.1 Device-Level Hardening 22

2.3.2 Circuit-Level Hardening 22

2.3.3 System-Level Hardening 23

2.4 Software-Implemented Fault Tolerance 23

2.4.1 Error Detection Mechanisms 24

2.4.2 Error Correction and Recovery Mechanisms 29

2.4.3 Comparison of the Approaches 33

2.4.4 Fundamental Limitations 36

2.5 Chapter Summary 37

3 problem analysis 39

3.1 The Methodology of Fault Injection 40

3.1.1 Modeling of Hardware Faults 41

3.1.2 Probability of Failure 42

3.1.3 Exhaustive Fault-Space Scanning 44

3.2 Baseline Dependability Assessment 46

3.2.1 Experimental Setup 47

3.2.2 Case Study: eCos 48

3.2.3 Case Study: L4/Fiasco.OC 53

3.3 Interpretation of the Results 55

3.4 Suggested Approach 56

3.5 Chapter Summary 56

vii



viii contents

4 aspect-oriented programming 59

4.1 General Considerations 60

4.1.1 Crosscutting Concerns 60

4.1.2 AOP – Quantification and Obliviousness 62

4.1.3 Language Support 62

4.1.4 Weaving 63

4.2 The AspectC++ Language and Compiler 64

4.2.1 Language Concepts 64

4.2.2 Case Study: The CiAO Operating System 68

4.3 Related Aspect Languages 71

4.3.1 AspectJ and Descendants 71

4.3.2 AOP Extensions to C, C++, and C# 72

4.3.3 AspectAda 73

4.4 Criticism of AOP 73

4.5 Prior Work on Fault Tolerance using AspectC++ 75

4.6 Chapter Summary 75

5 aspectc++ 2 .0 – language extensions 77

5.1 Advice for Built-in Operators 78

5.1.1 Pointcut Function for Built-in Operators 78

5.1.2 Example: Range Check of Function Pointers 79

5.2 Advice for Access to Variables 81

5.2.1 Name Pointcut Expressions for Variables 81

5.2.2 Pointcut Functions for Access to Variables 81

5.2.3 Example: Bounds Check of Arrays 84

5.3 Generic Introductions 87

5.3.1 Join-Point API of Introductions 87

5.3.2 Example: Run-Time Type Checking 89

5.3.3 Join-Point Template Library 91

5.4 Whole-Program Analysis 92

5.4.1 Project Repository 93

5.4.2 Example: Control-Flow Reachability Analysis 95

5.5 Chapter Summary 96

6 library of dependability aspects 99

6.1 Design of the Library 100

6.2 Symptom Detection 102

6.2.1 Checking of Pointers, Arrays, and Class Types 102

6.2.2 Integer-Overflow Checking 103

6.3 Return-Address Protection 105

6.3.1 Implementation 106

6.3.2 Whole-Program Optimization 109

6.4 Virtual-Function Pointer Protection 111

6.4.1 C++ Object Layout of GCC and LLVM/Clang 111

6.4.2 Implementation 111

6.5 Generic Object Protection 115

6.5.1 Generative Redundancy 118



contents ix

6.5.2 Exploiting Object-Oriented Program Structure 122

6.5.3 Concurrent Error Detection 127

6.6 Chapter Summary 135

7 evaluation 137

7.1 Case Study: Hardening eCos 138

7.1.1 Symptom Detection 139

7.1.2 Return-Address Protection 142

7.1.3 Generic Object Protection 145

7.1.4 Combining the Dependability Aspects 149

7.2 Case Study: Hardening L4/Fiasco.OC 153

7.2.1 Effectiveness: Error Detection and Correction 154

7.2.2 Efficiency: Runtime 155

7.2.3 Memory Footprint: Static Binary Size 157

7.3 Case Study: Hardening Memcached 157

7.3.1 Experimental Setup 158

7.3.2 Effectiveness: Error Detection and Correction 161

7.3.3 Efficiency: Runtime 163

7.3.4 Memory Footprint 164

7.4 Chapter Summary 164

8 discussion 167

8.1 Reality Check: Neutron-Beam Testing 167

8.1.1 Experimental Methodology 168

8.1.2 Experimental Results 170

8.1.3 Interpretation of the Results 172

8.2 Software Maintainability 173

8.2.1 Scattering and Tangling in the Implementation 173

8.2.2 Separation of Concerns in the Compiler 175

8.3 Limitations 176

8.4 Future Work 176

8.5 Chapter Summary 177

9 summary and conclusions 179

9.1 Contribution 1: AspectC++ 2.0 – Language Extensions 180

9.2 Contribution 2: Library of Dependability Aspects 180

9.3 Contribution 3: Evidence for Effectiveness 181

9.4 Final Remarks 182

a appendix : baseline dependability assessment 183

a.1 eCos 183

a.2 L4/Fiasco.OC 188

b appendix : hardening ecos 189

List of Figures 203

List of Tables 205

bibliography 207



A C R O N Y M S

ABFT Algorithm-Based Fault Tolerance

AOP Aspect-Oriented Programming

API Application Programming Interface

CFC Control-Flow Checking

CMOS Complementary Metal-Oxide-Semiconductor

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DRAM Dynamic Random-Access Memory

ECC Error-Correcting Code

FIT Failures In Time

GCC GNU Compiler Collection

GNU GNU’s Not Unix!

GOP Generic Object Protection

IP Internet Protocol

IPC Inter-Process Communication

JPTL Join-Point Template Library

JVM Java Virtual Machine

LANL Los Alamos National Laboratory

LANSCE Los Alamos Neutron Science Center

MMU Memory Management Unit

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

RAII Resource Acquisition Is Initialization

RAM Random-Access Memory

RAP Return-Address Protection

RISC Reduced Instruction Set Computing

ROM Read-Only Memory

x



acronyms xi

SDC Silent Data Corruption

SET Single-Event Transient

SEU Single-Event Upset

SIL Safety Integrity Level

SRAM Static Random-Access Memory

STU Single Translation Unit

TMR Triple-Modular Redundancy

TSO Total Store Ordering

UDP User Datagram Protocol

UML Unified Modeling Language

VGA Video Graphics Array

VLSI Very-Large-Scale Integration

VPP Virtual-Function Pointer Protection

XML Extensible Markup Language





1
I N T R O D U C T I O N

Most people know that cosmic rays exist, yet, few people are aware
that cosmic rays cause failures of computer systems at ground level.
Recent incidents show that safety-critical computer systems often im-
plement an insufficient degree of fault tolerance, even though human
lives are at stake. As a remedy, the aspect-oriented programming lan- Thesis statement

guage AspectC++ represents a suitable general-purpose technology
for automatically improving the dependability of computer software
– especially operating systems – and, thus, provides economical miti-
gation of radiation-induced hardware faults.

1.1 motivation and relevance

“ Reliability turns into the major design constraint for on-
chip systems as scaling moves on. After almost a decade
of research, the problems are far from being solved. ”– Jörg Henkel and associates [104, p. 9]

The effects of cosmic rays manifest at ground level as ambient neutron
radiation, of which a single particle suffices to disturb the electrical
behavior of modern computer devices. Thus, computer devices occa-
sionally exhibit transient faults that typically do not cause any perma-
nent physical damage to the device. However, transient faults jeopar- Section 2.1 discusses

the radiation effects
on semiconductor
devices in detail.

dize correct program execution. For example, digital memory circuits
are particularly susceptible to radiation-induced faults, which irrecov-
erably corrupt the stored information. Therefore, transient faults of-
ten turn into bit flips of computer memory. This problem worsens
with the continuous downscaling of Complementary Metal-Oxide-
Semiconductor (CMOS) technology [69, p. 488], as ever increasing
amounts of memory are integrated on a single computer chip.

Ignoring such faults in safety-critical systems causes catastrophic
consequences. For example, recent legal proceedings [246] reveal that
the electronic throttle control system of the Toyota Camry vehicle
(model 2005) contains memory circuits without built-in error detec-
tion and correction. The software of that electronic control unit, how-
ever, implements duplicated program variables to detect certain er-
rors, but the operating system is left out:

“ Inside this operating system . . . , we found that . . . critical
data structures aren’t protected in any way. . . . a bit-flip
there, will have the effect of killing one of the tasks. ”– Michael Barr [246]

1



2 introduction

Therefore, if the software task (thread of control) responsible for reg-
ulating the engine speed is turned off abruptly, the vehicle can get
out of control. In fact, this particular deficiency is considered as the
root cause for several fatal car accidents due to unintended accelera-
tion [246].

To prevent such incidents, adequate methods of fault tolerance are
essential, which can be implemented at the hardware or software
level or both. As an example of the former, radiation-hardened CMOS
technology [153, 89] and memory cells [40, 103] are typically used in
aerospace systems; high-end computer systems contain built-in cir-
cuits for the detection and correction of memory errors [128, 117, 170],
in addition to redundant processors that operate in lockstep [226].

“ Many of these solutions have, however, been prohibitively
expensive and difficult to justify in the mainstream com-
modity computing market. ”– Shubu Mukherjee [172, p. 2]

For that reason, much research focuses on fault tolerance at the soft-
ware level to compensate for unreliable, yet inexpensive, hardware. A
particularly successful approach is redundant multi-threading [251,
221, 70]; that is, application programs are executed repeatedly and
synchronized on operating-system calls, on which the individual pro-
gram outputs are checked for consistency. Such an approach, however,
does not cover the operating system itself.

Another solution is represented by special-purpose compilers that
automatically apply instruction-level duplication [25, 200, 184, 176]
and error-detecting codes [182, 138]. These compilers tend to become
so complex that none of them works correctly for multi-threaded
programs. For example, compiler transformations that duplicate pro-
gram variables provoke race conditions because the variables cannot
be written atomically anymore. Thus, consistency checks can fail if
a concurrent thread overwrites the original and duplicate variables
one after the other. As operating-system code is typically concurrent
and asynchronous due to interrupt processing, these compiler-based
solutions are also not applicable to operating systems.

It turns out that there is a rich body of literature on fault tolerance
of user-level programs (see Section 2.4), whereas operating systems
receive less attention – just as in the case of Toyota. However, the
operating system is the most important piece of software, because
all user-level programs depend on it. A crash of the operating system
thwarts any user-level fault tolerance. Thus, the operating system rep-
resents a critical single point of failure.
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1.2 objectives and research questions

The aforementioned state-of-the-art approaches to automatic fault tol-
erance at the software level do not cover operating systems. This
problem can be approached by manually implementing a special-
purpose operating system from scratch with built-in transient error
detection [110]. However, the resulting source code becomes highly
tangled with error-detection functionality, which is scattered over the
source-code files of that operating system. Such an approach severely
impairs the maintainability of the source code.

The objective of this thesis is to investigate a semiautomatic solu-
tion that can be applied ex post to existing operating systems with-
out modification of any source code. This thesis evaluates whether
Aspect-Oriented Programming (AOP) [131] is suitable for achieving Chapter 4 elaborates

on AOP.this objective. In brief, AOP is a general-purpose programming tech-
nology that provides extra language support for the transparent ex-
tension of existing programs by user-defined functionality, which can
be specified as a separate program module. A compiler for the AOP
language extends the existing program by the specified functional-
ity. Thus, it might become feasible to integrate fault-tolerance mecha-
nisms into operating systems in an automated and transparent way.

Several studies [90, 8, 5, 7, 126] indicate that AOP is a promising
technology for implementing fault tolerance at the application level.
To the best of my knowledge, only Afonso and associates [4] consider
AOP for checking a specific precondition of a semaphore data struc-
ture of an operating system. Therefore, the question whether AOP is
suitable for improving the fault tolerance of operating systems at all
is not yet completely answered. Likewise, the extent to which AOP
can improve fault tolerance is still poorly understood. In summary,
this thesis addresses the following research questions:

question 1 : Are contemporary AOP languages suitable for improv-
ing the fault tolerance of existing operating systems? If the lan-
guages are not applicable or not expressive enough, can they be
extended to achieve this goal? Which AOP language features
are essential in this regard?

question 2 : Which steps are required to support asynchronous and
multi-threaded operating-system code? Is there a generic and
reusable solution that can be applied to various operating sys-
tems without affecting maintainability?

question 3 : How effective and how efficient is an AOP-based so-
lution? Is there evidence that the solution provides protection
from radiation-induced hardware faults? What are the limits of
the approach?
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1.3 scientific contributions

This thesis provides answers to the research questions stated in the
previous section. To this end, I focus on the aspect-oriented program-
ming language AspectC++ [231] as motivated in Chapter 4. I evaluate
the suitability of that language for improving the fault tolerance of
two off-the-shelf operating systems: the embedded configurable op-
erating system (eCos) [162] and the L4/Fiasco.OC microkernel [139].
Both operating systems are used in a broad range of production sys-
tems with dependability constraints (see Section 3.2). In summary,
this thesis advances the state-of-the-art by making the following sci-
entific contributions:

contribution 1 : By analyzing the previously mentioned operat-
ing systems, I identify missing language features of AspectC++
that are essential for achieving fault tolerance. Subsequently, I
propose and specify four distinct language extensions that led
to the AspectC++ 2.0 language and compiler.

contribution 2 : I describe the design and implementation of a
library of generic fault-tolerance mechanisms using the Aspect-
C++ 2.0 technology. This library can be applied automatically
to protect the most critical data structures of both operating
systems. I present a wait-free synchronization algorithm and
correctness proof that enables support for asynchronous and
multi-threaded operating-system code.

contribution 3 : Finally, I evaluate the AspectC++ 2.0 technology
and library of fault-tolerance mechanisms on the basis of both
operating systems and one additional user-level program. Ex-
haustive fault-injection experiments show an excellent trade-
off between runtime overhead and fault tolerance. I validate
the findings by high-energy particle radiation experiments con-
ducted at Los Alamos National Laboratory, USA, which attest
effective improvements in fault tolerance by almost 80 percent.

1.4 outline of this thesis

This thesis is structured in nine chapters.

chapter 2 : Reliability of Computer Hardware (pages 9–38)
The second chapter provides an introduction to radiation ef-
fects on semiconductor devices and summarizes the frequency
of transient faults that affect contemporary memory technolo-
gies. Subsequently, the chapter briefly introduces the principles
and terminology of fault tolerance and, thereafter, establishes a
taxonomy of software-implemented fault tolerance that repre-
sents the related work of this thesis. The chapter concludes with
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an evaluation of the related work and points out several short-
comings in the state-of-the-art.

chapter 3 : Problem Analysis (pages 39–57)
In general, the methodology of fault injection is fundamental to
the assessment of fault tolerance. Thus, I apply this method-
ology to examine the memory segments of the two operating
systems eCos and L4/Fiasco.OC. In short, the third chapter ana-
lyzes the failure mode, effects, and criticality of each individual
memory location of both operating systems. On that basis, the
chapter formulates a suggested approach to selective protection of
the most critical data.

chapter 4 : Aspect-Oriented Programming (pages 59–76)
The fourth chapter introduces AOP and reviews several AOP
languages. Furthermore, the chapter presents a case study on
AspectC++ and evaluates the suitability of that language for
the domain of dependable operating systems. After recapitulat-
ing frequent points of criticism concerning AOP, the chapter
examines prior work on fault tolerance using AspectC++ and
concludes with the need for several language extensions.

chapter 5 : AspectC++ 2.0 – Language Extensions (pages 77–97)
In the fifth chapter, I propose and specify four distinct language
extensions to AspectC++. These extensions remedy the deficien-
cies of prior work on fault tolerance using AspectC++ and, thus,
represent the essential building blocks for the development of
highly generic fault-tolerance mechanisms. The chapter illus-
trates each language extension by functional examples, such as
checking of pointer ranges, checking of array bounds, and run-
time type checking.

chapter 6 : Library of Dependability Aspects (pages 99–135)
The sixth chapter presents the design and implementation of
four highly generic mechanisms for the detection and correc-
tion of memory errors in operating systems. These mechanisms
use the AspectC++ 2.0 technology to achieve complete trans-
parency: The target operating systems need not be aware of –
and not prepared for – these mechanisms. To this end, the mech-
anisms support asynchronous and multi-threaded code by wait-
free synchronization, which is also addressed in that chapter.

chapter 7 : Evaluation (pages 137–165)
I evaluate the approach of this thesis in the seventh chapter,
which comprises case studies on eCos, L4/Fiasco.OC, and one
user-level application. Each case study involves extensive fault-
injection experiments to evaluate the fault tolerance of the three
software systems. In addition, the chapter measures the effi-
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ciency of the aspect-oriented fault-tolerance mechanisms regard-
ing runtime overhead and memory footprint.

chapter 8 : Discussion (pages 167–178)
The eighth chapter discusses the validity of the results obtained
from fault injection. For that purpose, the chapter confirms the
results by neutron-beam testing at Los Alamos National Labo-
ratory, USA. Subsequently, the chapter examines the software
maintainability of the approach taken in this thesis. After re-
capitulating the fundamental limitations of the aspect-oriented
approach, the chapter outlines directions for future work.

chapter 9 : Summary and Conclusions (pages 179–182)
The final chapter summarizes and reviews my work and con-
cludes this thesis.

Two appendices succeed the nine main chapters and present supple-
mental fault-injection results.

appendix a : Baseline Dependability Assessment (pages 183–188)
The first appendix presents further fault-injection results of the
baseline dependability assessment of eCos and L4/Fiasco.OC
as described in Chapter 3.

appendix b : Hardening eCos (pages 189–202)
The second appendix shows the complete fault-injection results
of all benchmarks used in the case study on eCos in Chapter 7.

1.5 the author’s contribution

According to §10(2) of the examination regulations of the depart-
ment of computer science, TU Dortmund, 2011, a doctoral disserta-
tion must include a separate list of the author’s contribution to the
scientific results that were obtained in cooperation with other per-
sons. As such, the following list provides a chapter-wise overview of
my contributions to results that were obtained in cooperation.

chapter 3 : The third chapter presents the reliability metric for fault
injection used throughout this thesis. I developed the founda-
tions of that metric in cooperation with Horst Schirmeier and
we published the results [214]. In Section 3.1.2, I present an im-
proved formalization of that reliability metric. The fault-injection
results of eCos that are shown in Section 3.2.2 are parts of three
publications [30, 31, 32], of which I am the principal author. My
contribution to these fault-injection results is the setup of eCos
and the interpretation of the results.

chapter 4 : The case study on the CiAO operating system in Sec-
tion 4.2.2 is based on a publication of Martin Hoffmann and
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colleagues [109], of which I am a coauthor. My contribution is
the setup of eCos (for comparison) and the design and imple-
mentation of the network stack of the CiAO operating system
as described in another publication [28], of which I am the prin-
cipal author.

chapter 5 : I developed the concepts of the AspectC++ language ex-
tension by advice for built-in operators (see Section 5.1). The inte-
gration of that language feature into the AspectC++ compiler is
a result of the bachelor thesis of Simon Schröder, whom I super-
vised. Likewise, I developed the language extension by advice for
access to variables (see Section 5.2), and the integration into the
AspectC++ compiler is a result of the diploma thesis of Markus
Schmeing, whom I supervised as well. The third language ex-
tension by generic introductions (see Section 5.3) is presented in a
publication [26] of which I am the principal author. I developed
the concepts of that language feature in cooperation with my
adviser Olaf Spinczyk, who was involved in many details of the
implementation in the AspectC++ compiler.

chapter 6 : The library of dependability aspects – that is, generic fault-
tolerance mechanisms based on AspectC++ – is partly described
in five publications [29, 30, 31, 26, 32], of which I am the princi-
pal author. As such, my contribution is the whole idea, design,
and implementation of all these dependability aspects. More-
over, the wait-free synchronization algorithm described in Sec-
tion 6.5.3 has been quoted verbatim with permission from an
IEEE journal publication [32]; the quoted passages have been
written exclusively by myself.

chapter 7 : First, the evaluation of the eCos operating system in
Section 7.1 is partly described in three publications [30, 31, 32],
of which I am the principal author. However, I completely re-
evaluated the eCos operating system in this thesis using im-
proved versions of all the dependability aspects and the Aspect-
C++ compiler. Second, the evaluation of the L4/Fiasco.OC mi-
crokernel is based on a publication [26] of which I am the prin-
cipal author. I carried out all the fault-injection experiments.
Third, the hardening of the user-level program Memcached is
based on the work of Arthur Martens and our publication [160].
My contribution are the dependability aspects and the concept
of the ptrace-based fault-injection tool, which was implemented
as a prototype during the bachelor thesis of Christopher Kukkel,
whom I supervised.

chapter 8 : The neutron-beam testing at Los Alamos National Lab-
oratory was carried out by Paolo Rech and colleagues [211]. My
contribution to that work is the setup and hardening of eCos.



8 introduction

1.6 typographical conventions

Throughout this thesis, I use the italic font shape to emphasize a par-
ticularly important term or fragment of a sentence. Source code isMargin notes

highlight important
terms or provide

supplemental
information, such as

cross-references.

typeset in a monospace font; in-text references to source-code identi-
fiers are also typeset that way. The labels of descriptions and headers
of tables are depicted by small caps. The same typesetting applies
to benchmark programs with cryptic names, such as bin_sem2.



2
R E L I A B I L I T Y O F C O M P U T E R H A R D WA R E

“ As the dimensions and operating voltages of computer
electronics are reduced to satisfy the consumer’s insatiable
demand for higher density, functionality, and lower power,
their sensitivity to radiation increases dramatically. ”– Robert Baumann [24, p. 258]

In short, the goal of this thesis is to evaluate AOP as a means to im-
prove the dependability of computer operating systems. In particular,
this thesis focuses on mitigation of hardware faults that are induced
by the natural radiation environment. First, this chapter provides an
introduction to radiation effects on semiconductor devices in Sec-
tion 2.1, including various memory technologies and the core logic of
a CPU. This background information is essential for the development
of effective fault-tolerance mechanisms, as discussed in the following
chapters. For example, Chapter 8 describes high-energy particle ra-
diation experiments conducted at Los Alamos National Laboratory,
USA, to evaluate the fault-tolerance mechanisms developed in this
thesis. For that reason, Section 2.1 deals with the physics of semicon-
ductors exposed to radiation.

Second, this chapter briefly introduces the principles and termi-
nology of fault tolerance in Section 2.2. The terminology defines the
vocabulary that is important for understanding this thesis.

Third, Section 2.3 reviews the benefits and costs of hardware so-
lutions for fault tolerance. Subsequently, Section 2.4 elaborates on
software solutions that provide low-cost alternatives. That section dis-
cusses the related work of this thesis and concludes with a comparative
study of the state-of-the-art in software-implemented fault tolerance.

Finally, Section 2.5 summarizes the findings of this chapter.

2.1 transient faults in semiconductor devices

“ Intermittent and transient faults are expected to represent
the main source of errors experienced by VLSI circuits. ”– Cristian Constantinescu [57, p. 18]

The reliability of digital semiconductor devices is confronted with
transient faults that disturb the electrical behavior of the devices.
Transient faults are caused by a multitude of sources, such as tran-
sistor variability during fabrication [33], fluctuation of the supply
voltage [57, 33], temperature variation affecting transistor switching

9
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speed [33], electromagnetic interference [57, 230], and ionizing radi-
ation [259, 258, 23]. In addition, several aging effects cause a grad-Sources of transient

faults ual degradation of semiconductor devices, including hot-carrier in-
jection [158], negative bias temperature instability [158], electromigra-
tion [57], and time-dependent dielectric breakdown [158], all of which
typically start out as intermittent faults and turn into permanent fail-
ure over time [57, 223].

Most of these problems relate to the semiconductor fabrication pro-
cess, whereas transient faults induced by ionizing radiation depend
on the natural radiation environment. The following sections focus
on radiation-induced faults, “because, uncorrected, they produce a
failure rate exceeding that of all other reliability mechanisms com-
bined.” [24, p. 260]

2.1.1 Sources and Composition of Natural Radiation

The natural radiation environment varies with altitude and, thus, dif-
fers between the Earth’s atmosphere and ground level. Above the
Earth’s upper atmosphere, primary cosmic rays arrive from outer space.
Primary cosmic rays mostly consist of positively charged particles: 93

percent protons, 6 percent alpha particles, and a remainder of heavier
elements [125, p. 130]. They arrive in large quantities of about 36,000

particles per cm² per hour [172, p. 22].
Once the galactic particles enter the atmosphere, they collide with

air nuclei and produce cascades of secondary particles by nuclear
spallation reactions [125, p. 129]. The air nuclei thereby emit charged
particles and neutrons with high kinetic energy, which in turn can
strike other air nuclei once again. As these cascades travel down
to the Earth’s surface, the charged particles constantly lose energy
to the electrons of the air molecules and then get lost from the cas-High-energy

neutrons cades. Thus, more than 95 percent of the particles that finally reach
the ground level are neutrons, which penetrate the air without in-
teraction of electrons [258]. The resulting particle flux at sea level, for
example in New York City, amounts to about 13 high-energy neutrons
per cm² per hour [118, p. 56].

Besides neutrons from the atmosphere, radioactive impurities in
semiconductor devices emit charged alpha particles during alpha
decay. For example, even highly purified chip materials satisfying
the ultra-low alpha grade emit about 0.001 alpha particles per cm²
per hour [134, p. 207], which corresponds to less than one radioac-
tive atom per 10 billion [23, p. 307]. A further reduction of radioac-Alpha particles

tive emission is considered as extremely difficult [125, 172] and pro-
hibitively expensive [23]. Alpha particles from the natural radiation
environment are shielded by the chip packaging and cannot reach the
silicon transistors – only those few alpha particles originating from
residual radioactive activity in the device itself are of concern.
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Figure 2.1: Schematic diagram showing the cross section through a
MOSFET. The electric fields across the p-n junctions arise from
different chemical potential of the n-type silicon (n+-Si) and the
p-type substrate (p-Si). The resulting depletion region is the most
radiation-sensitive area of the transistor.

2.1.2 Effects of Radiation on Silicon Transistors

Neutrons with high kinetic energy penetrate a semiconductor device
as easily as the Earth’s atmosphere and cannot be shielded effectively,
except by several meters of concrete [23, p. 309]. When a high-energy
neutron passes through a semiconductor device, the neutron can col-
lide with the silicon nuclei causing a nuclear spallation reaction. The
silicon nucleus emits thereby additional neutrons, protons, and alpha
particles [23, p. 308]. It is only these secondary, charged protons and
alpha particles that disturb the electrical behavior of a silicon transis-
tor in addition to the primary alpha particles emitted from the chip
material.

Figure 2.1 depicts the cross section through a Metal-Oxide-Semicon-
ductor Field-Effect Transistor (MOSFET) with p-type silicon substrate
(bulk). A thin layer of silicon dioxide insulates the gate terminal. The
source and drain terminals are each connected to implanted regions
of highly doped n-type silicon (n+-Si). At the junction between the p-
type and n-type silicon, the different chemical potential forces several
electrons from the n-type silicon into the p-type substrate to reach
thermodynamic equilibrium. This once-only charge transfer forms a
static electrical field spanning a depletion region (see Figure 2.1) across Depletion region

the p-n junctions in which no mobile charge carriers remain.
When a charged particle – alpha or proton, produced indirectly

from a neutron or directly from radioactive decay – penetrates the
silicon lattice, the particle frees electrons from the silicon atoms along
its moving direction [125, p. 130f]. Such electrons leave ionized atoms
behind, containing holes where electrons are missing. Figure 2.2 (➊)
illustrates a cylindrical ion track of electron-hole pairs caused by a
charged particle.

The electron-hole pairs, altogether, are neutral, unless they occur in
the depletion regions across the p-n junctions. There, the electric field
rapidly collects free electrons and makes them drift into the n-type
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Figure 2.2: Particle strike at the depletion region of a MOSFET. The ionizing particle creates a
cylindrical track of electron-hole pairs (➊), which are separated by the electric field
at the p-n junction. Electrons drain off via the upper terminal, whereas holes flow
to the bulk terminal (➋). After most charge carriers have been collected, some
electrons slowly diffuse into the n+ region (➌). The upper terminal registers a
current pulse, as shown in the rightmost diagram. Adapted from Baumann [24,
p. 259].

silicon, eventually flowing off via the connected terminals (source or
drain). Figure 2.2 (➋) shows the electron drift, which leaves holes
behind and, thus, temporarily extends the electric field deeper into
the substrate [24, p. 259], collecting more and more electrons. The
remaining holes flow to the bulk terminal and cause no further harm.

After sufficient charge carriers have drifted away, the electric field
shrinks to its initial extent, as indicated in Figure 2.2 (➌). In the mean-
time, residual electrons slowly diffuse into the depletion region and
continue with the charge collection until no free electrons remain.

The diagram on the right-hand side of Figure 2.2 shows the result-
ing electric current generated during the three phases (➊ to ➌). At the
source or drain terminal of the struck transistor, the depicted current
pulse appears for a few nanoseconds. If the current pulse transfersCharge collection

enough charge, the circuit elements connected to the affected transis-
tor terminal can be disturbed. For example, if the collected charge
exceeds the amount of charge stored in a memory circuit, the stored
information is lost.

2.1.3 Single-Event Upsets in Memory Circuits

Single-Event Upset (SEU) [96] denotes the information loss of a mem-
ory cell caused by particle-induced electric current. This electric cur-
rent exists only for a few nanoseconds, yet it can cause a persistent
disturbance of one or more bits in the memory circuit. Such events
are referred to as soft errors, because the error can be resolved by over-
writing the affected memory cells with new data, making the cells
usable thereafter again. However, the information stored prior to the
particle strike is lost.
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This section quantifies the susceptibility to SEUs of contemporary
CMOS memory technologies.

2.1.3.1 SRAM

“ The majority of observed SRAM faults in the field are tran-
sient faults from particle strikes. ”– Vilas Sridharan and associates [235, p. 298]

The cache memory and the register file of most CPUs are imple-
mented in Static Random-Access Memory (SRAM) technology [117,
p. 257ff]. A standard 1-bit SRAM cell consists of two cross-coupled
CMOS inverters and two access transistors, needed when the cell is
read or written to. The inverter pair implements a regenerative feed-
back loop that preserves one bit of information by voltage differential
between the outputs of both inverters. Each inverter comprises two
CMOS transistors.

When the SRAM cell is in storage mode, that is, it is not read or
written to, the four transistors of the inverters are highly sensitive
to particle strikes. A radiation-induced voltage glitch at one transis-
tor propagates into the inverting feedback loop, and if the opposite
inverter responds before the particle-induced current runs off, the
SRAM cell flips its stored voltage differential [71, p. 588f]. The slow
ion-diffusion phase shown in Figure 2.2 (➌) is extremely critical for
SRAM cells, giving the opposite inverter plenty of time to latch the
disturbed voltage. Hence, an observable SEU manifests as bit flip, with
both 0 ↦→ 1 and 1 ↦→ 0 transitions being equally probable [16, p. 2262].

The fault rate of SRAM amounts to the order of 10−4 to 10−2

FIT1/bit at sea level (New York City) and has remained almost con- SRAM fault rate

stant while technology scaled from the feature size of 250 nm to
65 nm [225]. However, further downscaling from 65 nm to 40 nm
increases the fault rate for individual SRAM cells by about 30 per-
cent [69, p. 488].

Real-time measurements confirm that SEUs occur randomly dis-
tributed over the area of large SRAM arrays [16, p. 2262], but a single
particle can strike multiple physically adjacent cells. Autran and asso-
ciates [16, p. 2262] report that, for 65-nm cells, 25 percent of the SEUs
affect 2 to 7 physically adjacent bits, and the remaining 75 percent
cause single bit flips. Dixit and Wood [69, p. 491] show that 40-nm
cells exhibit multiple bit upsets with a relative frequency of almost
40 percent. Thus, as the cell geometry shrinks and the density of tran-
sistors per area increases, multiple bit upsets tend to become more
frequent.

1 The FIT (Failures In Time) rate measures the number of failures per 109 hours of
operation.
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Figure 2.3: Equivalent circuit diagram for a 1-bit DRAM cell. The capacitor
stores one bit of information as electric charge. Particle strikes to
the access transistor can directly disturb the stored charge of the
connected capacitor and result in SEU.

2.1.3.2 DRAM

Dynamic Random-Access Memory (DRAM) [117, p. 353ff] is the dom-
inant technology for main memory in terms of storage density. One
bit of information is stored as electric charge in an integrated capac-
itor, insulated by one access transistor (see Figure 2.3). In contrast to
the SRAM cell, there is no active regeneration of the stored charge
that leaks through the capacitor over time. Thus, the passively stored
charge of the DRAM cell must be refreshed every few milliseconds
by a read-out and rewrite procedure.

Figure 2.3 shows that the storage capacitor is directly connected
to the drain terminal of the access transistor. Thus, particle-induced
charge collection at that drain region (see Section 2.1.2) directly dis-
turbs the stored electric charge of the capacitor. To cause an SEU, it
suffices to degrade the stored charge to a level outside the noise mar-
gin – there is no need to flip the entire electric state.

A particle strike can easily relax the stored charge [164, p. 4], and
if a particle passes through both the source and drain region of the
access transistor, the capacitor can also be charged accidentally [71,
p. 587]. Thus, bit flips occur in both directions.

Several large-scale studies quantify the fault rate of contemporary
DDR-2 and DDR-3 DRAM devices [150, 232, 234, 235]. These fourDRAM fault rate

studies agree on a fault rate in the order of 10−8 FIT/bit. Compared
to SRAM, the per-bit fault rate is notably smaller, mostly because
an individual DRAM cell occupies less chip area, thereby reducing
the chance of being hit by an incident particle. The high density of
DRAM cells, on the other hand, increases the frequency of multiple
bit faults, ranging from 21 percent [235, p. 301] up to 50 percent [232].
This is in line with laboratory tests, reporting an average number of
1.0 to 1.5 cell upsets per neutron strike [34]. Considering the spatial
and temporal distribution, Sridharan and associates conclude:

“ DRAM faults in our system are consistent with a uniform
random distribution of faults in a device, implying that
DRAM faults are equally likely to occur in any region of
a DRAM device. ”– Vilas Sridharan and associates [234, p. 6]
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2.1.3.3 Flash

Computer systems without hard-disk drive usually use nonvolatile
flash memory [42] to store persistent data such as program code. A
flash memory cell consists of a single transistor like the one depicted
in Figure 2.1, with the distinction that a floating gate – a piece of metal
not connected electrically – is embedded into the silicon-dioxide layer
beneath the gate terminal. The floating gate, surrounded by oxide,
stores information as electric charge that can be placed into the float-
ing gate by hot electron injection or Fowler-Nordheim tunneling of elec-
trons through the isolating oxide [42, p. 153ff]. Once stored in the
floating gate, the electric charge remains insulated from the depletion
regions of the transistor (see Figure 2.1). Thus, charge collection at the
transistor’s depletion regions does not cause SEUs in flash memory.

In the programmed cell state (binary zero), the electrons stored in
the floating gate form an electric field across the surrounding oxide.
Hence, electron-hole pairs generated by a particle strike can be sep-
arated by that electric field, which redirects a few hundred electrons
out of the floating gate into the oxide [39]. This charge loss can relax
the programmed reference charge of about 1,000 electrons [39, p. 553]
to a level outside the noise margin, causing an SEU with 0 ↦→ 1 tran-
sition. An erased memory cell (binary one), on the other hand, is vir-
tually immune to SEU due to the absence of an electric field around
the floating gate [44].

Several studies report a fault rate without Error-Correcting Code
(ECC) in the order of 10−8 FIT/bit [86, 44, 122]. Unlike DRAM and Flash memory fault

rateSRAM cells, flash memory cells exhibit a degradation of the gate ox-
ide with repeated program–erase cycling [42, p. 399ff]. Therefore, an
array of flash memory cells typically contains redundant cells that
implement a strong ECC, such as the correction of 8 defect cells out
of 539 bytes [91, p. 401]. Thus, for flash memory, “the atmospheric-
neutron induced failure rate is still (and is expected to remain so for
the foreseeable future) within the correcting capabilities of current
ECC algorithms.” [44, p. 4]

2.1.4 Single-Event Transients in CMOS Logic

“ Dealing with logic soft errors is less critical since there are
fewer logic gates than memory cells and many of the logic
errors are masked. ”– Charles Slayman [225, p. 4]

The core logic of a CPU consists of sequential elements, such as flip-
flops and latches, connected to combinational logic circuits. Flip-flops
and latches are like SRAM cells (see Section 2.1.3.1) and exhibit a
similar SEU rate per individual node [69, p. 486].



16 reliability of computer hardware

Combinational logic gates, on the other hand, forward any particle-
induced electric charge to their outputs, causing a Single-Event Tran-
sient (SET). An SET is a short-lived noise pulse that propagates to
subsequent gates. Only if the SET is captured by a subsequent flip-
flop or latch, the SET turns into an SEU (bit flip). For this to happen,
there must be an active path from the struck gate to a storage ele-
ment without any logical masking in between. For example, if the SETMasking of SETs

arrives at the input of a NOR gate, but the other input is already high
(1), the SET is irrelevant for the output of the NOR gate and gets
masked. Furthermore, the SET must arrive within the setup and hold
time of a flip-flop, which captures incoming signals only on one clock
edge. Otherwise, temporal masking of the SET takes place. Finally, elec-
trical masking [151] attenuates the strength of the noise pulse with
the number gates it traverses, so that an SET may disappear before
reaching a storage element.

Because of these masking effects, only a small fraction of SETs even-
tually corrupts the state of a flip-flop or latch [151, 208, 92]. Even if an
SEU occurs at a flip-flip or latch, the corrupted state is in turn subject
to logical masking in the following clock cycle. For instance, Cho and
colleagues [53] find that 68.86 percent of flip-flop SEUs are logically
masked. Altogether, Slayman [225, p. 4] estimates the frequency of
logic errors to be ten times lower than for SRAM.

2.1.5 Overview of Transient-Fault Rates

Table 2.2 summarizes the individual fault rates of CMOS circuits ex-
posed to atmospheric radiation at sea level. Besides the fault rate per
bit or logic gate, the quantity of those circuit elements defines the
total impact on chip-level reliability. Typically, the chip area of a mi-
croprocessor is dominated by memory cells [117, p. 14]. Thus, the
various memory technologies are the most important factor limiting
the overall system reliability.

circuit fault rate effects multi-bit upsets

SRAM 10−4 to 10−2 FIT/bit Bit flip 25 % to 40 %

DRAM 10−8 FIT/bit Bit flip 21 % to 50 %

Flash 10−8 FIT/bit 0 ↦→ 1 bit flip Unknown

Logic 10× less than SRAM Bit flip or CPU failure Frequent [53]

Table 2.2: Overview of fault rates caused by atmospheric radiation at sea
level
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For instance, the impact of 1 MiB SRAM cache and 10 GiB DRAM
is about 850 FIT each.2 The ever-increasing chip complexity and mem-
ory size, as predicted by Moore’s Law, worsens this reliability prob-
lem. To put these numbers into perspective, a study reports that the
aggregated DRAM of a computing cluster already causes “one failure
approximately every six hours” [232, p. 5].

2.2 the concept of fault tolerance

“ Our increasing dependence on computing systems brings
in the requirement for fault tolerance. ”– Algirdas Avižienis and associates [18, p. 29]

Fault tolerance is the only mean for building a dependable system
from unreliable components. The reliability of the whole system can
improve thereby compared to the reliability of the individual compo-
nents. In general, fault tolerance introduces redundancy to compen-
sate for faults, thus, involving more resources than strictly necessary
for the fault-free case.

In a computer system, hardware fault tolerance covers hardware faults,
whereas software fault tolerance addresses software defects [74, p. 24].
This distinction is orthogonal to the differentiation between hardware-
implemented fault tolerance (Section 2.3) and software-implemented fault
tolerance (Section 2.4) [74, p. 24]. Based on that classification, this
thesis focuses on software-implemented hardware fault tolerance (SIHFT).
The following sections introduce the basic terminology to elaborate
on the concept of fault tolerance.

2.2.1 Terms and Definitions

Avižienis and associates [18] define the fundamental terms fault, error,
and failure in the following meaning:

fault : A fault is the “adjudged or hypothesized cause of an er-
ror” [18, p. 13]. If a fault gets activated, it influences the state
of a system. Otherwise, a fault can occur but stays dormant.

error : An error is the deviation of a system’s internal state because
of an activated fault. If an error is irrelevant for subsequent sys-
tem states, it gets masked.

failure : The propagation of an internal error to the system inter-
face leads to a service failure – a deviation from correct behavior.
A failure can cause faults in other systems that depend on the
failed service.

2 The sample calculation assumes an SRAM fault rate of 10−4 FIT/bit.
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Figure 2.4: The pathology of failure in hardware and software layers

Figure 2.4 illustrates the relationship between these terms in a layered
architecture. The terms fault, error, and failure have different mean-
ings in the hardware layer and software layer, respectively. For exam-
ple, hardware-implemented fault tolerance expects radiation-induced
noise (faults), corrects errors in the data path of the CPU and, thus,
avoids bit flips in memory (failures). On the other hand, software-
implemented fault tolerance assumes bit flips in memory (faults),
corrects errors in program variables, and prevents thereby applica-
tion crashes (failures). Hence, a bit flip in memory is a failure of the
hardware and, at the same time, causes a fault for the software layer,
so that the interpretation of these terms depends on the context in
which they are used.

The term soft error originates from the hardware perspective and
precisely describes the activation of a transient physical fault. A soft
error that further propagates to the hardware-software interface man-
ifests as bit flips (SEUs). Thus, a soft error also refers to unexpected
bit flips observed by the software layer.

2.2.2 Error Detection and Recovery

Fault tolerance denotes the detection of errors along with recovery from
errors to avoid service failures [18, p. 24]. Error detection can take
place either concurrently during normal operation, or the system is
suspended for preemptive detection. Recovery is the corrective action
after an error has been detected and subsumes the following mea-
sures [18, p. 25]:

rollback : Restoring the system to a previously saved state (check-
point) that is assumed error free.

rollforward : Bringing the system to a valid, error-free state by
exploiting application-specific knowledge.

compensation : Using redundancy to mask the error (preventing
error propagation) and to correct the erroneous system state.

Hence, redundancy is an integral part of each recovery measure and,
thus, a fundamental requirement for fault tolerance.



2.2 the concept of fault tolerance 19

2.2.3 Redundancy

Protective redundancy refers to those resources explicitly allocated
for fault tolerance, whereas unintentional redundancy may also con-
tribute to fault tolerance [18, p. 20]. Considering protective redun-
dancy, Echtle [74, p. 51ff] describes four characteristic features:

structural redundancy : Additional components, for example
replicas of existing components, are structurally redundant.

functional redundancy : Additional functionalities, such as al-
gorithms implementing fault tolerance, provide functional re-
dundancy.

information redundancy : Data encoding with more bits than
strictly necessary, or data that can be reconstructed from other
sources, implements information redundancy.

time redundancy : A system with time redundancy provides slack
time that is not used for the actual functionality, but which can
be used for the execution of fault-tolerance mechanisms.

In general, a fault-tolerance mechanism requires each kind of redun-
dancy to a certain degree. For example, the Hamming code [98] is an
error-correcting code that adds several extra bits to a datum to al-
low for the correction of a single bit error. Thus, the additional bits
increase the demand on physical storage (structural redundancy) and
require algorithms to encode and decode the data (functional redun-
dancy). A corrupt bit can be reconstructed (information redundancy)
and the data encoding takes some amount of time (time redundancy).

Section 2.3 and Section 6.5.1.2 on page 120 pick up on the Hamming
code, which is therefore introduced in the following example.

Example: Hamming Code

The Hamming code [98] is a linear block code that enables the de-
tection and correction of a single bit error by information redun-
dancy. Therefore, k check bits are appended to n data bits so that
n ≤ 2k − k − 1 holds. Thus, for each number n, there is a Ham-
ming(n+k, n) code that encodes n data bits into a code word of the
length n+k. A code is separable if the data bits are preserved and not
intermixed with the check bits [136, p. 57].

The individual check bits are computed by arithmetic over the finite
field of two elements, that is, integer arithmetic modulo 2. In other
words, addition corresponds to the logical XOR operation, and multi-
plication is equivalent to the logical AND operation. Then, a Hamming Section 6.5.1.2 on

page 120 takes up
the matrix notation.

code is a linear mapping that can be represented by a transformation
matrix. A bit vector x⃗ is mapped to a code word c⃗ by multiplication
with the transformation matrix G:
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G · x⃗ = c⃗

For example, the shown matrix G encodes four bits of data x1, . . . ,
x4 into a separable Hamming(7,4) code as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 1

1 0 1 1

0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
  

G

·

⎛⎜⎜⎜⎜⎝
x1

x2

x3

x4

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

1x1 + 1x2 + 0x3 + 1x4

1x1 + 0x2 + 1x3 + 1x4

0x1 + 1x2 + 1x3 + 1x4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
  

c⃗

The upper part of G consists of the identity matrix, which maps the
four data bits to the first four elements of c⃗. The lower three rows of
G contribute to the three check bits and are printed in bold face.

For instance, suppose x⃗ consists of four alternating bits. Then, the
encoded bit vector c⃗ is:

G ·
(

0 1 0 1
)T

  
x⃗

=
(

0 1 0 1 0 1 0
)T

  
c⃗

where x⃗T denotes the transpose of x⃗. The three check bits are again
printed in bold face.

To decode c⃗ and check for bit errors, we need the parity-check matrix
H obtained by solving H ·G = 0. The columns of H are the binary rep-
resentations of the integers 1, 2, ..., 2k − 1 for a Hamming(n+k, n) code
with n = 2k − k − 1 [152, p. 313], but not necessarily in ascending or-
der. Every permutation of the columns of H defines a valid Hamming
code. For a separable code, the first n columns of H are identical to
the last k rows of G (bold face), and the remaining columns of H form
the identity matrix.

Given the parity-check matrix, we compute the syndrome H · c⃗, which
yields information on potential bit errors. Taking the example from
above, we obtain:
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⎛⎜⎜⎝ 1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1

⎞⎟⎟⎠
  

H

·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0

1

0

1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
  

c⃗

=

⎛⎜⎜⎝ 0

0

0

⎞⎟⎟⎠

If the syndrome is the zero vector, as shown above, then c⃗ is free
of any single bit error. Otherwise, the syndrome is identical to one
column of H, say the ith column. In that case, ci – the ith bit of c⃗
– is the only bit that can be affected by a single error. For example,
flipping the first bit in c⃗ yields:

⎛⎜⎜⎝ 1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1

⎞⎟⎟⎠
  

H

·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

0

1

0

1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
  

c⃗

=

⎛⎜⎜⎝ 1

1

0

⎞⎟⎟⎠

The syndrome equals the first column of H and, thus, only the first
bit of the code word c⃗ can be invalid under the assumption of a single
bit error.

By construction of the Hamming code, any single bit error can be
detected and corrected. Moreover, the Hamming distance of the Ham-
ming code is three [73, p. 106]; that is, any pair of different code
words differs by at least three bit positions. This property guarantees
that any error pattern involving less than three bits (the distance) can
be detected.

However, on decoding a code word, both single and double bit er-
rors produce a nonzero syndrome and cannot be differentiated. Thus,
to decide whether a single bit error occurred – and correction is pos-
sible – or whether multiple bit errors are present that cannot be cor-
rected, the Hamming code must be extended by another check bit
that covers all data bits. This extra check bit implements an overall
parity by appending an all-ones row to the transformation matrix G,
and increases thereby the Hamming distance of the code to four [195,
p. 119]. Thus, a single bit error leads to a nonzero syndrome and odd
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parity, whereas a double bit error produces a nonzero syndrome but
even parity. Such an extended Hamming code provides single-error cor-
rection and double-error detection (SEC-DED), which is commonly
used in memory circuits, as discussed in the following section.

2.3 hardware-implemented fault tolerance

The reliability issue of semiconductor devices calls for the develop-
ment of hardware-implemented fault tolerance. To this end, a cer-
tain degree of hardware redundancy is used that, depending on the
amount of redundancy, inevitably increases the costs of hardware. Re-
dundancy can be implemented at multiple hardware layers, so that
Dodd and colleagues [72, p. 1756f] distinguish between hardening at
the device level, circuit level, and system level.

2.3.1 Device-Level Hardening

Radiation hardening of individual transistors aims at fault avoidance
and requires a custom semiconductor fabrication process. For instance,
Honeywell fabricates radiation-hardened CMOS devices at a feature
size of 150 nm [89] with a silicon-on-insulator process [153], which
inserts an insulating oxide into the silicon substrate beneath the tran-
sistors. However, these devices lag several technology generations be-
hind commercial state-of-the-art microprocessors, implying less com-
puting power.

Another approach is to add resistors or capacitors to the feedback
loop of SRAM cells, flip-flops and latches [72, p. 1757]. The time re-
quired to switch a logical state increases thereby, so that those devices
can recover from short-lived particle-induced voltage spikes. Unfor-
tunately, the reduced switching speed directly degrades the perfor-
mance of the device, and additional resistors or capacitors increase
the energy consumption [172, p. 70].

2.3.2 Circuit-Level Hardening

Fault tolerance at the circuit level changes the design of the individual
SRAM cells, flip-flops, and latches [72, p. 1757]. Such storage cells can
be designed with additional transistors that act as redundant memory
cells. For example, the Dual Interlocked Storage Cell [40] uses twelve
transistors instead of six. Such a hardened cell is at least ten times
more robust against SEUs; however, the primary and redundant cells
are close to each other, so that a single particle can still strike both
simultaneously [103]. Besides the area overhead, such cells consume
about 30 to 40 percent more energy [103, p. 1541].
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2.3.3 System-Level Hardening

At the system architecture level, error detection and correction can
be applied to various hardware modules, including main memory,
caches, and other parts of a microprocessor. SRAM caches are nowa-
days protected with parity and SEC-DED [117, p. 302f]. For example,
the AMD Opteron [128, p. 72] processor implements an extended
Hamming(72,64) code for its caches; that is, eight check bits cover
64 bits of data at the cost of 12.5 percent storage overhead. The very
same code is typically used for ECC DRAM in the server market [170,
p. 2].

To cope with word-wise multi-bit errors, IBM promotes chipkill
memory [117, p. 875ff], which interleaves a 128-bit datum and 16 check Chipkill memory

bits on independent DRAM chips, at the cost of reduced performance
and up to 30 percent higher energy consumption due to forced narrow-
I/O configuration [257]. In this case, a burst error of 4 bits can be cor-
rected, but two or more uncorrelated bit errors remain uncorrectable.

More powerful codes with stronger correction capabilities are typi-
cally not used for SRAM caches [117, p. 880] and DRAM [224, p. 401]
due to performance and economic constraints.

Another system-level approach is to replicate a hardware module
to perform the same computation multiple times. Triple-Modular Re-
dundancy (TMR) [136, p. 20ff] uses three instances of a hardware mod- Triple-Modular

Redundancyule in combination with majority voting, so that a single hardware er-
ror gets masked. This technique can be applied to entire computer
systems to obtain a high degree of reliability, however, increasing
costs by at least a factor of three. The IBM S/390 G5 processor [226,
p. 20] uses a duplicated processor pipeline, which operates in lockstep
and compares the computations. On mismatch, the processor reverts
to a checkpoint of the entire microarchitectural state (rollback). While
providing adequate fault tolerance, such solutions come at high costs:

“ The overheads associated with these conventional solu-
tions are prohibitively expensive for budget-conscious de-
signers with less demanding reliability requirements. ”– Shuguang Feng and associates [79, p. 398]

2.4 software-implemented fault tolerance

The preceding sections pointed out natural radiation as a major cause
for transient faults in computer systems, but hardware-implemented
countermeasures tend to be too expensive for commonplace usage.
This problem has motivated many researchers to investigate the fea-
sibility of software-implemented hardware fault tolerance. The term
software-implemented denotes that the software introduces redundancy
to handle errors, whereas hardware fault tolerance indicates that the
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approach covers hardware defects3. Because such approaches also
cover software defects to some extent, I omit the word hardware in
this section, reducing the unwieldy term to software-implemented fault
tolerance. Nevertheless, the focus of this section remains on hardware
defects.

We shall see in the following chapters that this thesis proceeds
with software-implemented fault tolerance. Therefore, this section
mainly reviews related work. I do not claim to be comprehensive
here – Wensley and associates [255] pioneered the notion of software-
implemented fault tolerance in the 1970s; since then, a rich body of
literature has evolved. For example, Goloubeva and colleagues [94]
devote a complete textbook to this topic.

As a starting point for structuring the literature, I developed a tax-
onomy of software-implemented fault tolerance. Figure 2.5 illustratesTaxonomy of

software-
implemented fault

tolerance

the taxonomy, which subdivides the area of research into error detec-
tion and error correction, each of which being further differentiated
into five categories. Each category comprises numerous of related ap-
proaches that are discussed in the following sections.

The goal of these sections is to introduce the state-of-the-art ap-
proaches to software-implemented fault tolerance. Subsequently, Sec-
tion 2.4.3 evaluates these approaches and rigorously compares them
to identify potential shortcomings. Finally, Section 2.4.4 discusses the
fundamental limitations of software-implemented fault tolerance in
general.

2.4.1 Error Detection Mechanisms

The ability to detect an error but not correct it solves one-half of the
problem raised by fault tolerance. First, just error detection does not
prevent any service failure but avoids incorrect program output. Thus,
the goal of error detection is to reduce silent data corruption. Second,
error detection is usually required prior to error correction and re-
covery – the other half of the problem, covered in Section 2.4.2. As
shown in Figure 2.5, I differentiate between five distinct approaches
to software-implemented error detection, which are successively de-
scribed in the following sections.

2.4.1.1 Computation Duplication

Error detection, implemented by computation duplication, relies on
the assumption that a specific transient fault does not reoccur on re-
peated execution. Thus, the sequential repetition of computation ex-
ploits time redundancy. If both the primary and duplicated execution
compute an identical result, the computation is likely to be correct.
Duplication can be implemented at different levels of abstraction, in-

3 See Section 2.2 for further distinction between these terms.
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Software-
Implemented

Hardware
Fault Tolerance

Error
Detection

(Section 2.4.1)

Computation
Duplication

(Section 2.4.1.1)

Error-Detecting
Codes

(Section 2.4.1.2)

Control-Flow
Checking

(Section 2.4.1.3)

Symptom
Detection

(Section 2.4.1.4)

Executable
Assertions

(Section 2.4.1.5)

Error
Correction

and Recovery
(Section 2.4.2)

Replication
and Voting

(Section 2.4.2.1)

Checkpoint
and Restart

(Section 2.4.2.2)

Error-Correcting
Codes

(Section 2.4.2.3)

Software
Rejuvenation

(Section 2.4.2.4)

Algorithm-based
Fault Tolerance
(Section 2.4.2.5)

Figure 2.5: Taxonomy of software-implemented hardware fault tolerance.
The taxonomy subdivides the state-of-the-art into error detection
and error correction, each of which being further differentiated
into five categories. Each category is discussed in a dedicated
section.
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cluding the operating-system level, program level, procedure level,
and instruction level.

operating-system duplication : A whole operating system, in-
cluding all applications, can be duplicated by hypervisor-based
virtual machines [35]. Both a primary and a secondary oper-
ating system can be executed on the same hardware, and the
hypervisor coordinates their I/O operations. When both virtual
machines operate in lockstep [119], errors in the guest operating
systems are detected by comparing the I/O operations of each
virtual machine. This approach does not detect errors that affect
the hypervisor itself.

program duplication : Repeated execution of application soft-
ware [135, p. 468] can be implemented at the process or thread
level [251]. Software-based redundant multi-threading [251], for
example, uses a compiler to generate duplicate threads that
compare their computation outputs on system calls and on ac-
cess to shared memory. The operating system is responsible for
scheduling the redundant processes and threads, so that errors
that affect the operating system itself cannot be detected.

procedure-call duplication : At the level of the source code
of a program, procedure (function) calls can be executed twice
to detect errors by comparing the computation results [181]. If
a procedure modifies a global variable or uses pointers, the pro-
cedure code, the global variables, and the pointed-to variables
must be cloned.

high-level instruction duplication : Rebaudengo and asso-
ciates [199] propose duplication of the individual statements
and variables of a program. Each write operation is performed
on both the original variable and on the duplicate, and both
variables are checked for consistency on each read operation.
Conditional statements (if, while, . . . ) cannot be duplicated,
but the condition can be evaluated once again after the condi-
tional statement. These duplication rules can be automated by
a source-to-source compiler [25, 200, 176]; however, compiler
optimization must be disabled to preserve the duplication [199,
p. 212], resulting in a slowdown of the execution time by a factor
of five [199, p. 218].

assembly-level instruction duplication : In principle, the
duplication of machine-code instructions is like high-level in-
struction duplication. Oh and colleagues [184] describe a com-
piler that duplicates every program variable in the main mem-
ory. The original assembly instructions are duplicated and use
different CPU registers to operate on the duplicate variables. A
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check for consistency is inserted before storing a value to mem-
ory and before a branch instruction. Reis and associates [202]
propose a similar approach that only duplicates variables once
they are loaded into a CPU register and assumes the main
memory to be protected by other mechanisms. Oh and asso-
ciates [182] also show that, if the duplicate variables are addi-
tionally encoded with an AN code (see Section 2.4.1.2), perma-
nent hardware faults are detected as well.

2.4.1.2 Error-Detecting Codes

Error-detecting codes introduce information redundancy to allow for
the detection of erroneous data (error correction is covered in Sec-
tion 2.4.2.3). In general, n bits of data are encoded into a larger code
word with c > n bits. Thus, not all 2c binary combinations are valid
code words. Usually, any single bit error turns a valid code word into
an invalid one, and, depending on the coding scheme, multiple bit
errors can be detected as well.

The purpose of this section is to discuss the application of error-
detecting codes, whereas the coding theory is covered in further liter-
ature [37, 194, 136, 163, 212]. Error-detecting codes are classified into
checksums and arithmetic codes.

checksums : Maxino and Koopman [163] give an overview on al-
gorithms that fall into the broad category of checksums, such
as parity codes, addition checksums, and Cyclic Redundancy
Check (CRC) codes. Using a checksum for read-only data, such
as the program instructions, is considered as best practice in
the field of embedded systems [22, p. 74ff]. Nicolescu and asso-
ciates [177] provide evidence for the effectiveness of checking a
CRC code at regular intervals to detect memory errors affecting
the program instructions. In addition, programmers can manu-
ally maintain a checksum for mutable data structures [36]. In
the context of the Java programming language, the Java Virtual
Machine (JVM) can be extended to augment heap objects by a
checksum [46, 48]. Likewise, the JVM can maintain parity codes
for object references and object headers [238].

arithmetic codes : An arithmetic code has the characteristic of
being preserved under arithmetic operations. For example, the
AN code [37] encodes the datum N by multiplication with an
odd constant A. Thus, an integer X is encoded by A · X. The re-
sulting code word is valid if and only if it is a multiple of A. The
sum of two encoded integers results again in a valid code word:
A · X + A · Y = A · (X + Y). Hence, there is no need for decod-
ing prior to arithmetic, so that arithmetic errors are detectable
(for more information, see Schiffel [212]). AN codes can be ap-
plied either manually [248, 110], by special compilers [80, 138],
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or by binary translation [253]. The drawbacks of AN codes are
that larger data types must be used to store the encoded values
(32-bit values usually become 64-bit values after encoding), and
that bit operations are not preserved.

2.4.1.3 Control-Flow Checking

In contrast to duplication and encoding that cover data errors, Control-
Flow Checking (CFC) monitors the sequence of executed CPU instruc-
tions to detect illegal branches. Errors that manifest as data corrup-
tion go undetected. The integrity of the program’s control flow can
be checked at the granularity of functions (procedures) or basic blocks.

function tokens : A function token is a memory location that
stores a unique ID representing the function that is currently
executing [186, p. 231]. Before a function is called, the token is
assigned the ID of the invoked function. Within the function,
the token is regularly compared with the function’s ID. A mis-
match signals an invalid branch to another function. When a
function returns, the token is restored to the value of the caller.
Alexandersson and colleagues [7, p. 306f] extend this scheme by
a second ID that is stored on function return. The caller checks
thereby whether the expected function has returned. Both ap-
proaches need information on the call target at compile time,
thus, ruling out any indirect function call.

basic-block signatures : Like function tokens, a basic block can
be identified by a unique ID (the signature). A basic block is a
sequence of CPU instructions that are always executed in the
specified order; that is, there is exactly one entry and one exit
point. Then, a memory location can store the signature of the
basic block that is currently executing, which can be checked
before branching. The advantage over function tokens is that
illegal branches within the same function can be detected. Sev-
eral approaches have been proposed [185, 171, 199, 9, 183, 129],
which differ in the way the signatures are computed and vali-
dated. Goloubeva and associates [94, p. 63ff] devote an entire
book chapter on that topic. However, a recent study suggests
that the exclusive use of CFC might be ineffective because the
critical data remain unprotected [220].

2.4.1.4 Symptom Detection

Some hardware errors can be detected by observing abnormal soft-
ware behavior at runtime. For example, unexpected traps or excessive
time spent in the OS kernel are symptoms that indicate an error [148].
Wang and Patel [252] argue that arithmetic overflows, branch mis-
predictions, and even cache misses can be considered as symptoms.
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Because such symptoms also occur intentionally, symptom detection
is usually paired with speculative recovery that restores the system
state to an older checkpoint (see Section 2.4.2.2). A symptom that
reoccurs after recovery is considered as false alarm.

Racunas and colleagues [197] pick up the idea of Hangal and Lam
[100] to use program profiling to determine likely invariants, such as
data ranges of program variables. After profiling, range checks are
inserted into the program. A symptom is signaled when an invariant
is violated by a variable exceeding its expected data range. Several in-
variant detectors have been proposed in the literature [209, 190, 102].

Finally, security mechanisms that detect program bugs are related
to symptom detectors. For instance, a soft error that corrupts a pointer
variable can cause a buffer overflow, which can be detected by stack-
protection mechanisms [60, 52, 137]. Modern production compilers
such as the GNU Compiler Collection (GCC) and LLVM/Clang in-
clude optional sanitizers, which perform run-time type checking [245]
and memory-access checking [216] to detect bugs.

The drawback of symptom detection is that only erroneous behavior
is detected while the corruption of critical data can go undetected.
In addition, symptoms include false alarms, which complicate error
recovery.

2.4.1.5 Executable Assertions

Application-specific semantics of a program, such as loop invariants,
can be checked for consistency by executable assertions. For example,
Skarin and Karlsson [223] show the effectiveness of range checks on a
software integrator algorithm for automotive brake-by-wire applica-
tions. In a similar manner, Hannius and Karlsson [101] point out the
benefits of range checks on parameters of a jet-engine controller to
detect soft errors. Plausibility checks on program output, such as ver-
ification whether the output of a sorting algorithm is indeed sorted,
can also detect several hardware errors [203]. However, Rela and as-
sociates [203, p. 402] argue that assertions need to be complemented
with CFC (see Section 2.4.1.3) to prevent jumps over the assertions.

Finally, manually implemented assertions involve high engineering
costs, because appropriate invariants must exist, which are often dif-
ficult – or even impossible – to specify.

2.4.2 Error Correction and Recovery Mechanisms

Once an error has been detected, fault tolerance requires a corrective
measure to avoid a service failure. The following sections briefly in-
troduce such measures, classified into five categories as depicted in
Figure 2.5 on page 25. Most approaches are direct extensions of their
error-detecting counterparts and enable error compensation, whereas
checkpoint and restart (see Section 2.4.2.2) as well as software rejuvena-
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tion (see Section 2.4.2.4) are complementary to error detection and
only implement error recovery.

2.4.2.1 Replication and Majority Voting

An extension to computation duplication (see Section 2.4.1.1) is N-
fold replication, such as triplication. Under the assumption that at
most one error occurs, at least two out of three independent pro-
gram executions compute correct results. Thus, majority voting be-
tween the three results chooses a correct result and masks a single
error. In general, M-of-N systems consists of N (replicated) modules
of which M must operate correctly, so that N − M errors can be tol-
erated. N-modular redundancy (NMR) implements M-of-N systems
with N odd and M = ⌈N/2⌉ to minimize the redundancy for toler-
ating a certain number of errors [136, p. 20ff]. Thus, Triple Modular
Redundancy (TMR) is a 2-of-3 system that masks one error.

Replication and majority voting can be applied in the same way
as computation duplication, that is, to all the same levels of abstrac-
tion described in Section 2.4.1.1. This section discusses replication at
the program level, procedure-call level, and instruction level in more
detail.

program replication : Redundant execution and majority voting
of software tasks have been used for decades [254, 6]. To over-
come a manual implementation, Shye and colleagues [221] pro-
pose binary rewriting of single-threaded Linux processes to redi-
rect all system calls to a voter process. Döbel and associates [70]
improve on that by providing operating-system services that
support the replication of multi-threaded applications. Another
variant of program replication is N-version programming [17],
which aims at tolerating software bugs by voting on the output
of N different program implementations for the same problem.

procedure-call replication : Alexandersson and colleagues [7]
propose to execute program procedures three times for compar-
ing the results. The program variables also need to be tripli-
cated, so that each procedure run operates on its own set of vari-
ables. The approach uses the AspectC++ compiler (see Chap-
ter 4) to automate the procedure-call replication, however, only
global variables are replicated thereby [7, p. 305].

instruction replication : The duplication of program instruc-
tions (see Section 2.4.1.1) can easily be extended to instruction
triplication and majority voting. For example, the SWIFT-R com-
piler technique [45] loads each value into three distinct CPU
registers, and replicates each assembly instruction to repeat its
operation on the register copies. Majority voting is carried out
before load and store instructions, procedure calls, and branch
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decisions. In the same study, Chang and associates [45] point
out that arithmetic coding (see Section 2.4.2.3) can be used ad-
ditionally to reduce the number of redundant instructions: If a
computation of the original instructions differs from one AN-
encoded copy, the AN code can be checked to infer which one
is faulty.

2.4.2.2 Checkpoint and Restart

Checkpointing is the proactive measure taken to save the entire state
of a program at regular intervals. When an error is detected by one of
the mechanisms described in Section 2.4.1, the program state can be
recovered to a checkpoint prior to the occurrence of the error (rollback),
and the program can then be restarted to continue on the restored
data. Koren and Krishna [136, p. 193ff] provide a book chapter on
checkpointing in general, so that the following discussion is limited
to transparent checkpointing at the system level, application level,
and object level.

system-level checkpointing : Transparent checkpointing can be
implemented at the operating-system level. For example, TICK
[93] is a Linux kernel module that periodically creates incremen-
tal checkpoints of application programs. The approach copies
those virtual memory pages that have been modified since the
last checkpoint. In a similar manner, Remus [61] implements
checkpointing in a hypervisor for virtual machines. In either
case, the checkpointing implementation itself is not protected,
that is, the operating system or hypervisor, respectively.

application-level checkpointing : Checkpointing in scientific
computing is commonly implemented by program libraries [113,
175]. However, checkpointing libraries are not fully transparent
to the user, as the user must insert library calls into critical ar-
eas of the program to initiate checkpointing. Thus, compiler-
assisted checkpoint insertion has been proposed [147, 79].

object-level checkpointing : Compiler-based checkpointing of
object-oriented C++ programs has been studied by Kasbekar
and colleagues [127]. Their approach uses the OpenC++ com-
piler [50] to generate checkpointing code for individual data ob-
jects. Lawall and Muller [143] propose incremental checkpoint-
ing for Java programs optimized by automatic program special-
ization. Finally, the JVM can be extended to create checkpoints
of data objects [47].

2.4.2.3 Error-Correcting Codes

One of the most widely used error-correcting codes (ECC) is the Ham-
ming code, which has been already introduced in Section 2.2.3. De-
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tailed information on coding theory for error correction is provided
by Peterson and Weldon [195].

In principle, the application of an ECC is like the application of
checksums (see Section 2.4.1.2). Shirvani and associates [219] pro-
pose to perform periodic error detection and correction of read-only
data segments, such as the program instructions. The error-correcting
code for read-only data can be created in advance. For volatile data
that change during program execution, the programmer must use
a special Application Programming Interface (API) to invoke error
detection and correction. Likewise, Nicolescu and colleagues [177]
manually apply a Hamming code to individual program variables.
Other examples are the triplication of program variables [145] and
heap memory [189]. In C++, wrapper classes comprising ECCs can
be implemented to substitute the integral data types int, float, and
so on by means of operator overloading [165]. As mentioned earlier,
the Java virtual machine can be augmented to extend data objects
by checksums, and, for error correction, by additional object dupli-
cates [49]. At the operating-system level, software-implemented Ham-
ming codes can be applied to virtual memory pages being withdrawn
temporarily from an application process [81].

2.4.2.4 Software Rejuvenation

Software rejuvenation [136, p. 152ff] aims at proactively removing
accumulated errors and freeing unused resources, such as locks and
memory blocked by a crashed program. Thus, a software component
is stopped and restarted to create a clean program state (rollforward).
Parts of a system can be rejuvenated one after another, leading to
microreboots [41], as opposed to rebooting the whole system.

Rejuvenation can be initiated either periodically or on demand. As
an example of the former, device drivers can be designed for peri-
odic device re-initialization [161]. Nooks [241], on the contrary, en-
ables driver restart after driver failures. Song and associates [229] de-
scribe the design of an operating system focused on microreboots, so
that various low-level system components are designed for restarts.
However, the kernel of that operating system is not considered for
microreboots [229, p. 27].

2.4.2.5 Algorithm-Based Fault Tolerance

Huang and Abraham [112] coined the term Algorithm-Based Fault
Tolerance (ABFT), which exploits the semantics of algorithms for error
detection and correction. In their early work on linear matrix opera-
tions, they encode matrices by appending one additional checksum
row and one additional checksum column. Each element of the check-
sum row is computed as the sum over the original matrix elements
that belong to the same column, and, the other way around, the ele-
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ments of the checksum column represent the sum of the original ma-
trix elements of the same row. By construction, the checksum rows
and columns are preserved by several linear matrix operations, such
as addition and multiplication. Because each matrix element is cov-
ered by both a row and column checksum, a single erroneous element
can be detected and corrected.

On this basis, ABFT has been devised for various numerical prob-
lems, including QR factorization [206], fast Fourier transform [20],
and solvers for partial differential equations [207]. Fault-tolerant sort-
ing and binary-search algorithms have also been developed [83].

Finally, robust data structures are closely related to ABFT. Tay-
lor and colleagues [244] exploit the inherent redundancy of doubly
linked lists and propose a recovery procedure to correct a single erro- Robust data

structuresneous pointer. Likewise, binary trees [244], stack data structures [15],
and priority queues [121] can be extended by redundant pointers to
enable error correction.

In summary, ABFT describes a set of highly specialized techniques
for specific algorithms. ABFT techniques cause a huge development
effort – from the algorithm design to its implementation. Demsky and
Rinard [66] propose to automate the implementation by only specify-
ing consistency constraints that can be enforced at runtime, however,
still requiring a thorough understanding of the algorithms and data
structures.

2.4.3 Comparison of the Approaches

The previous sections introduced numerous approaches to software-
implemented fault tolerance, subdivided into error detection (see Sec-
tion 2.4.1) and error correction (see Section 2.4.2). Besides, these ap-
proaches differ in terms of applicability, for example:

“ If only the application state is corrupted, it can likely be re-
covered through application-level checkpointing (for which
there is a rich body of literature). However, OS state cor-
ruptions can potentially be difficult – software-driven OS
checkpointing has been proposed only for a virtual ma-
chine approach so far. ”– Man-Lap Li and associates [148, p. 272]

Thus, the approaches can be distinguished by applicability to operating-
system kernels – a field that seems to be underrepresented in the litera-
ture. The same applies to approaches based on virtual machines that
protect the guest operating systems, but leave the hypervisor unpro-
tected.

Considering operating systems, which manage multiple threads
of control and asynchronous interrupt routines, the question arises
whether the presented fault-tolerance mechanisms can be applied to
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multi-threaded programs in general. For instance, naive replication
of global program variables causes false alarms during majority vot-
ing if the replicated variables are concurrently modified by another
thread. Thus, several approaches – as proposed in the literature – do
not work correctly for multi-threaded programs. Hence, support for
multi-threading is another criterion that differentiates the approaches.

Echtle [74, p. 298] argues that the design of a fault-tolerance mech-
anism should focus on transparency. A transparent mechanism is in-
dependent of the application software, so that the mechanism can be
reused for multiple applications, reducing the overall development
costs [74, p. 13]. For example, a compiler that automatically inserts
redundancy for error detection achieves transparency, whereas man-
ually implemented assertions are not transparent. Therefore, the pre-
sented approaches can be further classified by transparency, possibly
implemented by a compiler.

Finally, Section 2.1 pointed out that memory circuits are highly sus-
ceptible to soft errors, yet, the approaches differ in coverage of memory
errors.

Because of these major differences, Table 2.3 evaluates all the ap-
proaches to software-implemented fault tolerance presented in Sec-
tion 2.4.1 and Section 2.4.2 regarding the following four features:

1. Coverage of memory errors

2. Transparency, for example, compiler (support)

3. Support for multi-threading

4. Applicability to OS kernels (and hypervisors, respectively)

Related approaches are grouped into a single row of Table 2.3, and
the distinction between error detection and error correction is given
up. Acronyms, if available, refer to the terms used in the respective
publications.

Considering Table 2.3 allows drawing the following conclusions:

• Application-level fault tolerance is a problem mostly solved. For ex-
ample, redundant multi-threading (SRMT and Romain) as well
as checkpointing are transparent, cover memory errors, and sup-
port multi-threaded applications.

• OS-kernel fault tolerance receives less attention in the literature. Only
11/24 of the approaches are applicable to OS kernels in theory,
yet, few works address this problem in practice [135, 64, 110].

– Of these approaches, mere six support multi-threading, of
which only two cover memory errors (periodic checking of
read-only memory and assertions). None of them is transpar-
ent.
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Approach Coverage
of memory

errors

Transpar-
ency, e.g.,
compiler

Support
for multi-
threading

Applicabil-
ity to OS
kernels

Virtual lockstep [119] Yes Yes Yes No

SRMT [251], Romain [70] Yes Yes Yes No

SPCD [181], TTR-FR [7] Yes Yes No Yes

High-level instruction
replication [25, 200, 145]

Yes Yes No Yes

EDDI [184], ED4I [182] Yes Yes No Yes

SWIFT [202], SWIFT-R [45] No Yes Yes Yes

Periodic checking of
read-only memory [219, 177]

Yes No Yes Yes

JVM-based hardening
[143, 46, 48, 47, 49, 238]

Yes Yes Unknown No

Encoded processing
[253, 80, 138]

Yes Yes Unknown Unknown

Control-flow checking [171,
185, 199, 9, 186, 183, 7, 129]

No Yes Yes Yes

Symptom detection
[252, 197, 209, 148, 190, 102]

No Yes Yes Yes

Buffer-overflow detection
[60, 52, 137]

No Yes Yes Yes

Sanitizer [216, 245] No Yes Yes No

Assertions [203, 223, 101] Yes No Yes Yes

Thread replication
[254, 6, 248]

Yes No Yes No

PLR [221] Yes Yes No No

Checkpointing
[147, 113, 127, 93, 61, 175, 79]

Yes Yes Yes No

Samurai [189] Yes Yes No No

Encoding by C++ operator
overloading [165, 110]

Yes No No Yes

Page-level ECC [81] Yes Yes Yes No

Software rejuvenation
[41, 241, 229, 161]

Yes No Unknown No

ABFT [112, 20, 206, 207, 83] Yes No Unknown No

Robust data structures
[244, 15, 66, 121]

Yes No Unknown Yes

Table 2.3: Comparison of approaches to software-implemented hardware fault tolerance as
proposed in the literature. The entry Unknown denotes that the respective publica-
tions do not clearly state whether a particular feature is supported or not.
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The latter conclusion clearly points out a severe shortcoming of the
state-of-the-art in software-implement fault tolerance. To the best of
my knowledge, there is no transparent approach to detection and correction
of memory errors in multi-threaded OS kernels and hypervisors, yet.

This thesis aims at filling the knowledge gap in this area of re-
search. But prior to that, the next section discusses the fundamental
limitations of software-implemented fault tolerance in general.

2.4.4 Fundamental Limitations

Three fundamental limitations apply to software-implemented hard-
ware fault tolerance – in consideration of the underlying operating
system.

2.4.4.1 Perfect Fault Tolerance is Impossible

In his textbook, Echtle argues that fault tolerance can improve de-
pendability but can never guarantee the absence of failures at all [74,
p. 1]. This is especially true for software-implemented fault tolerance.
Consider a sequence of CPU instructions that stores the results of a
computation into a memory-mapped I/O device.

“ No matter what sophisticated software checking is per-
formed just before a conventional store instruction, it will
be undone if a fault strikes between the check and execu-
tion of the store instruction. This is the conundrum of the
Time-Of-Check-Time-Of-Use (TOCTOU) fault. ”– Frances Perry and associates [192, p. 45]

Thus, perfect software-implemented fault tolerance is impossible, im-
plying that only probabilistic reliability guarantees can be provided.
The intended purpose of fault tolerance is to reduce the probability
of failure to an acceptable level.

2.4.4.2 Dependence on the Operating System

Fault tolerance at the application level, such as checkpointing and
redundant multi-threading, is necessarily incomplete.

“ Errors generated on unprotected software modules will
make useless the high levels of protection provided by
other (thought) more critical modules. . . . This point is
particularly relevant in the design of the Operating System
or Run-time Kernels where the fault-tolerant application
is being run, since unreliable system services may thwart
the dependability objectives. ”– Mário Rela and associates [203, p. 403]
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Hence, fault tolerance at the application level depends on the correct
functionality of the underlying operating system. This calls for a fault-
tolerant operating system. Engel and Döbel [76] coined the term Re-
liable Computing Base to describe this dependency: The kernel of an
operating system needs to be reliable in any case.

2.4.4.3 Error Detection in OS Kernels is Insufficient

“ Over 65% of detected faults corrupt OS state before detec-
tion. ”– Man-Lap Li and associates [148, p. 273]

In general, error detection without correction is poorly suited for OS
kernels. On error detection, the whole system must be restarted, ter-
minating thereby all running applications and leaving persistent data,
such as file systems, in a defective state. As an alternative, restoring
the kernel to a previous checkpoint is also disadvantageous. Consider
the state of a network connection: just rolling back the server state
causes inconsistency with the client, for example, by mismatching se-
quence numbers.

Microkernel operating systems designed for fault tolerance, such as
MINIX 3 [105, 242] and CuriOS [65], mitigate this limitation by execut-
ing most system services as isolated processes that can be restarted
individually. However, the microkernel itself is still subject to the lim-
itation that error detection is insufficient. Fault tolerance of the OS
kernel requires error correction or error masking to guarantee system
availability and avoid corruption of persistent data.

2.5 chapter summary

The goal of this chapter was to discuss the problem of hardware unre-
liability and its implications for computer systems. Atmospheric neu-
trons and alpha particles have been identified as root causes for tran-
sient hardware faults, which pose a severe threat to the dependence
on computer systems. Section 2.1.3 pointed out that CMOS memory
technologies, especially SRAM and DRAM circuits, are highly suscep-
tible to radiation-induced faults. Such faults do not cause permanent
physical damage but primarily manifest as bit flips – soft errors – that
can be recovered by overwriting the defective bits.

Unfortunately, conventional hardware solutions tend to be prohib-
itively expensive for commonplace usage, because redundant mem-
ory cells and redundant transistors increase the production costs and
power consumption.

As a remedy, software-implemented fault tolerance can provide a
low-cost alternative. Section 2.4 reviewed related work in the domain
of software-implemented fault tolerance, culminating in a detailed
evaluation of the state-of-the-art and its fundamental limitations. The
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conclusion is that there is a knowledge gap on transparent approaches
to detection and correction of memory errors in multi-threaded OS
kernels. This shortcoming has also been acknowledged lately by sci-
entists from Microsoft Research:

“ More work is warranted towards an operating system de-
signed with faulty hardware as a first-order concern. ”– Edmund Nightingale and associates [179, p. 353]



3
P R O B L E M A N A LY S I S

“ The only DRAM bit errors that cause system crashes are
those that occur within the roughly 1.5% of memory that
is occupied by kernel code pages. ”– Edmund Nightingale and associates [179, p. 344]

In the previous chapter, Section 2.1.3 pointed out that CMOS mem-
ory technologies, especially SRAM and DRAM circuits, are highly
susceptible to radiation-induced transient faults. The kernel of an
operating system is the most important piece of software regarding
system availability, because a crash of the operating system – as a
consequence of a transient memory fault – terminates all user-level
applications. Thus, the memory regions used by the kernel of an op-
erating system are especially critical. A software-implemented error-
correction mechanism for kernel memory would offer an enormous
potential for improving the system’s dependability.

The goal of this chapter is to analyze the problem of software-
implemented fault tolerance for operating-system kernels. To this
end, Section 3.2 examines the memory segments of two different op-
erating systems. The failure mode, effects, and criticality of each in-
dividual memory location is evaluated, revealing the most frequent
points of failure.

The following problem analysis is based on the methodology of
fault injection, which is briefly introduced in Section 3.1. After that,
Section 3.2 applies the methodology in two case studies to evaluate
the reliability of two off-the-shelf operating systems. The results and
implications are discussed in Section 3.3. On that basis, Section 3.4
formulates a suggested approach to address the problem of operating-
system fault tolerance. Finally, Section 3.5 summarizes the problems
analyzed in this chapter and concludes with a solution proposal.
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3.1 the methodology of fault injection

“ Fault injection is the de facto standard technique for sys-
tem dependability benchmarking. ”– Erik van der Kouwe and associates [249, p. 126]

The characterization of software behavior in the presence of hard-
ware faults is impractical to carry out by deploying the system in the
field. Even if a hardware fault occurs, field operation hardly yields
statistically authoritative evidence for an asserted software behavior.
For example, hardware faults induced by the natural radiation en-
vironment are neither controllable nor reproducible, providing little
information on the reliability of a specific software component.

Fault injection [12] is a method for experimental testing by the delib-
erate introduction of faults, effectively speeding up their occurrence.
The term fault injection describes a broad range of techniques, such
as the injection of hardware faults [13] and software faults [249]. Fur-
thermore, hardware faults can be injected either physically by irradi-
ation from particle accelerators, by electromagnetic interference, by
signals connected to the pins of an integrated circuit, or by software
that emulates a hardware fault by changing the contents of memory
or CPU registers [13]. This chapter focuses on the latter technique,
which offers perfect controllability, repeatability, and reproducibil-
ity [13, p. 1129]. However, we shall come back to irradiation from
a particle accelerator in Chapter 8.

Arlat and colleagues [12, p. 168] identify two complementary goals
of fault injection. First, fault injection provides a means for quantita-
tive evaluation of a target system’s reliability. Second, fault injection
gives design aids for the development of fault-tolerance mechanisms.
The following chapters of this thesis cover quantitative evaluation,
whereas this chapter focuses on design aids obtained by fault injec-
tion into two operating systems.

http://dx.doi.org/10.1007/978-3-319-10506-2_2
http://dx.doi.org/10.1109/DSN.2015.44
http://dx.doi.org/10.1109/DSN.2015.44
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3.1.1 Modeling of Hardware Faults

The emulation of hardware faults by software is restricted to the type
of faults that can be injected. In general, software has access to the
memory subsystem and a few CPU registers, whereas a large por-
tion of the internal microarchitecture is hidden. Thus, a fault model is
needed that approximates real hardware faults by the manipulation
of memory contents and CPU registers.

Atmospheric neutrons from the natural radiation environment pen-
etrate every region of an integrated circuit at the same rate. Since the
chip area of a microprocessor is dominated by the memory cells of
caches [117, p. 14], the memory subsystem can be considered as the
major contributor to transient faults (see Section 2.1.5). Cho and asso-
ciates [53, p. 5] remark that even 12.5 percent of the nonmasked CPU-
internal faults also propagate into main memory and circumvent
any hardware-implemented redundancy of the memory subsystem.
Therefore, this section proceeds with a simplified fault model that
concentrates on memory faults and disregards some CPU-internal
faults.

In Section 2.1.5, we identified that transient SRAM and DRAM
faults manifest as bit flips. About 50 to 80 percent of such faults only
affect a single bit (see Table 2.2 on page 16). Hence, the simplified
fault model that is established in this section can be further confined
to single bit flips.

In addition, the fault model must describe the spatial and temporal
distribution of hardware faults. A recent large-scale study by Sridha-
ran and colleagues concludes that “DRAM faults . . . are consistent
with a uniform random distribution.” [234, p. 6] Similar observations
hold for SRAM faults [16, p. 2262]. Moreover, Li and associates ar-
gue that “it is reasonable to assume that the time to the next high
energy particle strike is independent of the previous strike” [149,
p. 268]. Thus, the following commonly accepted1 fault model serves
as a working basis for the remainder of this chapter.

fault model : In this thesis, transient hardware faults are modeled
as independent single bit flips in memory that follow a uniform ran-
dom distribution.

It is paramount to recapitulate that this fault model is a simplification
and, thus, accepts certain inaccuracies. However, Cho and associates
point out that even an inaccurate fault model “can be very useful
as long as it is effective in driving the correct design decisions for
building robust systems.” [53, p. 6]

The working hypothesis for this chapter is that higher vulnerabil-
ity to independent, uniformly distributed single bit flips in memory

1 The great number of studies [124, 88, 78, 199, 25, 177, 201, 167, 48, 49, 256, 238] that
adopt this particular fault model indicates its common acceptance.
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implies higher vulnerability to radiation-induced hardware faults. We
shall discuss the validity of this working hypothesis in Section 8.1.

3.1.2 Probability of Failure

The simplified fault model of independent single bit flips allows calcu-
lating the probability of exactly k fault occurrences in n possible fault
locations by applying the binomial distribution:

Bn,p(k) =
(

n
k

)
· pk · (1 − p)n−k (3.1)

The parameter p denotes the probability of a single bit flip, which
is given by the fault rate g of the memory technology (see Table 2.2
on page 16) based on the time of operation ∆t. The probability of a
DRAM fault is about

p = g · ∆t = 10−8 FIT
bit

· ∆t =
10−8 · ∆t
109 h · bit

= 10−17 ∆t
h · bit

For example, consider a program (operating system) that runs for
one hour (∆t = 1 h) and uses ∆m = 1 MiB = 223 bits of memory.
Thus, there are n = ∆m possible fault locations. Table 3.2 takes this
example and shows the individual probabilities for the occurrence of
k = 0, 1, 2, or more DRAM faults during one program run.

k Bn,p(k Faults) k Bn,p(k Faults)

0 0.9999999999161 3 9.8 · 10−32

1 8.4 · 10−11 4 2.1 · 10−42

2 3.5 · 10−21 . . . . . .

Table 3.2: Binomial probabilities for k = 0, 1, 2, or more faults occurring
in one program run, assuming a DRAM fault probability of p =
10−17 per bit and n = 1 MiB possible memory locations.

It is remarkable that the probability of two or more faults is ten
orders of magnitude lower than for one fault. Because the occurrence
of exactly one fault is so much more likely, the total probability of
a failure P(Failure) – as a consequence of faults – is dominated by
the probability of one fault P(1 Fault). For now, a failure can be a
program crash or data corruption, yet, Section 3.2 defines the term
failure of the operating system more precisely. By applying the law of
total probability, we can decompose P(Failure) and derive an upper
bound as follows2:

2 The argumentation is based on the idea of Horst Schirmeier [214, p. 326]. In addition,
this section derives an upper bound to estimate the error of the subsequent approx-
imation. Furthermore, the following formalization avoids the error introduced by
Poisson approximation of binomial probabilities [214, p. 327].
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P(Failure) =
n

∑
k=1

P(Failure | k Faults) · P(k Faults)

= P(Failure | 1 Fault) · P(1 Fault)

+
n

∑
k=2

P(Failure | k Faults) · P(k Faults)

≤ P(Failure | 1 Fault) · P(1 Fault) +
n

∑
k=2

1 · P(k Faults)

= P(Failure | 1 Fault) · P(1 Fault)

+ (1 − P(0 Faults)− P(1 Fault))

= P(Failure | 1 Fault) · P(1 Fault) + ϵ(n, p)

The notation ϵ(n, p) represent the term 1 − P(0 Faults) − P(1 Fault),
which is an upper bound for the probability of a failure caused by
multiple faults. This term is negligible for sufficiently low fault prob-
abilities p. Taking the aforementioned example shown in Table 3.2
gives ϵ(223, 10−17) = 4 · 10−17, which is six orders of magnitude lower
than P(1 Fault). Thus, the absolute error of the following approxima-
tion is bounded by the negligible small ϵ(n, p):

P(Failure) ≈ P(Failure|1 Fault) · P(1 Fault) (3.2)

The probability of exactly one fault occurrence P(1 Fault) can be cal-
culated by the binomial distribution Bn,p(1). Inserting Equation 3.1 in
Equation 3.2 gives

P(Failure) ≈ P(Failure|1 Fault) · n · p · (1 − p)n−1

≤ P(Failure|1 Fault) · n · p (3.3)

Hence, the only unknown term in Equation 3.3 is P(Failure|1 Fault),
which needs to be measured by fault-injection experiments. For such
experiments, it suffices to run the program independently for N times
and to inject exactly one bit flip randomly into the memory area ∆m
during each program run. F denotes the number of fault-injection ex-
periments that exhibit a program failure. For a sufficiently large num-
ber of samples N, the fault-injection experiments yield an accurate
statistical estimator P̂(Failure|1 Fault) = F/N. Thus, we can rewrite
Equation 3.3 as

P(Failure) ≈ F
N

· n · p =
F
N

· ∆m · ∆t · g (3.4)
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The term ∆t refers to the program runtime and g denotes the fault
rate of the memory technology (see page 42).

Equation 3.4 provides the fundamental reliability metric for the eval-
uation based on fault injection throughout this thesis. The total prob-
ability of failure is directly proportional to the number of failed pro-
gram runs F obtained by independent fault-injection experiments.

3.1.3 Exhaustive Fault-Space Scanning

The fault model of independent, uniformly distributed single bit flips
in memory spans a two-dimensional fault space of possible fault loca-
tions. On the one hand, a fault can affect every memory cell. On the
other hand, a fault can occur at any time. The continuous time can be
discretized for synchronous circuits with a resolution of CPU clock
cycles. Whenever a fault occurs within the interval of a clock cycle,
the fault is not read before the next clock edge.

Figure 3.1a illustrates the discrete fault space of a hypothetical pro-
gram that runs for ∆t = 12 clock cycles on a machine with ∆m = 9
bits of memory. Thus, there are 12 · 9 = 108 possible fault locations,
which are denoted by black circles at each coordinate in Figure 3.1a.
An exhaustive assessment of the individual criticality of each mem-
ory location requires conducting one independent fault-injection ex-
periment for each coordinate. In each experiment, one bit of mem-
ory is flipped at the respective cycle–memory coordinate while the
program is running. Thus, an exhaustive fault-space scan requires
N = ∆m · ∆t fault-injection experiments. Inserting this value for N
into Equation 3.4 gives

P(Failure) ≈ F
N

· ∆m · ∆t · g = F · g (3.5)

Hence, for an exhaustive fault-space scan, the probability of failure
depends only on the number F of failed fault-injection experiments,
scaled by the fault rate g of the memory technology.

However, conducting experiments for each coordinate of the whole
fault space is practically infeasible for real-world programs. There-
fore, Smith and associates [227] as well as Güthoff and colleagues [97]
propose an optimization based on memory access traces that identi-Trace-based

optimization
(def–use analysis)

fies equivalent fault locations in the fault space. For example, Fig-
ure 3.1b shows the memory access pattern obtained from a trace.
The dynamic CPU instruction starting in the fourth clock cycle writes
eight bits to main memory; the datum is read back into a CPU register
in the eleventh clock cycle.

First, this information can be exploited to identify dead fault loca-
tions that are not read. For example, the ninth bit of memory in Fig-
ure 3.1b is never used, and all other memory cells are overwritten in
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(a) Each coordinate (cycle, bit), denoted
as a black circle, represents a possible
fault location. Without further infor-
mation on the program, an exhaustive
fault-space scan requires conducting
a fault-injection experiment for each
of the 108 coordinates.
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(b) With information on the memory ac-
cess pattern of the program, sev-
eral coordinates can be grouped into
equivalence classes. Fault injections at
perforated coordinates (white area en-
closed by a circle) can be omitted, as
a fault there is overwritten or is never
read. A black circle represents a class
of equivalent faults (light-gray coordi-
nates).

Figure 3.1: Illustration of a program’s fault space spanned by CPU Cy-
cles × Memory Bits. Every discrete (cycle, bit) coordinate denotes
a possible location for the occurrence of a single bit flip in mem-
ory.

the fourth clock cycle. The injection of faults into dead fault locations
cannot result in a program failure, so that experiments for those fault
locations can be omitted.

Second, Figure 3.1b shows that each memory fault has the same
effect no matter whether it occurs in the fifth, sixth, . . . , or tenth clock
cycle, because the fault is not read before the eleventh clock cycle.
Thus, these fault locations can be grouped into equivalence classes,
which only a single fault-injection experiment needs to be conducted
for. Figure 3.1b shows eight equivalence classes – one for each used
memory location around the clock cycles five to ten. For example, the
rightmost fault location, depicted as a black circle, can be chosen as a
representative for an equivalence class.

By exploiting memory access traces, the number of fault-injection
experiments needed for an exhaustive fault-space scan is reduced
from 108 to mere 8 in the example illustrated in Figure 3.1. Even
though only one experiment is conducted for each equivalence class,
the results of all fault locations count in the calculation of the probabil-
ity of failure according to Equation 3.5.

A limitation of the trace-based optimization is that the program
runs must be carried out deterministically; that is, the memory ac-
cess patterns of repeated program runs must match the previously
recorded trace. This can be achieved in practice by using a hardware



46 problem analysis

simulator that allows replaying external events, such as interrupts, at
the exact same point in time during each program run.

3.2 baseline dependability assessment

This section comprises two case studies that assess the dependabil-
ity of two operating systems by means of fault injection based on
the fault model of single bit flips. The technique of exhaustive fault-
space scanning, described in the previous section, allows analyzing
and comparing the vulnerability of each memory location. The goal of
this section is to identify the most vulnerable spots of both operating-
system kernels. This information provides design aids for the devel-
opment of tailored fault-tolerance mechanism. In short, this section
reveals those operating-system internals that would benefit the most
from software-implemented fault tolerance.

The following case studies cover two complementary operating sys-
tems that address different domains.

ecos : The embedded configurable operating system (eCos) [162] is an off-
the-shelf operating system for real-time applications. eCos of-
fers configurability at compile time of more than 750 system
components, such as file systems and networking, resulting in
roughly one million lines of C and C++ code. Targeting the do-
main of deeply embedded systems, eCos supports a multitude
of hardware architectures, including microprocessors without
Memory Management Unit (MMU). eCos has been deployed in
numerous automotive and aerospace systems3. Dependability
is of particular concern for such systems.

l4/fiasco.oc : The L4/Fiasco.OC [139] operating system is a state-
of-the-art microkernel that facilitates hardware-based isolation
of system components. As such, L4/Fiasco.OC requires a hard-
ware architecture with MMU, and currently supports x86, x86-
64, and ARM platforms. The principle of the microkernel is that
only a small piece of code – about 57,000 lines of C++ code
for L4/Fiasco.OC – runs in the privileged mode of the CPU.
It is only the microkernel that needs to be trusted, whereas
other system components, such as device drivers and file sys-
tems, run in the unprivileged mode. L4/Fiasco.OC has been
deployed in governmental projects with stringent security re-
quirements [193].

Both operating systems have been used in a broad range of produc-
tion systems with dependability constraints – from deeply embedded
real-time applications to highly secure computing. To the best of my

3 An overview of industrial products that use eCos can be found at: http://www.
ecoscentric.com

http://www.ecoscentric.com
http://www.ecoscentric.com
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knowledge, however, there is no previous study that rigorously eval-
uates the reliability of those operating systems regarding transient
hardware faults. This section proceeds with such an evaluation.

3.2.1 Experimental Setup

In this chapter, I use the fault-injection framework FAIL* [215] for
the dependability assessment of the eCos and L4/Fiasco.OC operat-
ing systems. FAIL* supports the x86-hardware emulator Bochs [144], FAIL* fault-injection

frameworkwhich is capable of executing both eCos and L4/Fiasco.OC. There-
fore, this chapter focuses on the x86 hardware architecture, whereas
Section 7.3 and Chapter 8 generalizes the dependability assessment
by using native x86-64 and ARM platforms.

Bochs emulates an x86 CPU on a behavioral level with a simple
timing model of one CPU instruction per cycle. The only exception is
the HLT instruction, which suspends the CPU for multiple cycles until
an interrupt occurs. Unless stated otherwise, the clock frequency of Emulated x86 CPU

the emulated CPU is set to 2.666 GHz, representing a modern x86

CPU. Bochs does not simulate a cache hierarchy. Therefore, timing
effects and fault masking caused by caches cannot be analyzed with
this hardware emulator.

FAIL* implements the fault model of independent single bit flips
in memory. Furthermore, the trace-based fault-space optimization de-
scribed in Section 3.1.3 is implemented as well, reducing the number
of fault-injection experiments for an exhaustive fault-space scan.

In the following two case studies, Read-Only Memory (ROM) seg-
ments are excluded from fault injection for two reasons: First, deeply
embedded systems targeted by eCos use flash memory as ROM stor-
age. Flash memory already implements strong redundancy to com-
pensate for cell degradation (see Section 2.1.3.3). Second, the usage
of checksums [22, 177] and error-correcting codes [219] for ROM
segments is already considered as best practice [22, p. 74ff]. For ex-
ample, L4/Fiasco.OC implements a checksum for read-only kernel
data, which are checked during bootstrapping. It is straightforward
to perform that check periodically, as proposed by Shirvani and col-
leagues [219]. In short, integrity of ROM is a problem already solved.

To evaluate the operating systems under load, I use a set of bench-
mark and test programs that are bundled with each operating system.
These programs only serve for activating and testing the operating
system’s functionalities. As such, the benchmarks finish after a pre-
defined test procedure and report on success or failure on the serial
port. The outcome of a single fault-injection experiment is classified
into one of the four categories:

benign : The injected fault does not change the result of the bench-
mark program, which finishes in due time and reports on suc-
cess.
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sdc : A benchmark run that finishes after fault injection but does not
report on success is considered as Silent Data Corruption (SDC).
In addition, if the benchmark run finishes in less than 90 percent
of the expected runtime, or overwrites data outside the data
segments, the fault-injection experiment counts as SDC.

timeout : A fault-injection experiment is aborted if ten times more
CPU instructions are executed compared to a fault-free run.
Moreover, a benchmark run that exceeds the fault-free runtime
by 1/18.2 seconds (one complete timer interval) is aborted. Such
a situation occurs if the kernel is stuck in the idle loop.

cpu exception : This category comprises occurrences of processor
exceptions in kernel mode after injecting a fault. Silberschatz
and associates [222, p. 561f] refer to processor exceptions as
nonmaskable events that signal various error conditions; techni-
cally speaking, the first 32 entries of the x86 interrupt-vector
table [222, p. 562] represent exceptions, such as the general pro-
tection fault (number 13) and double fault (number 8). In other
words, this means a crash of the operating system.

In the following two case studies, I subsume the three categories SDC,
timeout, and CPU exception under the common category failure. As
discussed in Section 2.4.4.3, even though an error is detected by an
exception handler or by a potential watchdog timer, the state of the
operating system is likely corrupted as well. Thus, an SDC, timeout,
and CPU exception counts toward the total number F of failed fault-
injection experiments in Equation 3.5 on page 44. That equation also
implies that benign faults are irrelevant for an exhaustive fault-space
scan.

3.2.2 Case Study: eCos

The first case study evaluates the reliability of eCos 3.0 with its de-
fault configuration. The architecture of eCos centers on a single ad-
dress space. Both the kernel and all applications share a common
address space and run in the privileged processor mode. eCos is de-
signed as a static library, which is linked with the applications to pro-
duce an executable image. A large share of kernel data is allocated
statically and can be identified by a symbol name in the executable
image.

eCos is bundled with a kernel test suite, which contains various
benchmark programs that exercise the kernel’s functionalities. This
section takes two benchmark programs as examples to evaluate the
eCos kernel. Appendix A.1 confirms the findings by evaluating 13

additional benchmarks from the kernel test suite.
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Figure 3.2: Excerpt of the fault space spanned by eCos running the
thread1 benchmark. Each point denotes the outcome of an in-
dependent benchmark run after injecting a single bit flip at a
specific time and memory coordinate. Injections in white areas
are benign. Blue marks illegal memory accesses outside the data
segments. CPU exceptions are colored red and timeouts yellow,
respectively. Green data points show SDC.

3.2.2.1 The eCos Benchmark thread1

The first benchmark program thread1 serves the purpose of testing
the interleaved execution of two threads. Therefore, thread1 exe-
cutes a predefined test procedure of the thread-related system calls
suspend, resume, sleep, and wake. At the same time, the benchmark
repeatedly checks whether both threads are in their expected states,
such as running or sleeping.

Figure 3.2 shows an excerpt from the exhaustive fault-space scan of
eCos running the thread1 benchmark. Each coordinate denotes one
independent fault-injection experiment, which injects a single bit flip
at the respective point in time and memory location. If the operating
system reads the corrupted memory location at a later point in time,
the fault can turn into a failure, and then the coordinate of the fault
injection is shown as colored point.

On the one hand, the clear majority of fault injections are benign,
as indicated by the large uncolored areas in Figure 3.2. On the other
hand, the colored horizontal lines reveal that failures often originate
from the very same memory locations. The right y-axis assigns the
program’s symbol names to several consecutive memory locations.
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symbol name data type size failures percentage

thread Cyg_Thread[] 264 9.20 · 109 39.5 %

Cyg_RealTimeClock::rtc Cyg_RealTimeClock 52 4.29 · 109 18.4 %

stack cyg_uint64[] 5,088 3.31 · 109 14.2 %

Cyg_Scheduler::scheduler Cyg_Scheduler 132 8.53 · 108 3.7 %

comm_channels int (*[][])() 96 8.53 · 108 3.7 %

pt1 Cyg_Thread* 4 8.53 · 108 3.7 %

Cyg_Interrupt::dsr_list_tail Cyg_Interrupt* 4 8.53 · 108 3.7 %

hal_interrupt_objects cyg_uint32*[] 896 8.53 · 108 3.7 %

hal_interrupt_handlers cyg_uint32 (*[])() 896 8.53 · 108 3.7 %

Cyg_Scheduler::sched_lock cyg_ucount32 4 8.53 · 108 3.7 %

Table 3.3: Quantitative fault-injection results of eCos running the thread1

benchmark. The ten most failure-prone symbols (continuous
memory regions) amount to 97.8 percent of the total failures. In
summary, the Cyg_Thread and Cyg_RealTimeClock data types are
the most critical.

These symbols, separated by dotted lines, point out that most failures
cluster around a few kernel data structures.

Table 3.3 lists the ten most failure-prone symbols from the exhaus-
tive fault-space scan. Beside the symbol name and its data type, the
table lists the accumulated number of failures per symbol next to the
percentage of all failures.

97.8 percent of the total failures are caused by only these ten pro-
gram symbols. In particular, 39.5 percent and 18.4 percent originate
from instances of the Cyg_Thread and Cyg_RealTimeClock data types,
respectively. Thus, these two data structures are the most critical. In
addition, the stack accounts for 14.2 percent of the total failures, fol-
lowed by several member variables, pointers and arrays thereof.

The baseline evaluation of the benchmark thread1 suggests that
the reliability of the eCos kernel primarily depends on a small sub-
set of kernel data structures. Especially these kernel data structures
should be provided with software-implemented fault tolerance to im-
prove the reliability significantly.

3.2.2.2 The eCos Benchmark mutex1

The second benchmark program mutex1 from the kernel test suite
exercises the kernel’s synchronization mechanisms to coordinate the
execution of three threads. mutex1 invokes a test sequence of the sys-
tem calls lock, trylock, unlock, signal, wait, and broadcast using
two mutex variables and three condition variables. The benchmark
monitors the activities of the three threads and checks for consistency
with a predefined schedule.
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symbol name data type size failures percentage

stack cyg_uint64[] 7,632 1,687,203 31.8 %

thread_obj Cyg_Thread[] 416 1,487,037 28.0 %

cvar2 Cyg_Condition_Variable 8 287,551 5.4 %

cvar1 Cyg_Condition_Variable 8 226,016 4.6 %

m0 Cyg_Mutex 20 207,538 3.9 %

comm_channels int (*[][])() 96 195,392 3.7 %

m1 Cyg_Mutex 20 184,180 3.5 %

cvar0 Cyg_Condition_Variable 8 177,824 3.3 %

Cyg_Interrupt::dsr_list Cyg_Interrupt* 4 155,904 2.9 %

Cyg_Scheduler::scheduler Cyg_Scheduler 132 148,663 2.8 %

Table 3.4: Quantitative fault-injection results of eCos running the mutex1

benchmark. The ten most failure-prone symbols (continuous
memory regions) amount to 89.6 percent of the total failures. In
summary, the stack and the Cyg_Thread data types are the most
critical.

Table 3.4 summarizes the results from an exhaustive fault-space
scan of eCos running the mutex1 benchmark. Like the findings
of the previous benchmark, the reliability of the eCos kernel pri-
marily depends on a few kernel data structures. However, because
mutex1 exhibits a different application profile, the ten most failure-
prone symbols are also different. In this case, the stack and instances
of the Cyg_Thread data structure are the most critical. In addition,
failures originating from instances of Cyg_Condition_Variable and
Cyg_Mutex total at about 20 percent.

The stack symbol accounts for almost one third of the total fail-
ures, and comprises three independent stacks – one for each thread.
Figure 3.3 on the next page depicts the fault-injection results of the
exhaustive fault-space scan. The larger diagram identifies the mem-
ory locations that belong to the stack symbol on the right y-axis.
The zoomed-in section reveals that a large share of failures is caused
by faults in return addresses and frame pointers. These return addresses Return addresses

and frame pointersand frame pointers are generated by the GNU C++ compiler to imple-
ment subroutine calls, and represent the most homogeneous reasons
for failures caused by the stack memory.

In summary, the evaluation of the benchmark mutex1 confirms
the findings of the previous benchmark, and Appendix A.1 provides
further evidence by presenting the results of 13 additional bench-
marks. The reliability of the eCos kernel primarily depends on a small
application-specific subset of kernel data structures: The instances of a
few C++ classes and the stack, which stores return addresses and
frame pointers, are the most critical.
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Figure 3.3: Fault space spanned by eCos running the mutex1 benchmark.
Each point denotes the outcome of an independent benchmark
run after fault injection at a specific time and memory coordi-
nate. Injections in white areas are benign. Blue marks illegal mem-
ory accesses outside the data segments. CPU exceptions are col-
ored red and timeouts yellow, respectively. Magenta data points
show SDC. The zoomed-in section identifies return addresses
and frame pointers as homogeneous reasons for failures.
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3.2.3 Case Study: L4/Fiasco.OC

The second case study repeats the baseline evaluation with the op-
erating system L4/Fiasco.OC to validate the previous findings. The
microkernel architecture of L4/Fiasco.OC provides multiple address
spaces with hardware-based isolation; the microkernel occupies a re-
served address space that is always mapped to the virtual memory
addresses 0xC0000000 to 0xFFFFFFFF. Faults in other address spaces
cannot corrupt the kernel because of the hardware-based isolation.
Thus, I confine the fault injection to the kernel address space.

In this case study, I use the revision 64 of the Fiasco.OC micro-
kernel, which is bundled with the L4 Runtime Environment (L4Re) that
implements basic system services such as program loading. The L4Re
repository contains several example programs, which I use for eval-
uating the microkernel under load. This section takes the program
uirq as an example. Appendix A.2 confirms the findings of this sec-
tion by presenting the evaluation results of two more programs.

The program uirq tests the interrupt functionality of the kernel.
At first, one thread allocates a kernel object that emulates a hard-
ware interrupt. After that, the same thread triggers a virtual interrupt
several times, while another thread waits and receives the interrupt
signals. Both threads catch runtime errors by C++ exceptions.

Table 3.5 summarizes the results from an exhaustive fault-space
scan of the kernel address space4. The ten most failure-prone sym-
bols account for 97.2 percent of the total failures. On the one hand,
53.4 percent originate from one instance of the data type Ready_queue,
which implements priority-based scheduling. On the other hand, 37.6
percent stem from a large memory region called Physmem that repre-
sents a dynamically managed heap of kernel objects. For example, the
kernel dynamically allocates an instance of the data type Thread for
each thread of control that is started at runtime. Likewise, the sym-
bol Capabilities refers to another heap that stores instances of data
structures that implement access control. Future work needs to ana-
lyze these heaps in more detail, yet, most failures are caused by a few
statically allocated data structures.

A further, manual analysis of the statically allocated data struc-
tures reveals that their four lowest bytes are particularly vulnerable.
For instance, the four lowest bytes of the symbol _fcon cause 49.2
percent of the symbol’s failures. Likewise, the four lowest bytes of
the_timeslice_timeout and Kconsole::_c amount to 30.4 percent
and 19.8 percent of their symbol’s failures, respectively. The debug-
ging information shows that the GNU C++ compiler uses these bytes
as virtual-function pointers (vptrs) that implement the dynamic dis-
patch of virtual C++ functions [240, p. 67f]. Figure 3.4 illustrates

4 The CPU clock frequency of the x86 emulator Bochs, used by FAIL*, is set to 1.0 GHz.
In contrast to eCos, L4/Fiasco.OC refuses bootstrapping on an emulated CPU with
2.666 GHz.
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symbol name data type size failures percentage

Sched_context::rq Ready_queue 1,036 2.47 · 1013 53.4 %

Physmem Heap 62,914,560 1.74 · 1013 37.6 %

Timeout_q::timeout_queue Timeout_q 48 6.07 · 1011 1.3 %

Capabilities Heap 41,943,040 5.94 · 1011 1.3 %

Kconsole::_c Kconsole 56 4.84 · 1011 1.0 %

vga Vga_console 72 3.32 · 1011 0.7 %

the_timeslice_timeout Timeslice_timeout 28 3.15 · 1011 0.7 %
_fcon Filter_console 80 1.95 · 1011 0.4 %

Cpu::cpus Cpu 224 1.92 · 1011 0.4 %

Rcu::_rcu_data Rcu_data 44 1.92 · 1011 0.4 %

Table 3.5: Quantitative fault-injection results of the L4/Fiasco.OC microker-
nel running the uirq program. The ten most failure-prone sym-
bols (continuous memory regions) amount to 97.2 percent of the
total failures. The Ready_queue data type is the most critical. In
addition, the large memory regions Physmem and Capabilities
represent dynamically allocated memory (heap). These heaps also
store critical kernel data structures.

data
members

vptr

...

2nd virtual function
1st virtual function

vtableobject
pointer
to object

RAM ROM

Figure 3.4: Memory layout of C++ objects, virtual-function pointers (vptrs)
and virtual-function tables (vtables) used by common C++ com-
pilers, such as the GNU C++ compiler. The integrity of the vptr
is critical for correct control flow.

the C++ object layout used by the GNU C++ compiler for instances
of data structures with virtual functions. On a virtual-function call,Virtual-function

pointers the vptr is dereferenced to locate the virtual-function table (vtable),
which contains pointers to functions. Thus, a fault in the vptr causes
a control-flow error.

In summary, the evaluation of the L4/Fiasco.OC microkernel con-
firms the findings of the eCos case study. The reliability of the ker-
nel primarily depends on a few kernel data structures, such as the
scheduler’s ready queue. Compiler-generated virtual-function point-
ers represent another homogeneous reason for failures.
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3.3 interpretation of the results

The previous case studies identified the individual kernel data struc-
tures that are critical to an extremely high degree. These critical data
structures alone account for almost all failures. Therefore, applying
software-implemented fault-tolerance mechanisms to these data struc-
tures would avoid almost all failures and, thus, would significantly
improve the reliability of the operating systems.

In summary, the following types of kernel data structures exhibit
an exceeding criticality:

• Instances of C++ classes (allocated statically or dynamically)

• Static data members of C++ classes

• Stacks (including return addresses and frame pointers)

• Pointers (including virtual-function pointers)

A software-implemented fault-tolerance mechanism for operating sys-
tems must address these data types. The exceeding criticality of C++
classes is a consequence of the object-oriented implementation of both
the eCos kernel and L4/Fiasco.OC. However, the class feature of the
C++ language itself is not the reason for failures – it is the runtime
data that are stored in the individual data members of class instances.

The uneven distribution of kernel failures, which mostly stem from
a few data structures, can be explained by reconsidering the prob-
ability of failure derived in Section 3.1.2. According to Equation 3.4
on page 43, the probability of failure is directly proportional to the
runtime ∆t. This proportionality implies that data structures that are
used over a longer period of time have a higher potential of caus-
ing failures than data structures with short lifetime. In other words,
the criticality of a data structure depends on its lifetime. This cor-
relation explains why the statically allocated kernel data structures,
such as the scheduler, are so very critical – their lifetime is virtually
unbounded.

On the other hand, the lifetime of many kernel data structures is
bound to the application programs. For example, the lifetime of an
instance of the class Cyg_Thread (eCos) begins when a thread of con-
trol is started and ends on thread termination; the class Cyg_Mutex

does not cause any failure if there is no application program that
uses it (see Section 3.2.2.1). Thus, the criticality of many kernel data
structures depends on the application profile.

This calls for a selective placement of fault-tolerance mechanisms
based on application knowledge. Unnecessary overhead is avoided if
uncritical data is left unprotected. The avoidance of runtime overhead
is crucial for the effectiveness of fault tolerance, as the runtime is
directly proportional to the probability of failure (see Equation 3.4
on page 43). A fault-tolerance mechanism, applied to a subset of data
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structures, must not excessively increase the lifetime of the other data
structures.

3.4 suggested approach

The selective, application-specific placement of fault-tolerance mech-
anisms into the kernel rules out any manual implementation in C++:
Whenever an application program changes, the kernel of the operat-
ing system would need manual adaptation. Available compiler-based
solutions are also too inflexible in that they do not provide any means
for a selective placement of fault-tolerance mechanisms into kernel
data structures.

The goal of this thesis is to develop and evaluate a hybrid approach
between these two extremes. On the one hand, the introduction of
fault-tolerance mechanisms into the kernel should be automated by a
software tool like a compiler. On the other hand, the fault-tolerance
mechanisms themselves should be implemented in a general-purpose
programming language to allow for user-defined extensions. Such a
programming language must provide means to implement generic
fault-tolerance mechanisms, and the programmer must be able to
specify where these generic mechanisms shall be applied.

Aspect-Oriented Programming (AOP) is a promising candidate for
accomplishing these goals. AOP provides language support for the
transparent extension of a program by user-defined functionality, and
a compiler for the AOP language automates the extension process.

This thesis evaluates the suitability of AOP for the implementa-
tion of generic fault-tolerance mechanisms that shall be applied se-
lectively to critical parts of operating systems. Moreover, this thesis
investigates whether AOP allows implementing fault-tolerance mech-
anisms in such a generic way so that they can be applied to various
kernel data structures of both eCos and L4/Fiasco.OC.

3.5 chapter summary

This chapter introduced the methodology of fault injection to evaluate
the reliability of operating systems with respect to transient memory
errors, and identified thereby two central problems:

problem 1 : Several kernel data structures, such as instances of C++
classes, stacks, and pointers, exhibit an exceeding vulnerability
to transient memory errors. Integrity of these kernel data struc-
tures is crucial for the reliability of the operating systems.

problem 2 : The individual criticality of the kernel data structures
depends on the application profile. The lifetime of many kernel
data structures is bound to the application programs that use
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them. As applications change, the individual criticality of the
kernel data structures varies dramatically.

Furthermore, Section 3.1.2 affirmed that runtime overhead has a nega-
tive impact on reliability. Therefore, I propose a selective, application-
specific placement of fault-tolerance mechanisms into the kernel to
avoid unnecessary overhead. Such an approach, however, is impracti-
cal with traditional techniques and tools.

AOP might be a solution for these problems. Hence, the following
chapters evaluate the suitability of AOP for implementing a library
of generic fault-tolerance mechanisms. This thesis evaluates thereby
whether AOP is an effective and efficient technology towards resolv-
ing the following shortcoming:

“ There is a need for application-specific, fault-tolerant tech-
niques that offer a trade off between the reliability im-
provement and amount of overhead. ”– Tanay Karnik and associates [125, p. 140]





4
A S P E C T- O R I E N T E D P R O G R A M M I N G

In the 1970s, Dijkstra [68, p. 211] describes the separation of concerns as
important principle of thinking in general and programming in par-
ticular. A concern is an area of interest, such as fault tolerance. The
separation of concerns permits a programmer to deal with the many Separation of

concernsconcerns of a complex software system one by one. Such a separa-
tion of concerns emerges from the programmer’s mind; however, it
depends on the programming language whether the individual con-
cerns can be implemented also as independent software modules.

Aspect-Oriented Programming (AOP) [131] provides extra language
support for the separation of concerns at the implementation level.
The goal of AOP is to enable a modular program structure even
where traditional programming paradigms, such as object-oriented
programming, deny modularity.

Software-implemented fault tolerance is a concern that is hard to
implement as independent module by object-oriented programming,
as shown in Section 4.1 on the following page. Subsequently, this
chapter introduces the fundamental principles of AOP. Section 4.2
shows these principles in practice by taking the AspectC++ program-
ming language as an example and evaluates its impact on the fault
tolerance of operating systems. Such an evaluation indicates whether
the AspectC++ programming language is suitable for the domain of
fault tolerance.

Section 4.3 discusses further aspect-oriented languages. Section 4.4
addresses frequent points of criticism concerning AOP in general.
Finally, Section 4.5 reviews prior work on fault tolerance using As-
pectC++ and Section 4.6 summarizes this chapter.
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4.1 general considerations

The major goal of AOP is to manage a separation of concerns at the
implementation level. AOP addresses thereby one of the shortcom-
ings of object-oriented programming: the lack of means to imple-
ment certain concerns as independent modules so that they do not
cut across each other. The AOP literature refers to this deficiency as
the problem of crosscutting concerns [131].

4.1.1 Crosscutting Concerns

The canonical example of a crosscutting concern is program tracing.
Symptoms of such a concern are the scattered and tangled source code
of the implementation.

scattering : The implementation of a concern is scattered if multi-
ple modules contain pieces of code associated with the same
concern. For example, the repetition of similar code fragments
in many modules causes scattering.

tangling : The implementation of a concern is tangled if it embraces
multiple concerns simultaneously. The intermixing of code frag-
ments from multiple concerns in one program module results
in tangling.

Both symptoms refer to the same problem that originates from a limi-
tation of the programming language. Although a concern can be well
modularized in the programmer’s mind – for example, tracing – the
programmer has no means to implement that concern without inter-
fering with many program modules. Thus, as scattering and tangling
depend on the programming language, a concern that causes scat-
tering and tangling is said to be a crosscutting concern because of the
programming language.

Figure 4.1 illustrates the problem of crosscutting concerns by tak-
ing the example of a simplified linked list, which is implemented
in object-oriented C++. In addition to the basic functionality of the
list, the concern of error detection by duplication (see Section 2.4.1.1 on
page 24) is implemented, highlighted on colored background. The im-

http://dx.doi.org/10.1109/ISORC.2014.26
http://dx.doi.org/10.1109/ISORC.2014.26
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1 #include <exception>

2 class Item {

3 Item* next;

4 Item* redundant_next;

5 public:

6 Item() : next(0),

7 redundant_next(0) {}

8 void set_next(Item* next) {

9 this->next = next;

10 redundant_next = next;

11 }

12 Item* get_next() const {

13 if (next != redundant_next)

14 throw std::exception();

15 return next;

16 }

17 };

18 class List {

19 Item* head;

20 Item* redundant_head;

21 public:

22 List() : head(0),

23 redundant_head(0) {}

24 void push_front(Item* item) {

25 item->set_next(front());

26 head = item;

27 redundant_head = item;

28 }

29 Item* front() const {

30 if (head != redundant_head)

31 throw std::exception();

32 return head;

33 }

34 };

Figure 4.1: Scattering and tangling in the C++ implementation of a sim-
plified linked list. The basic functionality of the pointer-based
list is printed on white background. In addition, the concern
of error detection by duplication is implemented, which replicates
each pointer variable. Lines of source code that belong to the
error-detection concern are highlighted on colored background.
The scattering and tangling impairs the readability of the source
code.

plementation of the concern of error detection notably cuts across the
basic functionality of the linked list even in this simplified example.

In particular, the member variables of the classes Item and List

require duplicate counterparts (lines 4 and 20); these duplicates need
initialization (lines 7 and 23) and regular updates (lines 10 and 27);
consistency checks are needed before read access (lines 13 and 30),
coupled with proper error handling (lines 14 and 31).

On the one hand, the code scattering over the classes Item and
List makes the concern of error detection hard to read and impossi-
ble to study in isolation. For instance, you might want to verify that
no consistency checks are missing. On the other hand, the tangling
substantially complicates the source code of the basic functionality.

Kiczales and associates [132] further differentiate between two types
of crosscutting in object-oriented programming languages according
to the influence on the program:

static crosscutting : The concern overlapping becomes manifest
in the static program structure, that is, in the data types of the
program. For example, a concern implementation that extends
existing C++ classes by additional data and function members
exhibits static crosscutting. The same applies to a scattered dec-
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laration of compile-time assertions. In summary, the runtime
behavior of the program is not affected.

dynamic crosscutting : The interaction of multiple concerns at
runtime represents dynamic crosscutting. This type of crosscut-
ting becomes manifest in the execution of a tangled sequence
of program statements that belong to different concern imple-
mentations. In short, the program execution flow is subject to
concern overlapping.

Static crosscutting is typically associated with dynamic crosscutting.
In Figure 4.1, the variable duplication (lines 4 and 20) statically cuts
across both classes, and so does the #include directive in the first line.
On this basis, the remaining colored lines represent dynamic cross-
cutting that influences the runtime behavior by executing concern-
specific program statements.

4.1.2 AOP – Quantification and Obliviousness

The motivation for AOP is to manage crosscutting concerns in a mod-
ular way. Therefore, AOP addresses the symptoms of code scattering
and tangling. Filman and Friedman define AOP as the combination
of “quantification and obliviousness” [82, p. 21].

quantification : The ability of quantification denotes that a multi-
tude (a specific quantity) of source-code locations are augmented
transparently with additional functionality. The functionality it-
self, however, is encapsulated in a separate module. Therefore,
quantification avoids code scattering.

obliviousness : The source code of a program needs not be aware
of – and not prepared for – the augmentation. Thus, oblivious-
ness resolves code tangling in the implementation.

An AOP language must provide means to specify the quantification
property in terms of language constructs. Consequently, these lan-
guage constructs allow for a separation of the concern functionality
(the what) from the points of instantiation (the where). This separation
is the fundamental characteristic of AOP.

4.1.3 Language Support

AOP languages revolve around the notion of join points and advice
[132]. A join point represents an identifiable location in the source
code of a program (the where), such as the execution of a member
function. Join points statically and dynamically cut across the imple-
mentation of a program. Advice, on the other hand, specifies the de-
sired actions (the what) that shall take place at selected join points.
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Essentially, advice provokes the implicit invocation of additional func-
tionality.

The individual join points, which advice shall be applied to, are
captured by a pointcut description language. Primarily, the pointcut
description language provides means for quantification. As such, a
pointcut declaratively identifies a set of join points. The set can be po-
tentially open if the pointcut description language supports wildcard
symbols.

A pointcut description language together with an advice construct
are the building blocks that form an AOP language. An aspect – in
the terminology of AOP – is then a module that encapsulates advice,
pointcut expressions, and other implementation artifacts of a cross-
cutting concern.

4.1.4 Weaving

Weaving [131] describes the process of composing the final system
from the individual modules. The control flow at selected join points
must be transferred to the aspect code and back. This process re-
quires tool support in form of an aspect weaver. Essentially, the weaver
makes sure that the advice is carried out. Thus, advice can be consid-
ered as transformation rules that are processed by the weaver, which
can be realized as compiler or interpreter. In either case, the weaver
does not modify the original source code. Figure 4.2 depicts the weav-
ing process schematically.

In general, weaving can be distinguished between static weaving,
which is carried out at compile time, and dynamic weaving after com-
pilation. Static weaving, on the one hand, can be implemented ef-
ficiently as source-to-source translation; the individual source-code
files of a system are woven together into temporary source code that
can be compiled with commodity compilers into an executable. There-
fore, weaving can be applied without any overhead on the final exe-
cutable [231].

WeavingWeaving
aspect

advice

Figure 4.2: Schematic of aspect weaving. On the left-hand side, three files
of source code coexist with one aspect module, which is shown
in black and encapsulates a crosscutting concern. The weaving
process instruments the final program at the relevant join points.
On the right-hand side, the black bars indicate those locations in
the source code that are augmented with aspect code.
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Dynamic weaving, on the other hand, takes place at program load
time [196] or at runtime [77, 243]. Therefore, dynamic weaving neces-
sarily incurs runtime costs and, thus, is unfavorable for the domain of
fault tolerance, because any runtime overhead has a negative impact
on fault tolerance (see Equation 3.4 on page 43).

4.2 the aspectc++ language and compiler

AspectC++ [231] is a general-purpose language extension to C++. As
such, AspectC++ is a superset of C++, implying that every valid C++
program is also a valid AspectC++ program. The language exten-
sion comprises a minimal set of new language constructs to enable
AOP, which integrate seamlessly into the complex C++ grammar. As-
pectC++ aims at complying with the C++ philosophy and its pecu-
liarities.

The AspectC++ language is bundled with an open-source1 com-
piler that implements a source-to-source translation from AspectC++
to standard C++. Thus, the weaving process is carried out statically
and integrates well into existing C++ tool chains. The compiler also
supports dynamic weaving; however, the join points are still prepared
statically for dynamic instrumentation. This thesis focuses on static
weaving, which is more efficient in general.

4.2.1 Language Concepts

This section briefly introduces the basic language concepts of As-
pectC++ 1.0, whereas the next chapter covers the advances of the
version 2.0. Throughout this section, I refer to Figure 4.3 for illus-
trating the individual language concepts. That figure resembles the
previous example of the simplified linked list with crosscutting error
detection (compare to Figure 4.1 on page 61). However, Figure 4.3
shows an implementation using AspectC++: The concern of error de-
tection is encapsulated in a single module on the right-hand side. The
aspect keyword (line 3) defines a class-like entity that permits the
declaration of pointcut expressions and advice.

4.2.1.1 Pointcut Description Language

As mentioned in the previous section, a pointcut description lan-
guage is one of the building blocks of an AOP language. Such a de-
scription language allows declaring pointcut expressions that identify
sets of join points. The pointcut description language of AspectC++
distinguishes between name pointcut expressions and code pointcut ex-
pressions.

1 The AspectC++ compiler is available at http://aspectc.org/ under the terms of the
GNU General Public License.

http://aspectc.org/
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1 class Item {

2 Item* next;

3 public:

4 Item() : next(0) {}

5 void set_next(Item* next) {

6 this->next = next;

7 }

8 Item* get_next() const {

9 return next;

10 }

11 };

12

13 class List {

14 Item* head;

15 public:

16 List() : head(0) {}

17 void push_front(Item* item) {

18 item->set_next(front());

19 head = item;

20 }

21 Item* front() const {

22 return head;

23 }

24 };

(a) List.h

1#include "List.h"

2#include <exception>

3aspect ErrorDetection {

4advice "Item" || "List" : slice class {

5Item* redundant_ptr;

6};

7advice construction("Item" || "List")

8: before() {

9tjp->target()->redundant_ptr = 0;

10}

11advice execution("Item* Item::get_next()"

12|| "Item* List::front()")

13: after() {

14Item* item = *tjp->result();

15if(item != tjp->target()->redundant_ptr)

16throw std::exception();

17}

18advice execution("% Item::set_next(Item*)"

19|| "% List::push_front(Item*)")

20: after() {

21Item* item = *tjp->arg<0>();

22tjp->target()->redundant_ptr = item;

23}

24};

(b) ErrorDetection.ah

Figure 4.3: Implementation of a simplified linked list with error detection
by duplication using AspectC++. In contrast to Figure 4.1 on
page 61, which shows a scattered and tangled implementation
using pure C++, the implementation at hand is modularized.
(a) The implementation of the basic functionality is clear and
concise; the classes Item and List are oblivious of any error
detection. (b) The concern of error detection is encapsulated in
a separate aspect that transparently augments the classes Item
and List. Details of this example are discussed on the pages 64

to 68.
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Name pointcuts are composed of quoted match expressions, which re-Name pointcut
expressions fer to identifiers of a C++ program, such as names of classes and

functions. For example, the quoted expression "List" represents a
name pointcut that matches only the class List, whereas the expres-
sion "% List::push_front(Item*)" matches a member function with
a respective signature, that is, with arbitrary result type and only one
argument of the type Item*. The percent symbol (%) serves as wild-
card for any name. An ellipsis (...) matches any sequence of names,
such as a list of function arguments. In summary, name pointcuts
describe the static program structure.

Code pointcuts, on the contrary, refer to dynamic events in the pro-Code pointcut
expressions gram execution flow, such as the execution of a function. Code point-

cut expressions result from applying certain predefined pointcut func-
tions to name pointcuts. For instance, the code pointcut expression
execution("% List::push_front(Item*)") refers to the dynamic ex-
ecution of the respective function. Likewise, construction("List")
matches the execution of the List’s class constructor. Furthermore,
the predefined pointcut function destruction() refers to the execu-
tion of a class destructor, and call() identifies the place of function
invocation.

Pointcut expressions of the same type can be combined by the set-Pointcut algebra

theoretic operations of union (||), intersection (&&), and complemen-
tation (!). Figure 4.3 exemplifies the union operation on name point-
cuts (lines 4, 7, 11f, and 18f). For instance, the pointcut expression
construction("Item" || "List") in line 7 matches the constructor
execution of both classes.

All pointcuts shown in Figure 4.3 are anonymous, that is, they are
defined at the place of their usage. However, pointcut expressions can
also be named and, thus, are reusable by other pointcut expressions.
Furthermore, such pointcuts can be declared as virtual and may be
redefined by derived aspects. Section 6.1 on page 100 gives examples
for these advanced pointcut features.

4.2.1.2 Introductions

The purpose of pointcut expressions is to describe the join points
for advice. Name pointcuts, for instance, are the basis for extensions
of the static program structure. This language feature is called intro-
ductions. Syntactically, the advice keyword provokes a slice of classClass slice

members to be introduced into the classes that match the given name
pointcut. Figure 4.3 illustrates such an introduction. The piece of ad-
vice in line 4 inserts the data member redundant_ptr (line 5) into the
classes Item and List. Similarly, member functions and base classes
can be introduced. Thus, the language feature of introductions pro-
vides means to avoid static crosscutting.
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4.2.1.3 Code Advice

Advice based on code pointcuts, which refer to dynamic events in
the program execution flow, is differentiated between before, after,
and around. These three keywords specify the temporal relationship
between the advice and the dynamic event. For instance, advice spec-
ified with the before keyword is carried out ahead of the event. The
construction advice shown in Figure 4.3 (line 7f) initializes a variable
before the execution of the specified class constructor. On the other before, after, and

aroundhand, the remaining pieces of code advice in Figure 4.3 take place
after the execution of the respective functions. The body of code ad-
vice contains ordinary C++ program statements. In both cases, the re-
spective events are executed as usual. However, the around keyword
can be used to replace the event completely with the advice body.
In summary, code advice provides means to invoke the advice body
implicitly on certain events to avoid dynamic crosscutting.

4.2.1.4 Order Advice

Given that multiple pieces of advice affect the same join point, the
keyword order can be used to define a precedence of aspects for
that join point. AspectC++ allows defining a partial order of pointcut
expressions. For example, the following order definition specifies that
an aspect A takes precedence over an aspect B concerning the given
code pointcut:
advice execution("% List::front()") : order("A", "B");

4.2.1.5 Join-Point API

AspectC++ provides a rich join-point API for code advice. The pro-
grammer can retrieve thereby context information from the specific
join point. In the body of code advice, the keyword JoinPoint pro-
vides uniform access to compile-time information, such as the in-
volved data types. Furthermore, the keyword tjp points to an in-
stance of JoinPoint and provides additional runtime information.

For example, tjp->target() yields a statically typed pointer to
the object involved with the particular code join point. In the case
of construction, destruction and execution advice, tjp->target()
yields the C++ this pointer of the affected join point. Figure 4.3 ex-
emplifies the usage of tjp->target() in lines 9, 15, and 22.

The join-point API is an extremely powerful mechanism in combi-
nation with quantification. In Figure 4.3, all pieces of advice affect
both the classes Item and List. Yet, the join-point API provides differ-
ent information at each join point: Depending on whether the class
Item or List is affected, tjp->target() yields a typed pointer to ei-
ther an Item or List object. Thus, the advice behaves polymorphi-
cally with respect to the point of instantiation. The data types are
resolved at compile time and enable static polymorphism [250, p. 238].



68 aspect-oriented programming

compile-time information description

Target type of the callee object

That type of the caller object (identical
to Target except for call advice)

Arg<i>::ReferredType type of the ith argument

Result type of the function’s return value

JPID unique identifier per join point

runtime functions description

Target *target() pointer to callee object

That *that() pointer to caller object (identical to
target() except for call advice)

Arg<i>::ReferredType *arg<i>() pointer to ith argument value

Result *result() pointer to return value

void proceed() invoke replaced join point (only
around advice)

Table 4.2: Excerpt from the AspectC++ join-point API. In the body of code
advice, the keyword JoinPoint provides access to compile-time
context information (upper part of the table). At the same place,
the keyword tjp can be used to query runtime values via the
listed functions (lower part of the table). Both JoinPoint and tjp
utilize static type information based on the point of advice instan-
tiation. A complete documentation of the join-point API is avail-
able online at: http://aspectc.org/

AspectC++ supports thereby generic advice [155] based on the compile-
time join-point API.

In addition to target(), the example in Figure 4.3 uses result()

and arg<0>() to obtain the function’s return value and first argument,
respectively. Table 4.2 summarizes the elements of the join-point API
that are relevant for this thesis.

4.2.2 Case Study: The CiAO Operating System

This case study evaluates the suitability of AspectC++ for the domain
of dependable operating systems. AspectC++ has been used already
in the development of the CiAO operating system [156, 154, 157],
which is a library operating system that implements the automotive
OSEK specification [146]. The primary design goal of CiAO is strict
tailoring at compile time. CiAO is, like eCos (see Section 3.2), stati-
cally configurable for customization of the operating system to the
sole requirements of an application. The distinguishing characteristic
of CiAO is, however, the use of aspect-oriented design principles [156,
p. 221], such as loose coupling of all system components. Individual
configuration options are implemented modularly without code scat-

http://aspectc.org/
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Figure 4.4: Simplified illustration of the I4Copter software architecture. The
flight-control application consists of three periodic tasks (1 ms,
3 ms, and 9 ms) and several event-driven tasks. Adapted from
Hoffmann and colleagues [109, p. 231].

tering and tangling. Thus, CiAO provides an even higher degree of
configurability than eCos.

Two studies point out the superior efficiency of the CiAO kernel
[156, p. 225] and its networking subsystem [28, p. 443ff], suggesting
that the general-purpose AspectC++ language and compiler are well
suited for the domain of resource-constrained operating systems. The
reason is that the static weaving, as carried out by the AspectC++
compiler, practically induces no runtime overhead on the resulting
executable [231, p. 648ff]: The advice body becomes inlined at the
affected join points.

Besides performance considerations, the fault tolerance of Aspect-
C++ programs determines the applicability to the domain of depend-
able operating systems. Therefore, this case study compares the in-
herent fault tolerance of eCos and CiAO by means of fault injection
with the experimental setup of the baseline dependability assessment
described in Section 3.2.1 on page 47. For comparison, both eCos and
CiAO execute the same workload: The flight-control application of
the I4Copter [247] quadrotor helicopter represents a real-world safety-
critical application that serves as evaluation scenario.

Figure 4.4 illustrates the software architecture of the I4Copter. The I4Copter
flight-control
application

control application consists of three periodic tasks that are activated
at intervals of 1 millisecond, 3 milliseconds, and 9 milliseconds, re-
spectively. These periodic tasks activate further processing tasks via
kernel synchronization mechanisms. In addition, one interrupt-driven
task receives incoming remote-control (RC) signals via UDP/IP pack-
ets and forwards the steering data to a chain of processing tasks. The
Watchdog task observes the remote-control communication for conti-
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failure mode ecos default ecos bitmap ciao

SDC 1.50 · 1011 1.24 · 1011 2.07 · 1010

Timeout 5.39 · 1010 5.76 · 1010 1.62 · 1010

CPU exception 1.71 · 1011 1.40 · 1011 2.42 · 1010

Total failures 3.75 · 1011 3.22 · 1011 6.12 · 1010

Table 4.3: Quantitative fault-injection results of eCos and CiAO running the
I4Copter flight-control application. Each number shows the accu-
mulated count of a particular failure mode that occurs in the ex-
haustive fault-space scan (see Section 3.2.1 for details on the ex-
perimental setup and failure modes). The only difference of the
experimental setup is that the simulated CPU is set to 50 MHz. In
summary, the CiAO operating system is the most robust because
both eCos variants exhibit notably more failures than CiAO.

nuity. In summary, a set of 14 tasks interacts in a strict execution order
by using various kernel synchronization mechanisms.

For the fault-injection experiments using the FAIL* framework (see
Section 3.2.1 on page 47), a set of predefined inputs and sensor data
is provided. The mission of both eCos and CiAO is to reproduce the
exact sequence of task execution in the presence of memory errors.
Therefore, the task schedule is recorded and compared at the end
of each application run, which stops after three hyper periods. A di-
vergence from the expected task schedule disturbs the flight-control
logic and counts as Silent Data Corruption (SDC).

Table 4.3 summarizes the results from an exhaustive fault-space
scan of the kernel memories. The eCos kernel supports two differ-
ent scheduler implementations: The default multi-level queue imple-
mentation uses a pointer-based list data structure to manage an arbi-
trary number of threads at runtime, whereas the more efficient bitmap
scheduler supports only a fixed number of threads specified at com-
pile time. CiAO solely implements a bitmap scheduler. The total num-
ber of failures shown in the bottom row indicates a clear trend: Tailor-
ing of the operating system at compile leads to more robust systems.
The bitmap variant of eCos exhibits 14 percent fewer failures than the
default variant. Furthermore, CiAO fails even 81 percent less often
than the bitmap variant of eCos. Thus, static tailoring leads to fault
avoidance. Fewer pointer indirections at runtime imply fewer poten-
tial points of failure, decreasing the operating system’s vulnerability
to memory errors.

The results suggest that AspectC++, the implementation language
of CiAO, is suitable for the domain of dependable operating sys-
tems. Compared to the pure C++ implementation of the eCos kernel,
the CiAO implementation achieves a highly competitive robustness.
However, 6.12 · 1010 points of failure remain in the strictly tailored
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CiAO setup. Because the kernel state is condensed to a bare min-
imum, almost every bit becomes relevant and leads to a failure if
corrupted. In other words, fault avoidance by static tailoring alone is
not enough: A dependable operating system requires fault-tolerance
mechanisms for protection of the critical kernel state. In conclusion,
this case study motivates that AspectC++ is a promising candidate
for developing such fault-tolerance mechanisms.

4.3 related aspect languages

In the previous section, AspectC++ has been presented as an example
for an AOP language in practice. Yet, there are other programming
languages that also address AOP. First and foremost, the introduction
of AspectJ [132] marks the rise of AOP. AspectJ uses the Java pro-
gramming language as base language and adds language constructs
for pointcut and advice. Section 4.3.1 provides details on AspectJ.

AspectJ inherits the strengths and weaknesses of Java. Likewise,
AOP extensions to C, C++, and C# share the properties of the respec-
tive base languages. The goal of this section is to give an overview of
AOP languages beyond AspectC++ and to discuss their applicability
to the domain of dependable operating systems.

4.3.1 AspectJ and Descendants

AspectJ established the notion of pointcut, advice, and aspects (see
Section 4.1.3). AspectJ defined thereby the understanding of AOP
as duality of aspects and classes. Consequently, AspectJ represents a
general-purpose language extension to the Java programming language
and aims at “programmer compatibility” [132, p. 329].

The idea of AOP as a language extension has been adopted by
many other languages. AspectC++, for instance, transfers the AspectJ
approach to C++. A notable difference between AspectC++ 1.0 and
AspectJ is that the latter lacks quantification for introductions [140,
p. 95f]. On the other hand, AspectJ allows capturing access to mem-
ber variables by the additional pointcut functions get() and set()

[132, p. 332]. CaesarJ [11], Josh [51], Sally [99], and LogicAJ [133]
build on the AspectJ approach and represent further Java-based AOP
languages.

Overall, AspectJ and its Java-based descendants are inapplicable
to the domain of dependable operating systems. The reason is that
the Java Virtual Machine (JVM) typically interprets Java programs or
compiles them just in time. Thus, the JVM runs prior to the actual
Java program, which is impossible if the program was an operating
system. Ahead-of-time compilation of Java is less common and still
requires an interpreter or a just-in-time compiler because of dynamic
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class loading [173]. To the best of my knowledge, there is no off-the-
shelf operating system written in Java.

4.3.2 AOP Extensions to C, C++, and C#

Several programming languages based on C, C++, and C# adopt the
AspectJ model of AOP. This section provides a brief overview with
focus on static weaving.

4.3.2.1 C-Based Languages

Most operating systems are written in the C programming language
because of its runtime efficiency. At first glance, a C-based AOP ap-
proach would represent an ideal candidate for the development of
fault-tolerance mechanisms that cover operating systems. However,
C provides only a limited set of programming abstractions. Its type
system neither supports static polymorphism nor dynamic polymor-
phism. This shortcoming remarkably restricts the potential for generic
advice compared to AspectC++ (see Section 4.2.1.5 on page 67). Thus,
C is a poor base language for AOP. Nevertheless, several AOP exten-
sions have been proposed.

AspectC [55, 54], on the one hand, is an almost one-to-one map-
ping of the AspectJ concepts to C. The lack of polymorphism in C is
reflected by no quantification in AspectC at all. Furthermore, AspectC
neither supports introductions nor pointcut functions for variable ac-
cess. The C4 approach [85] bases on AspectC but further drops the
obliviousness characteristic.

Mirjam/WeaveC [174] and Aspicere [2], on the other hand, over-
come the lack of polymorphism by logic meta programming. Their
pointcut description languages incorporate the Prolog language and
enable a binding of logic meta variables to join-point context informa-
tion. Both languages provide quantification and generic advice, but
notably increase the complexity of the pointcut description language.
Yet, there are no means to capture variable access as in AspectJ. In
summary, these languages are less programmer compatible than AspectJ.

Program transformation tools for C also provide obliviousness and
quantification to some extent and, thus, are loosely related to AOP.
The Bossa framework [1], for instance, allows specifying source-code
rewrite rules based on a variant of temporal logic. The Semantic Patch
Language (SmPL) [187] provides a more convenient way for writing
program transformations independent of the affected source-code lo-
cations. Coccinelle [38] implements SmPL and internally applies tem-
poral logic for matching control-flow sequences. In contrast to AOP,
Bossa and SmPL focus on robust patches rather than general-purpose
programming.



4.4 criticism of aop 73

4.3.2.2 C++-Based Languages

Besides AspectC++, AspectX/XWeaver [205] addresses AOP for C++
programs. The pointcut description language of AspectX refers to
nodes in an XML representation of the C++ program and resembles
XPath queries. Thus, the language AspectX is conceptually indepen-
dent of the base language C++; only the XWeaver implementation
needs adaptation to other base languages. The drawback of this ap-
proach is that the programmer needs considerable knowledge of the
XML representation of the program.

4.3.2.3 C#-Based Languages

The Yiihaw weaver [120] and PostSharp [95] are examples for AOP
with the C# programming language. C# programs are typically com-
piled just-in-time because of dynamic class loading, which compli-
cates ahead-of-time compilation. Thus, C# remains an unfavorable
language for operating systems. For example, the C#-based Singular-
ity [114] kernel still contains about 6 percent of C++ code.

4.3.3 AspectAda

The Ada programming language is particularly successful in the do-
main of dependable systems, especially in avionics [21]. There is
also a real-time operating system implemented in Ada [204]. Ada
supports polymorphism, and AspectAda [191] extends this base lan-
guage by AspectJ-like constructs. Unfortunately, AspectAda provides
no means for accessing join-point context information as required
by generic advice. In addition, AspectAda neither supports introduc-
tions nor pointcuts for variable access. In summary, AspectAda is a
promising approach but is not yet technically mature.

4.4 criticism of aop

Despite the many AOP languages – or rather, because of them – the
idea of AOP has become a controversial subject. AOP has been “con-
sidered harmful” [58], and Steimann raises the following three ob-
jections in his essay on “The Paradoxical Success of Aspect-Oriented
Programming” [237]:

1. “AOP adds another dimension of not knowing what just happened”
[237, p. 490]. This point concerns the obliviousness property
that thwarts the mental tracing of program execution while
looking at the source code of a single module (modular reason-
ing [130]). “Since an aspect can plug into just about any point
of execution of a program, one can never tell the previous (or
following) statement of any statement” [237, p. 490]. In other
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words, “the net effect on program understandability is not in-
disputable.” [237, p. 493]

2. “AOP ... breaks modularity” [237, p. 493]. Steimann argues that
granting an aspect access to join-point context information con-
tradicts Parnas’ original notion of information hiding [188]. The
problem is an implicit dependency from the aspect to data hid-
den in a module, which leads to a strong coupling between
the aspect and the module, impairing independent develop-
ment [237, p. 488]. This issue also becomes manifest as fragile
pointcut problem [239] if a module’s implementation changes so
that an aspect silently becomes defective, for instance, because
a pointcut does not match anymore.

3. “The number of useful aspects is not only finite, but also fairly small”
[237, p. 482]. Steimann brings forwards that AOP only addresses
technical, nonfunctional concerns, such as tracing, logging, syn-
chronization, caching, and so on [236, p. 175f]. According to
that, “aspects are not domain level abstractions and thus lack a
significant source of diversity.” [237, p. 482]

I agree that, in general, AOP can cause the first two problems. How-
ever, this thesis uses AOP in particular to implement transparent fault-
tolerance mechanisms. Transparent fault-tolerance mechanisms do
not interfere with the mainline program semantics and, thus, do not
cause the first problem concerning modular reasoning. A transparent
fault-tolerance mechanism respects program invariants and does not
change any mainline program state in the fault-free case; error correc-
tion is yet the only way of potential data interference. The motivating
example in Figure 4.3 on page 65 shows that modular reasoning of the
mainline program is not affected at all by the aspect-oriented error-
detection mechanism. Dantas and Walker coined the term “harmlessHarmless advice

advice” [63] for describing such pieces of advice that obey to a weak
non-interference property. Harmless advice may change the timing
and termination behavior, but does not otherwise affect the results
of a program. Likewise, I consider the detection and correction of
memory errors as harmless in the sense that the mainline program
semantics remains unaffected. Thus, this thesis pursues a disciplined
approach to AOP in the style of harmless advice for facilitating mod-
ular reasoning and program understandability.

The second point of critique (coupling between aspects and main-
line code) is true for the motivating example in Figure 4.3 on page 65:
The shown introduction in line 5 replicates a pointer variable of the
hard-coded type Item*, and the pieces of execution advice depend
on the semantics of the advised member functions. Consequently,
changes to the mainline code likely break the exemplified aspect,
which is therefore not truly modular. The following chapter presents
language extensions to AspectC++ 1.0 to avoid such a coupling be-
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tween aspects and mainline code. Thus, the second point of critique
can be ruled out as well.

Finally, Steimann argues that AOP only addresses technical, non-
functional concerns that “lack a significant source of diversity” [237,
p. 482]. Indeed, software-implemented fault tolerance is a very tech-
nical and nonfunctional concern. However, Section 2.4 (pages 23 to
37) provides evidence that the domain of software-implemented fault
tolerance is a huge area of research on its own with enormous diver-
sity. Implementing all these fault-tolerance mechanisms clearly calls
for a general-purpose programming paradigm such as AOP. The next
section presents examples for actually “useful aspects” [237, p. 482].

4.5 prior work on fault tolerance using aspectc++

Several studies investigate the feasibility of software-implemented
fault tolerance, as reviewed in Section 2.4, using the AspectC++ lan-
guage. Gal and colleagues [90] propose the replication of message
passing in distributed systems. Alexandersson and Karlsson [7] im-
plement the replication of procedure calls, whereas Afonso and as-
sociates [5] address the replication on the thread level. Alexanders-
son and Öhman [8] also discuss the implementation of control-flow
checking, executable assertions, and checkpointing. Karol and col-
leagues [126] propose arithmetic coding via manual introduction of
wrapper classes augmented by aspects. Yet, these approaches have
been applied only to the application level, and some are not appli-
cable to the kernel of an operating system at all, such as program
replication on the thread level [5]. Furthermore, they do not support
either error correction or multi-threading (see Section 2.4.3).

To the best of my knowledge, only Afonso and associates [4] ad-
dress aspect-oriented fault tolerance of an operating-system kernel.
They propose error detection for a semaphore data structure like the
motivating example in Figure 4.3 on page 65. Hence, their approach
suffers from the very same coupling problem pointed out in the previ-
ous section and, thus, is not applicable to other data structures. More-
over, their approach verifies only a semaphore-specific precondition
and does not cover error correction.

4.6 chapter summary

This chapter showed in Section 4.1 that software-implemented fault
tolerance is a concern whose implementation often cuts across the
business logic of multiple program modules. The root cause of this
problem is the inability of object-oriented programming to modular-
ize such a concern in a way that it can be separated from other pro-
gram modules. A remedy to this defect is AOP.
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Section 4.2 took the AspectC++ language as an example to illus-
trate the fundamental principles of AOP. In addition, that section
evaluated the inherent fault tolerance of the CiAO operating system,
which is written in AspectC++ and outperforms the pure C++ imple-
mentation of eCos. Thus, AspectC++ is a preferable aspect language
for developing dependable operating systems.

Finally, Section 4.5 reviewed prior work on software-implemented
fault tolerance using AspectC++. Yet, these approaches are either not
applicable to the kernel of an operating system or do not support
the correction of memory errors. Moreover, most of these approaches
suffer from a strong coupling between the aspects and mainline code
– a frequent point of critique on AOP in general (see Section 4.4).
The next chapter describes the essential language extensions to As-
pectC++ to overcome these issues.



5
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The previous chapter introduced AspectC++ 1.0 and reviewed state-
of-the-art approaches to fault tolerance using that language. Yet, these
approaches are not generic enough to be broadly applicable to the ker-
nels of various operating systems. On the one hand, the approaches
do not cover the exceedingly critical data types identified in Sec-
tion 3.3, such as pointers and data members of C++ classes. On the
other hand, most of the approaches are coupled to the mainline pro-
gram code and, thus, are not truly modular (see Section 4.5). This
chapter addresses these shortcomings and presents AspectC++ lan-
guage extensions to overcome these issues.

The following table summarizes the requirements identified in Sec-
tion 3.3 and Section 4.5 that are not supported by AspectC++ 1.0. For
each requirement, I propose a respective language extension, which
is discussed in a separate section as follows:

requirement language extension

Fault-tolerant pointers Advice for built-in operators
(Section 5.1)

Fault-tolerant data members Advice for data access
(Section 5.2)

Redundancy without coupling Generic introductions
(Section 5.3)

Minimal runtime overhead Whole-program analysis
(Section 5.4)

These four language extensions have been developed in the course
of this thesis. After all, the extensions led to the official AspectC++ 2.0
language and compiler release in 2016, which is publicly available
online at: http://aspectc.org/

related publications

The findings presented in this chapter have partly been published in:

[26] Christoph Borchert and Olaf Spinczyk. Acceptance
rate: 44 %,
also appeared in
ACM Operating
Systems Review [27]

Hardening an L4 mi-
crokernel against soft errors by aspect-oriented programming
and whole-program analysis. In Proceedings of the 8th Workshop
on Programming Languages and Operating Systems (PLOS ’15).
ACM Press, October 2015. doi: 10.1145/2818302.2818304
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5.1 advice for built-in operators

A close reexamination of the eCos case study in Section 3.2.2 shows
that five of the ten most failure-prone program symbols are of pointer
data type (see Table 3.3 on page 50). For example, eCos invokes the
kernel’s interrupt routines indirectly via the global array of function
pointers hal_interrupt_handlers, which causes control-flow failures
if corrupted by memory errors. Pointers are basic data types defined
by the C++ standard [116, § 3.9.2], but AspectC++ 1.0 does not pro-
vide any means to specify advice for such basic data types. Thus, a
fault-tolerance mechanism for pointers requires an appropriate lan-
guage extension for basic data types.

According to the C++ standard [116, § 13.6], built-in operator func-Built-in operators

tions are used for pointer dereferencing and other computations with
basic data types. For instance, the expression 1+2 is evaluated by a
built-in operator of the form "int operator +(int, int)", which
represents the addition of basic integer (int) operands. The funda-
mental idea of an AspectC++ language extension for basic data types
is to capture the invocation of such built-in operator functions.

In addition, operator functions can be overloaded for user-definedOverloaded
operators data types; the C++ standard specifies that “uses of overloaded op-

erators are transformed into function calls” [116, § 5]. Therefore, As-
pectC++ 1.0 already captures the invocation of overloaded operators
by the call pointcut function. For example, the pointcut expression
call("% ...::operator %(...)") captures any overloaded operator.

As a language extension for basic data types, I propose a comple-
mentary pointcut function for built-in operators, such as the pointer
dereference operator.

5.1.1 Pointcut Function for Built-in Operators

Table 5.3 defines the syntax and semantics of the pointcut function
builtin, which extends the pointcut description language of Aspect-
C++. This pointcut function captures the invocation of built-in oper-
ators much as the pointcut function call captures user-defined func-
tions and overloaded operators (see Section 4.2.1). Likewise, the point-
cut function builtin transforms a name pointcut expression into aPointcut function

builtin code pointcut expression as required for code advice. The only ar-
gument of the pointcut function builtin is a name pointcut expres-
sion that describes the signature of one or more built-in operator
functions as specified by the C++ standard [116, § 13.6]. For exam-
ple, builtin("int operator +(int, int)") captures all invocations
of the binary operator that adds two signed integers at runtime.

By this means, code advice can be specified either before, after, or
around the invocation of built-in operators. Because the body of code
advice can contain arbitrary program statements, including noncon-
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pointcut description

builtin(pointcut) The pointcut function captures all code join
points where a built-in operator function is
called that matches the pointcut expression.
Calls to built-in operator functions within
constant expressions that evaluate at compile
time are not captured.

Table 5.3: Specification of the pointcut function builtin, which extends As-
pectC++’s pointcut description language.

stant expressions that evaluate at runtime, advice for built-in opera-
tors within constant expressions that evaluate at compile time is not
supported1.

The uniform join-point API of code advice (see Section 4.2.1.5) is
also available for advice based on the builtin pointcut function. For
example, the join-point API provides typed pointers2 to the built-
in operator’s arguments and return value. In summary, the builtin

pointcut function represents a minimal – yet powerful – language ex-
tension to AspectC++ for dealing with basic data types.

5.1.2 Example: Range Check of Function Pointers

Although the builtin pointcut function is a general-purpose lan-
guage feature, this thesis focuses on fault tolerance. For example, Fig-
ure 5.1 shows the complete implementation of a highly generic mech-
anism that applies a range check on all function pointers. The valid
address range of function pointers is confined by the GNU program
linker, which usually defines the two symbols3 __executable_start

and _etext that enclose the code segment of program instructions
(see line 2 in Figure 5.1).

Any indirect function call via function pointer involves a derefer-
ence operation of the pointer prior to the call. The unary built-in
operator of the form "T& operator *(T*)" performs the dereference
operation for any data type T. The quoted match expression in line 6

describes any dereference operator that takes a function pointer as
argument using the wildcard symbols percent and ellipsis. Thus, the

1 The exclusion of constant expressions from advice does not impair the development
of software-implemented fault-tolerance mechanisms, because the result of a con-
stant expression is precomputed at compile time. Thus, the respective built-in oper-
ator function is not subject to any faults of the target hardware.

2 The C++ standard prohibits pointers to certain data types, such as bit fields [116,
§ 5.3.1]. Advice for built-in operators whose arguments or return value cannot be
represented in the join-point API is omitted. The AspectC++ 2.0 language reference
manual provides a complete list of limitations and is available online at: http://
aspectc.org/

3 The linker script of eCos defines the symbol _stext instead of __executable_start.

http://aspectc.org/
http://aspectc.org/


80 aspectc++ 2 .0 – language extensions

1 #include <functional> // for exception: std::bad_function_call

2 extern "C" void __executable_start(), _etext(); // linker symbols

3

4 aspect FunctionPointerCheck {

5 // capture the dereference operator of any function pointer

6 advice builtin("% operator *( % (*)(...) )") : before() {

7 // use the join-point API to get the function pointer

8 void (*func_ptr)() = (void (*)()) *tjp->arg<0>();

9

10 if (func_ptr < &__executable_start || func_ptr > &_etext)

11 throw std::bad_function_call(); // range check failed

12 }

13 };

Figure 5.1: Implementation of a range check of function pointers using As-
pectC++ 2.0. The builtin pointcut function in line 6 captures the
invocation of the built-in dereference operator *. In the same line,
the quoted match expression selects those operators whose argu-
ment is a function pointer. The type conversion in line 8 is neces-
sary for the subsequent comparison with the linker-defined sym-
bols that are of different type than the actual function pointer,
obtained by *tjp->arg<0>().

advice definition in line 6 refers to all4 built-in dereference operations
of function pointers in a program, and adds the desired range check
before the dereference operation is carried out.

Line 8 shows the initialization of the local variable func_ptr by us-
ing the join-point API for retrieving the actual function pointer to be
dereferenced. Then, the pointer value is checked for validity (line 10),
and an exception is thrown for error handling if necessary (line 11).

In summary, the example in Figure 5.1 illustrates the high degree of
expressiveness of the builtin pointcut function. Only thirteen lines of
code are necessary to check every function pointer in a generic, modu-
lar, and portable way. The shown implementation can be customized
easily by providing other range limits, custom error handling, or a
restriction to certain types of function pointers. In addition, a similar
check of data pointers could be implemented as well. Finally, advice
for the numerous other built-in operators, such as the addition oper-
ator +, enable the development of further fault-tolerance mechanisms
as shown in the next chapter.

4 In C/C++, a function call using a function pointer can be provoked without ex-
plicit invocation of the operator *. The pointcut function builtin also captures the
implicit dereferencing of function pointers as invocation of the operator * since As-
pectC++ 2.1.
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5.2 advice for access to variables

The second language extension to AspectC++ enables advice for ac-
cess to program variables. In particular, member variables of C++
classes are exceedingly critical as pointed out in Section 3.2: The in-
stances of classes and their member variables clearly dominate the
ten most failure-prone program symbols of eCos (see Table 3.3 on
page 50) and L4/Fiasco.OC (see Table 3.5 on page 54). Thus, a fault-
tolerance mechanism must address these member variables.

AspectJ supports advice for member variables by the pointcut func-
tions get and set [140, p. 74], whereas AspectC++ 1.0 lacks such a
functionality. This section describes an AspectJ-like extension to As-
pectC++ for capturing access to member variables. Moreover, this sec-
tion deals with the peculiarities of the C++ language, such as global
variables and aliasing of variables.

5.2.1 Name Pointcut Expressions for Variables

The pointcut description language of AspectC++ 2.0 allows declaring
name pointcut expressions for referring to variables. Such a name
pointcut expression must contain the data type, an optional scope pat-
tern, and the name of the variable. For example, the expression Quoted match

expressions for
variables

"int Semaphore::count" describes a variable of the basic data type
int. Furthermore, that variable is a member of the class or names-
pace Semaphore, which is in turn located in the global namespace,
and the variable is called count. The wildcard symbols percent and
ellipsis are also applicable. For instance, "% ...::%" matches vari-
ables of any type (%), declared as member of any sequence of nested
scopes (...) including the global namespace, and any name (%). In
other words, the latter pointcut expression matches any variable in
any namespace or class scope. Global variables can be described by
omitting the scope pattern.

5.2.2 Pointcut Functions for Access to Variables

A name pointcut expression, which describes one or more variables,
represents the input for the pointcut functions get and set, which ex-
tend the pointcut description language of AspectC++ in an AspectJ-
like fashion. Table 5.4 defines the syntax and semantics of both point-
cut functions, which capture read access and write access, respec-
tively. The following example illustrates three join points captured by
the get and set pointcut functions:

class Semaphore { public: int count; } sema;

sema.count = 0; // set join point for "count"

sema.count++; // get join point prior to another set join point
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pointcut description

get(pointcut) The get pointcut function captures all code join
points where a global variable or data member is
read that matches the pointcut expression. Such
join points occur at implicit lvalue-to-rvalue conver-
sions according to the C++ standard [116, § 4.1],
within all built-in compound-assignment operators,
and within the built-in increment and decrement op-
erators.

set(pointcut) The set pointcut function captures all code join
points where a global variable or data member
is modified that matches the pointcut expression.
Such join points occur within all built-in assignment
operators, and within the built-in increment and
decrement operators. The initialization of a global
variable or data member provides no join point.

ref(pointcut) The ref pointcut function captures all code join
points where a reference (reference type or pointer)
to a global variable or data member is created that
matches the pointcut expression. Such join points
occur within the built-in address-of operator &,
within implicit array-to-pointer conversions accord-
ing to the C++ standard [116, § 4.2], and before the
initialization of a variable of reference type, includ-
ing return values. Moreover, binding a reference ar-
gument of a function, including default values, ex-
poses a join point.

Table 5.4: Specification of the pointcut functions get, set, and ref, which
extend the pointcut description language of AspectC++ by means
for capturing access to program variables.

Note that variables of class type are not supported directly by
the get and set pointcut functions. Hence, there are no join points
for the variable sema itself, however, its individual data members
provide the actual join points. For example, the pointcut expression
get("% Semaphore::%") indirectly captures all join points where a
variable of the class type Semaphore is read.

The get and set functions transform a name pointcut expression
into a code pointcut expression. Thus, advice is applicable before,
after, and around the captured event. The uniform join-point API
of code advice (see Section 4.2.1.5) is also available for advice based
on the get and set pointcut functions. As such, JoinPoint::Target
refers to the type of the encapsulating class of a member variable, and
tjp->target() yields a pointer to the respective class instance. The
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compile-time information description

Entity type of the accessed variable (or
function)

MemberPtr type of a pointer to member for
the accessed variable (or function)

DIMS number of array dimensions if
available, otherwise zero

Dim<i>::Idx type of the index of the ith array
dimension

Dim<i>::Size size of the the ith array
dimension

runtime functions description

Entity *entity() pointer to the accessed variable
(or function)

MemberPtr memberptr() pointer to member for the
accessed member variable (or
function)

Dim<i>::Idx idx<i>() value of the ith index of an array
access

Table 5.5: Extension to the join-point API of AspectC++, implemented by As-
pectC++ 2.0. In the body of code advice, the keyword JoinPoint
provides access to compile-time context information (upper part
of the table). At the same place, the keyword tjp can be used to
query runtime values via the listed functions (lower part of the ta-
ble). Both JoinPoint and tjp utilize static type information based
on the point of advice instantiation.

join-point API of AspectC++ 2.0 provides additional functionality for
retrieving a typed pointer5 to the accessed variable, as summarized in
Table 5.5. In addition, the extended join-point API provides detailed
information on array variables, such as the number of array dimen-
sions, their size, and runtime indices.

The get and set pointcut functions do not capture any join points
within constant expressions that evaluate at compile time, and, as in
AspectJ [140, p. 47], local variables expose no join points at all. More- Limitations of get

and setover, the get and set pointcut functions capture only direct variable
access by name; indirect access to a variable using a pointer or refer-
ence is not captured. The reason is that, in general, it is undecidable at
compile time to which variable a pointer refers to [141]. Thus, the As-
pectC++ compiler cannot implement the necessary code transforma-
tion without resorting to a runtime system, which would negatively
affect the performance of AspectC++ programs.

5 The C++ standard prohibits pointers to bit fields [116, § 5.3.1] and reference vari-
ables [116, § 8.3.2]. Advice for access to variables that cannot be represented in the
join-point API is omitted.
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For dealing with variable access using pointers and references, As-
pectC++ 2.0 complements the get and set pointcut functions by an-
other pointcut function: The ref pointcut function captures the alias-Pointcut function

ref ing of a variable, that is, the event that creates the address of a variable
or initializes a reference to the variable. Table 5.4 on page 82 defines
the syntax and semantics of that pointcut function. The following ex-
ample illustrates two join points that are captured by the ref pointcut
function:

class Semaphore { public: int count; } sema;

int *pointer = &sema.count; // ref join point for "count"

int &reference = sema.count; // ref join point for "count"

The ref pointcut function can be used to prohibit aliasing of certain
variables. Advice based on the ref pointcut function can specify an
unsatisfiable compile-time assertion by using a static_assert decla-
ration [116, § 7]. The advice only gets woven if a respective join point
exists, that is, if the considered variable is effectively aliased. Thus,Prohibit aliasing of

variables aliasing of the variable causes a compilation failure; however, success-
ful compilation guarantees that the get and set pointcut functions
capture every access to the variable. The example in the following
section illustrates the get, set, and ref pointcut functions including
such a compile-time assertion that prohibits aliasing.

5.2.3 Example: Bounds Check of Arrays

The pointcut functions for access to variables are versatile extensions
to AspectC++. For example, Figure 5.2 shows the complete6 imple-
mentation of a generic bounds check of array variables. The shown
aspect declaration starts in line 22 with advice that prohibits the alias-
ing of any array variable to make sure that every access to an array
can be checked. The used pointcut expression "% ...::%" matches
all variables; however, the static_assert declaration in line 23 uses
the join-point API to ascertain that an aliased variable must be dimen-
sionless. Thus, only aliasing of arrays violates the static assertion at
compile time.

Likewise, the piece of advice in line 26 affects every access to a
variable by using the union operation (||) of get and set pointcut ex-
pressions. The advice body (lines 27 to 30) invokes the template func-
tion out_of_bounds and passes a pointer to the join-point API (tjp)
as function argument. Furthermore, the value of JoinPoint::DIMS

chooses between two class templates that implement the function
out_of_bounds differently: A value of zero chooses the default im-
plementation that returns false (line 18). For instance, if the affected
variable was no array, the compiler chooses that default implemen-

6 Because of a bug in the AspectC++ 2.0 compiler, the workaround statement
tjp->idx<0>(); must be added to the body of the second piece of advice in Fig-
ure 5.2, for example, after line 28.
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1 #include <stdexcept> // for exception: std::out_of_range

2

3 template<unsigned int DIMS> // primary template

4 struct ArrayBounds {

5 enum { DIM = DIMS-1 }; // current dimension

6 template<typename JP>

7 static bool out_of_bounds(JP *tjp) {

8 if (tjp->template idx<DIM>() >= JP::template Dim<DIM>::Size)

9 return true; // runtime index exceeds compile-time bound

10 else if (tjp->template idx<DIM>() < 0)

11 return true; // negative index

12 else return ArrayBounds<DIM>::out_of_bounds(tjp); // recurse

13 }

14 };

15 template<> // template specialization ...

16 struct ArrayBounds<0> { // ... for no more dimensions (zero)

17 template<typename JP>

18 static bool out_of_bounds(JP *tjp) { return false; }

19 };

20

21 aspect ArrayBoundsCheck {

22 advice ref("% ...::%") : before() { // prohibit aliasing

23 static_assert(JoinPoint::DIMS == 0, "aliasing of array");

24 }

25

26 advice get("% ...::%") || set("% ...::%") : before() {

27 if (ArrayBounds<JoinPoint::DIMS>::out_of_bounds(tjp))

28 throw std::out_of_range(JoinPoint::signature());

29 }

30 };

Figure 5.2: Implementation of a bounds check of array variables using As-
pectC++ 2.0. The get and set pointcut functions in line 26 cap-
ture access to any variable and instantiate the template metapro-
gram ArrayBounds<>, which generates a multi-dimensional
bounds check. The template specialization in line 15ff makes the
advice applicable to all variables, including variables that are no
arrays. To prevent access using a pointer or reference, the advice
based on the ref pointcut function in line 22f prohibits aliasing
of array variables.
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tation because JoinPoint::DIMS equals zero. Otherwise, the primary
implementation, presented in lines 7 to 13, is chosen.

The primary implementation of the function out_of_bounds per-
forms the bounds checking for one array dimension DIM at a time.
It retrieves the runtime index of the array access using idx<DIM>()

from the extended join-point API and compares that index with the
compile-time bound retrieved by Dims<DIM>::Size, as shown in line 8.
Subsequently, line 10 checks for a negative array index. If the bounds
check is satisfied, the function out_of_bounds recursively invokes it-
self to check the next array dimension (line 12). The class’ template
parameter DIMS (line 3) is decremented in each recursive step (see
line 5), and eventually approaches zero, which terminates the recur-
sion by choosing the default implementation in line 18.

In other words, the class ArrayBounds<> represents a template meta-
program [62, p. 397ff] that generates one bounds check for each arrayTemplate

metaprogramming dimension. The point of instantiation (line 27) invokes a recursive in-
stantiation (line 12) of the class template ArrayBounds<> until the tem-
plate specialization ArrayBounds<0> gets instantiated. C++ template
instantiation happens at compile time; the number of array dimen-
sions that limits the recursion depth is also a compile-time constant
value (JoinPoint::DIMS). Thus, the template metaprogram runs com-
pletely at compile time. However, the result is the generated function
out_of_bounds that implements a multi-dimensional bounds check at
runtime. Lohmann and colleagues [155, p. 62] use the term generativeGenerative advice

advice to describe pieces of advice that instantiate template metapro-
grams based on information provided by the join-point API, such as
the advice defined in lines 26 to 29.

Optimizing compilers, such as GCC and LLVM/Clang, perform
function inlining and constant propagation [19] for optimization of
C++ templates and, thus, eliminate the bounds check if the used array
index was a compile-time constant value. Moreover, the bounds check
compiles to only two CPU instructions per array dimension on the
x86 architecture: a cmp instruction that compares the runtime index
with an immediate value and a subsequent ja instruction (jump if
above) that conditionally jumps to the exception code. Thus, there is
no indirection at runtime caused by AspectC++ 2.0.

In summary, the example in Figure 5.2 illustrates the power of ad-
vice for variable access. The example implements bounds checking
for array variables with only 30 lines of code. A limitation of the
shown implementation is that dynamically allocated arrays, which
are unnamed and whose bounds are not known at compile time, are
not checked. In addition, arrays of class-type objects are not checked
either; however, the following section presents a complementary mech-
anism to check objects of class type as well. Finally, the next chapter
builds on the exemplified get, set, and ref pointcut functions to de-
velop generic, modular, and efficient error-correction mechanisms.
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5.3 generic introductions

The third language extension resolves the coupling problem of in-
troduction advice identified in the previous chapter. Introductions in
AspectC++ 1.0 – and AspectJ – can be used to introduce additional
members into existing classes; however, the introduced members are
not supplied with any context information depending on the join
point. For example, Figure 4.3 on page 65 shows an aspect that intro-
duces a redundant pointer of the type Item* into the classes Item and
List. Therefore, the aspect is tightly coupled to both classes, because
adding such a specific pointer to other classes is nonsense. Introduc-
tions in AspectC++ 1.0 are not as generic as code advice.

Hanenberg and Unland [99] propose parametric introductions as im-
provement over the AspectJ pointcut description language. Their para-
metric aspect language incorporates the Prolog language and enables
a binding of logic meta variables to join-point context information,
such as the class type being extended by an introduction. Kniesel and
Rho [133] generalize such an approach to code advice and use the
term generic introductions in the style of generic advice [155]. Unfortu-
nately, both approaches [99, 133] add another dimension of complex-
ity by expanding the pointcut description language to logic metapro-
gramming.

However, there is no need to incorporate another metaprogram-
ming language for generic introductions in AspectC++, because the
base language C++ already supports metaprogramming by the tem-
plate mechanism (see Section 5.2.3). For that reason, the join-point
API of AspectC++ 1.0 builds on C++ templates for implementing
generic code advice. Consequently, the following section presents a
generalization of the existing join-point API to cover introductions as
well.

5.3.1 Join-Point API of Introductions

In AspectC++ 2.0, the built-in keyword JoinPoint provides uniform
access to the join-point API in the body of both introductions and
code advice. In the body of an introduction, the keyword JoinPoint

provides information on the class type that receives the introduction.
This information is purely static in nature, because a class type is
solely a compile-time concept. Thus, the compile-time join-point API
suffices for introductions.

Table 5.6 shows an excerpt from the join-point API of introduc-
tions, which provides information on the join point prior to the in-
troduction. For example, JoinPoint::That refers to the type of the
incomplete class that receives the introduction. Besides, the API enu-
merates the number of base classes (JoinPoint::BASECLASSES), data
members (JoinPoint::MEMBERS), functions, constructors, and destruc-
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compile-time information description

That type of the (incomplete) class that
receives the introduction

HASHCODE integer hash value of the class type
that receives the introduction

BASECLASSES number of base classes

BaseClass<i>::Type type of the ith base class

BaseClass<i>::spec specifiers of the ith base class

MEMBERS number of data members

Member<i>::Type type of the ith data member

Member<i>::spec specifiers of the ith data member

FUNCTIONS number of member functions

Function<i>::spec specifiers of the ith member function

CONSTRUCTORS number of user-defined constructors

DESTRUCTORS number of user-defined destructors

Destructor<0>::spec specifiers of the single user-defined
destructor

runtime functions description

Member<i>::pointer(That*) typed pointer to the ith data member

Table 5.6: Excerpt from the join-point API of introductions, implemented by
AspectC++ 2.0. In the body of introduction advice, the keyword
JoinPoint provides access to compile-time context information
(upper part of the table) and static functions for querying run-
time values (lower part of the table). The specifier ::spec is ei-
ther one of AC::SPEC_NONE, AC::SPEC_STATIC, AC::SPEC_MUTABLE,
or AC::SPEC_VIRTUAL. A complete list of all information provided
by the join-point API of introductions, although not relevant for
this thesis, is available online at: http://aspectc.org/

tors of the receiving class. For each particular base class, there is a
nested type JoinPoint::BaseClass<i> that further describes the ith
base class, where i is a compile-time constant index. For example,
JoinPoint::BaseClass<0>::Type refers to the type of the first base
class, if available. Such nested types also describe each data mem-
ber (JoinPoint::Member<i>), member function, constructor, and de-
structor. For data members, the nested types also provide the static
function Member<i>::pointer(That *obj=0) that converts a pointer
to an object into a typed pointer to its ith data member. If the ith data
member is declared as static, the object pointer is not required.

In other words, the join-point API of introductions enables compile-
time introspection: An introduction can introspect for existing mem-
bers and inheritance hierarchies. Based on the provided information,

http://aspectc.org/
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an introduction can instantiate generic class templates that adapt Introspection

themselves to the particular join point. The instantiation of template
metaprograms can even generate join-point–specific code and assem-
ble tailored data types by generative programming [62] techniques. Thus,
introductions in AspectC++ 2.0 are both generic and generative7.

As a remark, the combination of compile-time introspection and
template metaprogramming essentially implements computational re-
flection at compile time [14]. This is like Java’s runtime reflection [87]; Reflection

however, compile-time reflection causes no overhead at runtime.

5.3.2 Example: Run-Time Type Checking

Generic introductions are a powerful language extension to Aspect-
C++. For example, Figure 5.3 shows the complete implementation of
a highly generic mechanism that applies run-time type checking to all
instances of class type. The mechanism checks at run time whether a
class instance corresponds to its associated data type.

First, the aspect defines in line 13 the named pointcut where(),
which matches any data type except the class template TypeCode<>.
Second, lines 15 to 17 show the generic introduction that extends all
classes except TypeCode<> by the single data member type_code. That
member instantiates the class template TypeCode<> and binds its inte-
ger template parameter to JoinPoint::HASHCODE, which is a compile-
time hash value of the class type that receives the introduction, pro-
vided by the join-point API (see Table 5.6). Thus, the introduction is
generic, because the instantiation of the class template depends on
context information provided by the join-point API.

The functionality of the introduced data member is shown in lines 3

to 10. Basically, the introduced member stores the compile-time hash
value in a member variable at run time. The function invalid() in
line 9 indicates whether the stored value is not identical to the ex-
pected compile-time value. If a mismatch occurs, the class instance is
invalid.

Finally, the pieces of advice shown in lines 19 to 26 make sure that
the type checking is carried out at run time. The function invalid()

is invoked whenever a non-static data member is read (line 19) or
modified (line 20), whenever a class instance is deleted (line 21), and
whenever a virtual function is called (line 22). Calls to non-virtual
functions are not checked because they do not depend on the dy-
namic data type. The expression in line 24 retrieves a pointer to the
involved class instance by tjp->target() and uses the introduced
member type_code for type checking.

In summary, the centerpiece of this example is the generic introduc-
tion in line 16. The shown aspect extends thereby all class instances

7 An introduction is generative if and only if it invokes a template metaprogram that
depends on the join-point API.
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1 #include <typeinfo> // for exception: std::bad_typeid

2

3 template<int HASHCODE>

4 class TypeCode {

5 int code; // storage for object’s HASHCODE

6 public:

7 inline TypeCode() : code(HASHCODE) {} // initialize

8 inline ~TypeCode() { code = 0; } // nullify on deletion

9 inline bool invalid() const { return code != HASHCODE; }

10 };

11

12 aspect TypeCheck {

13 pointcut where() = "...::%" && !"TypeCode<%>"; // reusable, named pointcut

14

15 advice where() : slice class { // generic introduction

16 TypeCode<JoinPoint::HASHCODE> type_code;

17 };

18

19 advice (get(where()) && !get("static % ...::%") && target(!"void")) ||

20 (set(where()) && !set("static % ...::%") && target(!"void")) ||

21 (destruction(where())) ||

22 (call(where()) && call("virtual % ...::%(...)"))

23 : before() {

24 if (tjp->target()->type_code.invalid()) // generic advice

25 throw std::bad_typeid(); // exception for error handling

26 }

27 };

Figure 5.3: Implementation of run-time type checking using AspectC++ 2.0. The centerpiece
of this example is the generic introduction in line 16. As described by the pointcut
expression in line 13, each class type except TypeCode<> receives a join-point–
specific variable that stores a hash value in each class instance. The join-point
API of introductions provides such a hash value by JoinPoint::HASHCODE. The
remaining pieces of code advice in lines 19 to 26 make sure that the hash value
is checked on access to a class instance. In contrast to the C++ dynamic run-time
type identification (RTTI), the shown aspect is not limited to polymorphic class
types [116, § 5.2.8].
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by a join-point–specific variable that enables the detection of corrupt
pointers to the class instance. The reason for pointer corruption can Detection of

programming errorsbe not only a hardware error, but also programming errors such as
dangling pointers (use-after-free), dereference of uninitialized or null
pointers, double frees, and incompatible type casts. In fact, by apply-
ing the aspect to the AspectC++ compiler itself, I found and resolved
three8 incompatible type casts.

5.3.3 Join-Point Template Library

The previous example illustrates a generic introduction that only uses
a single entry of the join-point API. A generative introduction, how-
ever, instantiates a template metaprogram that iterates over multiple
entries of the join-point API at compile time.

Manually writing template metaprograms using the join-point API
is a tedious and repetitive task. Thus, I implemented a library of
reusable compile-time iterators for each API entry: the Join-Point Tem-
plate Library (JPTL). For example, the following iterator introspects for
member functions and recursively invokes a user-defined action for
each member function:

JPTL::FunctionIterator<typename TypeInfo, template <typename,

typename> class Action>

The first template parameter must be bound to the join-point API
by using the JoinPoint keyword, whereas the second template pa-
rameter Action<> accepts a user-defined class template. That class
template is then instantiated for each member function and is sup-
plied with the respective type information JoinPoint::Function<i>

as first template parameter. The second template parameter of Ac-
tion<> refers to the previous iteration and can be used to compute
compile-time constant values.

For example, Figure 5.4 shows a class template that counts the num-
ber of virtual functions. Thus, in the body of an introduction, the
number of virtual functions of the receiving class can be determined
as follows:

JPTL::FunctionIterator<JoinPoint, VirtualFunctionCount>::EXEC::

COUNT

Besides the nested EXEC data type, which computes compile-time
constant values, an exec() function with arbitrary arguments can be Section 6.4.2 shows

the usage of the
function exec().

defined that is invoked iteratively for each member function. Tailored
program code can be generated thereby for each particular member
function.

In addition, the JPTL provides uniform compile-time iterators for
the join point’s base classes, data members, constructors, and destruc-

8 I resolved three incompatible type casts in the AspectC++ subversion revisions 192,
201, and 202, respectively.
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1 template<typename FunctionInfo, typename LAST>

2 struct VirtualFunctionCount {

3 struct EXEC {

4 enum { COUNT = LAST::COUNT + // add 1 if virtual

5 ((FunctionInfo::spec & AC::SPEC_VIRTUAL) ? 1 : 0) };

6 };

7 };

8 template<typename FunctionInfo> // specialization for ...

9 struct VirtualFunctionCount<FunctionInfo, void> {

10 struct EXEC { enum { COUNT = 0 }; }; // ... initial value

11 };

Figure 5.4: Class template that counts the number of virtual functions. This
template can be used to instantiate an iterator of the JPTL for
computing the number at compile time.

tors. Furthermore, there are four compound iterators, such as the
BaseFunctionIterator<> that recursively iterates over the join point’s
functions and all functions of respective base classes.

In summary, generic and generative introductions in AspectC++ 2.0
are extremely powerful language features that enable a loose cou-
pling of the introductions to the mainline program code. The JPTL
dramatically relaxes the obstacles of template metaprogramming as
imposed by the compile-time join-point API.

5.4 whole-program analysis

The fourth extension to AspectC++ concerns the technical compila-
tion process. Currently, the AspectC++ compiler processes one trans-
lation unit at a time and evaluates a pointcut expression without in-
formation on other translation units. Thus, without abandoning the
modular C++ compilation process, information on the whole program
is just not available during compilation.

This lack of information disables more complex pointcut functions
that incorporate precise static program analyses. For example, a static
control-flow reachability analysis could identify those functions that
may lead directly or indirectly to a context switch. Such functions do
not return until the respective thread of control is resumed, so that
the lifetime of their local variables and return addresses is prolonged.
As data lifetime is directly proportional to soft-error susceptibility
(see Section 3.3), the return addresses of such long-lasting functions
are exceedingly critical.

We shall see in the following chapters that static analyses of the
whole program can improve the efficiency of aspect-oriented fault-
tolerance mechanisms. Therefore, I propose a framework for user-
defined static analyses using the AspectC++ compiler without ex-
tending the pointcut description language. The framework creates
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Figure 5.5: Excerpt from the AspectC++ metamodel of a translation unit. The
class diagram illustrates the relationship between some elements
of the model, which represent entities of the source code of one
translation unit. The union of all translation-unit models of a
program yields the project repository, which contains information
on the whole program.

an XML-based representation of the whole program, so that general-
purpose static analyses can be implemented rapidly in the XML query
language XQuery [166].

5.4.1 Project Repository

The AspectC++ 2.0 compiler internally uses the Clang [142] parser
to build an abstract syntax tree from the source code of one transla-
tion unit at a time. Afterwards, the AspectC++ compiler analyzes the
syntax tree and builds a model of the translation unit, which is a tree-
based data structure that aggregates semantic information. Figure 5.5 Model of a

translation unitshows an excerpt from the class diagram of the metamodel of a trans-
lation unit. A concrete model of a translation unit contains numerous
instances of the metamodel’s classes. For example, an instance of the
class Call represents one specific function call that is present in the
source code being compiled. The target association of such a Call in-
stance refers to the callee function – an instance of the class Function.

Yet, the model of one translation unit only contains partial infor-
mation, but the AspectC++ compiler can serialize the model into
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a shared XML file: the global project repository. After all translation
units have been processed once, the models of the individual transla-
tion units merge into the global project repository, which eventually
contains information on the whole program.

Whole-program analysis using the global project repository can
be implemented, for example, in the XML query language XQuery,
which is a functional programming language that facilitates data ex-XQuery

traction from XML documents. The result of an XQuery program can
be an AspectC++ pointcut expression, which in turn can be included
in the final aspect weaving process.

Figure 5.6 illustrates the compilation process with whole-program
analysis using the AspectC++ project repository and XQuery. First,
the AspectC++ compiler processes all individual source code files
and populates the project repository with information obtained by a
static pre-analysis (➊). After that, a user-defined XQuery program ex-
tracts the whole-program information from the project repository and
stores the results in form of pointcut definitions in an aspect header
file (➋). An aspect that makes use of the whole-program analysis
includes these pointcut definitions. Finally, the AspectC++ compiler
weaves such an aspect into the respective files (➌).

In other words, the depicted compilation process virtually enables
the use of XQuery programs as pointcut functions. Rohlik and col-
leagues [205] as well as Eichberg and associates [75] propose similar
approaches, however, the static pre-analysis (➊) improves over their
works.

In particular, I implemented control-flow and pointer-alias analy-
ses in the AspectC++ 2.0 compiler, which stores the results from that
analyses in the project repository. The control-flow analysis builds
a traditional control-flow graph in which the nodes represent basicControl-flow

analysis blocks [10]; a basic block is a linear sequence of program statements
that are always executed in order. Thus, the control-flow graph de-
fines a partition of program statements into basic blocks. The As-
pectC++ project repository reflects the partition into basic blocks by
the member cfg_block_lid of the class Access (see Figure 5.5). That
member represents an intra-procedural identifier for each basic block.
For example, the class Call inherits from the class Access, so that
each function call is mapped to a basic block.

Based on the control-flow analysis, I implemented a flow-sensitive
pointer-alias analysis [108], which attempts to determine whether twoFlow-sensitive

pointer-alias
analysis

pointers – or C++ references – refer to the same variable. The alias
analysis consequently assigns an intra-procedural identifier to each
variable. That identifier is stored in the AspectC++ project repository
as the member target_object_lid of the class Access (see Figure 5.5).
The class instance of a member-function call is identified thereby:
When two function calls have an identical target_object_lid, then
the same class instance is used with certainty. Different identifiers
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Figure 5.6: Process of the whole-program analysis using the AspectC++
project repository and XQuery. After filling the project reposi-
tory with information obtained by a static pre-analysis (➊), a
user-defined XQuery program extracts information on the whole
program and stores the results in form of pointcut definitions
in an aspect header file (➋). The final compilation (weaving) in-
cludes that pointcut definitions (➌) and, thus, makes use of the
whole-program analysis.

indicate either different instances or that the pointer-alias analysis
cannot prove their identity.

In summary, the control-flow analysis and pointer-alias analysis
implement parts of the pre-analysis step (➊) shown in Figure 5.6. On
that basis, a programmer can implement user-defined static analysis
using the project repository, as exemplified in the following section.

5.4.2 Example: Control-Flow Reachability Analysis

This section picks up the demand for identification of those func-
tions that may lead directly or indirectly to a context switch. For
instance, the eCos kernel implements the context switch in the as-
sembler routine hal_thread_switch_context. Thus, a static analysis
must traverse the call graph of the whole operating system to identify
those functions that lead transitively to an invocation of the routine
hal_thread_switch_context.

The complete call graph is available once the AspectC++ project
model has been set up. Hence, an XQuery program can implement a
control-flow reachability analysis to determine the desired set of func-
tions. Figure 5.7 shows an excerpt of a recursive XQuery implementa-
tion that computes the transitive closure of the call relation between
functions. Each function in the AspectC++ project model is identified
by a unique integer id. Thus, the shown implementation expects a
sequence of integers (xs:integer*) as argument and returns such a
sequence. The implementation iterates over all function calls listed
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1 declare function local:reachable($function_ids as xs:integer*) as

xs:integer* {

2 let $caller := for $call in $repo//Function/children/Call

3 where $call/@target = $function_ids

4 return $call/../../@id

5 let $reachable_ids := distinct-values(($function_ids, $caller))

6 return

7 if ( count($function_ids) = count($reachable_ids) ) then

8 $function_ids

9 else

10 local:reachable($reachable_ids)

11 };

Figure 5.7: Excerpt from the implementation of a control-flow reachability
analysis in the XQuery language. The shown code processes the
XML-based project repository $repo in which each function can
be identified by a unique integer id. By recursion (line 10), the
implementation identifies all functions that transitively call one
of the functions provided by the argument $function_ids.

in the project repository $repo (line 2) and selects the caller function
id (line 4) if that function invokes one of the functions provided in
the argument sequence (line 3). The implementation recurses (line 10)
until a fixed point is reached (line 7).

Figure 5.7 omits several convenience functions that are needed to
transform a function name, such as hal_thread_switch_context, into
the corresponding integer id and vice versa. Similarly, the function-
ality that formats the result as AspectC++ pointcut expressions is
not shown. Altogether, the complete reachability analysis consists of
about 100 lines of XQuery code that additionally handles function
calls whose call target is unknown, such as invocations of library
functions and function calls using a function pointer. In summary,
the AspectC++ project repository provides a rich framework for user-
defined whole-program analyses that can be implemented rapidly in
the XQuery language.

5.5 chapter summary

The goal of this chapter was to introduce the new general-purpose
language features of AspectC++ 2.0 that have been developed in the
course of this thesis. These language features remedy the deficiencies
of prior work on fault tolerance using AspectC++ by capturing join
points of pointer variables and data members. Moreover, the compile-
time join-point API of introductions decouples the aspects from the
mainline program semantics.

The new language features represent the essential building blocks
for the development of highly generic fault-tolerance mechanisms as
illustrated by the functional examples: Checking of pointer ranges,
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checking of array bounds, and run-time type checking are imple-
mented by only a few lines of code. Thus, AspectC++ 2.0 is a promis-
ing language for implementing error-detection mechanisms; however,
this section provides limited insight into the domain of error correc-
tion and recovery. Therefore, the next chapter addresses the develop-
ment of error-correction mechanisms using AspectC++ 2.0.

Finally, whether the presented example mechanisms really improve
the fault tolerance of an operating system remains an open question.
Are the example mechanisms effective and efficient? To answer these
questions, Chapter 7 quantitatively evaluates these examples.





6
L I B R A RY O F D E P E N D A B I L I T Y A S P E C T S

“ Dependability is . . . a global concept that subsumes the
usual attributes of reliability, availability, safety, integrity,
maintainability, etc. ”– Algirdas Avižienis and associates [18, p. 11]

This chapter presents a library of generic software mechanisms that
aim at facilitating dependable operating systems. As such, the pre-
sented mechanisms focus on error detection and correction to enhance
the reliability, availability, and data integrity of operating systems. At
the same time, the library approach guarantees maintainability, be-
cause the source code of an operating system remains as it is: The
AspectC++ compiler applies the error-detection and error-correction
mechanisms transparently.

Primarily, this chapter introduces four aspect-oriented mechanisms
that use the AspectC++ 2.0 technology as presented in the previous
chapter – referred to as just AspectC++ in this chapter. The individ-
ual mechanisms are highly generic and reusable, so that they can be
applied to both eCos and the L4/Fiasco.OC operating system.

First, Section 6.1 describes the design of the library and its program-
ming interface. After that, Section 6.2 continues with the symptom-
detection mechanisms that served as examples in the previous chap-
ter. Subsequently, Section 6.3 and Section 6.4 cover the protection
from control-flow errors by detection and correction of memory er-
rors that affect return addresses and virtual-function pointers, respec-
tively. Finally, Section 6.5 presents a generative mechanism that de-
tects and corrects memory errors in data members of C++ classes.

In summary, this chapter covers four dependability aspects, that is,
aspect-oriented mechanisms that enhance the degree of dependabil-
ity. The individual mechanisms advance the state-of-the-art in the
domain of software-implement fault tolerance (see Section 2.4). In
particular, the presented mechanisms address the exceedingly criti-
cal kernel data structures identified in Section 3.3. Finally, the next
chapter quantitatively evaluates the library of dependability aspects.
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6.1 design of the library

“ There is no good library without a strict emphasis on reg-
ular, coherent design. ”– Bertrand Meyer [168, p. 69]

The main design goal of the library of dependability aspects is us-
ability of the individual aspects without the need to deal with imple-
mentation details. On the one hand, the library’s source code should
be closed to modification. On the other hand, there should be a well-
defined programming interface that allows a programmer to use the
library and to extend it as necessary. The term open-closed principle [168,
p. 57] refers to such an approach, in which openness means being
“available for extension” [168, p. 57]. In particular, the library’s inter-
face should allow for extension at compile time to avoid any runtime
overhead.

These design goals can be accomplished by abstract aspects in As-
pectC++, which are abstract data types like abstract classes. User-
defined aspects can inherit from abstract aspects just as classes inherit
from abstract base classes. An abstract aspect contains one or more
pure virtual pointcut declarations, which must be defined by a derivedPure virtual

pointcuts aspect. Only if all pure virtual pointcut declarations of an abstract as-
pect are defined, the aspect can be instantiated and eventually gets
woven by the AspectC++ compiler.

http://subs.emis.de/LNI/Proceedings/Proceedings208/521.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings208/521.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings220/2519.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings220/2519.pdf
http://dx.doi.org/10.1109/TDSC.2015.2427832
http://dx.doi.org/10.1109/TDSC.2015.2427832
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where() is a pure virtual
pointcut that must be defined
by a derived aspect

on_error() is a point-
cut that can be advised
by a derived aspect

DependabilityAspect

where() = 0 : pointcut
on_error() : pointcut

ConcreteAspect

where() : pointcut

Figure 6.1: Interface of the dependability aspects. The depicted aspects
are modeled as classes by a UML class diagram in which
member functions may yield pointcut expressions. The aspect
DependabilityAspect is abstract because it declares the pure vir-
tual pointcut where(), denoted by italics. ConcreteAspect inher-
its from the abstract aspect and defines the pure virtual pointcut
to specify the placement of the dependability aspect. Abstract as-
pects are not considered for weaving by the AspectC++ compiler
unless all pure virtual pointcuts are defined by a derived aspect.

The programming interface of the individual dependability aspects
is based on pure virtual pointcut declarations. Each dependability as-
pect declares the pure virtual pointcut where(), which specifies the
placement policy of the aspect. To instantiate such a dependability
aspect, the programmer must define that pointcut by a derived as-
pect. For instance, to apply a certain aspect to all program elements
within the global namespace, the user can define where() as follows:
pointcut where() = within("::");

Figure 6.1 shows a UML class diagram in which aspects are mod-
eled as classes with member functions that yield pointcut expres-
sions. That figure illustrates the inheritance relation between the ab-
stract aspect DependabilityAspect, which implements some fault-
tolerance mechanism, and a derived aspect that defines the pure vir-
tual pointcut where(). Abstract aspects and pure virtual members are
denoted by italics.

In addition, the base aspect defines the pointcut on_error(), which
captures all occurrences of errors that are detected but not corrected.
The derived aspect can specify thereby advice for error handling, such
as invoking a user-defined recovery routine, or throwing a C++ excep-
tion. For instance, the latter can be implemented as follows:

#include <exception>

aspect ConcreteAspect : public DependabilityAspect {

pointcut where() = within("::"); // apply everywhere

advice on_error() : before() {

throw std::exception(); // user-defined error handling

}

};
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The AspectC++ compiler evaluates all pointcut expressions at com-
pile time; even pure virtual pointcuts are bound to the concrete def-
initions at compile time. Thus, the pointcut-based configuration in-
terface of the dependability aspects causes no runtime overhead at
all. Each dependability aspect is highly configurable with respect to
placement and error handling. Finally, as each dependability aspect
declares at least the two mandatory pointcuts where() and on_error(),
the library provides a regular and coherent programming interface.

6.2 symptom detection

“ If the software operates on corrupt values, not only could
the data result be incorrect, but the error could result
in ‘side-effects’. For example, exceptions (memory access
faults or arithmetic overflow) . . . can be caused by corrupt
data values feeding into a pointer, arithmetic value, or
branch instruction. These events are examples of invalid
program behavior — events that should not occur in nor-
mal program execution. ”– Nicholas Wang and Sanjay Patel [252, p. 32]

Symptom detection refers to a broad class of error-detection mecha-
nisms that identify invalid software behavior at runtime (see Sec-
tion 2.4.1.4 on page 28). Such mechanisms can be implemented modu-
larly in the AspectC++ programming language as shown by the three
examples in the previous chapter. Thus, the library of dependabil-
ity aspects, described in this chapter, includes these example mech-
anisms under the umbrella of symptom detection. In addition, Sec-
tion 6.2.2 on the facing page introduces another aspect-oriented mech-
anism that detects integer overflows in arithmetic operations.

6.2.1 Checking of Pointers, Arrays, and Class Types

The previous chapter already presented three examples for symptom
detectors using AspectC++. In brief, these symptom detectors pro-
vide the following functionalities:

1. Range checking of function pointers (Section 5.1.2 on page 79)

2. Checking of array bounds (Section 5.2.3 on page 84)

3. Run-time type checking (Section 5.3.2 on page 89)

Each of these symptom detectors addresses abnormal behavior that
can indicate a hardware error. In the library of dependability aspects,
the implementation of these three symptom detectors is extended by
the pointcut-based configuration interface described in Section 6.1.
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6.2.2 Integer-Overflow Checking

Integer overflows of arithmetic operations can be considered as symp-
toms for hardware errors [252, p. 32]. Especially signed integer data
types are of particular concern because the C++ standard permits un-
defined behavior on overflow [116, § 5]. As a remedy, overflow check-
ing can be implemented in the AspectC++ programming language us-
ing the pointcut function builtin (see Section 5.1 on page 78), which
captures all arithmetic operations on built-in data types.

Most processors provide hardware support for detecting arithmetic
overflow by a condition code flag in a special CPU register: After an
arithmetic operation, the condition code flag signals whether an over-
flow occurred. Such CPU-specific registers are generally inaccessible Hardware support

for overflow
detection

from a high-level programming language such as C++; however, the
compilers GCC and LLVM/Clang offer several compiler intrinsics
that make use of the CPU-specific condition code registers. For in-
stance, the intrinsic function __builtin_add_overflow computes the
sum of two integer operands and returns true if the operation causes
an overflow.

Figure 6.2 shows the shortened implementation of a symptom de-
tector for integer overflows using AspectC++. First, the shown aspect
implements the pointcut-based configuration interface as described
in Section 6.1 by declaring the pure virtual pointcut where() in line 3

and by defining the pointcut on_error() in line 4. Second, the point-
cut integer() in line 10 filters out any join point that yields a floating-
point value or pointer expression, because the aforementioned intrin-
sic function __builtin_add_overflow does not handle pointer arith-
metic. Third, the aspect specifies its order of precedence in lines 12 to
13: Aspects derived from IntegerOverflowCheck should be applied to
any join point involving built-in operators after all other aspects have
been applied. This order of precedence makes sure that no other as-
pect interferes by silently modifying the operands after the overflow
check has passed. Finally, the piece of generic advice in lines 16 to
19 exemplifies the overflow checking for the built-in operator + that
adds two integer values. As mentioned earlier, the intrinsic function
__builtin_add_overflow tests whether the addition of the first two
operands, retrieved via the join-point API functions tjp->arg<0>()

and tjp->arg<1>(), causes an integer overflow. Moreover, this intrin-
sic function stores the result of the addition in the variable pointed to
by tjp->result(), which is returned by the advice code.

The complete implementation includes similar pieces of advice for
subtraction and multiplication, for the built-in increment and decre-
ment operators, and for the compound assignment operators +=, -=,
and *=. In total, the implementation amounts to less than 130 lines
of AspectC++ code. To put this into perspective, a comparable exten-



104 library of dependability aspects

1 aspect IntegerOverflowCheck {

2 protected:

3 pointcut virtual where() = 0; // must be defined by derived aspects

4 pointcut on_error() = execution("void IntegerOverflowCheck::error()");

5

6 private:

7 inline void error() {} // explicit join point, exposed via on_error()

8 pointcut floats() = result("float" || "float&" || "double" || "double&");

9 pointcut pointer() = result("%*" || "%*&");

10 pointcut integer() = where() && !floats() && !pointer();

11

12 advice builtin("% operator %(...)") && integer() // lowest precedence:

13 : order(!derived("IntegerOverflowCheck"), derived("IntegerOverflowCheck"));

14

15 // addition of two integer operands:

16 advice builtin("% operator+(%, %)") && integer() : around() {

17 if (__builtin_add_overflow(*tjp->arg<0>(), *tjp->arg<1>(), tjp->result()))

18 error();

19 }

20 // similar pieces of advice for other built-in operators follow ...

21 };

Figure 6.2: Shortened implementation of integer-overflow checking. The shown aspect is ab-
stract because it declares the pure virtual pointcut where(), which allows for the
configuration at compile time. User-defined handling of integer overflows can be
specified by advice for the pointcut on_error(). The advice definition in lines 16

to 19 replaces the invocation of the built-in operator + by a call to the compiler-
intrinsic function __builtin_add_overflow, which signals whether an addition
causes overflow. Similar pieces of advice for subtraction, multiplication, increment,
decrement, and compound-assignment operators are not shown.

sion of the Clang compiler requires more than 1,600 lines of code [67,
p. 763].

In addition, the concise aspect-oriented implementation is even
more flexible and configurable than a compiler extension. The where()
pointcut allows the programmer to confine the placement of the over-
flow check to certain functions and, for example, to exclude certain
data types, such as unsigned integers. As pointed out by Dietz and as-
sociates [67], several programs intentionally exploit the wraparound1

semantics of unsigned integers. The authors conclude that “tools for
detecting integer numerical errors need to distinguish intentional from
unintentional uses of wraparound operations—a challenging task—
in order to minimize false alarms.” [67, p. 769]

Finally, the detection of integer overflows needs to be efficient. In
other words, the detection should execute only a few additional CPU
instructions. For example, consider a C++ function that just multiplies

1 The C++ standard specifies that unsigned integers “shall obey the laws of arithmetic
modulo 2n where n is the number of bits in the value representation of that particular
size of integer.” [116, § 3.9.1]
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int multiply(int a, int b) { return a*b; } // C++ equivalent

1 4005c0: mov %edi,%eax # move first operand

2 4005c2: imul %esi,%eax # multiply

3 4005c5: jo 4005c8 # jump if overflow

4 4005c7: retq # function return

5 4005c8: mov $0x1,%edi # error handling:

6 4005cd: push %rax # ...

7 4005ce: callq 4004a0 <exit@plt> # invoke std::exit(1)

Figure 6.3: GNU x86-64 assembler instructions for overflow checking
of one multiplication operation using the intrinsic function
__builtin_mul_overflow of the GCC 5.4.0 compiler at optimiza-
tion level -O2. The four instructions on colored background
implement the aspect-oriented overflow checking, whereas the
three instructions on white background are emitted by the com-
piler also without any overflow checking. Only the conditional
jump instruction jo (jump if overflow) in line 3 gets executed in
the error-free path, whereas the instructions in lines 5 to 7 imple-
ment the invocation of std::exit(1) on error.

two integer arguments as shown in the upper part of Figure 6.3. The
lower part of that figure lists the compiled x86-64 CPU instructions
for the respective C++ function after applying the IntegerOverflow-

Check aspect, which simply calls std::exit(1) on error. Instructions Efficiency of the
aspect-oriented
solution

on colored background implement the optional overflow checking,
whereas the three instructions on white background are mandatory
for the actual multiplication and, thus, are also present without any
overflow checking. In total, the aspect adds only four CPU instruc-
tions per operation. Moreover, just the single conditional jump in-
struction jo (jump if overflow) in line 3 gets executed in the error-free
case. The remaining three instructions in lines 5 to 7 implement the
rarely used error handling.

Optimizing compilers, such as GCC and LLVM/Clang, perform
constant propagation [19] and eliminate thereby the overflow check
at runtime if the operands were constant values at compile time. In
summary, the presented overflow-checking mechanism could not be
more efficient. As shown in Figure 6.3, there is no per se overhead of
AspectC++, because the advice code gets heavily optimized at com-
pile time. The same conclusion also holds for the other three aspect-
oriented symptom detectors summarized in Section 6.2.1 on page 102.

6.3 return-address protection

The case study on eCos in Section 3.2.2 revealed that the stack mem-
ory segments are highly susceptible to soft errors and that return
addresses and frame pointers are the most homogeneous reasons for
failures caused by stack memory. This section presents a dependabil-
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ity aspect that detects and corrects memory errors in these stack ele-
ments.

In brief, stack memory is typically organized as stack frames that
store the local variables of a C/C++ function. C/C++ compilers auto-Stack frames

matically allocate a new stack frame for each function invocation. In
addition, the x86 and x86-64 CPU architectures use the stack frame
for passing the current instruction pointer as return address to the in-
voked function. Other CPU architectures, especially RISC CPUs, pass
the return address by a dedicated CPU register; however, that register
is spilled to stack memory on nested function calls as well.

Figure 6.4a illustrates the layout of stack memory for the x86 archi-
tecture and shows the stack frame of a function f1 that has invoked
another function f2. Each stack frame starts with the return address
of the caller function. For example, the return address of f2’s stack
frame points to a program instruction of f1. The CPU register %ebp –
called base pointer or frame pointer – points to the current stack frameThe GCC and Clang

compiler flag
-fomit-frame-

pointer omits
saving the %ebp
register in some

cases.

and, thus, is defined at the beginning of a function execution. To be
able to restore the previous %ebp register value on function return,
the previous value is saved in the stack frame as well. On function
return, the saved %ebp value is loaded into the %ebp register and the
control flow jumps to the return address.

Hence, bit errors in the return address directly cause illegal con-
trol flow. Nicolescu and associates [178, p. 105] confirm that faults
in return addresses cause program failures that even circumvent con-
ventional control-flow checking mechanisms (see Section 2.4.1.3). As
a remedy, this section presents an aspect-oriented mechanism that
applies an error-correcting code to the return addresses and saved
frame pointers.

6.3.1 Implementation

The return address and frame pointer together occupy only eight
bytes of storage on the x86 architecture. Thus, data duplication in
combination with a checksum is certainly the most efficient error-
correcting code. A two’s complement checksum detects all single bit
errors and burst errors up to the length of the checksum [163]. These
errors can be corrected by data duplication. Figure 6.4b illustrates a
protected stack frame that stores a redundant return address, a redun-
dantly saved %ebp, and a checksum of both values. This information
redundancy is created at the beginning of a function execution. Right
before the respective function returns, the actual return address and
saved frame pointer are checked. Majority voting is carried out if the
checksum indicates an error:

1. If the checksum matches the redundant return address and re-
dundantly saved frame pointer, then the actual return address
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...

Return address → f0

Saved %ebp for f0

Local variables

Function
f1’s stack

frame

Return address → f1

Saved %ebp for f1 %ebp

Local variables
%esp

Function
f2’s stack

frame

...

(a) Typical layout of stack frames as used
by the GCC and LLVM/Clang compil-
ers.

...

Return address → f0

Saved %ebp for f0 %ebp

Return address → f0

Saved %ebp for f0

Checksum

Local variables
%esp

Protected
stack

frame

...

(b) A protected stack frame stores a re-
dundant return address and a re-
dundantly saved %ebp in addition
to a checksum of both elements.

Figure 6.4: Layout of stack frames for the x86 architecture. The CPU register %ebp points to
the second element of the current stack frame, whereas the register %esp points to
the end of the current stack frame. The x86-64 architecture implements a similar
layout of stack frames using the 64-bit registers %rbp and %rsp.

or frame pointer is corrupt and can be repaired using the redun-
dant ones.

2. If the redundant return address and redundantly saved frame
pointer are identical to the actual return address and saved
frame pointer, then the checksum is faulty and can be ignored.

3. Otherwise, the stack frame cannot be repaired and an error is
signaled.

A drawback of majority voting is that memory areas filled with a re-
curring bit pattern, such as all zeros, are wrongly interpreted as valid
stack frames. A countermeasure is to add a pseudo-random value to
the checksum, and to exploit the knowledge that the actual return
address and frame pointer must not be identical on a von Neumann
architecture.

The sketched approach can be implemented as a dependability as-
pect using the AspectC++ programming language. Figure 6.5 shows
the shortened implementation of the Return-Address Protection (RAP)
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1 aspect ReturnAddressProtection {

2 protected:

3 pointcut virtual where() = 0; // must be defined by derived aspects

4 pointcut virtual correction() = where(); // optional error correction

5 pointcut on_error() = execution("void ReturnAddressProtection::error()");

6

7 private:

8 static inline void error() {} // explicit join point, exposed via on_error()

9

10 // error detection and correction:

11 advice execution(where() && correction()) && !on_error() : around() {

12 RedundantRetAddr<JoinPoint::JPID> rra; // RAII idiom

13 tjp->proceed(); // continue the intercepted function’s execution (inline)

14 }

15

16 // error detection, only:

17 advice execution(where() && !correction()) && !on_error() : around() {

18 ChecksumRetAddr<JoinPoint::JPID> chksum; // RAII idiom

19 tjp->proceed(); // continue the intercepted function’s execution (inline)

20 }

21

22 advice execution(where()) : order(derived("ReturnAddressProtection"),

23 /* highest precedence */ !derived("ReturnAddressProtection"));

24 };

Figure 6.5: Shortened implementation of Return-Address Protection using AspectC++. The
shown aspect provides the pointcut-based configuration interface in lines 3 to 5.
The pointcut where() must be defined to capture those functions whose stack
frames shall be protected, whereas the pointcut correction() allows choosing be-
tween error detection and error correction. In total, the complete implementation
amounts to about 170 lines of AspectC++ code.

aspect, which provides the pointcut-based configuration interface de-
scribed in Section 6.1 by declaring the pure virtual pointcut where()
in line 3 and by defining the pointcut on_error() in line 5. In addi-
tion, the aspect defines the virtual pointcut correction() in line 4,
which can be overridden to disable error correction for specific join
points.

The pieces of advice in lines 11 to 20 use the around keyword to in-
tercept the execution of functions captured by the pointcut expression
where(). In particular, the upper piece of advice allocates an instance
of the class template RedundantRetAddr<> as local variable before con-
tinuing to execute the intercepted function via tjp->proceed(). Dur-Using __builtin_

frame_address(0)

within a function
disables the

optimization flag
-fomit-frame-

pointer for that
function.

ing allocation of the local variable, the constructor of the class tem-
plate RedundantRetAddr<> (not shown) copies the return address and
saved frame pointer from the current stack frame to volatile mem-
ber variables and computes the checksum. For access to the current
stack frame from the C/C++ language, the GCC and LLVM/Clang
compiler provide the intrinsic function __builtin_frame_address(0).
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Once tjp->proceed() finishes, the destructor of the class template
RedundantRetAddr<> is invoked implicitly to deallocate the local vari-
able; the destructor also implements the checksum verification and
majority voting.

The usage of a local variable and implicit destructor invocation
is an instance of the C++ idiom Resource Acquisition Is Initialization
(RAII) [240, p. 354ff], which provides exception safety because the
destructor is invoked even if an exception is thrown.

The advice in lines 17 to 20 allocates a checksum for those functions
that are not captured by the pointcut correction() and, thus, receive
only error detection. Both pieces of advice pass the constant value
JoinPoint::JPID to the respective class templates. That value repre-
sents a unique identifier per join point and serves as pseudo-random
value that is added to the checksum to encode it in a function-specific
way. Furthermore, adding one constant value to the checksum does
not cause any runtime overhead on the x86 and x86-64 architectures,
because the lea (load effective address) CPU instruction can add two
register values and one immediate value in a single clock cycle.

Finally, the advice in line 22f makes sure that the RAP aspect gets
the highest order of precedence, so that no other aspect can delay
the protection. In summary, the shown aspect implements an error-
detecting and error-correcting code that covers the return address and
saved frame pointer of a stack frame as illustrated in Figure 6.4b. The
implementation focuses on the x86 and x86-64 architectures; however,
the aspect can be extended easily to other CPU architectures. For
example, the ARM architecture uses the link register r14 to store the
return address. The RAP aspect only needs extension by a small piece
of inline assembly code that accesses the register r14 instead of using
__builtin_frame_address(0).

6.3.2 Whole-Program Optimization

The RAP aspect is a highly configurable mechanism with respect to
its placement, which is specified by the pure virtual pointcut where()
as shown in line 3 of Figure 6.5 on the facing page. Yet it makes no
sense to select all functions for protection, because optimizing com-
pilers typically perform function inlining [19]. Functions that become Function inlining

inline do not allocate a separate stack frame and, thus, do not ben-
efit from RAP. The decision whether a function becomes inline is
made by the C++ compiler after aspect weaving. Hence, the config-
uration pointcut where() must be confined to match only non-inline
functions. This can be achieved by analyzing the symbol table of the
compiled executable binary.

However, it is still unfavorable to apply the RAP aspect to all non-
inline functions. For example, Figure 6.6 shows the call-stack his-
togram of the operating system eCos running the benchmark pro-
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Figure 6.6: Call-stack histogram of the operating system eCos running the
benchmark program mutex1. Each bar represents a function’s
stack frame. The x-axis illustrates the period of time that the func-
tion’s stack frame spends on the call stack. Bright colors indicate
a high number of invocations per function, whereas dark-red
colors mark functions that are only called once. This flame graph
reveals that a few functions spend a long time on the call stack,
whereas a large share of functions return quickly or are called
often or both.

gram mutex1 (see Section 3.2.2.2 on page 50). Some functions are
called only a few times but spend a long time on the call stack (dark
colors), whereas other functions are called often or return quickly or
both (bright colors). As data lifetime is directly proportional to soft-
error susceptibility (see Section 3.3), the stack frames of long-lasting
functions are exceedingly critical. On the other hand, the chance that
a soft error corrupts the return address of a short-running function is
negligible. Thus, RAP is most efficient when applied to long-lasting
functions only.

In general, the identification of long-lasting functions at compile
time is an undecidable problem. Therefore, I propose the following
heuristic as an approximation: It turns out that a context switch dra-
matically prolongs the lifetime of a function, because the function
does not return until the respective thread of control is resumed.
Hence, all functions that may request a context switch – directly or
indirectly – are promising candidates for long-lasting functions. In
other words, I consider a function as long-lasting if there is a po-
tential control-flow transition from the function to a context switch.
For instance, the eCos kernel implements the context switch in the as-
sembler routine hal_thread_switch_context. Thus, the static control-
flow reachability analysis presented in Section 5.4.2 on page 95 yields
an approximation for the set of long-lasting functions.

In summary, inline functions and short-running functions can be
excluded from Return-Address Protection to avoid excessive runtime
overhead. The process of static whole-program analysis, as described
in Section 5.4, implements an optimization heuristic that identifies
the potentially long-lasting functions that should be protected. Fi-
nally, Chapter 7 evaluates the effectiveness and efficiency of the RAP
dependability aspect and optimization heuristic.
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6.4 virtual-function pointer protection

The L4/Fiasco.OC case study in Section 3.2.3 identified virtual-function
pointers (vptrs) as a common reason for failures of the microkernel.
Such vptrs are the usual technique for compilers to implement the
dynamic dispatch of virtual C++ functions [240, p. 67f]. Thus, control-
flow integrity depends on the integrity of vptrs, which should be pro-
vided with redundancy for error detection and correction.

The concrete implementation details of vptrs are compiler specific;
however, L4/Fiasco.OC uses the popular GNU C++ compiler (GCC).
Initially, this section outlines the vptr implementation scheme of the
GCC. Subsequently, this section presents a dependability aspect that
protects the vptrs from memory errors.

6.4.1 C++ Object Layout of GCC and LLVM/Clang

In short, each instance of a C++ class with virtual functions contains
a vptr that refers to a table of function pointers (the vtable). The GCC
and LLVM/Clang store the vptr in the lowest memory addresses of
such class instances. Consider the three classes A, B, and C that de-
clare some virtual functions, and the class C inherits from both A and
B. Figure 6.7 illustrates these classes and shows that both A and B get
an implicit vptr, because they have no base classes with virtual func-
tions. However, the class C does not introduce another vptr but reuses
A’s and B’s vptrs instead. The value of a vptr remains constant after
object construction until object destruction, and it is used at runtime
for locating the corresponding function pointer that is needed for in-
voking a virtual function. Thus, any memory error that corrupts a
vptr can result in a program crash or even causes the invocation of a
wrong function.

6.4.2 Implementation

The Virtual-Function Pointer Protection (VPP) is a dependability as-
pect that replicates the vptrs of C++ objects to allow for error detection
and error correction. A pointcut-based configuration interface allows
choosing between duplication and triplication of vptrs: Duplication
enables error detection, whereas triplication applies majority voting
for correcting any error that corrupts a single vptr.

The replicated vptrs are stored in an encoded binary representa-
tion, because otherwise, memory areas filled with a recurring bit pat- Encoded replication

tern, such as all zeros, would be wrongly interpreted as valid replicas.
Moreover, the encoding is implemented in a type-specific way to de-
tect vptrs of incompatible data types.

Figure 6.8 shows a shortened implementation of the VPP depend-
ability aspect using AspectC++. The source code of the aspect starts
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Figure 6.7: Virtual-function pointers (vptrs) and virtual-function tables (vta-
bles) as implemented by the GCC and LLVM/Clang compiler. A
class that declares a virtual function gets an implicit vptr if the
class has no base class with virtual functions. In the depicted ex-
ample, the classes A and B satisfy this condition and get a vptr,
whereas the class C reuses the vptrs from its base classes.

in line 13 and declares the pointcut-based configuration interface in
lines 15 to 16, which specifies the target classes whose vptrs are to
be protected. By default, error correction is enabled (see line 16) and,
for the sake of clarity, all further lines of code that implement only
error detection are omitted in this listing. User-defined handling of
uncorrectable errors can be specified by advice using the pointcut
on_error() in line 17.

The centerpiece of the shown aspect is the generic introduction
in lines 19 to 40. First, the generic introduction discovers at compile
time whether the receiving class contains a vptr. For this purpose, the
JPTL::FunctionIterator<> and JPTL::DestructorIterator<> types
from the Join-Point Template Library (JPTL) are instantiated usingSection 5.3.3

describes the JPTL. the class template VirtualFunctionCount<>, which is presented in
Figure 5.4 on page 92. The number of virtual functions declared in
the receiving class is counted thereby (lines 21 to 23). Likewise, the
number of virtual functions declared in the receiving class and all
its base classes is calculated in lines 25 to 27. Recollecting the C++Discovery of vptrs

object layout described in Section 6.4.1, the constant value HAS_VPTR

(line 30) identifies whether the receiving class contains a vptr, that
is, if the class declares a virtual function but has no base class with
virtual functions.

Based on that information, the generic introduction declares in
line 34 the member variable red_vptrs, which instantiates the class
template RedundantVptrs<>. That class template (implementation not
shown) provides storage for the redundant vptrs and encapsulates the
error detection and correction functionality. One redundant vptrs is
encoded by a bitwise XOR operation with the class-specific hash value
JoinPoint::HASHCODE, whereas the other is encoded by a bitwise XOR

operation with the bitwise inversion of JoinPoint::HASHCODE. How-
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1 #include "JPTL.h" // use the Join-Point Template Library (JPTL)

2

3 template<typename TypeInfo, typename>

4 struct InitVptr { // ’Action’ class template for use with JPTL::BaseIterator<>

5 static inline void exec(typename TypeInfo::That* object) {

6 object->red_vptrs.init(object); } };

7

8 template<typename TypeInfo, typename>

9 struct CheckVptr { // ’Action’ class template for use with JPTL::BaseIterator<>

10 static inline void exec(typename TypeInfo::That* object) {

11 object->red_vptrs.check(object); } };

12

13 aspect VirtualFunctionPointerProtection {

14 protected:

15 pointcut virtual where() = 0; // classes whose vptrs are to be protected

16 pointcut virtual correction() = where(); // optional error correction

17 pointcut on_error() = execution("void ...::vptr_error()") && within(where());

18

19 advice derived(where() && correction()): slice class { // generic introduction

20 enum {

21 VIRT_FUNCTIONS = // number of virtual functions of the target class

22 JPTL::FunctionIterator<JoinPoint, VirtualFunctionCount>::EXEC::COUNT +

23 JPTL::DestructorIterator<JoinPoint, VirtualFunctionCount>::EXEC::COUNT,

24

25 BASE_VIRT_FUNCTIONS = // virtual functions of the target class and its bases

26 JPTL::BaseFunctionIterator<JoinPoint, VirtualFunctionCount>::EXEC::COUNT +

27 JPTL::BaseDestructorIterator<JoinPoint, VirtualFunctionCount>::EXEC::COUNT,

28

29 // discover at compile-time whether the target class introduces a vptr:

30 HAS_VPTR = (VIRT_FUNCTIONS != 0) && (BASE_VIRT_FUNCTIONS == VIRT_FUNCTIONS)

31 };

32

33 public: // there is a template specialization for HAS_VPTR==false (do nothing)

34 RedundantVptrs<JoinPoint::That, JoinPoint::HASHCODE, HAS_VPTR> red_vptrs;

35

36 void vptr_error() {} // explicit join point, invoked by RedundantVptrs<>

37 // use the JPTL to iterate over base classes and to access the redundancy

38 void init_vptr() { JPTL::BaseIterator<JoinPoint, InitVptr>::exec(this); }

39 void check_vptr() { JPTL::BaseIterator<JoinPoint, CheckVptr>::exec(this); }

40 };

41

42 advice construction(derived(where())) ||

43 destruction(derived(where())) : before() {

44 tjp->target()->init_vptr(); // iterate over base classes (see above)

45 }

46

47 advice call(derived(where())) && call("virtual % ...::%(...)") : before() {

48 tjp->target()->check_vptr(); // iterate over base classes (see above)

49 }

50 };

Figure 6.8: Shortened implementation of Virtual-Function Pointer Protection using As-
pectC++. This listing uses the class template VirtualFunctionCount<> that is pre-
sented in Figure 5.4 on page 92. The implementation details of the class template
RedundantVptrs<typename T, int HASHCODE, bool HAS_VPTR> are not shown. In
total, the complete implementation amounts to 275 lines of code.



114 library of dependability aspects

C::red_vptr.check(C*)

CheckVptr<TypeInfo<C>, void>
::exec(C*)

B::red_vptr.check(B*)

CheckVptr<TypeInfo<B>, void>
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virtual-function call

Figure 6.9: Call graph initiated by a virtual-function call. The advice cap-
tures any virtual-function call and invokes the member function
check_vptr() of the target class, for example, C::check_vptr().
Subsequently, the JPTL::BaseIterator<> instantiates the class
template CheckVptr<> for each data type of the class hierarchy
– A, B, and C – and then invokes the function exec().

ever, there is also a template specialization for HAS_VPTR==false, so
that no code is generated for classes without any vptr.

Finally, the generic introduction defines the two member functions
init_vptr() and check_vptr() in lines 38 to 39. Both functions use
the JPTL::BaseIterator<> to traverse the class hierarchy and invoke
the check() and init() routines of the member red_vptr. For exam-
ple, the member function check_vptr() in line 39 uses the class tem-
plate CheckVptr<> for instantiating the JPTL::BaseIterator<>. LinesTraversal of the class

hierarchy
8 to 11 show the implementation of the class template CheckVptr<>,
which basically defines the static function exec() that gets a pointer
to an object and invokes the check() routine of the object’s data mem-
ber red_vptr.

Consider the aforementioned example in which the class C inher-
its from the base classes A and B (see Figure 6.7 on page 112): The
resulting call graph initiated by an invocation of C::check_vptr() is
illustrated in Figure 6.9. In brief, the JPTL::BaseIterator<> instan-
tiates the class template CheckVptr<> for each data type of the class
hierarchy and then invokes the function exec(). Each vptr in the class
hierarchy gets checked thereby (see bottom row in Figure 6.9).

Last, but not least, the pieces of advice in lines 42 to 49 make
sure that the introduced member functions are invoked as necessary:
Whenever a class instance is constructed, the redundant vptrs are ini-
tialized (lines 42 and 44). The same applies to object destruction (line
43), because the GCC and LLVM/Clang compiler reset the vptr to
match the type of the destructor being executed. Finally, the point-
cut expression in line 47 captures any virtual-function call to classes
specified by the pointcut where() and classes derived thereof. Such a
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call triggers the implicit invocation of the function check_vptr() as
illustrated by the top of Figure 6.9.

Although multiple threads of control may access the objects with
replicated vptrs concurrently, the VPP aspect causes no race condi-
tions. This is because the value of a vptr remains constant after ob-
ject construction until object destruction, and the same applies to the
replicas. The only operation that modifies a vptr is error correction,
however, this only happens if a quorum of two identical vptrs is found Thread safety

during majority voting. In this specific case, correcting the deviating
vptr by overwriting is an idempotent operation. In other words, even
if multiple threads of control initiate the correction of one erroneous
vptr at the same time, the result is not affected. Thus, the VPP aspect
is thread safe in every respect.

In summary, the VPP aspect replicates the compiler-generated vptrs
in C++ objects and inserts code for error detection and error correc-
tion at the call sites of virtual functions. The implementation provides
a pointcut-based configuration interface that enables a selective place-
ment, offers the choice between error detection and error correction,
and allows for user-defined error handling. Chapter 7 evaluates the
effectiveness and efficiency of the VPP dependability aspect.

6.5 generic object protection

The most frequent reasons for failures of both L4/Fiasco.OC and the
eCos kernel are memory faults that corrupt critical kernel data struc-
tures, such as the process scheduler (see Section 3.2). Both kernels
implement these data structures as instances of C++ classes, whose
individual data members exhibit an exceeding criticality.

As a countermeasure, redundancy can be introduced into the class
instances (objects) to allow for error detection and error correction.
For example, a CRC code that is calculated over the values of all data
members can be stored as additional data member in each object. Be-
fore any access to such an object, the CRC code can be verified to
detect errors. After write access, the object’s CRC code is updated. In
principle, such an approach characterizes the Generic Object Protec-
tion (GOP) dependability aspect.

The essential AspectC++ 2.0 language features for GOP are generic
introductions (see Section 5.3) and advice for access to variables (see
Section 5.2). Using these language features, Figure 6.10 shows a highly
simplified implementation that highlights the fundamental ideas of
the GOP aspect. A user needs only to define the pure virtual pointcut
where() in line 3 to apply the GOP aspect to a particular set of class
data types. The generic introduction in lines 6 to 11 extends these Generic introduction

of redundancyclass data types by the two data members redundancy (line 7) and
static_redundancy (line 9), which both instantiate the class template
CRC<>. In short, that class template provides storage and algorithms
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for computing the CRC code for dynamic and static data members,
as specified by the second template parameter. Section 6.5.1 describes
the implementation of that class template in detail. Lines 44 to 45 de-
fine the previously declared static data member outside of the class
scope as required by the C++ standard [116, § 9.4.2].

The remaining pieces of generic advice make sure that the intro-
duced redundancy gets checked and updated at runtime. On the one
hand, lines 14 to 18 capture any access to non-static data members
and use tjp->target() of the join-point API (see Section 5.2.2) to
retrieve a pointer to the involved object. Subsequently, the respec-
tive pointer is passed as argument to the check() routine of the in-
troduced member redundancy. Likewise, lines 21 to 24 invoke the
update() routine after write access or constructor execution. On theGeneric advice for

access to data
members

other hand, the pieces of advice in lines 27 to 36 capture any access to
static data members and invoke the check() and update() routines of
the member variable static_redundancy, whose scope is provided by
JoinPoint::Target of the join-point API. Because the pointcut func-
tions get and set do not capture member access via pointer or ref-
erence, the advice in lines 38 to 40 specifies an unsatisfiable compile-
time assertion using the pointcut function ref to prohibit aliasing of
data members (see Section 5.2.2). Altogether, the respective redun-
dancy gets checked before every access and gets updated afterwards.

However, it turns out that checking an object’s redundancy on every
access incurs a high runtime overhead. Therefore, I propose to omit
any checking within member functions of the same class: An object
can be checked once at the call site of a member function instead
of repetitive checking within the member function. Section 6.5.2 de-
scribes such a call-based optimization and further presents a whole-
program optimization that identifies temporally close checks that can
be eliminated for performance reasons. Finally, Section 6.5.3 extends
the GOP dependability aspect by a wait-free synchronization algo-
rithm that guarantees thread safety and interrupt safety.

The GOP extensions are implemented as separate abstract aspects
as illustrated in Figure 6.11: Introducer refers to an aspect that imple-
ments the generic introduction of redundancy, such as CRC codes or
Hamming codes (see Section 6.5.1). GetSetAdviceInvoker resembles
the highly simplified aspect shown in Figure 6.10 but omits any check-
ing within member functions of the same class. The respective checksAspect-oriented

design of the GOP
aspect

around calls of member functions are inserted by CallAdviceInvoker,
which declares three additional pure virtual pointcuts that enable
whole-program optimization. Likewise, the pure virtual pointcut
synchronized() declared by the Synchronizer aspect specifies the ap-
plication of the wait-free synchronization algorithm. After all, the ab-
stract aspect GOP inherits from four base aspects and provides default
expressions for the inherited pure virtual pointcuts except where(),
which must be specified by the user to apply GOP.
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1 aspect GenericObjectProtection {

2 protected:

3 pointcut virtual where() = 0; // class types to be protected

4 pointcut on_error() = execution("void ...::gop_error()");

5

6 advice where() : slice class Intro { // generic introduction

7 CRC<JoinPoint> redundancy; // for non-static members

8 typedef CRC<JoinPoint, true> static_redundancy_t;

9 static static_redundancy_t static_redundancy;

10 static void gop_error() {} // explicit join point (see above)

11 };

12

13 // verify the redundancy before non-static member access:

14 advice (get(where()) && !get("static % ...::%")) ||

15 (set(where()) && !set("static % ...::%")) : before() {

16 if (! tjp->target()->redundancy.check( tjp->target() ) )

17 tjp->target()->gop_error();

18 }

19

20 // update the redundancy after write access or initialization:

21 advice (set(where()) && !set("static % ...::%")) ||

22 construction(where()) : after() {

23 tjp->target()->redundancy.update( tjp->target() );

24 }

25

26 // verify the static redundancy before static-member access:

27 advice (get(where()) && get("static % ...::%")) ||

28 (set(where()) && set("static % ...::%")) : before() {

29 if (! JoinPoint::Target::static_redundancy.check() )

30 JoinPoint::Target::gop_error();

31 }

32

33 // update the redundancy after write access to static members:

34 advice (set(where()) && set("static % ...::%")) : after() {

35 JoinPoint::Target::static_redundancy.update();

36 }

37

38 advice ref(where()) : before() { // prohibit aliasing

39 static_assert(JoinPoint::JPTYPE == 0, "aliasing of member");

40 }

41 };

42

43 // definition of the introduced static data member:

44 slice GenericObjectProtection::Intro::static_redundancy_t

45 GenericObjectProtection::Intro::static_redundancy;

Figure 6.10: Highly simplified implementation of Generic Object Protection
using AspectC++. The class data types specified by the pointcut
expression where() receive a generic introduction (lines 6 to
11) that extends these classes by a non-static and by a static
instance of CRC<>. These instances cover the dynamic and static
data members of the receiving class. The remaining pieces of
advice make sure that the CRC code gets checked before every
object access and gets updated afterwards. In total, the complete
implementation amounts to about 3,000 lines of code.
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Introducer

where() = 0 : pointcut

GOP

where() = 0 : pointcut
skip_check() : pointcut
skip_update() : pointcut
short_functions() : pointcut
synchronized() : pointcut
on_error() : pointcut

GetSetAdviceInvoker

where() = 0 : pointcut

CallAdviceInvoker

where() = 0 : pointcut
skip_check() = 0 : pointcut
skip_update() = 0 : pointcut
short_functions() = 0 : pointcut

Synchronizer

where() = 0 : pointcut
synchronized() = 0 : pointcut

HammingCode

CRC32Code

Checksum+Copy

TypeInfo, STATIC : bool

TypeInfo, STATIC : bool

TypeInfo, STATIC : bool

Figure 6.11: Design of Generic Object Protection. The abstract aspect GOP represents the user
interface of the dependability aspect, which inherits from four base aspects that
implement distinct features. Each base aspect is configurable at compile time
via pure virtual pointcuts, such as where() and synchronized(). Moreover, the
Introducer allows choosing from several types of redundancy.

In summary, GOP provides the following key features, which are
discussed individually in separate sections:

• Generative redundancy (Section 6.5.1)

• Call-based optimization (Section 6.5.2)

• Wait-free synchronization for thread safety (Section 6.5.3)

6.5.1 Generative Redundancy

GOP inserts information redundancy as additional data members
into the target classes (see lines 6 to 11 in Figure 6.10). Thus, re-
dundancy becomes an integral part of each class instance and the
compiler automatically allocates the needed memory whenever such
an object is constructed. As illustrated by Figure 6.11, any kind of
information redundancy can be introduced. This thesis exemplarily
considers four different implementations of redundancy that can be
used by the GOP aspect. Table 6.2 summarizes the four configuration
options, which differ in error detection and correction capabilities.

The CRC options detect any possible 1-bit, 2-bit, and 3-bit errors
in data objects smaller than 256 MiB by the implemented CRC-32/4

code [43]. Moreover, any burst error up to a length of 32 bits is de-
tected [163]. In addition, the CRC+Copy option transparently correctsError detection and

error correction
capabilities

such bursts and any 1-bit error by maintaining a shadow copy of each
data member. The Sum+Copy option implements a computationally
cheaper two’s complement addition checksum and achieves the same
error-correction capability, but arbitrary multi-bit errors can go unde-
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option description loc

CRC CRC-32 implementation, leveraging
Intel’s SSE4.2 instructions (only error
detection)

163

CRC+Copy CRC (see above), plus one copy of each
data member for additional error
correction

210

Sum+Copy 32-bit two’s complement addition
checksum, plus one copy of each data
member for error correction

198

Hamming Extended Hamming code, processing up
to 64 bits in parallel (see Section 6.5.1.2)

426

Table 6.2: Configuration options for redundancy to be introduced by the
GOP aspect. The four options exemplarily show that GOP facil-
itates a concise implementation by only a few lines of code (LOC).

tected [163]. In addition to the correction of single bit errors and burst
errors, the Hamming code reliably detects any 2-bit error.

I implemented each of these options as individual class templates
that can be instantiated by a generic introduction. For example, the
class template CRC<>, as shown in line 7 of Figure 6.10, is parame-
terized by AspectC++’s keyword JoinPoint, which provides access
to the compile-time join-point API (see Section 5.3). The class tem- Template-based code

generation using the
JPTL

plate CRC<> obtains thereby type information on the target class and,
thus, can use the join-point template library (JPTL). In particular, the
JPTL::MemberIterator<> facilitates template-based code generation
by recursive instantiation for each data member of the target class.
In other words, that compile-time iterator adapts itself depending on
the type information. By this means, a generative implementation of a
CRC-32 code that covers all data members of any class requires only
163 lines of code.

In each recursive step, the JPTL::MemberIterator<> provides type
information on the individual data member, such as its data type
and a pointer to the member. Information on the data type allows
calculating the size of the data member by applying the compile-time
sizeof operator2. Altogether, the memory area occupied by each data
member can be identified and, thus, can be covered by the CRC-32

code.

2 The only exceptions are arrays of variable length, whose size cannot be determined
at compile time, so that they cannot be protected by GOP. The C++ language does
not support such arrays at all, because they break class inheritance [116, § 3.9]. How-
ever, many compilers accept such member declarations as an extension for compati-
bility with legacy C code.
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6.5.1.1 Object Composition

C++ objects can be composed of several subobjects that complicate
the GOP approach. For example, consider the class C that contains the
member Csub of class type and GOP redundancy: C = {Csub, . . . ,R}.
The subobject – an instance of Csub – could be protected twice, bothSubobjects

by R and its own redundancy Rsub. Yet, it suffices to protect objects
only once. In addition, the subobject can be accessed independently
of the parent object. Therefore, subobjects should be protected only
by their own redundancy Rsub.

GOP excludes members of class type from protection because they
must be protected individually. The JPTL::MemberIterator<> pro-
vides the data type of each member, so that the standard C++ type
trait std::is_class<> can be used to identify whether a memberC++ type traits

is of class type [116, § 20.9]. Likewise, arrays of class-type objects
can be identified by first extracting the underlying object type via
std::remove_all_extents<> before applying the former type trait.
Whenever a member of class type or array thereof is found, GOP
skips that member and proceeds with the subsequent one.

6.5.1.2 Adaptive Hamming Code

Table 6.2 on the previous page indicates that the Hamming code is
the most complex configuration option regarding lines of source code.
The advantage of the Hamming code is that the amount of redundant
memory grows only logarithmically with the protected object’s size,
whereas the other options for error correction exhibit linear growth.

Section 2.2.3 on page 19 presented a separable Hamming code that
appends several check bits to a bit vector. However, such an approach
requires many shifts and logical operations in software to isolate the
individual bits for computation [219, p. 276]. Instead of computing
such a Hamming code for one long bit vector, it is more efficient
to slice the bit vector into chunks of several bits and to compute
a separate Hamming code for each slice. The advantage is that theBit slicing

Hamming codes for all slices can be computed in parallel by using a
word-wise XOR operation. Consider 128 bits of memory that are sliced
into four words w, x, y, z of each 32 bits. Thus, 32 individual Ham-
ming codes are calculated over the finite field of two elements3 by
multiplication with a transformation matrix G as follows:

3 In the finite field of two elements, addition corresponds to the logical XOR operation,
whereas multiplication is equivalent to the logical AND operation.
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G ·

⎛⎜⎜⎜⎜⎝
w

x

y

z

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 1

1 0 1 1

0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
  

G

·

⎛⎜⎜⎜⎜⎝
w0 w1 . . . w31

x0 x1 . . . x31

y0 y1 . . . y31

z0 z1 . . . z31

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w0 w1 . . . w31

x0 x1 . . . x31

y0 y1 . . . y31

z0 z1 . . . z31

w0 + x0 + z0 w1 + x1 + z1 . . . w31 + x31 + z31

w0 + y0 + z0 w1 + y1 + z1 . . . w31 + y31 + z31

x0 + y0 + z0 x1 + y1 + z1 . . . x31 + y31 + z31

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Thus, each of the 32 columns gets a vertical Hamming code that

can be computed in parallel if the processor architecture supports
a 32-bit XOR operation4. For example, the last row of the result can
be calculated by the two word-wise XOR operations x + y + z. In this
example, only six word-wise XOR operations are required to compute
all 96 check bits.

Furthermore, the Hamming code in each column can correct one
bit error independently, so that up to 32 bit errors can be corrected if
each of them occurs in a different column. Thus, all burst errors up
to 32 bits can be corrected.

The remaining challenge for implementing such a vertical Ham-
ming code is to obtain a suitable transformation matrix G, because
the dimensions of the matrix depend on the number of data words
to be transformed. GOP determines the size of each data member
already at compile time via the sizeof operator, so that the transfor-
mation matrix for a particular class data type can be constructed by
means of template metaprogramming at compile time.

As discussed in Section 2.2.3 on page 19, the upper part of a trans-
formation matrix consists of the identity matrix; only the lower rows
are relevant for computing the check bits. In the previous example,
the relevant rows of G are printed in bold face. These rows form Tailoring the

transformation
matrix

a submatrix whose columns represent permutations of at least two
ones. Thus, we have a certain degree of freedom when constructing
the matrix: The matrix can be optimized to contain a minimal number

4 A 64-bit processor can compute 64 bit slices in parallel.
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of ones, because only ones cause an effective XOR operation. A zero
element means that the template metaprogram does not need to gen-
erate any code for the element. For instance, the following matrix G5

allows transforming five data words and contains a minimal number
of ones:

G5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 1 1 0 0

1 0 0 1 1

0 1 0 1 0

0 0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
By constructing such a transformation matrix at compile time, a

template metaprogram can generate an adaptive Hamming code tai-
lored for each particular class data type. In summary, the bit-slicing
technique for parallelization and the adaptation at compile time en-
able a highly efficient implementation of the Hamming code, which
requires fewer redundancy than the other GOP options for error cor-
rection.

6.5.2 Exploiting Object-Oriented Program Structure

So far, GOP has been introduced as a mechanism that inserts runtime
checks at every data access. Yet, the object-oriented paradigm encour-
ages C++ developers to declare data members as private to afford
fine-grained access control and to hide implementation details [169,
p. 94A–98A]. Hence, access to many data members is typically re-
stricted to member functions of the same class.

Thus, a whole object can be checked already at the call site of a
member function, so that access to private data members can be car-
ried out without any individual checks. Repetitive checks are avoided
thereby if the member function accesses multiple data members one
after another. Likewise, the object’s redundancy only needs to be up-Checking of objects

already at call sites
of functions

dated once the member function returns. However, if the member
function leaves the object in the meantime by calling another func-
tion, the object’s redundancy needs to be updated as well, and the
object should be checked after the other function has returned. For
member functions declared as const, the redundancy does not need
any updating unless there are mutable data members.

Figure 6.12 illustrates the insertion of check() and update() oper-
ations at the call sites of member functions by a UML sequence dia-
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: A critical : B : C

check()

foo()

bar()

check()

update()

update()

Figure 6.12: Call-based optimization of GOP. The UML sequence diagram
depicts three objects, of which only the one named critical
is covered by GOP. The call-based optimization inserts runtime
checks (colored in dark red) at the call site of B::foo(). When
the control flow leaves the critical object by calling C::bar(),
further update() and check() operations are inserted to detect
errors that occur during the execution of C::bar(). If B::foo()
was declared as const, both update() operations would be omit-
ted.

gram. In this example, GOP is applied only to the class B, whereas the
other two classes remain unprotected. At first, an unnamed instance
of the class A invokes the member function B::foo(), which triggers
GOP to insert a B::check() operation (shown in dark red). After that,
B::foo() continues executing as usual until it invokes C::bar(). At
this point in time, GOP inserts a B::update() operation to reflect any
modification of the object. As soon as C::bar() returns, GOP inserts
another B::check() operation to detect errors that occurred in the
meantime. Finally, B::update() is carried out after B::foo() has re-
turned.

By checking at the call site, individual check() and update() oper-
ations on data access within member functions of the same class can
be omitted. In other words, the sketched approach exploits the object-
oriented program structure to relax the rather stringent insertion of
checks at every data access. However, access to data members from
outside of the respective class still needs individual checking, such as
access to public data members from another class.

6.5.2.1 Call-Site Analysis

The call-based GOP approach avoids repetitive checks within member
functions. At any point in time, the implicit this pointer of a member
function refers to the current object that has been checked already.
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Therefore, data access using the implicit this pointer does not need
any further checking. Moreover, the same applies to calls of member
functions using the implicit this pointer: There is no need to insert
any check() or update() operation if the caller and callee objects are
identical.

The uniform join-point API of AspectC++ (see Table 4.2 on page 68)
provides the necessary information for comparing the caller and callee
objects. For instance, tjp->that() yields the current this pointer at
the place of function invocation or data access, and JoinPoint::That

refers to the respective class data type. Likewise, tjp->target() yields
a pointer to the class instance whose member function is called or
whose data member is accessed, and JoinPoint::Target describes
the respective class data type.

Both class data types can be tested on sameness by the type trait
std::is_same<> at compile time. Only if both types are identical, theC++ type traits

actual pointers to the caller and callee objects need to be compared.
Optimizing compilers, such as the GCC, resolve the pointer compari-
son at compile time if possible, for example, if members are accessed
using the implicit this pointer. Altogether, such a call-site analysis
improves the efficiency by omitting repetitive check() and update()

operations on the current object, which has been checked already at
the call site.

6.5.2.2 Whole-Program Optimization

The call-site analysis avoids repetitive checks of the current object, but
only considers a single join point at a time. Yet, AspectC++’s frame-
work for user-defined static whole-program analyses (see Section 5.4)
facilitates even more aggressive optimization by considering multiple
join points at the same time. Figure 6.13 illustrates two use cases that
benefit from whole-program optimization.

1. In Figure 6.13a, the control flow temporarily leaves the critical

object by calling A::bar(), which triggers GOP to invoke the
update() and check() operations. This is unfavorable if the
called function returns quickly, for example, if it is an inline

getter or setter function that executes only for a few instruc-
tions. In general, the depicted update() and check() operations
only improve fault tolerance if the execution time of the called
function A::bar() exceeds the overhead of protecting the object.
Otherwise, it is better the leave the object unprotected for a few
instructions.

2. Figure 6.13b depicts a sequence of two member-function calls
with the critical object. Instead of updating the object’s re-
dundancy right after the first call, and immediately checking
the same object again before the second call, it would be more
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: Acritical : B

bar()

check()

update()

(a) Temporarily leaving the
critical object’s scope.

: A critical : B

foo()

update()

check()

bar()

update()

check()

(b) Call sequence with the same ob-
ject.

Figure 6.13: Use cases for whole-program optimization of GOP. Without
whole-program optimization, GOP inserts the check() and
update() operations printed in dark-red color. (a) If the func-
tion A::bar() returns quickly, both the update() and check()
operations should be omitted. (b) The update() and check()
operations between the call sequence of B::foo() and B::bar()
should be omitted, so that only the first check() and last
update() operations remain.

efficient to check the object only once before the entire call se-
quence and to update afterwards. Such a call sequence can even
span several calls to arbitrary functions if there is no long-lasting
function call in between.

In both cases, the decision whether to omit a particular check() or
update() operation requires information on the future of the program
execution. Such an optimization necessitates static program analyses.
The first problem (Figure 6.13a) can be reduced to the identification
of short-running functions, which is an undecidable problem in gen-
eral. However, Section 6.3.2 on page 109 already presented a heuristic Static control-flow

reachability analysisthat identifies potentially long-lasting functions: Those functions that
may request a context switch – directly or indirectly – are promising
candidates for long-lasting functions, because a context switch dra-
matically prolongs the lifetime of a function. Thus, the complement
set of functions yields an approximation for the set of short-running
functions, which can be computed by the static control-flow reacha-
bility analysis presented in Section 5.4.2 on page 95.

The second problem (Figure 6.13b) is to identify call sequences
with the same target object at compile time. In many call expressions,
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the target object is only available in form of a pointer or reference.
Therefore, I extended the AspectC++ compiler by the flow-sensitive
pointer-alias analysis as described in Section 5.4, which attempts toIdentification of call

sequences determine whether different pointer expressions – or reference ex-
pressions – refer to the same variable. The alias analysis extends the
AspectC++ project repository by information on the target object of
each member-function call, which is assigned the intra-procedural
identifier target_object_lid: Two function calls with identical val-
ues of target_object_lid refer to the same object.

Thus, I implemented an XQuery program that extracts the longest
call sequences for each target_object_lid within a basic block from
the AspectC++ project repository. The limitation to a single basic
block, enforced by comparing the element cfg_block_lid, guarantees
that such a call sequence is always executed as a whole, so that each
element is executed equally often. In addition, such a call sequence
may contain calls to other short-running functions.

Finally, the XQuery program lists all individual join points where
a check() or update() operation can be optimized out. The list is rep-
resented as the AspectC++ pointcut definitions short_functions(),
skip_check(), and skip_update(), which can be included optionally
by the GOP aspect (see Figure 6.11 on page 118).

6.5.2.3 Inheritance and Polymorphism

On the one hand, the call-site analysis and optimization imply that
the class hierarchy of an object needs to be considered, because a
member function of a derived class can implicitly access the inherited
data members of its base classes. Thus, when an object of a derivedTraversal of the class

hierarchy class is checked, all its base classes should be checked as well. The
JPTL::BaseIterator<> from the join-point template library traverses
the class hierarchy at compile time and facilitates the invocation of
respective check() and update() operations for each base class as
shown by the VPP aspect (see Section 6.4.2).

On the other hand, the dynamic dispatch of virtual functions at run-
time conflicts with the call-based GOP approach: At the call site of a
virtual function, it is impossible to determine the polymorphic object
type at compile time. Therefore, I implemented another configurationDynamic dispatch of

virtual functions option that introduces virtual check() and update() functions into
polymorphic classes. Thus, the virtual check() and update() func-
tions are dispatched to the most derived class, so that the complete
object can be checked at any call site.

In summary, the call-based GOP approach avoids repetitive check()
and update() operations by exploiting the object-oriented program
structure, and further involves the class hierarchy by dynamic dis-
patch to derived classes and subsequent compile-time traversal of
base classes.
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6.5.3 Concurrent Error Detection

“ Critical sections are poorly suited for asynchronous, fault-
tolerant systems: if a faulty process is halted or delayed in
a critical section, nonfaulty processes will also be unable
to progress. ”– Maurice Herlihy [106, p. 124]

The concurrent modification of shared objects by multiple threads
of control complicates GOP. The two basic operations check() and
update(), which examine an object for memory errors and store its
redundancy as described in the previous sections, can be disturbed by
concurrent execution in subtle ways. For example, verifying a check-
sum of a shared object that is being concurrently modified certainly
fails.

Introducing critical sections that enforce sequential execution of
the check() and update() operations would restore program correct-
ness at the expense of the undesired properties of locking, such as
convoying and priority inversion [107]. To avoid these drawbacks, I
developed a wait-free synchronization algorithm that enables excel-
lent scalability of GOP on multiprocessor systems. I implemented
the algorithm as the separate abstract aspect Synchronizer that is
illustrated in Figure 6.11 on page 118. That aspect provides the pure
virtual pointcut synchronized() that allows a user to specify in a fine-
grained way those classes that are used concurrently. Thus, the aspect
makes sure that the wait-free synchronization algorithm for GOP is
applied automatically on access to concurrent data structures.

Some of the following passages have been quoted verbatim with
permission5 from an IEEE journal publication [32, p. 26–30]; these
passages have been written exclusively by myself.

6.5.3.1 Wait-free Synchronization

“A method is wait-free if it guarantees that every call finishes its ex-
ecution in a finite number of steps.” [107, p. 59] This means that a
wait-free algorithm is necessarily lock free6, ruling out the use of crit-
ical sections that delay other threads of control. We can exploit a par-
ticular insight to address wait freedom for GOP: If an object is at
some time being modified by another thread, we can skip any further
check() and update() operations on that object at the same time. The
thread that entered the object first has already verified the object. The
other way around, the thread that leaves an object last is committed to
update the object’s redundancy. Thus, a consensus on “which thread
was first?” (or last, respectively) must be found.

5 ©2017 IEEE. Reprinted, with permission, from Christoph Borchert, Horst Schirmeier,
and Olaf Spinczyk. Generic soft-error detection and correction for concurrent data
structures. IEEE Transactions on Dependable and Secure Computing, 14(1):22–36, January
2017. doi: 10.1109/TDSC.2015.2427832

6 The lock-free condition only guarantees system-wide progress and allows for individ-
ual threads to starve [107, p. 60].

http://dx.doi.org/10.1109/TDSC.2015.2427832
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To identify whether an object is being used, the aspect Synchronizer
introduces a per-object thread counter into each shared class instance.
This counter is incremented atomically7 when a thread calls a mem-
ber function of such an object; the counter is decremented on function
return. Hence, a zero counter indicates an unused object that needs
verification before usage. Likewise, a counter value of one causes an
update of the object’s redundancy before returning from the current
member function.

However, a running check() or update() operation can be pre-
empted, so that other threads could modify the object concurrently.
To track such race conditions, the aspect Synchronizer additionally
introduces a dirty flag into each shared object. Each thread marks its
presence by overwriting the dirty flag with a thread-unique8 value.
A preempted thread checks for a lost race condition by examining
whether the dirty flag has been overwritten. If so, the preempted
thread aborts its checksum computation and continues without retry.

The following section specifies the sketched algorithm more pre-
cisely by a formal model that allows proving its correctness.

6.5.3.2 Formal Model and Verification

This section describes the wait-free synchronization algorithm in
Promela [111], which is a specification language targeted to abstract
models of concurrent programs. This allows focusing on the interac-
tion and synchronization of concurrent threads, and further enables
a tool-based verification of correctness properties.

Promela permits a limited set of language features in a C-like syn-
tax. Figure 6.14 shows the complete abstract model of the wait-free
algorithm. Line 1 defines the thread-unique values (1...N) by using
the predefined variable _pid that identifies each Promela process,
starting with zero. Lines 3 to 7 describe the data structure used in
the model. The global, shared object defined in line 8 instantiates
the data type CriticalClass, which consists of two ordinary mem-
ber variables, a checksum, and three synchronization variables: the
dirty flag and thread counter as described in Section 6.5.3.1, and a
version tag. The checksum exemplifies the redundancy introduced
by GOP. Lines 10 to 12 define a macro9 for the checksum computa-
tion. Likewise, the semantics of an atomic compare-and-swap10 instruc-
tion is defined in lines 14 to 18: Only if the memory location (first

7 Atomic incrementing and decrementing can be implemented by the fetch-and-add
CPU instruction that is provided by the x86, x86_64, and ARMv8.1 instruction-set
architectures. If such an instruction is not available, the wait-free counter can be
implemented using multiple memory locations as described by Raynal [198, p. 190ff].

8 For example, the address of a thread’s current stack frame sufficiently identifies a
thread.

9 Promela does not support callable functions; reusable code fragments must be spec-
ified as inline macros.

10 If the instruction-set architecture does not support the compare-and-swap CPU instruc-
tion, a pair of load-linked and store-conditional instructions can be used [107, p. 480f].
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1 #define thread_ID() (_pid+1) /* thread-unique value {1...N} */

2

3 typedef CriticalClass {

4 int member1 = 5, member2 = 2; /* ordinary members */

5 int checksum = 7; /* introduced by the aspect */

6 int dirty = 0, counter = 0, version = 0 /* wait-free sync */

7 }

8 CriticalClass object; /* global shared object */

9

10 inline compute_checksum(obj, chksum) {

11 chksum = obj.member1; /* non-atomic computation */

12 chksum = chksum + obj.member2 }

13

14 inline compare_and_swap(location, oldval, newval) {

15 d_step { /* one single indivisible statement */

16 if

17 :: (location == oldval) -> location = newval

18 :: else fi } }

19

20 inline enter(obj) {

21 if

22 :: (obj.counter == 0) -> /* object not in use */

23 int version = obj.version; /* remember version */

24 int checksum_tmp;

25 compute_checksum(obj, checksum_tmp)

26 if

27 :: (checksum_tmp != obj.checksum) -> /* bit error */

28 if

29 :: (obj.dirty == 0) -> /* check for race condition */

30 assert(version != obj.version) /* false positive */

31 :: else fi

32 :: else fi

33 :: else fi;

34 obj.counter = obj.counter + 1; /* atomic fetch-and-add */

35 obj.dirty = thread_ID() }

36

37 inline leave(obj) {

38 obj.dirty = thread_ID();

39 /* hardware memory barrier (MFENCE) needed for TSO */

40 if

41 :: (obj.counter == 1) -> /* the last thread leaving */

42 compute_checksum(obj, obj.checksum) /* update checksum */

43 obj.version = obj.version + 1;

44 compare_and_swap(obj.dirty, thread_ID(), 0) /* atomic */

45 :: else fi;

46 obj.counter = obj.counter - 1 /* atomic fetch-and-add */ }

47

48 active[4] proctype threads() { /* start 4 threads */

49 enter(object);

50 object.member1 = object.member1 + thread_ID()*3; /* modify */

51 object.member2 = object.member2 - thread_ID(); /* ... */

52 leave(object) }

53

54 /* global invariant specified in linear temporal logic */

55 ltl { always ((object.dirty != 0) ||

56 (object.checksum == object.member1 + object.member2)) }

Figure 6.14: Executable abstract model of the wait-free synchronization algo-
rithm, specified in Promela. Correctness properties are printed
on highlighted background.
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argument) contains the value oldval, then newval is written to that
memory location. In Promela, an arrow (->) denotes the then condi-
tion of a preceding if statement. The value comparison and potential
exchange are implemented indivisibly.

The wait-free synchronization algorithm is split into the two pro-Pairwise execution
of enter and leave cedures enter and leave, which are executed pairwise: enter is in-

voked before a thread uses an object, and leave is executed after the
object usage. The procedure enter works as follows: First, we check
whether the object is already being used by testing the thread counter.
Only if unused, we proceed with lines 23 to 32, which copy the ob-
ject’s version tag to a local memory location (line 23), and compute
the object’s checksum (lines 24 to 25). If the checksum mismatches,
we first check for a lost race condition to avoid false positives, indi-
cated by a nonzero dirty flag (line 29) or by a differing version tag
(line 30). Otherwise, there would be a hardware memory error, whichThe procedure

enter is not part of the abstract model. Finally, as we either have success-
fully verified the object or skipped the check due to concurrent mod-
ification, we increment the object’s thread counter atomically and
store the thread-unique value in the dirty flag (lines 34 to 35). From
that point in time, the object is marked as in use: Further checksum
verifications are skipped. Since the counter and dirty variables are
not written before the checksum verification step has been completed,
concurrent attempts to verify the checksum proceed until the fastest
thread has succeeded. This procedure guarantees that there is always
one thread that does not skip the check.

After object usage, the procedure leave is executed, which over-
writes the object’s dirty flag at first (line 38). If the current thread is
the only thread using the object, indicated by a counter of one, the ob-
ject’s checksum gets updated (line 42). Further on, the version tag isThe procedure

leave incremented, and we try to reset the dirty flag to zero by the atomic
compare_and_swap instruction (line 44). This succeeds only if the dirty
flag still contains the thread-unique value stored in line 38, meaning
that there had not been any concurrent modification of the object.
Otherwise, the compare_and_swap fails and the dirty flag remains
nonzero, because the object is used concurrently by another thread.
Finally, the thread counter is atomically decremented (line 46).

The role of the version tag becomes evident once the dirty flag is
reset to zero (line 44). Consider a thread that is preempted while ver-
ifying the object’s checksum (line 25). In the meantime, other threads
could update the object and reset the dirty flag. When the suspended
thread is resumed, the pending checksum verification fails certainly,
as old data, originating from before the preemption, go into the check-Avoiding the ABA

problem sum computation. This is an instance of the ABA problem [107, p. 223],
which occurs when a shared variable switches unnoticedly from state
A to state B, and back to A again. In our case, A denotes an unused
object and B means the opposite. The common solution is a version
tag, incremented on each state transition. A sufficiently large integer
variable will not wrap around during the time a thread is preempted.
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Even if the same object was modified a billion times a second, a 64-bit
version tag would overflow after 585 years of preemption.

The remaining lines 48 to 56 of Figure 6.14 are needed for for-
mal verification with the SPIN [111] model checker. Four threads are
started (lines 48 to 52) that concurrently invoke the procedure enter,
modify the shared object, invoke the procedure leave, and exit af-
terwards. SPIN evaluates all possible execution sequences; multiple Model checking

invocations of the procedures per thread are covered by a specific,
non-interleaving execution of different threads. The primary verifica-
tion property is specified in linear temporal logic (ltl), claiming that –
always – the object’s checksum is valid or the dirty flag is nonzero.
Line 30 asserts that there are no false positives caused by race condi-
tions.

6.5.3.3 Correctness Proof

A limitation of model checking is that only finite models can be ver-
ified, as the model checker exhaustively analyzes the model’s state
space. Therefore, this section gives a proof by complete induction that
holds for any number of threads. The induction basis is already proven
by model checking for 1 to 4 threads. For simplicity, we assume the
thread-unique IDs to be defined as {1, . . . , N} for N threads and an
unbounded version tag. In the following inductive step, N+1 concur-
rent threads execute the procedures enter and leave as in Figure 6.14.

theorem 1: If a thread with ID X is verifying the checksum, then
every checksum mismatch caused by a race condition (false positive)
is detected by the assert statement in line 30.

Proof. Assume not. A race condition is not detected by the assert state-
ment only in the following state: dirty = 0 and version = versionX

where versionX denotes the value of obj.version at the time when
thread X reads it for the first time (line 23). For N+1 threads that run
to completion, the value of versionX cannot exceed N, because thread
X has not finished, yet. We differentiate between two cases:
1) versionX ∈ {1, . . . , N} ⇒ At least one thread has already incre-
mented the version variable before thread X reads it for the first time.
Such threads cannot modify the object’s data members and checksum
anymore, so that at most N out of N+1 threads can contribute to a
race condition. Applying the induction hypothesis, we know that every
race condition is detected for up to N threads.
2) versionX = 0 ⇒ The initial value of the version variable indi-
cates that no thread has updated the object’s checksum, yet. Before
the object could be modified by another thread, the dirty flag must
be overwritten (line 35), yielding a nonzero value. The only way to
reset the dirty variable to zero is a prior increment of the version

variable (lines 43 to 44). Hence, a modifying race condition causes
a nonzero dirty flag or nonzero version variable, contradicting the
proof assumption.
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theorem 2: If a thread with ID X updates the object’s checksum and
resets the dirty variable to zero (lines 42 to 44), then the checksum is
valid. (This is equivalent to the ltl claim in lines 54 to 56).

Proof. The dirty variable can only be reset if obj.dirty=X holds
when thread X executes line 44 (compare_and_swap). That line is only
reached if thread X had exclusive access to the object at a previous
point in time (when evaluating line 41). In between, any other thread
that modifies the object overwrites the dirty variable with its own
thread ID unequal to X (line 35). Thus, when the compare_and_swap

succeeds, thread X had exclusive access to the object while computing
the checksum (line 42). Hence, the checksum is valid.

6.5.3.4 Relaxed Memory Consistency

The previous sections implicitly assumed sequentially consistent shared
memory for verifying the formal model. Sequential consistency re-
quires that all memory accesses of one processor are instantly visible
to the other processors, and that the memory accesses are ordered
with respect to the executed programs [3]. However, most contem-
porary multiprocessors implement relaxed consistency guarantees for
performance optimization [3], which allows the hardware to reorder
memory accesses. For instance, a store operation could be delayed
to hide memory latency. Unfortunately, such a reordering breaks the
wait-free synchronization algorithm. Consider swapping lines 34 and
35 in Figure 6.14 – the correctness properties would be violated. Thus,
every access to the synchronization variables (dirty, counter, and
version) must appear strictly in the specified order.

The predominant consistency relaxation, implemented by the x86

and SPARC architectures, is Total Store Ordering (TSO) [217]. The only
reordering allowed in TSO concerns store instructions, which can
be delayed after a subsequent load instruction, given that the load
instruction accesses a different memory location. Other instructionTotal Store Ordering

pairs, such as two store operations, are never reordered. TSO is at-
tributed to per-processor store buffers, which cache recent memory
writes until they are committed to memory. The store buffer is flushed
implicitly by an atomic CPU instruction or explicitly by an MFENCE in-
struction on x86, enforcing all pending memory operations to com-Hardware memory

barriers plete. Considering the formal model in Figure 6.14, there is only one
store–load instruction pair that accesses the synchronization variables
(line 38 and 41). This instruction pair must be serialized explicitly by
an MFENCE CPU instruction for TSO architectures (line 39).
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Another source of memory-access reordering is an optimizing com-
piler. Therefore, additional compiler memory barriers11 are required
around every access to the synchronization variables to prevent in-
struction reordering at compile time. Furthermore, this disables the
caching of values in CPU registers, which would otherwise have an
effect like store buffers.

6.5.3.5 Fault-tolerant Synchronization

Recalling the initial motivation for wait-free synchronization to en-
able concurrent detection of memory errors, the algorithm itself needs
to be resilient against memory errors as well. If memory errors cor-
rupt the three synchronization variables dirty, counter, and version

(see Section 6.5.3.2), the running program must not fail. The two vari-
ables dirty and version get overwritten regularly and are solely used
to skip or invalidate the check() and update() operations of the pro-
tected object. Bit errors affecting dirty and version are harmless and
can be safely ignored.

On the other hand, a corrupted value in the counter variable could
cause an undesired update() operation while the object is being used
by another thread. Furthermore, as the counter is only incremented
and decremented, bit errors are never overwritten. Therefore, an arith-
metic code, or rather AN code (see Section 2.4.1.2), protects the counter Arithmetic encoding

of the variable
counter

variable: Instead of incrementing the counter by one, a large12 odd
constant value A is added. Thus, a valid counter always contains
a multiple of A. Since bit errors turn likely that value into a non-
multiple of A, most errors can be detected, such as all single bit
flips [37]. Likewise, decrementing the counter variable is implemented
by subtracting A.

To reduce the complexity of the abstract model in Figure 6.14, only
error detection is addressed. If we additionally consider error cor-
rection, it becomes evident that a short critical section, guarding the
error-correcting instructions, is unavoidable: If an object is going to
be corrected, it must not be modified concurrently by other threads.
Hence, for error correction, the synchronization algorithm remains
wait-free with the exception that only in the event of a hardware er-
ror, a lock is used until the error is resolved. Such a lock cannot intro-
duce a deadlock, because the second Coffman condition (hold and wait
for resources) [56] is not satisfied: The error-correcting instructions do
not need to wait for additional resources but run to completion.

11 For example, the GCC implements a compiler memory barrier by the following
inline assembler statement: asm volatile("":::"memory");

12 In this thesis, I choose A to be 127, as suggested by Chang and associates [45].
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Figure 6.15: Slowdown caused by synchronization: The spinlock becomes a
bottleneck (less runtime is better).

6.5.3.6 Scalability to Many Cores

This section evaluates how the wait-free synchronization performs
compared to a locking-based approach. The locking-based solution
uses a per-object spinlock13 during the check() and update() oper-
ations. I implemented a micro benchmark that allocates one shared
object containing an array of 16 integers (64 bytes). A thread first
computes the sum of the integer array, and then stores that sum to
each array element. This procedure is repeated one million times per
thread, while the CRC-32 variant of GOP covers the shared object
(see Section 6.5.1). The micro benchmark runs on a 32-core Intel Xeon
E5-4650 system, supporting 64 hardware threads by hyper-threading.

Figure 6.15 shows the slowdown caused by synchronization for 1

to 64 threads, operating concurrently on the shared object. The Base-
line curve denotes the runtime without any error detection, increas-
ing slowly with the number of threads due to memory contention.
The Wait-free curve shows a similar pattern despite the overhead
caused by frequent CRC computations. In contrast, the Spinlock vari-
ant slows down dramatically for more than 16 concurrent threads.
For 64 threads, the runtime differs by almost an order of magnitude
between the wait-free and spinlock variants. Even for a single thread,
the wait-free implementation is slightly faster. This benchmark quan-
tifies the advantage of the wait-free synchronization algorithm, which
scales much better as the number of threads increases. This feature
could be essential for future many-core systems with possibly hun-
dreds of processors.

13 The spinlock variant uses boost::detail::spinlock (BOOST_SP_HAS_SYNC variant)
from the Boost C++ libraries to avoid further bus contention by giving up a thread’s
remaining time slice if acquiring fails too often.
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6.6 chapter summary

This chapter presented a software library of reusable dependability as-
pects. These dependability aspects are highly generic software mod-
ules that use the AspectC++ 2.0 technology to implement transparent
fault-tolerance mechanisms. In summary, I developed the following
dependability aspects in the course of this thesis:

• Symptom detectors, such as checking of integer overflows

• Return-Address Protection (RAP)

• Virtual-Function Pointer Protection (VPP)

• Generic Object Protection (GOP)

All dependability aspects provide a regular and coherent program-
ming interface that enables a selective placement and user-defined
error handling.

Each aspect, except the symptom detectors, supports detection and
correction of memory errors. Furthermore, each aspect operates in
a wait-free manner when applied to multi-threaded programs. There-
fore, the presented library advances the state-of-the-art in the domain
of software-implement fault tolerance (see Section 2.4.3).

Finally, the next chapter evaluates the effectiveness and efficiency
of these dependability aspects when applied to several systems, such
as eCos and the L4/Fiasco.OC microkernel.
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“ A little redundancy, thoughtfully deployed and exploited,
can yield significant benefits for fault tolerance; however,
excessive or inappropriately applied redundancy is point-
less. ”– David Taylor and associates [244, p. 586]

The goal of this chapter is to evaluate the library of reusable depend-
ability aspects that has been presented in the previous chapter. To this
end, this chapter comprises three case studies that evaluate the in-
dividual dependability aspects when applied to large-scale software
systems. Section 7.1 considers the real-time operating system eCos.
Subsequently, Section 7.2 covers the L4/Fiasco.OC microkernel. In
addition to these operating systems, Section 7.3 presents quantitative
results of applying the dependability aspects to the user-level pro-
gram Memcached [84].

First and foremost, this chapter evaluates the fault tolerance of the
three software systems with and without dependability aspects us-
ing the methodology of fault injection as described in Chapter 3. The
fundamental reliability metric for comparing program susceptibility
to transient hardware faults is the total probability of failure, which is
directly proportional to the number of failed program runs obtained
by independent fault-injection experiments (see Equation 3.4 on page
43). That metric takes into account that a slower program is vulner-
able to transient hardware faults for a longer period of time. Thus,
a dependability aspect is effective only if it compensates for the in-
curred runtime overhead.

Second, each of the following case studies assesses the efficiency
of the individual dependability aspects in terms of runtime overhead
and memory footprint. Finally, Section 7.4 summarizes the resulting
trade-off between fault tolerance and efficiency.
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7.1 case study : hardening ecos

The first case study applies the dependability aspects to the embedded
configurable operating system (eCos), which represents an off-the-shelf
operating system for real-time applications (see Section 3.2 on page 46

for details on eCos). In short, eCos is designed as a static library,
which is linked with the applications to produce an executable image.
Both the kernel and the applications run in the privileged processor
mode.

eCos 3.0 is bundled with a kernel test suite, which contains various
benchmark applications that exercise the kernel’s functionalities. This
case study uses these benchmark programs to generate load on the
eCos kernel during the evaluation. Table 7.2 briefly describes the 17

benchmarks programs, which run up to 15 threads per benchmark.
In addition to these artificial kernel tests, this case study uses the
flight-control application of the i4copter quadrotor helicopter (see
Section 4.2.2 on page 68), which represents a real-world safety-critical
application. The i4copter application runs 14 threads that interact
in a strict execution order.

Initially, this section evaluates the dependability aspects one by
one: symptom detection in Section 7.1.1, Return-Address Protection
in Section 7.1.2, and Generic Object Protection in Section 7.1.3. Virtual-
Function Pointer Protection is irrelevant because eCos does not use
any virtual functions. Afterwards, Section 7.1.4 analyzes these de-
pendability aspects in combination.

I use the same experimental setup of the fault-injection framework
FAIL* as described in Section 3.2.1 on page 47. In brief, the setup
includes an x86-hardware emulator and the fault model of indepen-
dent single bit flips in the whole data memory (RAM). The only vari-
ation is that I disable both serial and VGA output of eCos, as theExperimental setup

kernel benchmarks report on success or failure before finishing, and
such a time-consuming output would completely mask any protec-
tion’s runtime overhead. As an alternative, the x86 emulator records
invocations of the eCos function cyg_test_output(int, ...), which
indicates success or failure by its first argument.

Altogether, I use exhaustive fault-space scans of eCos running all 18

benchmarks except kill. That particular benchmark executes about
160 million CPU instructions, which take a very long time to emulate.
Therefore, the fault tolerance of eCos running the benchmark kill is
estimated by a sample of 20,000 fault injections, which yields an esti-
mate with an overall maximum relative standard error of 3.7 percent.
In total, this section presents the results of 857 million fault-injection
experiments after applying FAIL*’s trace-based fault-space optimiza-
tion (see Section 3.1.3). These experiments consumed 31 CPU years
in the computing cluster LiDOng at TU Dortmund.



7.1 case study : hardening ecos 139

benchmark description of the testing domain threads

bin_sem1 Binary semaphore functionality 2

bin_sem2 Dining philosophers 15

bin_sem3 Binary semaphore timeout functionality 2

cnt_sem1 Counting semaphore functionality 2

except1 Exception handling 1

flag1 Flag functionality 3

kill Thread kill() and reinitalize() 3

mbox1 Message box functionality 2

mqueue1 Message queue functionality 2

mutex1 Mutex functionality (see Section 3.2.2.2) 3

mutex2 Mutex release() functionality 4

release Release threads from waiting 2

sched1 Scheduler functionality 2

sync2 Different locking mechanisms 4

sync3 Priority inheritance 3

thread0 Thread constructors and destructors 1

thread1 Interleaved thread execution (see Section 3.2.2.1) 2

Table 7.2: Benchmark programs of the eCos kernel test suite. These bench-
marks are part of the official eCos repository and implement func-
tional tests of the kernel (second column). The third column shows
the number of threads that are started by each benchmark.

7.1.1 Symptom Detection

First, this section evaluates the four aspect-oriented symptom detec-
tors that have been presented in the previous chapters. The following
abbreviations denote each of them:

function : Range checking of function pointers (see Section 5.1.2)

array : Checking of array bounds (see Section 5.2.3)

type : Run-time type checking (see Section 5.3.2)

overflow : Checking of integer overflows (see Section 6.2.2)

Each symptom detector is applied to eCos as broadly as possible –
that is, to all function pointers, to all arrays, and so on. A baseline vari-
ant of eCos, which runs without any protection, serves as a reference
for the following comparisons.

7.1.1.1 Effectiveness: Error Detection

Figure 7.1a exemplarily presents the fault-injection results of exhaus-
tive fault-space scans of eCos running the benchmarks bin_sem1
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and i4copter. The diagrams show the accumulated number of failed
program runs on the y-axis and the respective variants of eCos on the
x-axis. Colors differentiate between the failure modes SDC, timeout,
and CPU exception (see Section 3.2.1 on page 47).

When running the benchmark bin_sem1, the function variant
of eCos detects 11.7 percent of the faults that led to a failure in the
baseline variant; the type variant detects 29.4 percent. However, the
number of failures increases by 11.4 percent in the overflow vari-
ant, and even by 18.1 percent in the array variant. Thus, only the
function and type variants are effective when running bin_sem1,
whereas the other two symptom detectors are counterproductive.

On the other hand, when running the benchmark i4copter, each
symptom detector is effective: The function variant of eCos detects
10.3 percent, the type variant 49.0 percent, the overflow variant 1.9
percent, and the array variant 1.4 percent of the faults that led to a
failure in the baseline variant.

Figure B.1 in Appendix B on page 190 shows the fault-injection re-
sults of all 18 benchmarks. In brief, the individual results are similar
to those of bin_sem1 or i4copter. Thus, and for the sake of clar-
ity, the rightmost diagram of Figure 7.1a summarizes the results by
presenting the arithmetic mean of all 18 benchmarks. On average, the
function and type variants are effective in detecting 10.4 percent
and 49.7 percent, respectively, of all faults that led to a failure in the
baseline variant. overflow and array detect less than 2 percent
each.

In summary, the effectiveness of the symptom detectors overflow

and array depends on the workload of the operating system. Range
checking of function pointers (function), however, is quite effective
in most cases. Finally, run-time type checking (type) is extraordinar-
ily effective regardless of the benchmark program.

7.1.1.2 Efficiency: Runtime

Figure 7.1b shows the simulated runtime in units of CPU clock cycles
of the benchmarks bin_sem1 and i4copter running on the differ-
ent eCos variants. bin_sem1 runs for only 3,750 clock cycles in the
baseline variant. The function variant of eCos increases the run-
time by 4.7 percent, and the type variant by 13.1 percent. Likewise,
the ineffective variants overflow and array cause a slowdown of
7.6 percent and 16.7 percent, respectively. That slowdown explains
their ineffectiveness, because the slowdown notably increases the at-
tack surface – or rather, fault space – but both variants detect only a
few faults. Thus, the number of failures increases to a similar extent
(see Figure 7.1a).

The i4copter benchmark exhibits a different behavior, as the slow-
down caused by all four symptom detectors is way below 0.1 percent.
The reason is that the i4copter benchmark contains slack time in



7.1 case study : hardening ecos 141

bin_sem1 I4Copter Mean (of 18)

0

5.0e+05

1.0e+06

1.5e+06

2.0e+06

0

5.0e+12

1.0e+13

1.5e+13

2.0e+13

0

5.0e+11

1.0e+12

1.5e+12

B
a

s
e

lin
e

F
u

n
c
ti
o

n

T
y
p

e

O
ve

rf
lo

w

A
rr

a
y

B
a

s
e

lin
e

F
u

n
c
ti
o

n

T
y
p

e

O
ve

rf
lo

w

A
rr

a
y

B
a

s
e

lin
e

F
u

n
c
ti
o

n

T
y
p

e

O
ve

rf
lo

w

A
rr

a
yF
a

ile
d
 p

ro
g
ra

m
 r

u
n

s

Experiment result SDC Timeout CPU Exception

(a) Fault-injection results of exhaustive fault-space scans of eCos running the bench-
marks bin_sem1 and i4copter. In addition, the rightmost diagram depicts the
arithmetic mean of all 18 benchmarks. On average, the function and type

symptom detectors effectively reduce the total number of failures by 10.4 percent
and 49.7 percent, respectively.
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(b) Simulated runtime in units of CPU clock cycles. The benchmark bin_sem1 ex-
hibits a runtime overhead of 4.7 percent (function) up to 16.7 percent (array).
In contrast, the benchmark i4copter contains slack time in its schedule, so that
the symptom detectors run in the idle phases, causing a negligible slowdown. The
same applies to the arithmetic mean of all 18 benchmarks.
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(c) Memory size of eCos linked with the benchmark applications. On average, the
read-only text section grows by 1.2 KiB (function) up to 5.2 KiB (type). Only
type consumes RAM and increases the data and BSS sections by an average of
627 bytes.

Figure 7.1: Quantitative evaluation of the four symptom detectors applied to
eCos based on three metrics: (a) fault tolerance, (b) runtime, and
(c) memory footprint. Appendix B on pages 190 to 192 shows the
individual results of all 18 benchmarks.
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its schedule, so that the symptom detectors run in the idle phases.
After three hyper periods of the main control loop, the real-world
application i4copter is stopped (see Section 4.2.2 on page 68).

Figure B.2 in Appendix B on page 191 shows the runtime of all
18 benchmarks, yet, the individual results are similar to those of
bin_sem1 or i4copter. Therefore, the rightmost diagram of Fig-
ure 7.1b presents the arithmetic mean of all benchmarks. In total, the
slowdown of all symptom detectors is below 0.1 percent.

7.1.1.3 Memory Footprint: Static Binary Size

Figure 7.1c depicts the static binary size of eCos linked with the re-
spective benchmark applications. Once again, the rightmost diagram
shows the arithmetic mean of all executable images files (Figure B.3
on page 192 presents the individual sizes). Each symptom detector in-
creases the text section of read-only memory: On average, function

adds 1.2 KiB of program instructions (+ 4.7 percent), type requires 5.2
KiB (+ 19.7 percent), and overflow and array add 2.2 KiB (+ 8.7
percent) each.

Only the symptom detector type increases the data and BSS sec-
tions by an average of 627 bytes (+ 2.0 percent). The other symptom
detectors are stateless and do not require any amount of RAM.

7.1.2 Return-Address Protection

This section turns towards the Return-Address Protection (RAP) de-
pendability aspect (see Section 6.3 on page 105) now. In short, RAP
extends a function’s stack frame by a checksum of both the return
address and frame pointer to enable error detection. In addition, er-
ror correction is implemented by optional copies of the return ad-
dress and frame pointer. Moreover, the dependability aspect provides
a whole-program optimization heuristic that excludes short-running
functions from protection (see Section 6.3.2)

Therefore, this section considers three different configurations of
the RAP aspect applied to eCos:

rap det. : Only error detection, excluding short-running functions

rap cor . : Error correction, excluding short-running functions

rap d/all : Only error detection, protecting all non-inline functions

These configurations are compared to a baseline variant in the fol-
lowing evaluation. Figure 7.2 summarizes the results of all 18 bench-
marks by taking three examples and presenting the arithmetic mean
of all results. Appendix B on pages 193 to 195 shows the individual
results.
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7.1.2.1 Effectiveness: Error Detection and Correction

Figure 7.2a exemplarily shows the fault-injection results of exhaus-
tive fault-space scans of eCos running the benchmarks bin_sem1,
except1, and i4copter. The diagrams show the accumulated num-
ber of failed program runs on the y-axis, differentiated between SDC,
timeout, and CPU exception.

No matter which RAP variant is applied to eCos, the benchmark
bin_sem1 exhibits more failures than the baseline variant. This is
because the accompanying runtime overhead increases the attack sur-
face of the other, unprotected eCos components. We shall see in Sec-
tion 7.1.4 that, once these other components are protected as well, the
benchmark bin_sem1 indeed benefits from RAP. For now, however,
bin_sem1 performs best on the baseline variant of eCos.

When running the benchmark except1, the detection variant of
RAP catches 21.9 percent of the faults that led to a failure in the base-
line variant, whereas the correction variant avoids 19.4 percent. On Ineffectiveness of

RAP without
whole-program
optimization

the contrary, the unoptimized d/all variant is counterproductive to
fault tolerance and increases the number of failures by 29.8 percent.

The fault-injection results of i4copter are similar to the arithmetic
mean of all 18 benchmarks, which is presented in the rightmost dia-
gram of Figure 7.2a. On average, the detection and correction variants
achieve a failure reduction of 3.3 percent and 2.9 percent, respectively.
The d/all variant, which is applied to all non-inline functions, even
reduces the failure count by 7.2 percent on average.

In summary, the RAP dependability aspect is generally effective if
the whole-program optimization heuristic that excludes short-running
functions is enabled. The protection of all non-inline functions, as im-
plemented by the d/all variant, achieves a better average but suffers
from pathological cases that exhibit an abrupt rise in failures.

7.1.2.2 Efficiency: Runtime

Figure 7.2b depicts the simulated runtime in units of CPU clock cycles
of the respective benchmark applications. The detection variant of
RAP prolongs the runtime of bin_sem1 by 10.5 percent, compared
to 14.6 percent that incur in the correction variant. That difference in
efficiency explains the higher failure counts of the correction variant:
Both variants protect the same data, but error correction causes more
runtime overhead. Likewise, the ineffectiveness of the d/all variant
results from its excessive runtime overhead of 67.3 percent.

except1 is most robust in the detection and correction variants,
which cause a runtime overhead of 4.2 percent and 5.5 percent, re-
spectively. However, the d/all variant causes 89.9 percent runtime
overhead, which explains its poor fault tolerance.

The runtime of the real-world application i4copter exceeds the
runtime of the other two benchmarks by five orders of magnitude.
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bin_sem1 except1 I4Copter Mean (of 18)
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(a) Fault-injection results of exhaustive fault-space scans of eCos running the bench-
marks bin_sem1, except1, and i4copter. In addition, the rightmost diagram
depicts the arithmetic mean of all 18 benchmarks. On average, the detection and
correction variants achieve a failure reduction of 3.3 percent and 2.9 percent, re-
spectively. bin_sem1 and except1 exhibit an abrupt rise in failures without
whole-program optimization in the d/all variant.
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(b) Simulated runtime in units of CPU clock cycles. On average, the slowdown caused
by all RAP variants is negligible. Yet, the unoptimized variant d/all causes a
dramatic runtime overhead for bin_sem1 and except1.
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(c) Memory size of eCos linked with the benchmark applications. On average, the
read-only text section grows by 4.7 KiB (error detection) and 8.2 KiB (error cor-
rection). Without whole-program optimization (d/all), error detection requires
even 9.8 KiB.

Figure 7.2: Quantitative evaluation of RAP applied to eCos based on three
metrics: (a) fault tolerance, (b) runtime, and (c) memory footprint.
Appendix B on pages 193 to 195 shows the individual results of
all 18 benchmarks.



7.1 case study : hardening ecos 145

As mentioned before, i4copter contains slack time in its schedule,
so that the RAP aspect runs in the idle phases. Thus, the slowdown
caused by all RAP variants stays below 0.1 percent. Likewise, the
arithmetic mean of all 18 benchmarks shows a negligible slowdown,
which is dominated by the long-lasting benchmarks. This may seem
odd, but Smith [228] argues that the arithmetic mean is the only ac-
curate measure for characterizing the performance of a benchmark
suite.

7.1.2.3 Memory Footprint: Static Binary Size

Figure 7.2c illustrates the static binary size of eCos linked with the
respective benchmark applications. The RAP variants considerably
increase the text section of read-only memory. On average, error de-
tection adds 4.7 KiB of program instructions (+ 18.5 percent); error
correction requires 8.2 KiB (+ 31.3 percent). The unoptimized d/all

variant even adds 9.8 KiB (+ 37.7 percent) but still provides only error
detection. Thus, the whole-program optimization effectively reduces
the memory overhead by 51 percent.

7.1.3 Generic Object Protection

This section proceeds with evaluating the Generic Object Protection
(GOP) dependability aspect (see Section 6.5 on page 115). In brief,
GOP inserts information redundancy into data structures to detect
and correct memory errors transparently. Furthermore, GOP is highly
configurable with respect to the set of data structures to be protected.
First, this section explores the costs and gains of protecting a single
kernel data structure versus protecting the whole eCos kernel. Sec-
tion 7.1.3.1 discusses the resulting optimization problem before eval-
uating selected configurations in Section 7.1.3.2.

In this section, the overall GOP configuration includes static whole-
program optimization (see Section 6.5.2.2) and wait-free synchroniza-
tion (see Section 6.5.3). The latter is needed because some parts of
the eCos kernel are lock-free, for example, the scheduler function
get_current_thread() is executed without acquiring a kernel lock.
In addition, GOP is configured without support for polymorphism
(see Section 6.5.2.3), as the eCos kernel does not use any virtual func-
tions.

7.1.3.1 Optimizing the Generic Object Protection

The eCos kernel contains about 20 C++ classes that implement the
essential kernel data structures. Because GOP can be configured to
protect any subset of these classes, there are 220 possible GOP config-
urations (the power set). It is impractical to evaluate all of them, yet,
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there are certainly optimal configurations in terms of fault tolerance
and runtime overhead.

To explore the resulting optimization problem, this section first con-
siders a series of cumulative subsets that protect the kernel classes
one by one: The series starts with the empty set, followed by a subset
that contains only one class, to be specific, the class that causes the
lowest individual runtime overhead when covered by GOP. The third
subset includes two classes – those with the lowest and second-lowest
runtime overhead. This series continues until it converges to the set
of all classes.

Figure 7.3b exemplarily shows the simulated runtime of the bench-
marks mbox1, mutex2, sync3, and i4copter that run on eCos
with 0 to 13 classes being protected by the CRC variant of GOP.
Note that the maximum number of protected classes varies with each
benchmark, as only those classes are shown that are actually used.
The benchmarks can be divided into two categories:

1. Long runtime (more than 10 million cycles). For any subset of ker-
nel classes, the slowdown caused by protection is negligible (for
example, mbox1). The reason is that these benchmarks spend
a significant amount of time in calculations on the application
level or contain idle phases.

2. Short runtime (less than 10 million cycles). The runtime overhead
increases considerably with each additional kernel class being
protected. These benchmarks primarily execute kernel code.

Figure B.8 in Appendix B on page 197 confirms these findings by
presenting the simulated runtime of all 18 benchmarks.

In the next step, Figure 7.3a depicts the fault-injection results ob-
tained by exhaustive fault-space scans of the same variants. The re-
sults indicate that the benchmark classification can be applied to the
fault-injection results as well:

1. Long-running benchmarks, such as mbox1 and i4copter, tend
to become more resilient (lower failure count) with each addi-
tional class being protected. The accompanying slowdown stays
below one percent in all cases. This calls for protection of all
classes.

2. Short-running benchmarks, such as mutex2 and sync3, ben-
efit from GOP if the runtime overhead stays below a certain
threshold. For example, configurations that cause less than one
percent runtime overhead typically exhibit lower failure counts.
However, as shown by mutex2, such a configuration does not
necessarily represent the minimal failure count.

Hence, for the considered set of benchmarks, the following heuristic
yields a good trade-off between slowdown and fault tolerance:
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(a) Fault-injection results of exhaustive fault-space scans. On the one hand, mbox1

and i4copter tend to become more resilient as the number of protected classes
grows. On the other hand, mutex2 and sync3 exhibit more failures if too many
classes are protected.
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(b) Simulated runtime in units of CPU clock cycles. The runtime of mbox1 and
i4copter stays almost constant as the number of protected classes grows,
whereas mutex2 and sync3 exhibit a considerable runtime overhead for certain
configurations.

Figure 7.3: Exploring the potential for optimization of GOP. Each bench-
mark runs on several eCos variants with increasingly more kernel
data structures being protected by a CRC code. Appendix B on
pages 196 and 197 presents the results for all 18 benchmarks.

If the individual protection of a particular class results in less than one
percent slowdown, then the class should be protected by GOP. Rule of thumb

Using this rule of thumb can massively reduce the efforts spent on
choosing a good configuration, because the average runtime is easily
measurable without any time-consuming fault-injection experiments.
Future work needs to address this multi-objective optimization prob-
lem in more detail, yet, this thesis carries on with the rule of thumb.

7.1.3.2 Effectiveness and Memory Footprint

The aforementioned rule of thumb (slowdown limit of one percent)
produces application-specific configurations that selectively protect
certain kernel data structures by GOP. This section evaluates the ef-
fectiveness of such configurations and compares the different GOP
options for redundancy as described in Table 6.2 on page 119: CRC,
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mbox1 mutex2 I4Copter Mean (of 18)
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(a) Fault-injection results of exhaustive fault-space scans of eCos running the bench-
marks mbox1, mutex2, and i4copter. In addition, the rightmost diagram de-
picts the arithmetic mean of all 18 benchmarks. For example, the Sum+Copy con-
figurations detect and correct 70.8 percent (mbox1) and 77.1 percent (i4copter)
of the memory errors that led to a failure in the baseline. On average, Sum+Copy
reduces the number of failures by 74.2 percent.
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(b) Memory size of eCos linked with the benchmark applications. For example, the
Sum+Copy configurations add an average of 11.8 KiB (+ 45.1 percent) to the read-
only text section; the data and BSS sections grow by 1,500 bytes (+ 4.7 percent).

Figure 7.4: Quantitative evaluation of GOP applied to eCos based on two
metrics: (a) fault tolerance, and (b) memory footprint. GOP is
tailored for each benchmark to keep the slowdown below one
percent. Appendix B on pages 198 and 199 shows the individual
results of all 18 benchmarks.

CRC+Copy, Sum+Copy, and Hamming. In addition, CRC/STU de-
notes the CRC option without whole-program optimization.

Figure 7.4a exemplarily shows the fault-injection results of exhaus-
tive fault-space scans of eCos with application-specific GOP configu-
rations. mbox1 and i4copter exhibit significant improvements in
fault tolerance, because their GOP configurations cover the whole
eCos kernel. mutex2, however, uses a GOP configuration that cov-
ers only one class, resulting in a mere failure reduction of 1.3 percent
for the CRC option.

The rightmost diagram of Figure 7.4a shows the arithmetic mean
of all 18 benchmarks (see Figure B.9 on page 198 for details). On aver-GOP avoids 74

percent of the
failures.

age, the CRC+Copy, Sum+Copy, and Hamming options transparently
detect and correct about 74 percent of the memory errors that led to a
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failure in the baseline. The CRC and CRC/STU options are similarly
effective but provide only error detection. As shown in the leftmost
diagram of Figure 7.4a, however, the benchmark mbox1 exhibits 5.8
percent more failures for CRC/STU compared to CRC with whole-
program optimization.

Figure 7.4b depicts the static binary size of eCos with application-
specific GOP configurations. On the one hand, the configuration used
by mutex2, which protects only a single class, adds about 2.0 KiB
of program instructions to the read-only text section (+ 7.6 percent). ROM usage

On the other hand, the extensive CRC configuration used by mbox1

enlarges the text section by 21.2 KiB (+ 78.0 percent). In this configura-
tion, Sum+Copy adds 25.8 KiB (+ 94.7 percent), whereas CRC+Copy
and Hamming require about 27.4 KiB (+ 100.7 percent).

The data and BSS sections increase by only 80 bytes for mutex2,
but considerably grow with the number of protected classes in the
other configurations. On average, CRC increases these memory sec- RAM usage

tions by 923 bytes (+ 2.9 percent), CRC+Copy and Sum+Copy add
1,500 bytes (+ 4.7 percent), whereas the Hamming code requires only
1,307 bytes (+ 4.1 percent).

In summary, the GOP dependability aspect is highly effective in
reducing the total number of failed program runs transparently by
about 74 percent. By application-specific tailoring, the slowdown can
be kept below one percent. eCos requires roughly twice the amount of
read-only memory for protection of all kernel data structures, whereas
the RAM sections grow by less than five percent on average.

7.1.4 Combining the Dependability Aspects

The previous evaluation of the individual dependability aspects al-
lows drawing the following conclusions:

• Symptom detection in form of run-time type checking and range
checking of function pointers is highly effective, whereas check-
ing of array bounds and integer overflows is poorly suited for
the detection of memory errors.

• Return-Address Protection with whole-program optimization is
typically effective but protects only few memory locations.

• Generic Object Protection is extraordinarily effective when con-
figured to meet a slowdown limit of one percent. However, short-
running benchmarks do not improve because the slowdown
limit rules out the protection of many kernel data structures.

Therefore, this section studies the dependability aspects in combina-
tion – that is, the three aspects are applied to eCos at the same time.
Altogether, this section compares the following variants:
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baseline : eCos without any protection serves as a reference.

gop : Application-specific configurations of GOP to meet the slow-
down limit of one percent, supporting error detection and error
correction by the Sum+Copy option (same configurations and
results as in Section 7.1.3.2).

gop+s : GOP configuration as above, plus symptom detection in form
of run-time type checking (not applied to classes already pro-
tected by GOP) and range checking of function pointers.

g+s+r : GOP and symptom detection as above, plus Return-Address
Protection (error correction) with whole-program optimization.

7.1.4.1 Effectiveness: Error Detection and Correction

Figure 7.5a exemplarily shows the fault-injection results of exhaus-
tive fault-space scans of eCos running the benchmarks mutex2 and
i4copter. The other 16 benchmarks resemble either of them in be-
havior, as shown in Figure B.11 on page 200 in Appendix B.

mutex2 represents the short-running benchmarks that cannot be
protected effectively by GOP, which reduces the number of failures
by only 1.2 percent in that case. Applying the two symptom de-
tectors (gop+s), however, reduces the number of failures by 38.8
percent. Furthermore, the combination of all dependability aspects
(g+s+r) achieves the highest failure reduction of 46.5 percent. The
latter improvement by 7.7 percent points is remarkable, considering
that Return-Address Protection alone avoids only 2.9 percent (see Fig-
ure B.4 on page 193). The reason is that, once a large share of kernel
data is protected, the runtime overhead of Return-Address Protection
becomes less adverse. This phenomenon even goes as far as that the
four benchmarks bin_sem1, cnt_sem1, mutex1, and sync3 sud-
denly benefit from Return-Address Protection, whereas they initially
did not (see Section 7.1.2).

i4copter, on the other hand, represents the long-running bench-
marks that improve considerably by GOP and, thus, exhibits 77.1 per-
cent fewer failures. In that case, the two symptom detectors (gop+s)
further improve the fault tolerance by only 0.5 percent points. Finally,
adding Return-Address Protection (g+s+r) reduces the number of
failures by a total of 80.1 percent.

In conclusion, the combination of the three dependability aspects
achieves the highest failure reduction in both cases. Furthermore, Fig-
ure B.11 on page 200 confirms these findings by showing that the
combination g+s+r significantly improves the fault tolerance of all
18 benchmarks over the baseline. On average, gop alone reduces the
failures by 74.2 percent, gop+s by 74.7 percent, and g+s+r by 77.4
percent.
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(a) Fault-injection results of exhaustive fault-space scans of eCos running the bench-
marks mutex2 and i4copter. In addition, the rightmost diagram depicts the
arithmetic mean of all 18 benchmarks. On average, the combination of three de-
pendability aspects (g+s+r) reduces the number of failed program runs by 77.4
percent.
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(b) Simulated runtime in units of CPU clock cycles. GOP is configured to meet a
slowdown limit of one percent, but the symptom detectors and Return-Address
Protection cause a runtime overhead of up to 21.6 percent for mutex2 (g+s+r).
On average, the total slowdown is negligible.
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(c) Memory size of eCos linked with the benchmark applications. On average, the
combination of three dependability aspects (g+s+r) requires twice the amount of
ROM compared to the baseline. The data and BSS sections, however, increase by
an average of only 2.0 KiB (+ 6.6 percent).

Figure 7.5: Quantitative evaluation of the combined dependability aspects
applied to eCos based on three metrics: (a) fault tolerance, (b)
runtime, and (c) memory footprint. The abbreviation gop+s

means GOP plus symptom detection, whereas g+s+r denotes a
combination of GOP, symptom detection, and RAP. Appendix B
on pages 200 to 202 shows the individual results of all 18 bench-
marks.
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symbol name data type size failures percentage

stack cyg_uint64[] 5,088 2.61 · 109 56.9 %

thread[0].stack_ptr cyg_uint32* 4 8.53 · 108 18.6 %

hal_interrupt_handlers cyg_uint32 (*[])() 896 7.46 · 108 16.3 %

comm_channels int (*[][])() 96 3.47 · 108 7.6 %

thread (w/o .stack_ptr) Cyg_Thread[] 260 2.80 · 107 0.6 %

Table 7.3: Remaining failures of eCos, protected by all dependability aspects
(g+s+r), running the thread1 benchmark. The table shows
the five most failure-prone symbols (continuous memory regions)
identified by an exhaustive fault-space scan. Most failures origi-
nate from the application stacks and data used by assembler rou-
tines (highlighted on colored background).

The remaining 22.6 percent of failures mostly originate from unpro-
tected data, such as the application stacks. For example, Table 7.3 lists
the five most failure-prone symbols of eCos, protected by all depend-
ability aspects (g+s+r), running the thread1 benchmark. In other
words, the table shows those faults that go undetected. 56.9 percent
of the remaining failures originate from the program symbol stack,
which implements two application stacks that are – strictly speaking –
not part of the eCos kernel. In addition, the data member .stack_ptrAnalysis of the

remaining failures of the first thread instance accounts for another 18.6 percent of the
remaining failures. These failures occur within the assembler routine
hal_thread_switch_context, which just cannot be protected by As-
pectC++. Likewise, the symbol hal_interrupt_handlers causes 16.3
percent of the remaining failures and is used only within the low-
level assembler routine that handles hardware interrupts. Finally, 7.6
percent of the remaining failures concern errors in low-order bits that
escape the range check of function pointers.

7.1.4.2 Efficiency: Runtime

Figure 7.5b depicts the simulated runtime in units of CPU clock cycles
of the benchmarks mutex2 and i4copter running on the different
eCos variants. GOP is configured to meet a slowdown limit of one per-
cent, but applying the two symptom detectors (gop+s) slows down
the benchmark mutex2 by 14.4 percent. In that case, the g+s+r vari-
ant causes a runtime overhead of 21.6 percent.

Figure B.12 on page 201 in Appendix B shows the results of all
18 benchmarks, of which release represents the worst case: gop+s

causes a slowdown of 23.5 percent, and g+s+r reaches the maximum
of 50.7 percent runtime overhead.

i4copter contains – as mentioned earlier – slack time in its sched-
ule, so that the dependability aspects run in the idle phases, resulting
in a negligible slowdown. In conformity with Amdahl’s law, the total
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slowdown of all 18 benchmarks is below one percent, as shown in
the rightmost diagram of Figure 7.5b. The short-running benchmarks
are of little significance compared to the long-lasting ones when cal-
culating the arithmetic mean, which is yet the only accurate mea-
sure for characterizing the performance of a benchmark suite [228].
In addition to measuring the simulated runtime, I deployed the dif-
ferent eCos variants on an Intel Core i7-M620 machine and verified
the mean slowdown to account for less than one percent on real x86

hardware [32].

7.1.4.3 Memory Footprint: Static Binary Size

Figure 7.5c illustrates the static binary size of eCos linked with the
respective benchmark applications. On average, the read-only text
section grows by 11.8 KiB (+ 45.1 percent) of program instructions
for GOP alone. The combinations gop+s and g+s+r enlarge the text
section by an average of 16.5 KiB (+ 63.0 percent) and 26.2 KiB (+ 100.3
percent), respectively.

As discussed in Section 7.1.3.2, GOP alone increases the data and
BSS section by an average of 1,500 bytes (+ 4.7 percent). The combina-
tion with symptom detection (gop+s) requires a total of 2,098 bytes
(+ 6.6 percent). Finally, Return-Address Protection (g+s+r) does not
further increase the RAM allocation.

7.2 case study : hardening l4/fiasco.oc

The second case study applies the dependability aspects to the oper-
ating system L4/Fiasco.OC, which represents a state-of-the-art micro-
kernel as described in Section 3.2 on page 46. In brief, L4/Fiasco.OC
provides multiple address spaces with hardware-based isolation; the
microkernel occupies a reserved address space and is the only piece
of software that runs in the privileged processor mode, so that faults
in user-level programs cannot corrupt the kernel.

To detect and correct errors in the kernel address space, Generic Ob-
ject Protection (GOP) and Virtual-Function Pointer Protection (VPP)
are applied to the microkernel. Return-Address Protection is not ap-
plied because the user-level programs allocate the stack memories in
their respective address spaces and not in the kernel address space.
Furthermore, the lifetime of return addresses on the kernel stack is
short, because the control flow does not block within the kernel. This
case study focuses on error correction and, thus, omits symptom de-
tection. Altogether, this case study compares the following four vari-
ants of the L4/Fiasco.OC microkernel:

baseline : The unprotected microkernel serves as a reference.

vpp : Virtual-Function Pointer Protection (error detection and correc-
tion) is applied to 26 kernel data types.
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benchmark description of the testing domain threads

clntsrv Input/output stream IPC mechanism 2

ipc L4 IPC mechanism (3 round trips) 2

map_irq Exchange of capabilities (access control) 2

shared_ds Shared memory using L4Re::Dataspace 2

streammap Exchange of virtual memory pages 2

uirq Interrupt functionality (see Section 3.2.3) 2

utcb-ipc Low-level IPC mechanism 2

Table 7.4: Example and test programs of the L4 Runtime Environment
(L4Re). These user-level programs test the essential microkernel
features. The third column shows the number of threads that are
started by each program.

vgop/stu : This variant extends the vpp variant by Generic Object
Protection, applied to 23 kernel data types. Whole-program op-
timization is disabled.

vpp+gop : Same as vgop/stu, but with whole-program optimiza-
tion.

In detail, both gop variants include support for polymorphism (see
Section 6.5.2.3) and use the adaptive Hamming code for error detec-
tion and error correction (see Section 6.5.1.2). The vgop/stu variant
allows evaluating the effect of whole-program optimization (see Sec-
tion 6.5.2.2).

This case study uses seven user-level test programs of the L4 Run-
time Environment (L4Re) to generate load on the microkernel during
the evaluation. Table 7.4 briefly describes these programs, which test
the essential microkernel features, such as Inter-Process Communica-
tion (IPC), interrupts, management of shared memory, and capability-
based access control. Each program runs two threads and reports its
status on the serial port. Therefore, I disable the exact timing of the
driver for the serial device, because waiting for a fixed baud rate
would completely mask any protection’s runtime overhead.

The following evaluation uses the same experimental setup of the
fault-injection framework FAIL* as described in Section 3.2.1. In short,
the setup includes an x86-hardware emulator and the fault model of
independent single bit flips in the whole data memory of the kernel
address space.

7.2.1 Effectiveness: Error Detection and Correction

Section 3.2.3 and Appendix A.2 already present the results of exhaus-
tive fault-space scans of the baseline variant of L4/Fiasco.OC running
the benchmarks clntsrv, uirq, and streammap. This case study
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reuses these results and estimates the fault tolerance of the other vari-
ants and benchmarks by random samples of N = 100, 000 fault injec-
tions each. Equation 3.4 on page 43 describes the statistical estimator
that extrapolates the total number of failed program runs from the
samples by taking the benchmark runtime and memory usage into
account. This extrapolation is necessary because the protected vari-
ants run slower and, thus, are vulnerable to transient hardware faults
for a longer period of time. Altogether, the estimate has a maximum Figure 7.6a omits

the hardly visible
confidence intervals
because of the tiny
relative standard
error.

relative standard error of 1.13 percent.
Figure 7.6a shows the fault-injection results as extrapolated failure

counts for each benchmark and variant combination. The baseline
variant of the microkernel is the most susceptible to memory errors
and exhibits a total of 11.44 · 1013 failures for all benchmarks. By ap-
plying the VPP aspect, these failures are reduced by 11.9 percent. In
addition, the combination of VPP and GOP without whole-program
optimization (vgop/stu) achieves a total failure reduction of 58.7
percent. Finally, the optimized vpp+gop variant is always the most VPP and GOP

avoid 60 percent of
the failures.

robust and reduces the total number of failures by 59.9 percent.
The remaining 4.59 · 1013 failures are mostly caused by unprotected

data that has not been covered by VPP and GOP, yet. For example,
the baseline evaluation in Section 3.2.3 on page 53 identified two large
heap memories as reasons for many failures. Future work needs to
analyze these heaps in more detail, so that the dependability aspects
can be applied to the data structures found there.

7.2.2 Efficiency: Runtime

Figure 7.6b depicts the simulated runtime in units of CPU clock cy-
cles of the seven benchmark programs. On the one hand, the runtime
of the three benchmarks clntsrv, streammap, and utcb-ipc in-
creases notably with the degree of protection. streammap repre-
sents the worst case and exhibits the highest runtime overhead, which
amounts to 2.7 percent for vpp. Without whole-program optimiza-
tion, the vgop/stu variant even prolongs the benchmark’s runtime
by 53.7 percent. However, the optimized vpp+gop variant reduces
that runtime overhead to 28.4 percent. Thus, the whole-program opti-
mization of GOP considerably improves the efficiency, which in turn
leads to increased effectiveness: Figure 7.6a shows that the vpp+gop

variant always exhibits the lowest failure counts.
On the other hand, the remaining four benchmarks have an al-

most constant runtime regardless of any protection. These four bench-
marks contain idle phases that provide slack time for the VPP and
GOP aspects. Thus, the slowdown caused by the dependability as-
pects is negligible in such cases.
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(a) Fault-injection results of the microkernel running seven different benchmark pro-
grams. The results are sampling estimates with a maximum relative standard error
of 1.13 percent. Colors differentiate the failure modes between SDC, timeout, and
CPU exception (see Section 3.2.1). The baseline variant exhibits the most failures
for each benchmark. In summary, the gop+vpp variant is always the most robust
and reduces the total failures transparently by about 60 percent.
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(b) Simulated runtime in units of CPU clock cycles. The benchmarks clntsrv,
streammap, and utcb-ipc exhibit a considerable runtime overhead in the GOP
variants; however, the whole-program optimization of the vpp+gop variant re-
duces that overhead to a maximum of 28.4 percent (streammap). The bench-
marks ipc, map_irq, shared_ds, and uirq include slack time in their sched-
ule, so that the dependability aspects cause only a negligible slowdown.

Figure 7.6: Quantitative evaluation of the VPP and GOP dependability as-
pects applied to the L4/Fiasco.OC microkernel based on two
metrics: (a) fault tolerance, and (b) runtime. The abbreviation
vgop/stu denotes a combination of VPP and GOP, just like
vpp+gop, but without whole-program optimization.
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kernel variant text section data section bss section

baseline 420.9 19.5 600.0

vpp 445.8 21.1 600.5

vgop/stu 507.8 27.0 600.6

vpp+gop 501.1 24.4 600.6

Table 7.5: Static binary size in units of kibibytes (KiB) of the L4/Fiasco.OC
kernel images. For instance, the most effective variant vpp+gop

requires 80.2 KiB of ROM and 5.5 KiB of RAM in addition to the
baseline.

7.2.3 Memory Footprint: Static Binary Size

The dependability aspects introduce information redundancy into the
microkernel to detect and correct memory errors transparently. Thus,
the memory usage of the kernel image increases as shown in Table 7.5.
In contrast to the previous case study, the L4/Fiasco.OC microkernel
is compiled and linked separately from the benchmark applications,
which are loaded individually at runtime. Therefore, the size of the
kernel image is independent of the benchmark applications.

The VPP aspect alone increases the size of the read-only text sec-
tion by 24.9 KiB (+ 5.9 percent) of program instructions. Furthermore,
combining both dependability aspects and using whole-program op-
timization (vpp+gop) enlarges the text section by a total of 80.2 KiB
(+ 19.1 percent).

In addition, the RAM allocation – that is, the sum of the data and
BSS sections – increases only insignificantly: vpp adds 2.1 KiB (+ 0.3
percent), whereas vpp+gop requires a total of 5.5 KiB (+ 0.9 percent)
of additional RAM. The reason for this rather low demand on RAM is
the adaptive Hamming code (see Section 6.5.1.2), which uses informa-
tion redundancy that grows only logarithmically with the protected
object’s size.

In summary, the combination of the VPP and GOP dependability
aspects provides an excellent trade-off between memory overhead,
slowdown, and improvement in fault tolerance by about 60 percent.

7.3 case study : hardening memcached

The third case study leaves the domain of dependable operating sys-
tems and moves on to the user-level program Memcached [84]. Be- Applying the

dependability
aspects to a
user-level program

cause the dependability aspects are designed as a highly generic and
reusable library, there is no reason to limit their field of application
to operating systems. Thus, this case study exemplarily applies the
dependability aspects to Memcached and evaluates the effectiveness
and efficiency.
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In brief, Memcached is a multi-threaded server program that im-
plements an in-memory key-value store for small data. That is, the
Memcached server stores user-defined data in RAM to provide low-
latency access. Clients populate the server’s key-value store by trans-
mitting data over a network connection; afterwards, the clients can
fetch that data quickly. Memcached is commonly used for speed-
ing up dynamic websites by reducing database load. For example,
Wikipedia [84] and Facebook [180] deploy hundreds of Memcached
servers, processing over a billion accesses per second and storing tril-
lions of data items [180, p. 385]. Thus, dependability is of particular
concern.

This case study applies the dependability aspects to a C++ ver-
sion [160, p. 72] of the original C-based implementation of Mem-
cached. Generic Object Protection (GOP) is applied to the payload
data that are stored in RAM to avoid silent data corruption. In ad-
dition, GOP enables error detection and correction in several book-
keeping data structures, such as linked lists that store pointers to
the payload data. Furthermore, this case study evaluates whether the
other dependability aspects avoid program crashes effectively.

7.3.1 Experimental Setup

The experimental setup of this case study differs from the previous
case studies, because the software under test is not an operating sys-
tem. Thus, there is no benefit from using a hardware emulator for
fault injection – a crash of a user-level program after injecting a fault
does not require a full hardware reset; it just suffices to restart the
program. Moreover, an exhaustive fault-space scan is infeasible for
a memory-intensive application such as Memcached, even using the
trace-based fault-space optimization described in Section 3.1.3. There-
fore, fault sampling is the only viable method.

For these reasons, I decided to develop another fault-injection tool
that implements fault sampling in Linux processes that run natively
on real hardware. Such a tool yields accurate timings of super-scalar
and pipelined multiprocessors and their underlying memory hierar-
chy. The following section briefly describes the design and implemen-
tation of the tool that is used to evaluate the dependability aspects
applied to Memcached.

7.3.1.1 Fault Injection into Linux Processes

The Unix system call ptrace, commonly used for program debugging,
technically allows injecting memory faults into a user-level process
at runtime [123, p. 250]. As affirmed by Section 3.1.1 on page 41,
hardware memory faults follow a uniform random distribution in
both spatial and temporal dimensions. Thus, the injected faults must
be consistent with such a probability distribution.
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Figure 7.7: Fault injection into the virtual memory of a Linux process. To
implement an unbiased yet efficient sampling strategy, the fault
coordinates are chosen randomly from a rectangular fault space
of fixed dimensions ∆t × ∆m. Afterwards, the fault coordinates
are mapped to the process’ virtual memory addresses based on
information provided by the Linux proc file system. If a fault co-
ordinate exceeds the amount of virtual memory used by the pro-
cess, the fault is considered as benign (green cross). Otherwise,
the fault affects an actually used memory address (red cross) and
is injected via the system call ptrace. Read-only memory is ex-
cluded from fault injection as motivated by Section 3.2.1.

On the one hand, sampling uniformly from the whole 64-bit virtual
address space of a Linux program is inefficient, because the virtual
address space is typically sparsely populated: Most virtual addresses
are not mapped to any physical address, so that an exceedingly large Uniform sampling

number of samples would be required to hit an actually used mem-
ory address. On the other hand, the amount of used memory typically
varies over time due to dynamic memory allocation, which biases a
sample that was picked only from the subset of used memory ad-
dresses: Rarely used memory addresses would be underrepresented
in the sample.

Therefore, I propose to pick an unbiased sample uniformly from
a small fault space of fixed dimensions and to map the sample to
the process’ virtual address space afterwards. Figure 7.7 illustrates
such an approach, assuming fault-space dimensions of ∆t = 15 sec-
onds and ∆m = 200 MiB. These dimensions define a rectangular fault Sampling from a

rectangular fault
space of fixed
dimensions

space ∆t × ∆m, from which each fault coordinate (nanosecond, bit) is
chosen randomly with the same probability. In a second step, these
fault coordinates are mapped to the used memory addresses of the
target process at runtime. The Linux proc file system [59, p. 419] pro-
vides information on the virtual memory addresses that are in use
at /proc/PID/maps, where PID refers to the process id. Based on that
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information, each fault coordinate is mapped to a virtual memory
address, unless the coordinate’s value exceeds the amount of used
virtual memory at the respective point in time. In such a case, the
fault is benign as it affects unused memory.

For example, consider a program that repeatedly allocates dynamic
memory and never releases it until program termination. Thus, the
amount of used memory steadily grows, as indicated by the trian-
gular shape on the left-hand side of Figure 7.7. Only the ten fault
coordinates that are located within this triangle are effective, because
they can be mapped to a virtual memory address. Therefore, if the
fault-injection tool finds a coordinate that cannot be mapped to a vir-
tual address, the tool just records the fault-injection result as benign
and proceeds with the next coordinate. Effective faults are eventu-
ally injected via the system call ptrace – one fault per independent
program run.

In summary, the described approach implements an unbiased sam-
pling strategy consistent with the uniform random distribution. Yet,
it is essential to choose the fault-space dimensions ∆t and ∆m in such
a way that the target process never exceeds them. In other words,
the process must terminate before ∆t elapses, and it must not use
more than ∆m of memory at a time. If we keep the fault-space dimen-
sions constant for evaluating different programs, we can even directly
compare the fault-injection results of the different programs without
extrapolation to the fault space (see Equation 3.4 on page 43).

7.3.1.2 Workload, Hardware, and Protection Variants

To evaluate the Memcached server under load, I use the load gener-
ation and benchmark tool memaslap, which is part of libmemcached1.
The tool memaslap populates the key-value store of the Memcached
server with random data and, in turn, fetches the stored data. In brief,
memaslap repeats a procedure of storing one key-value pair and sub-
sequently fetching nine random key-value pairs that have been stored
previously. In other words, memaslap implements a test sequence of
get–set requests with a ratio of nine to one. The test sequence executes
a total of one million requests, involving 100,000 distinct key-value
pairs with a fixed key size of 64 bytes and 1,024 bytes of payload
data.

In addition to the default settings, memaslap is configured to exam-
ine the fetched data for silent data corruption (--verify=1.0) and to
use two threads (--threads=2), which establish a total of 16 concur-Software setup

rent connections to the Memcached server. Likewise, the Memcached
server runs in the default configuration of four threads, but the heap
memory is limited to 150 MiB.

In this case study, both the Memcached server and memaslap run
on the same machine and communicate via the loopback interface

1 libmemcached is available online at: http://libmemcached.org

http://libmemcached.org
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to avoid any network latency. The hardware setup consists of one
machine with two quad-core Intel Xeon X5470 processors; each pro- Hardware setup

(x86-64)cessor has 12 MiB of second-level cache memory. Debian GNU/Linux
8.5 operates this machine in 64-bit mode.

Based on the aforementioned workload and hardware setup, this
case study compares the following three variants of the Memcached
server:

baseline : An unprotected variant serves as a reference.

gop+vpp : Both the Generic Object Protection (GOP) and Virtual-
Function Pointer Protection (VPP) are applied to the payload
data and several bookkeeping data structures of Memcached.
The GOP configuration includes support for wait-free synchro-
nization (see Section 6.5.3), whole-program optimization (see
Section 6.5.2.2), and uses the adaptive Hamming code for er-
ror detection and error correction (see Section 6.5.1.2). Likewise,
VPP is configured to detect and correct errors.

gop+vpp+rap : In addition to the aforementioned variant, Return-
Address Protection (RAP) is applied to detect and correct er-
rors that affect the control flow. The RAP configuration includes
whole-program optimization (see Section 6.3.2).

7.3.2 Effectiveness: Error Detection and Correction

This section evaluates the fault tolerance of the Memcached server
by fault injection. During each independent run of the benchmark
memaslap, one bit flip is injected into the data memory of the Mem-
cached server process. The fault locations are picked at random from
the rectangular fault space defined by ∆t = 15 seconds and ∆m =

200 MiB. After fault injection, the benchmark memaslap runs to com-
pletion; the Memcached server is restarted once the memaslap run
finishes.

Each of the three Memcached variants is evaluated by a sample of
100,000 fault injections, which corresponds to a total of two weeks of
continuous operation. The outcome of a single fault-injection exper-
iment is either classified as benign, as silent data corruption (SDC)
reported by memaslap, as timeout, or as CPU exception, such as in-
valid memory access or execution of an illegal instruction.

Figure 7.8 shows the absolute frequency of the three failure modes
that occur after fault injection into the three variants of Memcached.
The error bars represent the 99-percent confidence intervals obtained
by applying the Central Limit Theorem; that is, 99 percent of all sam-
ples of the same size would yield results covered by these error bars.

The leftmost diagram depicts the absolute frequency of SDC, which
certainly represents the most severe failure mode. About 10 percent
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Figure 7.8: Quantitative fault-injection results of Memcached under work-
load generated by the benchmark tool memaslap. A random
sample of 100,000 single bit flips is injected into the data mem-
ory of each Memcached variant – baseline, gop+vpp, and
gop+vpp+rap – one fault per independent benchmark run. The
individual diagrams show the absolute frequencies of the failure
modes SDC, timeout, and CPU exception on the y-axis. The error
bars, and numbers prefixed by the ± symbol, represent the 99-
percent confidence intervals to estimate the sampling error. In
summary, the protected variants exhibit three orders of magni-
tude fewer SDCs and about 50 percent fewer crashes.

of the injected faults cause an SDC in the baseline variant of Mem-
cached, which exhibits a total of 10,130 SDCs. The dependability as-
pects gop+vpp are highly effective and reduce the number of SDCs
by three orders of magnitude to just 25 occurrences. In other words,SDC reduction

about 99.8 percent of the faults that cause an SDC are detected and
corrected transparently by the two dependability aspects. Applying
the RAP aspect, however, does not further improve the SDC rate.

The other two diagrams in Figure 7.8 illustrate the absolute fre-
quencies of timeouts and CPU exceptions, which both occur less of-
ten than SDCs in the baseline variant. About of 50 percent of these
crash failures are avoided by the dependability aspects. The differ-Crash avoidance

ence between the variants gop+vpp and gop+vpp+rap is not sta-
tistically significant at the 99-percent confidence level, because the
depicted confidence intervals overlap. However, neither confidence
interval overlaps with the baseline variant, suggesting a statistically
significant improvement over the baseline in both aspect combina-
tions.

In conclusion, the RAP aspect turns out to be virtually ineffective
when applied to Memcached. The GOP and VPP aspects, however,
significantly improve the data integrity by three orders of magni-
tude, and further improve the availability of the Memcached server
by avoiding about 50 percent of the crash failures.
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Figure 7.9: Native runtime of the Memcached server under workload gener-
ated by the benchmark tool memaslap. The individual diagrams
depict the arithmetic mean of 100 benchmarks runs; the error
bars represent one standard deviation of the sample. From left to
right, the diagrams show the elapsed real time (wall-clock time),
the actual computation time (user time), and the time spent in
the Linux kernel (system time). The gop+vpp variant exhibits a
total slowdown of 36.3 percent in wall-clock time, an overhead
of 92.3 percent in user time, and an increase of 26.4 percent in
system time.

7.3.3 Efficiency: Runtime

The improved dependability comes at the cost of increased runtime
required for processing the workload generated by the benchmark
tool memaslap. Figure 7.9 shows the arithmetic mean and one stan-
dard deviation of the runtimes of 100 benchmark runs using the dif-
ferent variants of the Memcached server. The leftmost diagram de- Wall-clock time

picts the elapsed real time (wall-clock time): On average, the baseline
variant handles the workload in 8.1 seconds, whereas the variants
gop+vpp and gop+vpp+rap require 11.1 seconds and 11.4 seconds,
respectively. Thus, gop+vpp adds a latency of three seconds, which
corresponds to an increase of 36.3 percent.

In addition to the wall-clock time, Figure 7.9 presents a breakdown
of time into user time and system time. The former amounts to the ac-
tual computation time spent within the Memcached process without
waiting for I/O. On average, the baseline variant takes 4.7 seconds
of computation time, which is increased to 9.1 seconds by gop+vpp. User time

This increase amounts to an overhead of 92.3 percent, caused by the
computation-intensive GOP applied to the roughly 150 MiB of pay-
load data. In addition, the RAP aspect adds another 0.5 seconds of
user time.

The rightmost diagram depicts the system time – that is, the time
spent in the Linux kernel for carrying out I/O operations and context
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switches. About 15.0 seconds are consumed by the baseline variant;System time

gop+vpp requires 19.0 seconds and, again, the RAP aspect adds an-
other 0.5 seconds on top. The increase of system time is an indirect
consequence of the increased user time, as the protected variants ex-
hibit roughly twice the context switches of the baseline variant. For ex-
ample, if the runtime overhead occurs within a critical section, other
threads of control are potentially blocked that would otherwise have
not been blocked.

As a final note, the wall-clock time is much lower than the sum
of user and system time, because Memcached uses four threads of
control that concurrently contribute to the user and system time by
utilizing multiple processors.

7.3.4 Memory Footprint

The memory footprint of Memcached is dominated by dynamic heap
memory that stores the payload data. As described in Section 7.3.1.2,
the benchmark memaslap generates random key-value pairs with a
fixed key size of 64 bytes and 1,024 bytes of payload data. In to-
tal, such a data item requires 1,224 bytes of memory in the linked
data structures of the baseline variant of Memcached. The gop+vpp

variant adds 208 bytes of information redundancy to each data item,
which amounts to an increase of 17.0 percent. However, this increase
is completely hidden by the internal memory alignment of Mem-
cached, which aligns the data items at powers of 1.25 to avoid mem-
ory fragmentation. For example, data items are stored in chunks of
either 1,184 bytes or 1,480 bytes, but not in intermediate sizes. In the
end, each key-value pair generated by memaslap requires 1,480 bytes
of memory – no matter whether the dependability aspects are applied
or not.

In comparison to the 150 MiB of dynamic heap memory, the read-
only text section of the baseline variant amounts to only 149.6 KiB of
program instructions. The gop+vpp variant increases that text sec-
tion by 114.1 KiB (+ 76.3 percent), and the RAP aspect adds another
20.3 KiB. In summary, the read-only text section grows considerably,
but the total memory footprint remains virtually identical because of
memory alignment.

7.4 chapter summary

The goal of this chapter was to evaluate the library of dependability
aspects and, thus, the general approach of this thesis. First, this chap-
ter highlights the reusability of the individual dependability aspects,
which are so generic that they can be applied transparently to three
large-scale, off-the-shelf software systems. The main results of this
chapter are:
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• eCos: A combination of three dependability aspects reduces the
total number of failures by 77 percent.

• L4/Fiasco.OC: The dependability aspects GOP and VPP detect
and correct 60 percent of the faults that cause a failure of the
unprotected microkernel.

• Memcached: The dependability aspects GOP and VPP improve
the data integrity by three orders of magnitude and avoid about
50 percent of the crash failures.

The kernels of the eCos and L4/Fiasco.OC operating systems turn out
to be particularly suited for being hardened by software-implemented
fault-tolerance mechanisms, because the total slowdown caused by
these mechanisms stays below one percent in most cases. The reason
is that the kernel is not active all the time, as user-level applications
typically get most of the CPU time. Thus, runtime overhead within
the kernel increases the total runtime by only a small fraction. How-
ever, the evaluation of the user-level program Memcached shows that
the computation-time overhead of the dependability aspects is up to
92.3 percent on real x86-64 hardware. The bottom line is that the run-
time overhead depends on how frequently the protected data are ac-
cessed.

In summary, this chapter suggests that the approach of using aspect-
oriented programming with AspectC++ 2.0 is both efficient and effec-
tive in improving the dependability of operating-systems kernels and
user-level applications.





8
D I S C U S S I O N

The previous chapter suggests that the approach of this thesis is ef-
fective in improving the dependability of operating systems and user-
level applications. Yet, the previous evaluation is based on the fault
model of uniformly distributed single bit flips, as motivated by Sec-
tion 3.1.1 on page 41. It is paramount to recapitulate that this fault
model is a simplification of the real world. Thus, it is essential to vali-
date the findings of the previous chapter. To this end, Section 8.1 con-
firms the findings by neutron-beam testing at Los Alamos National
Laboratory, USA.

Subsequently, this chapter examines the software maintainability
of the approach taken in this thesis. Section 8.2 revisits the problems
of code scattering and code tangling, and how they are solved by the
dependability aspects. After all, dependability implies proper main-
tainability [18, p. 11].

Furthermore, Section 8.3 discusses the fundamental limitations of
the aspect-oriented approach to software-implemented fault tolerance.
Finally, Section 8.4 outlines directions for future work.
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in Real-Time Operating Systems. In Proceedings of the 30th Inter-
national Conference on Architecture of Computing Systems (ARCS
’17), Springer, April 2017. doi: 10.1007/978-3-319-54999-6_1

8.1 reality check : neutron-beam testing

The fundamental working hypothesis of the preceding chapters is
based on the fault model of independent, uniformly distributed single
bit flips in memory. In particular, Section 3.1.1 on page 41 assumes
that software vulnerability under this specific fault model implies
vulnerability to radiation-induced hardware faults. Based on this as-
sumption, Section 3.1.2 provides a comparison metric for evaluating
program reliability by means of fault injection, which is used exten-
sively in the previous chapter.
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However, as the fault model is a simplification of the physical real-
ity, the fault-injection results of the previous chapter might be inaccu-
rate. Therefore, this section performs the reality check:

Is there evidence that the approach of this thesis improves the
dependability of operating systems?

This research question can be answered by testing a computer system
under normal operating conditions in the terrestrial radiation envi-
ronment. Yet, it takes decades to obtain statistically significant results
unless a huge array of computer devices is tested in parallel [118,
p. 15]. As an alternative, the JEDEC standard 89A [118] approves ac-Accelerated testing

in compliance with
JEDEC 89A

celerated testing procedures using high-energy particle accelerators.
In particular, the standard recommends the Los Alamos National
Laboratory (LANL), USA, which provides a neutron beam with an
energy spectrum that closely matches the terrestrial neutron flux at
approximately 108 times the intensity [118, p. 38f]. In brief, the re-
quired time is reduced by the same factor. Thus, this section validates
the findings of the previous chapter at LANL.

8.1.1 Experimental Methodology

Due to economic constraints on the duration of the neutron-beam
testing, this section considers only parts of the case study on eCos
(see Section 7.1) for validation. For that purpose, the operating system
eCos is deployed on a state-of-the-art embedded hardware device,
which is placed in the focus of the high-intensity neutron beam.

8.1.1.1 Hardware Setup

The device under test is a Xilinx Zynq-7000 system-on-chip manu-
factured in 28 nm CMOS technology. It contains an ARM Cortex-A9

dual-core microprocessor operating at 667 MHz, of which only one
core is used during irradiation.

The on-chip memory consists of separate first-level caches for data
memory and program instructions of each 32 KiB. In addition, there
is a unified second-level cache of 512 KiB, configured to cache data
memory solely. These caches support only error detection by paritySetup of the SRAM

caches codes; thus, parity checking is disabled to allow error correction by
the dependability aspects. Furthermore, the instruction cache is inval-
idated at the regular interval of one timer interrupt to reduce corrup-
tion of program instructions in the cache, as proposed by Sridharan
and colleagues [233, p. 363].

Two external DDR-3 DRAM devices are connected to the internal
memory controller of the system-on-chip. Yet, both DRAM devices
are not placed in the focus of the neutron beam, which targets only
the system-on-chip, as the data memory of eCos and its benchmark
suite already fits into the second-level cache.
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8.1.1.2 Software Setup

A minimal configuration of eCos 3.0 without any unneeded device
drivers runs on the aforementioned hardware platform1. That config-
uration includes the ignoring of spurious device interrupts.

The workload of eCos consists of two parameterizable benchmarks
from its test suite – bin_sem2 and timeslice2 – because they sup-
port a parameterizable number of threads. This number is increased
to fill up the second-level cache in order to maximize the attack surface
of the neutron beam.

bin_sem2 : The benchmark bin_sem2 implements the classical syn-
chronization problem of the Dining Philosophers. That is, 400

threads (philosophers) use 400 semaphore objects (forks) for mu-
tual exclusion (eating with two forks). Once a philosopher ac-
quires both neighboring forks, it asserts that its neighboring
philosophers are not in the eating state. The philosopher releases
both forks after a pseudo-random delay; that procedure contin-
ues for 25,000 iterations.

timeslice2 : This benchmark tests the per-thread time-slice distri- timeslice2 is not
considered in
Section 7.1 as it
executes so many
CPU instructions
that the hardware
emulator becomes
too slow.

bution under preemption. For that purpose, 800 threads of low
priority continuously increment a per-thread counter variable,
while being interrupted by one thread of high priority at regular
intervals. The benchmark runs for 1.6 seconds, so that each of
the 800 threads receives two time slices, which is finally checked
by an assertion.

Both benchmarks run on the following two variants of eCos:

baseline : The unprotected eCos serves as a reference.

gop+sp : Generic Object Protection (GOP) is applied to all kernel
data structures as in Section 7.1.3, using the adaptive Hamming
code for error detection and error correction (see Section 6.5.1.2).
As pointed out in Section 7.1.4.1, most remaining failures orig-
inate from the application stacks. Thus, complementary to ker-
nel hardening by GOP, a coarse-grained Stack Protection (SP)
covers each piece of used stack memory; a 32-bit checksum is
computed when a thread is preempted or yields the CPU, and
it gets checked once a thread is resumed.

8.1.1.3 Experimental Setup

The device under test is placed in the focus of the high-intensity
neutron beam at LANL in the Los Alamos Neutron Science Cen-
ter (LANSCE) Irradiation of Chips and Electronics House II (ICE

1 A port of eCos 3.0 for the Xilinx Zynq-7000 hardware platform is available online at:
https://github.com/antmicro/ecos-mars-zx3/

https://github.com/antmicro/ecos-mars-zx3/
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Figure 8.1: Experimental setup mounted at ICE House II. The photo shows
four devices under test that are placed in the (indicated) neutron
beam at once – one behind the other. The fifth and sixth boards
are not used in this study.

House II). The ICE House II beam line provides a neutron flux of
approximately 106 neutrons per cm² per second, which is focused on
a spot with a diameter of 5 cm to irradiate the system-on-chip uni-
formly without affecting the power control circuity and DRAM.

Four devices under test are placed in the neutron beam at once –
one behind the other – because the emitted neutrons are not strongly
absorbed by the devices. Figure 8.1 shows the exact setup of the four
boards; a flux derating factor is applied to each board depending on
its distance from the neutron source. Each benchmark is executed
alternately on all four devices to avoid any bias on the particular
board and distance.

The testing procedure is carried out for about one day, during
which the boards receive a total radiation dose (fluence) of 5.1 · 1011

neutrons per cm². This corresponds to 4.5 · 106 years of exposure to
the natural radiation environment at New York City, which exhibits a
neutron flux ϕNYC of 13 neutrons per cm² per hour (see Section 2.1.1).

8.1.2 Experimental Results

Table 8.2 lists the raw result data of the neutron-beam testing. In to-
tal, the neutron beam causes 567 failures during the testing period.
The failure modes are differentiated between silent data corruption
(SDC), timeout, and CPU exception. In addition, the table shows the
total number of benchmark runs per variant (sample), and the fluence
Φ received during these runs. In short, fluence is the neutron flux in-
tegrated over the exposure time – that is, the accumulated number of
neutrons that pass through the device under test during the bench-
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benchmark variant sdc

time-
out

cpu ex-
ception

sample

fluence

Φ [cm−2]
slow-
down

bin_sem2

baseline 35 87 72 29,873 7.6 · 1010 1.0

gop+sp 5 30 32 38,605 12.0 · 1010 1.047

timeslice2

baseline 65 92 146 59,131 14.5 · 1010 1.0

gop+sp 3 43 24 100,535 16.9 · 1010 1.029

Table 8.2: Raw result data of the neutron-beam testing. The absolute num-
ber of failures (SDC, timeout, and CPU exception) must not be
compared directly because of different sample sizes (benchmark
runs) and neutron fluences per variant. A run of the benchmark
bin_sem2 lasts for 1.981 seconds in the baseline variant, whereas
timeslice2 finishes in 1.603 seconds. The rightmost column lists
the slowdown factor of the gop+sp variant relative to the respec-
tive baseline.

mark runs. Finally, the last column of Table 8.2 shows the slowdown
factor of the protected variant gop+sp relative to the respective base-
line variant.

However, the raw result data must not be compared directly be-
cause of different sample sizes and fluences. Thus, it is necessary to
calculate a failure rate under a common neutron flux, such as the flux
ϕNYC of 13 neutrons per cm² per hour at New York City. According
to the JEDEC standard 89A [118, p. 38–42], the failure rate can be
calculated as follows:

Failure rateNYC =
ϕNYC

Φ
· F · S (8.1)

The symbol Φ denotes the neutron fluence as listed in Table 8.2; F
represents the absolute number of failures per benchmark and eCos
variant. S is the respective slowdown factor of the protected variant
gop+sp (last column of Table 8.2), which needs to be taken into ac-
count as argued by Santini and colleagues [210, p. 6]. In brief, the
protected variant of eCos requires more time than the baseline variant
for processing the same workload and, thus, is exposed to radiation
for a longer period of time.

The resulting failure rate is commonly expressed in units of Failures
In Time (FIT), which is the expected number of failures per 109 hours
of operation. Figure 8.2 compares the extrapolated FIT rates of the
two eCos variants running the benchmarks bin_sem2 and time-
slice2. All failure modes count toward the absolute number of fail-
ures F in Equation 8.1. The error bars represent the 95-percent confi-
dence intervals to estimate the sampling error and the uncertainty of
8 percent in the measured neutron fluence.

The baseline variant of eCos exhibits a failure rate of 33.1 FIT and
27.1 FIT when running the benchmarks bin_sem2 and timeslice2,
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Figure 8.2: Failure rates at sea level of the baseline and protected (gop+sp)
variants of eCos, running the two benchmarks bin_sem2 and
timeslice2. The y-axis shows the expected number of fail-
ures per 109 hours of operation; the error bars represent the 95-
percent confidence intervals. On average, the gop+sp variant
avoids 78.2 percent of the radiation-induced failures that occur
in the baseline variant of eCos.

respectively. These failure rates are reduced effectively to 7.6 FIT and
5.5 FIT, respectively, when using the gop+sp variant of eCos. Thus,
the total failure reduction amounts to 78.2 percent. Furthermore, this
reduction is statistically significant as neither confidence interval of
gop+sp overlaps with the baseline variant. In summary, the FIT rates
shown in Figure 8.2 indicate a significant improvement in dependabil-
ity with respect to radiation-induced hardware faults.

8.1.3 Interpretation of the Results

The neutron-beam testing results show that the baseline variant of
eCos exhibits a failure rate of 27.1 to 33.1 FIT. This failure rate would
satisfy an IEC 61508 Safety Integrity Level 3 (SIL 3) in continuous op-
eration mode at sea level – that is, the failure rate is lower than 10−7

failures per hour [115]. Moreover, the protected eCos variant gop+sp

exhibits a failure rate of only 5.5 to 7.6 FIT, which is equivalent to lessIEC 61508
Safety Integrity
Level (SIL) 3 →

SIL 4

than 10−8 failures per hour. Therefore, the protected variant would
even attain SIL 4 – the highest SIL. Thus, the gop+sp variant con-
siderably improves the dependability of eCos by one SIL. However, I
do not claim the device under test to achieve these SILs yet, because
neither hazard nor risk assessment is carried out.

In summary, the reality check based on neutron-beam testing clearly
confirms the findings of the previous chapter. As shown in Figure 8.2,
the radiation-induced failure rate is reduced effectively by about 78.2
percent. Likewise, the emulation-based fault-injection results of eCos
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(see Section 7.1.4.1 on page 150) suggested a failure reduction of 77.4
percent on average. These results are so consistent that they differ
by only 0.8 percent points despite the different hardware and soft-
ware setup. Thus, both results indicate a definite trend: The depend-
ability aspect GOP considerably improves the fault tolerance of the
operating system eCos. However, the reality check neither covers
all the dependability aspects evaluated in the previous chapter nor
the L4/Fiasco.OC microkernel nor Memcached. Therefore, more evi-
dence is needed to generalize the findings of this thesis.

8.2 software maintainability

Avižienis and associates [18, p. 11] argue that maintainability is essen-
tial for achieving true dependability. Yet, software-implemented fault
tolerance represents a crosscutting concern, which is hard to imple-
ment as independent module by using a general-purpose program-
ming language as pointed out in Chapter 4. AOP with AspectC++ 2.0,
however, addresses this maintainability problem by providing extra
language support for the separation of concerns at the implementa-
tion level. The AspectC++ compiler automatically applies the depend-
ability aspects as specified by the programmer. This section quanti-
fies to which extent the approach of this thesis improves the soft-
ware maintainability compared to a manual implementation and com-
pared to a pure compiler-based solution.

8.2.1 Scattering and Tangling in the Implementation

The goal of AOP is to avoid code scattering and tangling (see Sec-
tion 4.1.1 on page 60), because both symptoms impair software main-
tainability – but to which extent?

To answer this question, Figure 8.3 illustrates the source code of
eCos after applying the dependability aspects, which are woven by
the AspectC++ compiler into the depicted source-code files, repre-
sented as horizontal bars. A colored marker indicates a line of code
at which the AspectC++ compiler automatically inserts pieces of code
as specified by a dependability aspect: Blue markers denote code in-
sertions due to the GOP aspect; red markers show insertions of the
RAP aspect; the symptom-detection aspects that implement run-time
type checking and checking of function pointers are represented by
green and black markers, respectively. Thus, Figure 8.3 shows the
combination of dependability aspects evaluated in Section 7.1.4.

In total, the four dependability aspects affect 2,206 lines of code
scattered over 105 files of eCos. The vast scattering shows that the
dependability aspects are indeed exceedingly crosscutting. A manual
implementation without AOP would cause such a dramatic tangling
of the source code as illustrated in Figure 8.3, so that it would proba-
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Figure 8.3: Scattering and tangling as avoided by AOP. Each horizontal bar represents a
source-code file of eCos. A colored marker highlights a line of code at which
the AspectC++ compiler inserts code of a dependability aspect automatically.
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bly end up in being completely unreadable. Thus, the aspect-oriented
approach of this thesis considerably improves the software maintain-
ability compared to a manual implementation. The source code of
eCos, L4/Fiasco.OC, and Memcached is kept as it is by strict mod-
ularization of the dependability aspects. Furthermore, the library of
dependability aspects is even reusable in these three software systems
and potentially many more.

8.2.2 Separation of Concerns in the Compiler

The previous section shows that the library of dependability aspects
achieves a clean separation of concerns by avoiding code scattering
and tangling in eCos. Moreover, AspectC++ is a general-purpose pro-
gramming language that is not specifically targeted at the domain of
fault tolerance. Thus, the source code of the AspectC++ compiler is
also not tangled with any concerns of fault tolerance. For example, Compilers should

not become tangled
with the concern of
fault tolerance.

consider the aspect that checks for integer overflows as described in
Section 6.2.2 on page 103; that aspect is implemented by a single file
of 130 lines of AspectC++ code. To put this into perspective, a compa-
rable extension of the Clang compiler requires more than 1,600 lines
of code to implement the same functionality [67, p. 763]. In the latter
case, the source code of the Clang compiler becomes tangled with the
implementation of integer-overflow checking. This comparison shows
that the aspect-oriented approach of this thesis also achieves a better
separation of concerns at the compiler level.

Furthermore, the AspectC++ programming language is also suit-
able for protecting low-level mechanisms, such as return addresses
of procedures and virtual-function pointers, which are generally in-
accessible from a high-level programming language. To this end, the
programming language should provide information on all the low-
level mechanisms implemented by the compiler. For example, the Language extensions

should provide
information on
low-level compiler
mechanisms.

GNU language extensions expose the return addresses by the in-
trinsic function __builtin_return_address(). Therefore, the depend-
ability aspect RAP (see Section 6.3) can protect the return addresses
in a portable way. Compilers do not need to implement any fault-
tolerance mechanism by themselves – it suffices to pass the necessary
information on to the AOP language. Thus, compilers are kept com-
paratively simple, whereas the aspect programmer can exploit all the
knowledge on the application to implement selective fault tolerance.
A lesson learned is that a rich interface to low-level mechanisms al-
lows separating the concern of fault tolerance from the compiler.

In summary, the aspect-oriented approach of this thesis affects nei-
ther the maintainability of the target software nor the maintainability
of the compiler, because AspectC++ is a general-purpose language
that enables strict modularization of crosscutting concerns.
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8.3 limitations

This section summarizes the fundamental limitations that apply to
the aspect-oriented approach of thesis. In particular, the improvement
of software dependability by using AspectC++ is subject to the follow-
ing two limitations:

1. Only the C++ programming language is considered. AspectC++ is,
per definition, an extension of C++ and, thus, inherits the restric-
tions of that language. For instance, C++ is not fully compatible
with pure C, so that AspectC++ cannot be applied out-of-the-
box to software written in C. Furthermore, operating systems
typically include pieces of assembler code, which cannot be
protected by AspectC++ at all (see Section 7.1.4.1). The same
applies to external libraries whose source code is not available.
In short, the approach of this thesis applies only to C++ code.

2. Perfect fault tolerance is impossible. This limitation applies to soft-
ware-implemented fault tolerance in general (see Section 2.4.4.1
on page 36). For example, if the microprocessor crashes com-
pletely because of a hardware fault, there are no means to re-
cover from such a failure by software mechanisms. Thus, the
intended purpose of this thesis is to reduce the probability of
failure to an acceptable level, deliberately accepting imperfect
fault tolerance.

The bottom line is that the aspect-oriented approach of this thesis is
limited to one programming language and specific hardware faults.
Therefore, the approach does not supersede hardware-implemented
fault tolerance (see Section 2.3) in safety-critical domains such as
avionics, but it can provide an additional level of software dependabil-
ity. However, domains with less demanding reliability requirements
can adopt the approach of this thesis as a sole method for mitigating
radiation-induced hardware faults as shown in Section 8.1.3.

8.4 future work

The previously described limitations are so fundamental that they
cannot be resolved at all. However, this thesis forms the foundation
for studying further problems that can be solved to advance the ap-
proach of this thesis. There are five directions for future work:

1. Multi-objective optimization: The evaluation in Chapter 7 shows
that applying the dependability aspects offers a trade-off be-
tween fault tolerance, runtime overhead, and memory footprint.
For example, Section 7.1.3.1 formulates a rule of thumb that
excludes those aspect configurations that cause a slowdown of
more than one percent. Such a heuristic is reasonable, yet not



8.5 chapter summary 177

optimal. Thus, there is still potential for improving the effective-
ness and efficiency of the dependability aspects.

2. Run-time system for GOP: Section 6.5 declares that the depend-
ability aspect GOP prohibits aliasing of member variables by a
compile-time assertion. This effectively prevents indirect access
to the covered member variables via pointers or C++ references.
AspectC++ 2.0 includes preliminary support for capturing in-
direct memory accesses by the experimental pointcut function
alias(). On this basis, a run-time system can be implemented
that identifies the target object of an indirect memory access so
that the respective object can be checked.

3. Whole-program analysis in AspectC++: The framework for user-
defined whole-program analysis, described in Section 5.4, uses
the XML query language XQuery to post-process the whole-
program information. This step could be integrated into the
pointcut description language of AspectC++ as pointcut func-
tions that capture call sequences and control-flow reachability
properties [26, p. 5]. Such an extension would not improve the
evaluation results of this thesis but would simplify the compila-
tion process (see Figure 5.6 on page 95).

4. Addressing software bugs: As pointed out in Section 5.3.2 on page
89, the dependability aspects already detect a variety of soft-
ware bugs, such as dangling pointers (use-after-free), derefer-
ence of uninitialized or null pointers, double frees, and incom-
patible type casts. Moreover, the checking of array bounds and
integer overflows (see Section 6.2 on page 102), which turned
out to be poorly suited for the detection of memory errors, ad-
dress typical software problems. Hence, the approach of this
thesis could be extended to a unified approach to mitigation of
hardware faults and software faults.

5. Design for dependability aspects: Finally, after-the-fact hardening
of existing operating systems does not tap the full potential of
the dependability aspects. For example, the operating system
eCos uses global array variables of function-pointer type, whose
low-order bits escape the range check of function pointers (see
Section 7.1.4.1 on page 150). If these arrays were (static) member
variables of a class, they could be covered by GOP. Thus, an
operating-system design aware of dependability aspects would
explore their full potential.

8.5 chapter summary

This chapter discussed the findings of this thesis and addressed po-
tential threats to validity. First and foremost, Section 8.1 provides ev-
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idence for the effectiveness of the dependability aspects by neutron-
beam testing at Los Alamos National Laboratory, USA. In fact, the
radiation-induced failure rate of eCos is reduced by about 78.2 per-
cent. This improvement leads to a hypothetical increase of one IEC
61508 Safety Integrity Level (SIL). Therefore, Section 8.1 confirms the
emulation-based fault-injection results of the previous chapter, which
suggests similar effectiveness.

Second, Section 8.2 affirms the excellent maintainability of the as-
pect-oriented approach. The dependability aspects turn out to be ex-
ceedingly crosscutting, yet, the AspectC++ language and compiler
avoid any code scattering and tangling. Thus, the library of depend-
ability aspects is highly generic and reusable.

Finally, Section 8.3 recapitulates the two fundamental limitations
of the approach: Only the C++ programming language is considered
and, in general, perfect fault tolerance is impossible.
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S U M M A RY A N D C O N C L U S I O N S

The reliability of digital semiconductor devices is confronted with
transient faults that result from neutron strikes of cosmic origin. There
is no effective shielding from neutron radiation – except by several
meters of concrete – so that dependable computer systems must in-
corporate methods of fault tolerance to cope with transient hardware
faults. Software-implemented fault tolerance is a particularly promis-
ing approach, because no monetary costs for hardware redundancy
are involved. Yet, the state-of-the-art in that domain focuses on the
application level and neglects the operating system as pointed out
in Section 2.4.3. An unreliable operating system, however, can cause
catastrophic consequences in safety-critical systems, such as the ini-
tially mentioned cases of unintended acceleration of Toyota vehicles
(see Chapter 1).

The objective of this thesis is to eliminate the single point of failure
represented by the operating system. To this end, a thorough analy-
sis of the eCos and L4/Fiasco.OC operating systems in Chapter 3

identified two central problems:

problem 1 : Several kernel data structures, such as instances of C++
classes, stacks, and pointers, exhibit an exceeding vulnerability
to transient memory errors. Integrity of these kernel data struc-
tures is crucial for the reliability of the operating systems.

problem 2 : The individual criticality of the kernel data structures
depends on the application profile. The lifetime of many kernel
data structures is bound to the application programs that use
them. As applications change, the individual criticality of the
kernel data structures varies dramatically.

A secondary finding of this problem analysis is that runtime overhead
has a negative impact on reliability and, therefore, I propose a selec-
tive, application-specific placement of fault-tolerance mechanisms to
avoid unnecessary overhead. Such an approach is impractical with
traditional techniques and tools, raising the primary research ques-
tion whether and to which extent Aspect-Oriented Programming (AOP) is
a suitable technology for improving the dependability of operating systems.

This thesis provides extensive answers to that research question
and offers insights into the resulting effectiveness and efficiency of
the aspect-oriented approach. Thus, this thesis makes three scientific
contributions, which are summarized in the following sections.
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9.1 contribution 1 : aspectc++ 2 .0 – language extensions

My research approach focuses on the AspectC++ programming lan-
guage, because it has its roots in the development of operating sys-
tems. However, the problem analysis in Chapter 3 and my review
of prior work in Section 4.5 show that AspectC++ 1.0 is not expres-
sive enough for the implementation of truly generic fault-tolerance
mechanisms that cover the critical data structures of both eCos and
L4/Fiasco.OC. Thus, I devise four distinct language extensions that
advance the degree of expressiveness:

1. Advice for built-in operators

2. Advice for access to variables

3. Generic introductions

4. A framework for user-defined whole-program analysis

Chapter 5 specifies these language extensions in detail, which are im-
plemented the open-source AspectC++ 2.0 compiler that was released
in 2016. Thus, the AspectC++ 2.0 language and compiler are available
to the public without any restrictions. This enhanced programming
language is the first contribution of this thesis. The new language
features are completely general purpose and, thus, not limited to the
domain of software-implemented fault tolerance. As such, this contri-
bution goes beyond the scope of this thesis.

9.2 contribution 2 : library of dependability aspects

My second contribution is the presentation of the design and imple-
mentation of highly generic and transparent fault-tolerance mecha-
nisms based on the AspectC++ 2.0 technology. I refer to these mecha-
nisms as dependability aspects, which constitute a library of the follow-
ing reusable modules:

1. Symptom detection, such as range checking of function point-
ers, checking of array bounds, run-time type checking, and check-
ing of integer overflows

2. Return-Address Protection (RAP)

3. Virtual-Function Pointer Protection (VPP)

4. Generic Object Protection (GOP)

For instance, the dependability aspect GOP allows choosing from
an extensible toolbox of easily pluggable error-detection and error-
correction schemes, such as the adaptive Hamming code and the CRC
code that leverages Intel’s SSE4.2 instructions.
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Furthermore, the second contribution includes the specification and
correctness proof of a wait-free synchronization algorithm that en-
ables concurrent error detection in multi-threaded programs. In sum-
mary, the dependability aspects show that fine-grained configurabil-
ity of software-implemented fault tolerance is feasible without affect-
ing the software maintainability: The AspectC++ compiler automati-
cally inserts the fault-tolerance mechanisms into the relevant source-
code locations of an operating system as specified by the program-
mer.

9.3 contribution 3 : evidence for effectiveness

My third contribution is the thorough quantitative evaluation of the
aspect-oriented approach taken in this thesis. The evaluation allows
drawing conclusions on AOP in general, on the AspectC++ 2.0 tech-
nology in particular, and on the library of dependability aspects. For
that purpose, this thesis considers three pieces of large-scale soft-
ware that are used in a broad range of production systems. Extensive
fault-injection experiments indicate that the approach improves the
dependability of all three software systems by reducing crashes and
silent data corruptions. In summary, the evaluation shows a trade-off
between fault tolerance and slowdown, which can be adjusted by a
selective placement and combination of the dependability aspects.

1. eCos: A combination of three dependability aspects reduces the
total number of failures by 77 percent. At the same time, the
application-specific configuration limits the total slowdown to
one percent.

2. L4/Fiasco.OC: The dependability aspects GOP and VPP detect
and correct 60 percent of the faults that cause a failure of the
unprotected microkernel. Again, the total slowdown is negligi-
ble.

3. Memcached: The dependability aspects GOP and VPP improve
the data integrity by three orders of magnitude and avoid about
50 percent of the crash failures. The slowdown of the Mem-
cached application amounts to 36.3 percent.

The reason for the negligible slowdown of the eCos and L4/Fiasco.OC
operating systems is that the kernel is not active all the time, as user-
level applications typically get most of the CPU time. Thus, runtime
overhead within the kernel increases the total runtime by only a small
fraction. On the contrary, the Memcached application shows that the
computational overhead is much higher and has a considerable im-
pact on user-level applications.

In addition, the approach of this thesis is validated by accelerated
neutron-beam testing that provides evidence for the effectiveness. In
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fact, the irradiation confirms a failure reduction of eCos by 78.2 per-
cent. This improvement leads to a hypothetical increase of one IEC
61508 Safety Integrity Level (SIL). In conclusion, my third contribu-
tion is providing evidence for the hypothesis that AOP is an effective
technology for improving the dependability of operating systems.

9.4 final remarks

The conclusion of this thesis is that AOP with AspectC++ represents
a suitable technology for improving the dependability of operating
systems. AspectC++ 2.0 turns out to be effective and efficient in this
regard and, furthermore, does not impair the software maintainabil-
ity. In addition to mitigation of hardware faults, AspectC++ also fa-
cilitates the detection of software bugs. This programming language
enables the implementation of highly generic software modules for
fault tolerance that can be applied automatically to the kernel of an
operating system and user-level applications.

This thesis advances thereby the state-of-the-art in the domain of
dependable operating systems, documented by 14 peer-reviewed pub-
lications in international journals [27, 32, 218], proceedings of confer-
ences [28, 30, 109, 160, 211, 213, 214], and workshops [26, 29, 31, 159].

Although AOP has become a controversial subject of software en-
gineering, this thesis shows that AOP is still poorly understood in
other domains of computer science, such as dependability. In this
sense, Steimann speculated ten years ago:

“ I wouldn’t be surprised if AOP ended up being used for
something quite different from what it is thought to be
good for today. ”– Friedrich Steimann [237, p. 492]



A
A P P E N D I X : B A S E L I N E D E P E N D A B I L I T Y
A S S E S S M E N T

This appendix provides supplemental data of the baseline depend-
ability assessment in Section 3.2 on page 46. That section identifies the
most vulnerable memory regions of the eCos and L4/Fiasco.OC op-
erating systems by exhaustive fault-space scans using the fault model
of independent single bit flips in memory. Section 3.2.1 on page 47

describes the exact experimental setup of the fault-injection experi-
ments.

The following section presents the fault-injection results of eCos
running 13 additional benchmark programs that are not covered in
Section 3.2.2 on page 48. Subsequently, the fault-injection results of
L4/Fiasco.OC running two additional benchmark programs that are
not covered in Section 3.2.3 on page 53 are shown.

Each of the following tables lists the ten most failure-prone sym-
bols, which are identified by exhaustive fault-space scans of the op-
erating systems running the respective benchmark programs. Beside
the symbol name and its data type, the tables list the accumulated
number of failures per symbol next to the percentage of all failures.
Symbols that account for more than ten percent of the failures are
exceedingly critical and thus highlighted.

a.1 ecos

symbol name data type size failures percentage

stack cyg_uint64[] 5,088 4.82 · 105 30.5 %

thread_obj Cyg_Thread[] 288 3.18 · 105 20.2 %

Cyg_Scheduler::scheduler Cyg_Scheduler 132 1.42 · 105 9.0 %

comm_channels int (*[][])() 96 1.19 · 105 7.5 %

s2 Cyg_Binary_Semaphore 8 1.10 · 105 7.0 %

q cyg_ucount8 4 6.62 · 104 4.2 %

Cyg_Interrupt::dsr_list Cyg_Interrupt* 4 6.61 · 104 4.2 %

s0 Cyg_Binary_Semaphore 8 6.30 · 104 4.0 %

cyg_interrupt_stack_base cyg_uint64[] 4,096 5.91 · 104 3.7 %

s1 Cyg_Binary_Semaphore 8 4.91 · 104 3.1 %

Table A.1: Quantitative fault-injection results of eCos running the bench-
mark bin_sem1, showing the ten most failure-prone symbols
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symbol name data type size failures percentage

stack cyg_uint64[] 38,176 2.03 · 1012 45.8 %

thread_obj Cyg_Thread[] 2,048 1.65 · 1012 37.1 %

chopstick Cyg_Binary_Semaphore[] 120 3.07 · 1011 6.9 %

Cyg_RealTimeClock::rtc Cyg_RealTimeClock 52 1.53 · 1011 3.5 %

Cyg_Scheduler::scheduler Cyg_Scheduler 132 5.90 · 1010 1.3 %

pstate_mutex Cyg_Mutex 20 2.47 · 1010 0.6 %

idle_thread Cyg_IdleThread 132 2.25 · 1010 0.5 %

comm_channels int (*[][])() 96 2.05 · 1010 0.5 %

hal_interrupt_objects cyg_uint32*[] 896 2.05 · 1010 0.5 %

hal_interrupt_handlers cyg_uint32 (*[])() 896 2.05 · 1010 0.5 %

Table A.2: Quantitative fault-injection results of eCos running the bench-
mark bin_sem2, showing the ten most failure-prone symbols

symbol name data type size failures percentage

thread_obj Cyg_Thread[] 288 1.40 · 1011 33.1 %

stack cyg_uint64[] 5,088 9.09 · 1010 21.5 %

Cyg_RealTimeClock::rtc Cyg_RealTimeClock 52 6.28 · 1010 14.9 %

Cyg_Scheduler::scheduler Cyg_Scheduler 132 2.23 · 1010 5.3 %

s2 Cyg_Binary_Semaphore 16 1.71 · 1010 4.0 %

comm_channels int (*[][])() 96 8.53 · 109 2.0 %

q cyg_ucount8 4 8.53 · 109 2.0 %

s1 Cyg_Binary_Semaphore 8 8.53 · 109 2.0 %

s0 Cyg_Binary_Semaphore 8 8.53 · 109 2.0 %

hal_interrupt_objects cyg_uint32*[] 896 8.53 · 109 2.0 %

Table A.3: Quantitative fault-injection results of eCos running the bench-
mark bin_sem3, showing the ten most failure-prone symbols

symbol name data type size failures percentage

stack cyg_uint64[] 5,088 7.55 · 105 31.8 %

thread_obj Cyg_Thread[] 288 5.81 · 105 24.4 %

s0 Cyg_Counting_Semaphore 8 1.77 · 105 7.4 %

s2 Cyg_Counting_Semaphore 8 1.56 · 105 6.6 %

comm_channels int (*[][])() 96 1.49 · 105 6.3 %

s1 Cyg_Counting_Semaphore 8 1.23 · 105 5.2 %

q cyg_ucount8 4 9.38 · 104 3.9 %

Cyg_Interrupt::dsr_list Cyg_Interrupt* 4 9.38 · 104 3.9 %

Cyg_Scheduler::scheduler Cyg_Scheduler 132 9.09 · 104 3.8 %

Cyg_Scheduler::current_thread Cyg_Thread*[] 4 6.72 · 104 2.8 %

Table A.4: Quantitative fault-injection results of eCos running the bench-
mark cnt_sem1, showing the ten most failure-prone symbols
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symbol name data type size failures percentage

stack cyg_uint64[] 2,544 7.41 · 105 34.0 %

comm_channels int (*[][])() 96 3.29 · 105 15.1 %

cyg_interrupt_stack_base cyg_uint64[] 4,096 2.96 · 105 13.6 %

Cyg_Interrupt::dsr_list Cyg_Interrupt* 4 1.12 · 105 5.1 %

Cyg_Scheduler::scheduler Cyg_Scheduler 132 1.10 · 105 5.0 %

idle_thread Cyg_IdleThread 132 1.07 · 105 4.9 %

Cyg_Thread::thread_list Cyg_Thread* 4 1.06 · 105 4.9 %

cyg_libc_main_thread Cyg_Thread 160 1.03 · 105 4.7 %

Cyg_Thread::exception_control Cyg_Exception_Control 8 1.02 · 105 4.7 %

nthreads int 4 9.03 · 104 4.1 %

Table A.5: Quantitative fault-injection results of eCos running the bench-
mark except1, showing the ten most failure-prone symbols

symbol name data type size failures percentage

thread_obj Cyg_Thread[] 416 3.85 · 1011 40.9 %

stack cyg_uint64[] 7,632 2.12 · 1011 22.5 %

Cyg_RealTimeClock::rtc Cyg_RealTimeClock 52 1.23 · 1011 13.0 %

Cyg_Scheduler::scheduler Cyg_Scheduler 132 4.19 · 1010 4.4 %

idle_thread Cyg_IdleThread 132 1.83 · 1010 1.9 %

hal_interrupt_objects cyg_uint32*[] 896 1.71 · 1010 1.8 %

hal_interrupt_handlers cyg_uint32 (*[])() 896 1.71 · 1010 1.8 %

Cyg_Interrupt::dsr_list_tail Cyg_Interrupt* 4 1.71 · 1010 1.8 %

Cyg_Scheduler::sched_lock cyg_ucount32 4 1.71 · 1010 1.8 %

comm_channels int (*[][])() 96 1.65 · 1010 1.8 %

Table A.6: Quantitative fault-injection results of eCos running the bench-
mark flag1, showing the ten most failure-prone symbols

symbol name data type size failures percentage

thread_obj Cyg_Thread[] 288 1.44 · 1011 33.0 %

stack cyg_uint64[] 5,088 8.74 · 1010 20.0 %

Cyg_RealTimeClock::rtc Cyg_RealTimeClock 52 6.75 · 1010 15.4 %

m0 Cyg_Mbox 64 3.25 · 1010 7.4 %

Cyg_Scheduler::scheduler Cyg_Scheduler 132 2.23 · 1010 5.1 %

m2 Cyg_Mbox 64 1.71 · 1010 3.9 %

comm_channels int (*[][])() 96 8.53 · 109 1.9 %

hal_interrupt_objects cyg_uint32*[] 896 8.53 · 109 1.9 %

hal_interrupt_handlers cyg_uint32 (*[])() 896 8.53 · 109 1.9 %

Cyg_Interrupt::dsr_list_tail Cyg_Interrupt* 4 8.53 · 109 1.9 %

Table A.7: Quantitative fault-injection results of eCos running the bench-
mark mbox1, showing the ten most failure-prone symbols
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symbol name data type size failures percentage

stack cyg_uint64[] 5,088 1.23 · 107 26.9 %

the_mq Cyg_Mqueue 44 8.50 · 106 18.7 %

mempool char[] 500 7.32 · 106 16.1 %

thread_obj Cyg_Thread[] 288 5.80 · 106 12.7 %

Cyg_Scheduler::scheduler Cyg_Scheduler 132 2.52 · 106 5.5 %

t0sem Cyg_Binary_Semaphore 24 1.29 · 106 2.8 %

comm_channels int (*[][])() 96 1.22 · 106 2.7 %

Cyg_Interrupt::dsr_list Cyg_Interrupt* 4 1.15 · 106 2.5 %

Cyg_Scheduler::current_thread Cyg_Thread*[] 4 1.06 · 106 2.3 %

storedmempoollen size_t 4 1.03 · 106 2.3 %

Table A.8: Quantitative fault-injection results of eCos running the bench-
mark mqueue1, showing the ten most failure-prone symbols

symbol name data type size failures percentage

stack cyg_uint64[] 10,176 1.28 · 107 39.0 %

thread_obj Cyg_Thread[] 544 9.52 · 106 29.0 %

Cyg_Scheduler::scheduler Cyg_Scheduler 132 3.05 · 106 9.3 %

thread_state int[] 16 1.23 · 106 3.7 %

m0 Cyg_Mutex 20 1.20 · 106 3.7 %

comm_channels int (*[][])() 96 8.62 · 105 2.6 %

m1 Cyg_Mutex 20 8.18 · 105 2.5 %

Cyg_Interrupt::dsr_list Cyg_Interrupt* 4 8.13 · 105 2.5 %

cvar2 Cyg_Condition_Variable 8 7.44 · 105 2.3 %

Cyg_Scheduler::current_thread Cyg_Thread*[] 24 7.26 · 105 2.2 %

Table A.9: Quantitative fault-injection results of eCos running the bench-
mark mutex2, showing the ten most failure-prone symbols

symbol name data type size failures percentage

stack cyg_uint64[] 5,088 1.75 · 106 36.6 %

thread_obj Cyg_Thread[] 288 1.30 · 106 27.1 %

Cyg_Scheduler::scheduler Cyg_Scheduler 132 4.89 · 105 10.3 %

comm_channels int (*[][])() 96 2.67 · 105 5.6 %

Cyg_Interrupt::dsr_list Cyg_Interrupt* 4 2.28 · 105 4.8 %

s1 Cyg_Binary_Semaphore 8 2.22 · 105 4.6 %

thread Cyg_Thread*[] 8 2.15 · 105 4.5 %

Cyg_Scheduler::current_thread Cyg_Thread*[] 4 1.41 · 105 3.0 %

cyg_interrupt_stack_base cyg_uint64[] 4,096 5.88 · 104 1.2 %

s0 Cyg_Binary_Semaphore 8 5.25 · 104 1.1 %

Table A.10: Quantitative fault-injection results of eCos running the bench-
mark release, showing the ten most failure-prone symbols
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symbol name data type size failures percentage

stack cyg_uint64[] 5,088 1.36 · 105 37.2 %

comm_channels int (*[][])() 96 5.78 · 104 15.8 %

thread_obj Cyg_Thread[] 288 5.20 · 104 14.2 %

cyg_interrupt_stack_base cyg_uint64[] 4,096 3.85 · 104 10.6 %

Cyg_Interrupt::dsr_list Cyg_Interrupt* 4 1.85 · 104 5.1 %

Cyg_Scheduler::scheduler Cyg_Scheduler 132 1.43 · 104 3.9 %

idle_thread Cyg_IdleThread 132 1.06 · 104 2.9 %

Cyg_Scheduler::sched_lock cyg_ucount32 4 1.04 · 104 2.8 %

cyg_libc_main_thread Cyg_Thread 160 1.03 · 104 2.8 %

Cyg_Thread::thread_list Cyg_Thread* 4 9.60 · 103 2.6 %

Table A.11: Quantitative fault-injection results of eCos running the bench-
mark sched1, showing the ten most failure-prone symbols

symbol name data type size failures percentage

stack cyg_uint64[] 10,176 1.72 · 108 39.6 %

thread_obj Cyg_Thread[] 544 1.11 · 108 25.5 %

cs3 Cyg_Counting_Semaphore 8 1.55 · 107 3.6 %

cs1 Cyg_Counting_Semaphore 8 1.55 · 107 3.6 %

cs0 Cyg_Counting_Semaphore 8 1.54 · 107 3.6 %

cs2 Cyg_Counting_Semaphore 8 1.54 · 107 3.5 %

m0 Cyg_Mutex 20 1.01 · 107 2.3 %

s1 Cyg_Binary_Semaphore 8 9.37 · 106 2.2 %

s2 Cyg_Binary_Semaphore 8 8.59 · 106 2.0 %

s0 Cyg_Binary_Semaphore 8 7.89 · 106 1.8 %

Table A.12: Quantitative fault-injection results of eCos running the bench-
mark sync2, showing the ten most failure-prone symbols

symbol name data type size failures percentage

thread_obj Cyg_Thread[] 416 1.16 · 106 30.8 %

stack cyg_uint64[] 7,632 8.37 · 105 22.2 %

Cyg_Scheduler::scheduler Cyg_Scheduler 132 2.83 · 105 7.5 %

thread Cyg_Thread*[] 32 2.42 · 105 6.4 %

m0 Cyg_Mutex 20 2.17 · 105 5.7 %

comm_channels int (*[][])() 96 1.68 · 105 4.5 %

s1 Cyg_Binary_Semaphore 8 1.15 · 105 3.0 %

Cyg_Interrupt::dsr_list Cyg_Interrupt* 4 9.23 · 104 2.4 %

cyg_interrupt_stack_base cyg_uint64[] 4,096 8.99 · 104 2.4 %

s0 Cyg_Binary_Semaphore 8 8.87 · 104 2.4 %

Table A.13: Quantitative fault-injection results of eCos running the bench-
mark sync3, showing the ten most failure-prone symbols
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a.2 l4/fiasco.oc

symbol name data type size failures percentage

Physmem Heap 62,914,560 6.00 · 108 44.0 %

Sched_context::rq Ready_queue 1,036 5.58 · 108 40.9 %

Kconsole::_c Kconsole 56 3.88 · 107 2.8 %

vga Vga_console 72 3.32 · 107 2.4 %

Capabilities Heap 41,943,040 1.70 · 107 1.2 %

Cpu::cpus Cpu 224 1.45 · 107 1.1 %
_fcon Filter_console 80 1.34 · 107 1.0 %

the_timeslice_timeout Timeslice_timeout 28 1.14 · 107 0.8 %
_kernel_uart Kernel_uart 16 9.88 · 106 0.7 %

Timeout_q::timeout_queue Timeout_q 48 7.71 · 106 0.6 %

Table A.14: Quantitative fault-injection results of L4/Fiasco.OC running the
benchmark clntsrv, showing the ten most failure-prone sym-
bols

symbol name data type size failures percentage

Sched_context::rq Ready_queue 1,036 1.11 · 109 48.2 %

Physmem Heap 62,914,560 9.40 · 108 40.9 %

Kconsole::_c Kconsole 56 4.16 · 107 1.8 %

vga Vga_console 72 3.58 · 107 1.6 %

Capabilities Heap 41,943,040 1.93 · 107 0.8 %

Cpu::cpus Cpu 224 1.56 · 107 0.7 %
_fcon Filter_console 80 1.45 · 107 0.6 %

the_timeslice_timeout Timeslice_timeout 28 1.25 · 107 0.5 %
_kernel_uart Kernel_uart 16 1.07 · 107 0.5 %

Timeout_q::timeout_queue Timeout_q 48 8.43 · 106 0.4 %

Table A.15: Quantitative fault-injection results of L4/Fiasco.OC running the
benchmark streammap, showing the ten most failure-prone
symbols



B
A P P E N D I X : H A R D E N I N G E C O S

The second appendix shows the complete fault-injection results of all
18 benchmarks (see Table 7.2 on page 139) used in the case study on
hardening eCos in Section 7.1 on page 138. In addition, this appendix
illustrates the simulated runtime and memory size of each bench-
mark linked with each protected variant of eCos. In total, this ap-
pendix provides the results of 431 combinations of benchmarks and
eCos configurations. These configurations include the dependability
aspects in form of symptom detection (range checking of function point-
ers, checking of array bounds, run-time type checking, and checking
of integer overflows), Return-Address Protection (RAP), Generic Object
Protection (GOP), and combinations thereof. A baseline variant of eCos,
which runs without any protection, serves as a reference in the figures
on the following pages.
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Figure B.1: Fault-injection results of the four symptom detectors function, type, overflow,
and array applied to eCos running all 18 benchmarks. These results complement
the data shown in Figure 7.1a on page 141.
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Figure B.2: Simulated runtime of all 18 benchmarks programs running on eCos provided
with the four symptom detectors function, type, overflow, and array. These
results complement the data shown in Figure 7.1b on page 141.
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Figure B.3: Memory size of eCos linked with all 18 benchmark applications, provided with
the four symptom detectors function, type, overflow, and array. These re-
sults complement the data shown in Figure 7.1c on page 141.
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Figure B.4: Fault-injection results of Return-Address Protection (RAP) applied to eCos running
all 18 benchmarks. The abbreviations Det. and Cor. denote error detection and
error correction, respectively. d/all refers to a configuration of error detection
without whole-program optimization. These results complement the data shown
in Figure 7.2a on page 144.
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Figure B.5: Simulated runtime of all 18 benchmarks programs running on eCos provided
with Return-Address Protection (RAP). The abbreviations Det. and Cor. denote error
detection and error correction, respectively. d/all refers to a configuration of
error detection without whole-program optimization. These results complement
the data shown in Figure 7.2b on page 144.
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Figure B.6: Memory size of eCos linked with all 18 benchmark applications, provided with
Return-Address Protection (RAP). The abbreviations Det. and Cor. denote error de-
tection and error correction, respectively. d/all refers to a configuration of er-
ror detection without whole-program optimization. These results complement the
data shown in Figure 7.2c on page 144.
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Figure B.7: Fault-injection results of the CRC variant of Generic Object Protection (GOP) ap-
plied to increasingly more kernel data structures of eCos running all 18 benchmarks.
These results explore the potential for optimization of GOP and complement the
data shown in Figure 7.3a on page 147.
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Figure B.8: Simulated runtime of all 18 benchmarks programs running on eCos provided
with the CRC variant of Generic Object Protection (GOP) applied to increasingly
more kernel data structures. These results explore the potential for optimization
of GOP and complement the data shown in Figure 7.3b on page 147.
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Figure B.9: Fault-injection results of GOP tailored for each benchmark of eCos to keep the
slowdown below one percent. The different GOP options for redundancy are de-
scribed in Table 6.2 on page 119: CRC, CRC+Copy, Sum+Copy, and Hamming.
These results complement the data shown in Figure 7.4a on page 148.
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Figure B.10: Memory size of eCos linked with all 18 benchmark applications, provided with
GOP tailored for each benchmark to keep the slowdown below one percent. The
different GOP options for redundancy are described in Table 6.2 on page 119:
CRC, CRC+Copy, Sum+Copy, and Hamming. These results complement the data
shown in Figure 7.4b on page 148.
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Figure B.11: Fault-injection results of the combined dependability aspects applied to eCos
running all 18 benchmark programs. The abbreviation gop+s means GOP plus
symptom detection, whereas g+s+r denotes a combination of GOP, symptom
detection, and RAP. These results complement the data shown in Figure 7.5a on
page 151.



appendix : hardening ecos 201

bin_sem1 bin_sem2 bin_sem3 cnt_sem1

except1 flag1 I4Copter kill

mbox1 mqueue1 mutex1 mutex2

release sched1 sync2 sync3

thread0 thread1

0

1.0e+03

2.0e+03

3.0e+03

4.0e+03

5.0e+03

0

2.0e+08

4.0e+08

6.0e+08

0

1.0e+08

2.0e+08

0

2.0e+03

4.0e+03

6.0e+03

0

2.5e+03

5.0e+03

7.5e+03

1.0e+04

1.2e+04

0

2.0e+08

4.0e+08

0

1.0e+09

2.0e+09

3.0e+09

0

5.0e+07

1.0e+08

1.5e+08

2.0e+08

0

1.0e+08

2.0e+08

0

1.0e+04

2.0e+04

3.0e+04

4.0e+04

0

2.5e+03

5.0e+03

7.5e+03

0

1.0e+04

2.0e+04

3.0e+04

0

5.0e+03

1.0e+04

0

5.0e+02

1.0e+03

1.5e+03

2.0e+03

0

1.0e+05

2.0e+05

3.0e+05

0

2.0e+03

4.0e+03

6.0e+03

0

5.0e+02

1.0e+03

1.5e+03

2.0e+03

0

1.0e+07

2.0e+07

B
a
s
e
lin

e

G
O

P

G
O

P
+

S

G
+

S
+

R

B
a
s
e
lin

e

G
O

P

G
O

P
+

S

G
+

S
+

R

B
a
s
e
lin

e

G
O

P

G
O

P
+

S

G
+

S
+

R

B
a
s
e
lin

e

G
O

P

G
O

P
+

S

G
+

S
+

R

B
a

s
e

lin
e

G
O

P

G
O

P
+

S

G
+

S
+

R

B
a

s
e

lin
e

G
O

P

G
O

P
+

S

G
+

S
+

R

B
a

s
e

lin
e

G
O

P

G
O

P
+

S

G
+

S
+

R

B
a

s
e

lin
e

G
O

P

G
O

P
+

S

G
+

S
+

R

B
a

s
e
lin

e

G
O

P

G
O

P
+

S

G
+

S
+

R

B
a

s
e
lin

e

G
O

P

G
O

P
+

S

G
+

S
+

R

B
a

s
e
lin

e

G
O

P

G
O

P
+

S

G
+

S
+

R

B
a

s
e
lin

e

G
O

P

G
O

P
+

S

G
+

S
+

R

B
a
s
e

lin
e

G
O

P

G
O

P
+

S

G
+

S
+

R

B
a
s
e

lin
e

G
O

P

G
O

P
+

S

G
+

S
+

R

B
a
s
e

lin
e

G
O

P

G
O

P
+

S

G
+

S
+

R

B
a
s
e

lin
e

G
O

P

G
O

P
+

S

G
+

S
+

R

B
a

s
e

lin
e

G
O

P

G
O

P
+

S

G
+

S
+

R

B
a

s
e

lin
e

G
O

P

G
O

P
+

S

G
+

S
+

R

R
u
n
ti
m

e
 [
s
im

u
la

to
r 

c
lo

c
k
 c

y
c
le

s
]

Figure B.12: Simulated runtime of all 18 benchmarks programs running on eCos protected by
the combined dependability aspects. The abbreviation gop+s means GOP plus
symptom detection, whereas g+s+r denotes a combination of GOP, symptom
detection, and RAP. These results complement the data shown in Figure 7.5b on
page 151.
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Figure B.13: Memory size of eCos linked with all 18 benchmark applications, protected by
the combined dependability aspects. The abbreviation gop+s means GOP plus
symptom detection, whereas g+s+r denotes a combination of GOP, symptom
detection, and RAP. These results complement the data shown in Figure 7.5c on
page 151.
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A. Rashid and M. Akşit, editors, Transactions on AOSD I, volume 3880 of Lecture
Notes in Computer Science, pages 135–173. Springer, Berlin, Germany, 2006. doi:
10.1007/11687061_5. (Cited on page 71.)

[12] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins, and
D. Powell. Fault injection for dependability validation: A methodology and some
applications. IEEE Transactions on Software Engineering, 16(2):166–182, Feb. 1990. doi:
10.1109/32.44380. (Cited on page 40.)

[13] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G. H. Leber. Comparison
of physical and software-implemented fault injection techniques. IEEE Transactions
on Computers, 52(9):1115–1133, Sept. 2003. doi: 10.1109/TC.2003.1228509. (Cited on
page 40.)

[14] G. Attardi and A. Cisternino. Reflection support by means of template metapro-
gramming. In Proceedings of the 3rd International Conference on Generative and
Component-Based Software Engineering (GCSE ’01), pages 118–127, London, UK, Sept.
2001. Springer. doi: 10.1007/3-540-44800-4_11. (Cited on page 89.)

[15] Y. Aumann and M. A. Bender. Fault tolerant data structures. In Proceedings of the
37th Annual Symposium on Foundations of Computer Science (FOCS ’96), pages 580–589,
Piscataway, NJ, USA, Oct. 1996. IEEE Press. doi: 10.1109/SFCS.1996.548517. (Cited
on pages 33 and 35.)

[16] J. L. Autran, P. Roche, S. Sauze, G. Gasiot, D. Munteanu, P. Loaiza, M. Zampaolo,
and J. Borel. Altitude and underground real-time SER characterization of CMOS
65 nm SRAM. IEEE Transactions on Nuclear Science, 56(4):2258–2266, Aug. 2009. doi:
10.1109/TNS.2009.2012426. (Cited on pages 13 and 41.)

[17] A. Avižienis. The N-version approach to fault-tolerant software. IEEE Transactions
on Software Engineering, 11(12):1491–1501, Dec. 1985. doi: 10.1109/TSE.1985.231893.
(Cited on page 30.)

[18] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and Se-
cure Computing, 1(1):11–33, Jan. 2004. doi: 10.1109/TDSC.2004.2. (Cited on pages 17,
18, 19, 99, 167, and 173.)

[19] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for high-
performance computing. ACM Computing Surveys, 26(4):345–420, Dec. 1994. doi:
10.1145/197405.197406. (Cited on pages 86, 105, and 109.)

http://dx.doi.org/10.1109/71.774911
http://dx.doi.org/10.1145/800028.808479
http://dx.doi.org/10.1145/800028.808479
http://dx.doi.org/10.1007/11687061_5
http://dx.doi.org/10.1007/11687061_5
http://dx.doi.org/10.1109/32.44380
http://dx.doi.org/10.1109/32.44380
http://dx.doi.org/10.1109/TC.2003.1228509
http://dx.doi.org/10.1007/3-540-44800-4_11
http://dx.doi.org/10.1109/SFCS.1996.548517
http://dx.doi.org/10.1109/TNS.2009.2012426
http://dx.doi.org/10.1109/TNS.2009.2012426
http://dx.doi.org/10.1109/TSE.1985.231893
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1145/197405.197406
http://dx.doi.org/10.1145/197405.197406


bibliography 209

[20] P. Banerjee, J. T. Rahmeh, C. Stunkel, V. S. Nair, K. Roy, V. Balasubramanian, and
J. A. Abraham. Algorithm-based fault tolerance on a hypercube multiprocessor.
IEEE Transactions on Computers, 39(9):1132–1145, Sept. 1990. doi: 10.1109/12.57055.
(Cited on pages 33 and 35.)

[21] J. G. P. Barnes. Ada. In C. R. Spitzer, editor, Avionics: Elements, Software and Functions,
The Avionics Handbook, chapter 15, pages 15:1–15:50. CRC Press, Boca Raton, FL,
USA, second edition, Dec. 2006. (Cited on page 73.)

[22] M. Barr. Programming Embedded Systems in C and C++. O’Reilly, Sebastopol, CA,
USA, 1999. (Cited on pages 27 and 47.)

[23] R. C. Baumann. Radiation-induced soft errors in advanced semiconductor technolo-
gies. IEEE Transactions on Device and Materials Reliability, 5(3):305–316, Sept. 2005.
doi: 10.1109/TDMR.2005.853449. (Cited on pages 10 and 11.)

[24] R. C. Baumann. Soft errors in advanced computer systems. IEEE Design & Test of
Computers, 22(3):258–266, May 2005. doi: 10.1109/MDT.2005.69. (Cited on pages 9,
10, and 12.)

[25] A. Benso, S. Chiusano, P. Prinetto, and L. Tagliaferri. A C/C++ source-to-source
compiler for dependable applications. In Proceedings of the 30th IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN ’00), pages 71–78, Piscat-
away, NJ, USA, June 2000. IEEE Press. doi: 10.1109/ICDSN.2000.857517. (Cited on
pages 2, 26, 35, and 41.)

[26] C. Borchert and O. Spinczyk. Hardening an L4 microkernel against soft errors by
aspect-oriented programming and whole-program analysis. In Proceedings of the 8th
Workshop on Programming Languages and Operating Systems (PLOS ’15), pages 1–7,
New York, NY, USA, Oct. 2015. ACM Press. doi: 10.1145/2818302.2818304. (Cited
on pages v, 7, 77, 177, and 182.)

[27] C. Borchert and O. Spinczyk. Hardening an L4 microkernel against soft errors by
aspect-oriented programming and whole-program analysis. ACM Operating Systems
Review, 49(2):37–43, Jan. 2016. doi: 10.1145/2883591.2883600. (Cited on pages v, 77,
and 182.)

[28] C. Borchert, D. Lohmann, and O. Spinczyk. CiAO/IP: A highly configurable aspect-
oriented IP stack. In Proceedings of the 10th International Conference on Mobile Sys-
tems, Applications, and Services (MobiSys ’12), pages 435–448, New York, NY, USA,
June 2012. ACM Press. doi: 10.1145/2307636.2307676. (Cited on pages v, 7, 59, 69,
and 182.)

[29] C. Borchert, H. Schirmeier, and O. Spinczyk. Protecting the dynamic dispatch in
C++ by dependability aspects. In Proceedings of the 1st GI Workshop on Software-
Based Methods for Robust Embedded Systems (SOBRES ’12), Lecture Notes in Infor-
matics, pages 521–535, Bonn, Germany, Sept. 2012. German Society of Informatics.
URL: http://subs.emis.de/LNI/Proceedings/Proceedings208/521.pdf. (Cited on
pages v, 7, 100, and 182.)

http://dx.doi.org/10.1109/12.57055
http://dx.doi.org/10.1109/TDMR.2005.853449
http://dx.doi.org/10.1109/MDT.2005.69
http://dx.doi.org/10.1109/ICDSN.2000.857517
http://dx.doi.org/10.1145/2818302.2818304
http://dx.doi.org/10.1145/2883591.2883600
http://dx.doi.org/10.1145/2307636.2307676
http://subs.emis.de/LNI/Proceedings/Proceedings208/521.pdf


210 bibliography

[30] C. Borchert, H. Schirmeier, and O. Spinczyk. Generative software-based memory
error detection and correction for operating system data structures. In Proceedings of
the 43rd IEEE/IFIP International Conference on Dependable Systems and Networks (DSN
’13), Piscataway, NJ, USA, June 2013. IEEE Press. doi: 10.1109/DSN.2013.6575308.
(Cited on pages v, 6, 7, 39, and 182.)

[31] C. Borchert, H. Schirmeier, and O. Spinczyk. Return-address protection in C/C++
code by dependability aspects. In Proceedings of the 2nd GI Workshop on Software-
Based Methods for Robust Embedded Systems (SOBRES ’13), Lecture Notes in Informat-
ics, pages 2519–2533, Bonn, Germany, Sept. 2013. German Society of Informatics.
URL: http://subs.emis.de/LNI/Proceedings/Proceedings220/2519.pdf. (Cited
on pages v, 6, 7, 100, and 182.)

[32] C. Borchert, H. Schirmeier, and O. Spinczyk. Generic soft-error detection and correc-
tion for concurrent data structures. IEEE Transactions on Dependable and Secure Com-
puting, 14(1):22–36, Jan. 2017. doi: 10.1109/TDSC.2015.2427832. (Cited on pages v,
6, 7, 100, 127, 153, and 182.)

[33] S. Y. Borkar. Designing reliable systems from unreliable components: The challenges
of transistor variability and degradation. IEEE Micro, 25(6):10–16, Nov. 2005. doi:
10.1109/MM.2005.110. (Cited on pages 9 and 10.)

[34] L. Borucki, G. Schindlbeck, and C. Slayman. Comparison of accelerated DRAM
soft error rates measured at component and system level. In Proceedings of the IEEE
International Reliability Physics Symposium (IRPS ’08), pages 482–487, Piscataway, NJ,
USA, Apr. 2008. IEEE Press. doi: 10.1109/RELPHY.2008.4558933. (Cited on page 14.)

[35] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault tolerance. In Proceedings
of the 15th ACM Symposium on Operating Systems Principles (SOSP ’95), pages 1–11,
New York, NY, USA, Dec. 1995. ACM Press. doi: 10.1145/224056.224058. (Cited on
page 26.)

[36] J. D. Bright, G. F. Sullivan, and G. M. Masson. Checking the integrity of trees.
In Proceedings of the 25th Annual International Symposium on Fault-Tolerant Comput-
ing (FTCS-25), pages 402–411, Piscataway, NJ, USA, June 1995. IEEE Press. doi:
10.1109/FTCS.1995.466959. (Cited on page 27.)

[37] D. T. Brown. Error detecting and correcting binary codes for arithmetic opera-
tions. IRE Transactions on Electronic Computers, EC-9(3):333–337, Sept. 1960. doi:
10.1109/TEC.1960.5219855. (Cited on pages 27 and 133.)

[38] J. Brunel, D. Doligez, R. R. Hansen, J. L. Lawall, and G. Muller. A foundation for
flow-based program matching: Using temporal logic and model checking. In Pro-
ceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’09), pages 114–126, New York, NY, USA, Jan. 2009. ACM Press.
doi: 10.1145/1480881.1480897. (Cited on page 72.)

[39] N. Z. Butt and M. Alam. Modeling single event upsets in floating gate memory
cells. In Proceedings of the IEEE International Reliability Physics Symposium (IRPS
’08), pages 547–555, Piscataway, NJ, USA, Apr. 2008. IEEE Press. doi: 10.1109/REL-
PHY.2008.4558944. (Cited on page 15.)

http://dx.doi.org/10.1109/DSN.2013.6575308
http://subs.emis.de/LNI/Proceedings/Proceedings220/2519.pdf
http://dx.doi.org/10.1109/TDSC.2015.2427832
http://dx.doi.org/10.1109/MM.2005.110
http://dx.doi.org/10.1109/MM.2005.110
http://dx.doi.org/10.1109/RELPHY.2008.4558933
http://dx.doi.org/10.1145/224056.224058
http://dx.doi.org/10.1109/FTCS.1995.466959
http://dx.doi.org/10.1109/FTCS.1995.466959
http://dx.doi.org/10.1109/TEC.1960.5219855
http://dx.doi.org/10.1109/TEC.1960.5219855
http://dx.doi.org/10.1145/1480881.1480897
http://dx.doi.org/10.1109/RELPHY.2008.4558944
http://dx.doi.org/10.1109/RELPHY.2008.4558944


bibliography 211

[40] T. Calin, M. Nicolaidis, and R. Velazco. Upset hardened memory design for submi-
cron CMOS technology. IEEE Transactions on Nuclear Science, 43(6):2874–2878, Dec.
1996. doi: 10.1109/23.556880. (Cited on pages 2 and 22.)

[41] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Microreboot — a tech-
nique for cheap recovery. In Proceedings of the 6th USENIX Conference on Operating
Systems Design and Implementation (OSDI ’04), pages 1–14, Berkeley, CA, USA, Dec.
2004. USENIX Association. (Cited on pages 32 and 35.)

[42] P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni. Flash Memories. Springer, New York,
NY, USA, 1999. doi: 10.1007/978-1-4615-5015-0. (Cited on page 15.)

[43] G. Castagnoli, S. Brauer, and M. Herrmann. Optimization of cyclic redundancy-
check codes with 24 and 32 parity bits. IEEE Transactions on Communications, 41(6):
883–892, June 1993. doi: 10.1109/26.231911. (Cited on page 118.)

[44] G. Cellere, S. Gerardin, M. Bagatin, A. Paccagnella, A. Visconti, M. Bonanomi, S. Bel-
trami, P. Roche, G. Gasiot, R. Harboe Sorensen, A. Virtanen, C. Frost, P. Fuochi,
C. Andreani, G. Gorini, A. Pietropaolo, and S. Platt. Neutron-induced soft errors
in advanced flash memories. In Proceedings of the IEEE International Electron Devices
Meeting (IEDM ’08), pages 1–4, Piscataway, NJ, USA, Dec. 2008. IEEE Press. doi:
10.1109/IEDM.2008.4796693. (Cited on page 15.)

[45] J. Chang, G. A. Reis, and D. I. August. Automatic instruction-level software-only
recovery. In Proceedings of the 36th IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN ’06), pages 83–92, Piscataway, NJ, USA, June 2006. IEEE
Press. doi: 10.1109/DSN.2006.15. (Cited on pages 30, 31, 35, and 133.)

[46] D. Chen, A. Messer, P. Bernadat, G. Fu, Z. Dimitrijevic, D. J. F. Lie, D. Mannaru,
A. Riska, and D. Milojicic. JVM susceptibility to memory errors. In Proceedings of
the 1st Java Virtual Machine Research and Technology Symposium (JVM ’01), Berkeley,
CA, USA, Apr. 2001. USENIX Association. (Cited on pages 27 and 35.)

[47] G. Chen and M. Kandemir. Improving java virtual machine reliability for memory-
constrained embedded systems. In Proceedings of the 42nd Design Automation Con-
ference (DAC ’05), pages 690–695, New York, NY, USA, June 2005. ACM Press. doi:
10.1145/1065579.1065761. (Cited on pages 31 and 35.)

[48] G. Chen, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M. J. Irwin.
Analyzing heap error behavior in embedded JVM environments. In Proceedings of
the 2nd IEEE/ACM International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS ’04), pages 230–235, New York, NY, USA, Sept. 2004. ACM
Press. doi: 10.1145/1016720.1016775. (Cited on pages 27, 35, and 41.)

[49] G. Chen, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. Object duplication for
improving reliability. In Proceedings of the 2006 Asia and South Pacific Design Automa-
tion Conference (ASP-DAC ’06), pages 140–145, Piscataway, NJ, USA, Jan. 2006. IEEE
Press. doi: 10.1145/1118299.1118343. (Cited on pages 32, 35, and 41.)

http://dx.doi.org/10.1109/23.556880
http://dx.doi.org/10.1007/978-1-4615-5015-0
http://dx.doi.org/10.1109/26.231911
http://dx.doi.org/10.1109/IEDM.2008.4796693
http://dx.doi.org/10.1109/IEDM.2008.4796693
http://dx.doi.org/10.1109/DSN.2006.15
http://dx.doi.org/10.1145/1065579.1065761
http://dx.doi.org/10.1145/1065579.1065761
http://dx.doi.org/10.1145/1016720.1016775
http://dx.doi.org/10.1145/1118299.1118343


212 bibliography

[50] S. Chiba. A metaobject protocol for C++. In Proceedings of the 10th ACM Con-
ference on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA ’95), pages 285–299, New York, NY, USA, Oct. 1995. ACM Press. doi:
10.1145/217838.217868. (Cited on page 31.)

[51] S. Chiba and K. Nakagawa. Josh: An open AspectJ-like language. In Pro-
ceedings of the 3rd International Conference on Aspect-Oriented Software Development
(AOSD ’04), pages 102–111, New York, NY, USA, Mar. 2004. ACM Press. doi:
10.1145/976270.976284. (Cited on page 71.)

[52] T.-C. Chiueh and F.-H. Hsu. RAD: A compile-time solution to buffer overflow at-
tacks. In Proceedings of the 21st International Conference on Distributed Computing Sys-
tems (ICDCS ’01), pages 409–417, Piscataway, NJ, USA, Apr. 2001. IEEE Press. doi:
10.1109/ICDSC.2001.918971. (Cited on pages 29 and 35.)

[53] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra. Quantitative evalua-
tion of soft error injection techniques for robust system design. In Proceedings of the
50th Design Automation Conference (DAC ’13), pages 1–10, New York, NY, USA, May
2013. ACM Press. doi: 10.1145/2463209.2488859. (Cited on pages 16 and 41.)

[54] Y. Coady and G. Kiczales. Back to the future: A retroactive study of aspect evolution
in operating system code. In Proceedings of the 2nd International Conference on Aspect-
Oriented Software Development (AOSD ’03), pages 50–59, New York, NY, USA, Mar.
2003. ACM Press. doi: 10.1145/643603.643609. (Cited on page 72.)

[55] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to improve the
modularity of path-specific customization in operating system code. In Proceedings
of the 8th European Software Engineering Conference Held Jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (ESEC/FSE-9), pages
88–98, New York, NY, USA, Sept. 2001. ACM Press. doi: 10.1145/503209.503223.
(Cited on page 72.)

[56] E. G. Coffman, M. J. Elphick, and A. Shoshani. System deadlocks. ACM Computing
Surveys, 3(2):67–78, June 1971. doi: 10.1145/356586.356588. (Cited on page 133.)

[57] C. Constantinescu. Trends and challenges in VLSI circuit reliability. IEEE Micro, 23

(4):14–19, July 2003. doi: 10.1109/MM.2003.1225959. (Cited on pages 9 and 10.)

[58] C. Constantinides, T. Skotiniotis, and M. Störzer. AOP considered harmful. In
Proceedings of the 1st European Interactive Workshop on Aspects in Software (EIWAS ’04),
Berlin, Germany, Aug. 2004. (Cited on page 73.)

[59] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux Device Drivers. O’Reilly, Se-
bastopol, CA, USA, third edition, Feb. 2005. (Cited on page 159.)

[60] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, and Q. Zhang. StackGuard: Automatic adaptive detection and prevention
of buffer-overflow attacks. In Proceedings of the 7th conference on USENIX Security
Symposium (SSYM ’98), Berkeley, CA, USA, Jan. 1998. USENIX Association. (Cited
on pages 29 and 35.)

http://dx.doi.org/10.1145/217838.217868
http://dx.doi.org/10.1145/217838.217868
http://dx.doi.org/10.1145/976270.976284
http://dx.doi.org/10.1145/976270.976284
http://dx.doi.org/10.1109/ICDSC.2001.918971
http://dx.doi.org/10.1109/ICDSC.2001.918971
http://dx.doi.org/10.1145/2463209.2488859
http://dx.doi.org/10.1145/643603.643609
http://dx.doi.org/10.1145/503209.503223
http://dx.doi.org/10.1145/356586.356588
http://dx.doi.org/10.1109/MM.2003.1225959


bibliography 213

[61] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield. Remus:
High availability via asynchronous virtual machine replication. In Proceedings of
the 5th USENIX Symposium on Networked Systems Design and Implementation (NSDI’
08), pages 161–174, Berkeley, CA, USA, Apr. 2008. USENIX Association. (Cited on
pages 31 and 35.)

[62] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools and Appli-
cations. Addison-Wesley, Boston, MA, USA, May 2000. (Cited on pages 86 and 89.)

[63] D. S. Dantas and D. Walker. Harmless advice. In Proceedings of the
33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’06), pages 383–396, New York, NY, USA, Jan. 2006. ACM Press. doi:
10.1145/1111037.1111071. (Cited on page 74.)

[64] F. M. David. Building a Reliable Operating System. PhD thesis, University of Illinois
at Urbana-Champaign, Urbana, IL, USA, 2008. Retrieved from ProQuest Digital
Dissertations. (Cited on page 34.)

[65] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell. CuriOS: Improving
reliability through operating system structure. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation (OSDI ’08), pages 59–72,
Berkeley, CA, USA, Dec. 2008. USENIX Association. (Cited on page 37.)

[66] B. Demsky and M. Rinard. Automatic detection and repair of errors in data struc-
tures. In Proceedings of the 18th ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA ’03), pages 78–95, New York, NY, USA,
Oct. 2003. ACM Press. doi: 10.1145/949305.949314. (Cited on pages 33 and 35.)

[67] W. Dietz, P. Li, J. Regehr, and V. Adve. Understanding integer overflow in
C/C++. In Proceedings of the 34th International Conference on Software Engineer-
ing (ICSE ’12), pages 760–770, Piscataway, NJ, USA, June 2012. IEEE Press. doi:
10.1109/ICSE.2012.6227142. (Cited on pages 104 and 175.)

[68] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, New Jersey, NJ, USA,
1976. (Cited on page 59.)

[69] A. Dixit and A. Wood. The impact of new technology on soft error rates. In Proceed-
ings of the IEEE International Reliability Physics Symposium (IRPS ’11), pages 5B.4.1–
5B.4.7, Piscataway, NJ, USA, Apr. 2011. IEEE Press. doi: 10.1109/IRPS.2011.5784522.
(Cited on pages 1, 13, and 15.)

[70] B. Döbel, H. Härtig, and M. Engel. Operating system support for redundant multi-
threading. In Proceedings of the 10th ACM International Conference on Embedded Soft-
ware (EMSOFT ’12), pages 83–92, New York, NY, USA, Oct. 2012. ACM Press. doi:
10.1145/2380356.2380375. (Cited on pages 2, 30, and 35.)

[71] P. E. Dodd and L. W. Massengill. Basic mechanisms and modeling of single-event
upset in digital microelectronics. IEEE Transactions on Nuclear Science, 50(3):583–602,
June 2003. doi: 10.1109/TNS.2003.813129. (Cited on pages 13 and 14.)

http://dx.doi.org/10.1145/1111037.1111071
http://dx.doi.org/10.1145/1111037.1111071
http://dx.doi.org/10.1145/949305.949314
http://dx.doi.org/10.1109/ICSE.2012.6227142
http://dx.doi.org/10.1109/ICSE.2012.6227142
http://dx.doi.org/10.1109/IRPS.2011.5784522
http://dx.doi.org/10.1145/2380356.2380375
http://dx.doi.org/10.1145/2380356.2380375
http://dx.doi.org/10.1109/TNS.2003.813129


214 bibliography

[72] P. E. Dodd, M. R. Shaneyfelt, J. R. Schwank, and J. A. Felix. Current and future chal-
lenges in radiation effects on CMOS electronics. IEEE Transactions on Nuclear Science,
57(4):1747–1763, Aug. 2010. doi: 10.1109/TNS.2010.2042613. (Cited on page 22.)

[73] E. Dubrova. Fault-Tolerant Design. Springer, New York, NY, USA, 2013. doi:
10.1007/978-1-4614-2113-9. (Cited on page 21.)

[74] K. Echtle. Fehlertoleranzverfahren. Studienreihe Informatik. Springer, Berlin, Ger-
many, 1990. doi: 10.1007/978-3-642-75765-5. (Cited on pages 17, 19, 34, and 36.)

[75] M. Eichberg, M. Mezini, and K. Ostermann. Pointcuts as functional queries. In
W.-N. Chin, editor, Proceedings of the 2nd Asian Symposium on Programming Languages
and Systems (APLAS ’04), pages 366–381, Berlin, Germany, Nov. 2004. Springer. doi:
10.1007/978-3-540-30477-7_25. (Cited on page 94.)

[76] M. Engel and B. Döbel. The reliable computing base – a paradigm for software-
based reliability. In Proceedings of the 1st GI Workshop on Software-Based Methods for
Robust Embedded Systems (SOBRES ’12), Lecture Notes in Informatics, pages 480–493,
Bonn, Germany, Sept. 2012. German Society of Informatics. (Cited on page 37.)

[77] M. Engel and B. Freisleben. Supporting Autonomic Computing Functionality via
Dynamic Operating System Kernel Aspects. In Proceedings of the 4th International
Conference on Aspect-Oriented Software Development (AOSD ’05), pages 51–62, New
York, NY, USA, Mar. 2005. ACM Press. doi: 10.1145/1052898.1052903. (Cited on
page 64.)

[78] J.-C. Fabre, F. Salles, M. Rodriguez-Moreno, and J. Arlat. Assessment of COTS mi-
crokernels by fault injection. In Proceedings of the Conference on Dependable Computing
for Critical Applications 7 (DCCA ’99), pages 25–44, Piscataway, NJ, USA, Jan. 1999.
IEEE Press. doi: 10.1109/DCFTS.1999.814288. (Cited on page 41.)

[79] S. Feng, S. Gupta, A. Ansari, S. A. Mahlke, and D. I. August. Encore: Low-cost,
fine-grained transient fault recovery. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-44), pages 398–409, New York,
NY, USA, Dec. 2011. ACM Press. doi: 10.1145/2155620.2155667. (Cited on pages 23,
31, and 35.)

[80] C. Fetzer, U. Schiffel, and M. Süßkraut. AN-encoding compiler: Building safety-
critical systems with commodity hardware. In Proceedings of the 28th Interna-
tional Conference on Computer Safety, Reliability, and Security (SAFECOMP ’09), pages
283–296, Berlin, Germany, Sept. 2009. Springer. doi: 10.1007/978-3-642-04468-7_23.
(Cited on pages 27 and 35.)

[81] D. Fiala, K. B. Ferreira, F. Mueller, and C. Engelmann. A tunable, software-based
DRAM error detection and correction library for HPC. In Proceedings of the 2011
International Conference on Parallel Processing – Volume 2 (Euro-Par ’11), pages 251–261,
Berlin, Germany, Aug. 2011. Springer. doi: 10.1007/978-3-642-29740-3_29. (Cited on
pages 32 and 35.)

http://dx.doi.org/10.1109/TNS.2010.2042613
http://dx.doi.org/10.1007/978-1-4614-2113-9
http://dx.doi.org/10.1007/978-1-4614-2113-9
http://dx.doi.org/10.1007/978-3-642-75765-5
http://dx.doi.org/10.1007/978-3-540-30477-7_25
http://dx.doi.org/10.1007/978-3-540-30477-7_25
http://dx.doi.org/10.1145/1052898.1052903
http://dx.doi.org/10.1109/DCFTS.1999.814288
http://dx.doi.org/10.1145/2155620.2155667
http://dx.doi.org/10.1007/978-3-642-04468-7_23
http://dx.doi.org/10.1007/978-3-642-29740-3_29


bibliography 215

[82] R. E. Filman and D. P. Friedman. Aspect-oriented programming is quantification
and obliviousness. In R. Filman, T. Elrad, S. Clarke, and M. Akşit, editors, Aspect-
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