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ABSTRACT 

Bioactive peptides such as bradykinin potentiating factor (BPF), have, anti-oxidative, anti-inflammatory, im-
munomodulatory and ameliorative effects in chronic diseases and play a potential role in cancer prevention. It is 
known that the liver and kidney accumulate inorganic mercury upon exposure, which often leads to mercury in-
toxication in these organs. In this study, we investigated the effect of bradykinin potentiating factor (BPF), a 
scorpion venom peptide, on mercuric chloride-induced hepatic and renal toxicity in rats. We used 20 adult male 
Albino rats divided into four equal groups: the first group was injected with saline (control); the second group 
was administered daily with mercuric chloride (HgCl2) for 2 weeks; the third group was administered with BPF 
twice weekly for 2 successive weeks, while the fourth group was exposed to BPF followed by HgCl2. We ob-
served that HgCl2 treated rats had a significant increase in serum ALT, AST, ALP, creatinine and urea levels 
compared to control. Furthermore, HgCl2 treated rats showed a marked decrease in total proteins, albumin and 
uric acids compared to control. The previously studied parameters were not significantly changed in BPF pre-
treated rats compared to control. Moreover, a significant decrease in the activities of glutathione perioxidase 
(GSH), superoxide dismutase (SOD), and catalase (CAT), in addition to a significant increase in the level of 
malondialdehyde (MDA) were observed in hepatic and renal tissues of rats after HgCl2 treatment. In contrast, the 
HgCl2/BPF treated rats showed a significant elevation in the activity of GSH, SOD, and CAT accompanied with 
a significant regression in the level of MDA compared to the HgCl2 exposed rats. We conclude that treatment 
with BPF is a promising prophylactic approach for the management of mercuric chloride-induced hepato- and 
nephro-toxicities. 
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INTRODUCTION  
Mercuric chloride (HgCl2) is a highly 

toxic and corrosive chemical substance. In-
organic mercury has affinity for plasma pro-
teins, and also attaches to red blood cells. 
Despite of lack the ability to pass through the 
blood-brain or placental barriers, it reaches 
to several other body organs. It has been 
previously shown that HgCl2 poisoning can 
occur through several routes including inha-
lation, ingestion, and skin absorption (Goyer 
and Clarkson, 2001). Several studies were 
focused on implementation of free radicals 
and oxidants (such as hydrogen peroxide) in 
the renal injury induced by HgCl2 (Von 
Burg, 1995; Mahboob et al., 2001). It is also 
already known that HgCl2 also demolishes 
protective antioxidants, and reduces free rad-
ical scavenging systems, such as superoxide 
dismutase (SOD) and glutathione (GSH) pe-
roxidase (Mahboob et al., 2001; Miller et al., 
1991).  

Bradykinin potentiating factor (BPF) 
works through antigen-receptor signalling 
pathway. Bradykinin antigen binds to brady-
kinin B2 receptor and induces nitric oxide 
(NO) production, upregulates antioxidant 
cupper/zinc (Cu/Zn-SOD) and magnesium 
superoxide dismutase (MnSOD) expressions, 
decreases NADPH oxidase activity. It also 
inhibits reactive oxygen species (ROS) pro-
duction, and protects against oxidative cardi-
omyocyte senescence (Laher, 2014). It has 
been shown that the venom of the Egyptian 
scorpion, Buthus occitanus, contains a pep-
tide fraction that has a bradykinin potentiat-
ing activity (El-Saadani, 2004). BPF has 
been detected not only in scorpions, but also 
in snakes and jelly fish venoms (Camargo et 
al., 2005). The effect of BPF on guinea pig 
kidney was investigated in vivo and in vitro. 
Accordingly, a major effect of BPF on guin-
ea pig kidney was the induction of prosta-
glandin biosynthesis, which disturbs the 
glomerular filtration function of the kidney 
(El-Saadani, 2004). Additionally, repair of 
burn wounds have been accelerated by using 
BPF originated from scorpion venom 
(Camargo et al., 2005). Moreover, applica-

tion of BPF to Guinea pigs exposed to suble-
thal irradiation dose accelerated regeneration 
and cellular repopulation of thymus and 
spleen. Furthermore, the hematological pa-
rameters were not significantly changed 
compared to non-irradiated animals (Salman, 
2002). Recently, cadmium-induced liver and 
kidney damage was markedly ameliorated 
after application of scorpion venom fraction 
of BPF. BPF acts as a potent scavenger of 
free radicals, thus protects tissues against 
acute cadmium intoxication (Bekheet et al., 
2011). It has been described that pretreat-
ment of BPF significantly attenuated the he-
matological, biochemical and histopatholog-
ical changes induced by gentamicin (Bekheet 
et al., 2013). Recently, the oxidative stress 
induced by CCl4-exposure was reduced after 
application of scorpion venom-originated 
BPF (Salman, 2015). The effect of BPF on 
mercuric chloride-induced oxidative damage 
in the liver and kidney has not been reported. 
We hypothesized that bradykinin ameliorates 
mercuric chloride-induced oxidative stress in 
hepatic and renal toxicities.  

 
MATERIALS AND METHODS 

Mercuric chloride  
Mercuric chloride (Elnasar Company for 

Chemical and Pharmaceutical Industries) 
was dissolved in distilled water and intra-
peritoneally injected (i.p) at a dose of 
(0.5mg/kg) once daily for fifteen days 
(Chmielnicka et al., 1983). 

 
Isolation of bradykinin potentiating factor 

The scorpions, Buthus occitanus (collect-
ed from Qena governorate-Egypt) were 
milked using electrical shock (6 volts) at the 
articular membrane of the telson into a clean 
dry glass container. The collected venom 
was lyophilized, freeze-dried and then kept 
at 10° C (in the dark) till used. BPF isolation 
and purification were preceded according to 
previous protocol (Ferreira, 1965). Briefly, 
venom suspension (1 g in 100 ml of distilled 
water) was heated in boiling water bath for 
5 min. Absolute ethanol (750 ml) was added 
to the suspension, mixed and centrifuged 
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(2000 rpm) for 60 min and the supernatant 
was evaporated using rotavapor apparatus 
(R110, Switzerland, App. No. 85860). Etha-
nol (100 ml, 90 % conc.) was added to the 
dried powder for 3 successive times. Ethyl 
ether was added to the pooled alcoholic solu-
tion (4:1). The mixture was centrifuged and 
the resultant precipitate was dissolved in dis-
tilled water (250 ml). Lyophilisation and 
storage of the solution was done till used. 
The contraction of Guinea pig ileum was 
stimulated in presence of synthetic bradykin-
in (B-3259, Sigma Chemicals Co., St. Louis, 
U.S.A.) approving the activation of brady-
kinin fraction in venom. The maximum con-
traction of Guinea pig ileum was recorded 
for 2–20 min after application of 0.3 µg/ml 
of the bradykinin fraction in Tyrodo's solu-
tion using oscillography (400 MD2 C. Palm-
er Bioscience, Washington, U.S.A.). Fifty 
seconds after venom fraction application, 
synthetic bradykinin (0.02 µg/ml) was added 
(Nassar et al., 1990). The isolation of BPF 
from the scorpion venom was performed as 
previously mentioned and the LD50 was de-
termined according to Meier and Theakston 
(1986). 

 
Experimental animals 

Twenty adult male Albino rats (weighing 
200 ± 10 g) were obtained from laboratory 
animal house (Qena, Egypt). The animals 
were kept in plastic cages with wire mesh 
covers under normal environmental condi-
tions of temperature and humidity. Water 
and suitable commercial diet were supplied 

ad libitum throughout the experiment period. 
The rats were equally divided into four 
groups; each group containing 5 rats. Group 
1 received saline. Groups 2, 3, and 4 re-
ceived intraperiotoneal injection of Mercuric 
chloride, BPF and BPF-Mercuric chloride, 
respectively (Table 1). The experimental 
protocol was approved by the experimental 
animal ethics committee, Faculty of Science, 
South Valley University, Qena, Egypt. All 
rats were humanely euthanized 24 h after the 
last application.  

 
Serum and tissue sampling  

Before sacrifice, blood samples was col-
lected in tubes without EDTA, left for about 
10 min to coagulate, and then centrifuged for 
20 min at 3000 rpm. The serum fraction was 
extracted and preserved at –80° C until used. 

Liver and kidney tissues were homoge-
nized in (10 %, w/v) cold sucrose buffer 
(0.25 M sucrose, 1 mM EDTA and 0.05 M 
Tris–HCl, pH 7.4) using Thomas Sci Co. 
glass-type homogenizer (Teflon pestle). A 
buffer (1.15 % KCl) was added to obtain 
(1:10 w/v) whole homogenate. To assay 
malondialdehyde (MDA), superoxide dis-
mutase (SOD) and catalase (CAT) activities, 
centrifugation was performed at 18,000 × g 
(4° C) for 15 min followed by 25,000 × g for 
50 min to determine glutathione peroxidase 
(GSH-Px) activities. The supernatants were 
kept at –80° C till used for assessment of ox-
idative stress biomarkers in hepatic and renal 
tissues.  

 

 

Table 1: Experimental design 

Group Chemical / dose Period 

Group 1 Normal saline (1 ml) Daily for 2 weeks 

Group 2 Mercuric chloride (0.5 mg/kg body weight) Daily for 2 weeks 

Group 3 BPF (1 mg/kg body weight) Twice weekly for 2 weeks 

Group 4 
BPF (1 mg/kg body weight) +  
Mercuric chloride (0.5 mg/kg body weight) 

BPF Twice weekly for 2 weeks  
then Mercuric chloride daily for 2 weeks 
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Assessment of biochemical parameters in 
serum 

Aspartate aminotransferase (AST) and 
Alanine aminotransferase (ALT) determina-
tion was carried out by a colorimetric meth-
od described (Reitman and Frankel, 1957). 
Serum Alkaline phosphatase (ALP) was 
measured using the hydrolyzed phenol 
method (Kind and King, 1954). Urea was as-
sessed using the diacetyl monoxime accord-
ing to total urinary excretion method (Toro 
and Ackermann, 1975). Creatinine was 
anaylsed using the Jaffe alkaline picrate 
method (Annino and Giese, 1979).  

 
Assessment of perioxidase activity  

Hepatic and renal lipid peroxidation (LP) 
was measured and expressed in terms of 
MDA content (Placer et al., 1966). Catalase 
activity was determined by the method of 
(Aebi, 1984). Superoxide dismutase and glu-
tathione peroxidase activities were estimated 
according to (Paoletti and Mocali, 1990), and 
(Maral et al., 1977), respectively. 

 
Statistics 

The data were analyzed by means of one-
way analysis of variance (ANOVA) and pre-
sented as mean ± S.E. Statistical analysis 
was done following Student's t-test. A differ-
ence was considered significant when 
P < 0.05. 

 
RESULTS 

Effect on BPF on biochemical parameters  
To assess the impact of HgCl2 and BPF 

on liver functions, we measured the serum 
level of commonly used biomarkers for he-
patic toxicity, namely, ALT, AST, ALP and 
albumin. The serum levels of ALT, AST and 
ALP in HgCl2 treated rats were significantly 
elevated as compared to the control group. 
The serum enzyme activities of ALT, AST 
and ALP in groups 3 and 4 were not signifi-
cantly changed when compared to the con-
trol group (Figure 1A). The total protein and 
albumin level in serum is a hallmark for kid-
ney efficiency. In the present study we found  

 
Figure 1: Serum analysis of liver and kidney 
functions. A) Liver function enzymes e.g. ALT, 
AST and ALP level indicates that hepatotoxicity 
is induced by Hg administration. This hepatic in-
jury can be normalized by BPF pre-treatment. B) 
Both total protein and albumin is significantly de-
creased in serum of Hg treated rats and reversed 
by BPF administration. C) Kidney function pa-
rameters e.g. urea, uric acid and creatinine sug-
gesting the induction of nephrotoxicity by Hg 
administration, and the protective effect of BPF. 
BPF: bradykinin potentiating factor; ALT: alanine 
aminotransferase; AST: aspartate aminotrans-
ferase; ALP: alkaline phosphatase; Hg: Mercuric 
chloride. Bars are means ± SEM (n = 5). 
*P < 0.05 and **P < 0.01 vs. control group. 

 
that the total protein and albumin in sera of 
rats in group 2 were decreased (p < 0.01) as 
compared to the control group (Figure 1B). 
No significant changes were observed in the 
serum levels of total protein and albumin in 
group 3 and 4 as compared to the control 
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group (Figure 1B). We found that serum cre-
atinine and urea levels were significantly in-
creased (p < 0.05) in group 2 (was adminis-
tered daily with HgCl2 for 2 weeks) com-
pared to control values, in contrast levels of 
uric acid were significantly decreased (Fig-
ure 1C). There are no statistical significant 
differences in levels of creatinine, urea and 
uric acid in group 4 when compared to con-
trol group (Figure 1C). The hepatic and renal 
biochemical parameters were significantly 
increased in HgCl2-inoculated group; in con-
trast, these parameters were corrected to con-
trol levels when BPF were applied before the 
exposure to HgCl2. These results indicate that 
a BPF pretreatment normalizes both liver 
and kidney functions. 

 
Lipid peroxidation and antioxidant activi-
ties 

The data of lipid peroxidation, CAT, 
GSH-Px and SOD activities in the hepatic 

and renal tissues are summarized in (Figure 
2). A significant decreased in the level of 
GSH-Px and SOD activities was detected in 
the liver (p < 0.05) and kidneys (p < 0.05) of 
rats in group 2 in comparison to the control 
group, however GSH-Px and SOD activities 
were significant higher in group 4 than group 
2 (Figure 2A and C). MDA was significantly 
increased (p < 0.05) in the hepatic and renal 
tissues of rats in group 2. The MDA concen-
tration in HgCl2/BPF was significantly de-
creased in comparison with rats treated with 
HgCl2 (Figure 2D). Moreover, CAT activity 
was significantly decreased in both liver and 
kidneys of rats in group 2 in comparison to 
control. The activity of CAT was significant-
ly increased in group 4 when compared to 
group 2 (Figure 2B). These results indicate 
that a BPF pretreatment ameliorates the 
HgCl2-induced oxidative stress in liver and 
kidney.  

 

 
Figure 2: Liver and kidney tissue analysis. Levels of tested anti-oxidant parameters in both liver and 
kidney are significantly decreased in Hg treated rats compared to control group A) superoxide dis-
mutase (SOD), B) catalase (CAT), C) glutathione (GSH) and D) malondialdehyde (MDA). This reduc-
tion is completely abolished by BPF pretreatment. Bars are means ± SEM (n = 5). **P < 0.01 vs. con-
trol group 
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DISCUSSION 

Mercury is a widely produced in the in-
dustry, and can cause serious health hazards. 
The source of mercury is mainly the envi-
ronmental pollution by industrial wastes. 
Early HgCl2-induced nephrotoxicity exacer-
bates the biochemical imbalance and accel-
erates hepatotoxicity (Merzoug et al., 2009; 
Mesquita et al., 2016). In the present study, 
although HgCl2 was given in small dose 
(1 mg/kg), liver functions were detrimentally 
altered. Heavy metals cytotoxicity occurs 
through membranous damage (Anuradha and 
Krishnamoorthy, 2012) and a variety of cy-
toplasmic enzymes of hepatocytes are secret-
ed into the blood stream. Hence, serum en-
zymes such as ALP, ALT and AST are 
mainly monitored for the evaluation of he-
patic dysfunction and damage. Mercuric in-
toxication has been recorded to cause signif-
icant increases in ALP, ALT and AST activi-
ties (Bando et al., 2005; Jagadeesan and Pil-
lai, 2007; Oriquat et al., 2012; Godoy et al., 
2013; Abdel-Wareth et al., 2014; Vartak et 
al., 2016). Changes in lipid and protein me-
tabolisms are important markers of hepatic 
tissue integrity and function. Albumin is syn-
thesized by the liver and most often trans-
ports or binds drugs or chemicals. In the pre-
sent study, total protein and albumin levels 
decreased significantly in the HgCl2-treated 
rats. It is suggested that exposure to HgCl2 
could influence protein synthesis and/or me-
tabolism in the liver. Moreover, the de-
creased albumin level could be a conse-
quence of the impact of mercuric on albumin 
molecule, since albumin possesses a free 
sulfhydryl group on a terminal cysteinyl res-
idue to which mercuric ions can bind 
(Mohamed et al., 2010).  

The kidney maintains the blood creati-
nine in a normal range. Creatinine has been 
found to be a fairly reliable indicator of kid-
ney function. Elevated creatinine level signi-
fies impaired kidney function or disease. 
Abnormally high levels of creatinine warn of 
possible malfunction or failure of the kid-
neys. It is for this reason that standard kid-
ney function test is the routinely blood test to 

check the amount of creatinine in the blood. 
The higher levels of urea and creatinine are 
clearly reflected progressing renal insuffi-
ciency in Albino rats injected with mercuric 
chloride (Oriquat et al, 2012). Mercury prob-
ably impaired hepatic and renal functions 
through both vasoconstriction and a direct 
cytotoxic effect on podocyte cells (foot pro-
cesses effacement and cells detachment) 
(Barregard et al., 2010; Girardi and Elias, 
1993). Besides, the detrimental effect might 
be attributed to its accumulation in the renal 
tissues.  

HgCl2 produced a typical pattern of 
hepatotoxity and nephrotoxicity character-
ized by marked increase in serum creatinine, 
blood urea and serum ALT, AST and ALP 
activities. The elevation in the serum activity 
of ALT, a liver cytoplasmic enzyme, indi-
cates necrotic and hepatic lesions. Also, 
HgCl2 showed not only a significant eleva-
tion in AST activities, but a significant de-
cline in the ALP activity (El-Demerdash, 
2001; Reus et al., 2003; Sharma et al., 2002). 
ALP activity decreased and increased in 
acute and chronic exposures respectively, of 
teleost fish to mercuric chloride (Sastry and 
Sharma, 1980).  

The severity of hepatic and renal failure 
are related to the degree of intracellular and 
extracellular oxidative stress, in which it de-
pends on the excess production of free radi-
cal coupled with low concentration of anti-
oxidants (Godoy et al., 2013; Oloyede et al., 
2013; Massy and Nguyen-Khoa, 2002). Free 
radical-induced lipid peroxidative damage 
has played a significant role in the pathogen-
esis of various liver and kidney diseases. Li-
pid peroxidation (LP) is assayed indirectly 
by production of secondary products like a 
low molecular weight reactive aldehyde 
malondialdehyde (MDA) and assessment of 
antioxidant status can be measured by esti-
mating serum superoxide dismutase (SOD). 

Mercury toxicity is increased the produc-
tion of free radicals and hence oxidative 
stress (Bando et al., 2005; Durak et al., 
2010). MDA is the end product of LP and an 
increase in its level is indicative of peroxida-
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tion (Su et al., 2008). In the present study, 
MDA level was significantly increased in 
tissues of liver and kidneys of HgCl2-treated 
rats. The injection of HgCl2 increased MDA 
level in various tissues including kidneys and 
brain (Agarwal et al., 2010; Aslanturk et al., 
2014), testis (Kalender et al., 2013) and thy-
roid gland in a dose-dependent manner (Rao 
and Chhunchha, 2010). Increment of MDA 
level induced by HgCl2 is considered indica-
tive for hepatic and renal damage. SOD, 
CAT, and GSH-Px are essential for the cellu-
lar protection against reactive oxygen species 
(ROS) and other oxidative stress (Morakinyo 
et al., 2012). SOD is included in the detoxi-
fication process to catalyze the dismutation 
of superoxide radicals to H2O2 and molecular 
oxygen (Boujbiha et al., 2009). CAT activity 
is included in the reduction of H2O2 to H2O 
and oxygen and in turn cellular protection 
against oxidative damage produced by H2O2 
and hydroxyl radical (Renugadevi and Prabu, 
2010). In the present work, significant de-
creases of SOD, CAT, and GSH-Px activities 
in the hepatic and renal tissues of HgCl2-
treated rats were recorded. Mercuric chloride 
increases the generation of many endoge-
nous oxidants such as H2O2 that causes lipid 
peroxidation. The decreases in antioxidant 
activities in mercuric intoxication are due to 
the excess generation of ROS and resultant 
enhancement in lipid peroxidation (Agarwal 
et al., 2010). The reduction in the activities 
of SOD, CAT, and GSH-Px enzymes in the 
present study might be due to their consump-
tion during the breakdown of free radicals 
and the accumulation of superoxide radicals 
and H2O2 or due to the inhibition of these 
enzymes by free radicals (Aslanturk et al., 
2014; Othman et al., 2014; Rao and 
Chhunchha, 2010). Hepatic functions were 
also impaired by administration of mercury 
suggesting its induction of oxidative stress in 
the treated rats. This oxidative stress includ-
ed augmentation of lipid peroxidation as well 
as inhibition of the antioxidant enzyme activ-
ities such as GSH, SOD and CAT enzymes. 
Lipid peroxidation was increased as ex-
pressed in elevation of MDA and depression 

in the activities of GSH, SOD and CAT en-
zymes in kidney and liver in mercuric chlo-
ride-treated rats.  

The biochemical assays in the present 
study demonstrated that exogenous BPF 
from scorpion venom reduced the HgCl2-
induced oxidative stress. Hence, the treat-
ment with BPF restored the activity of anti-
oxidant in streptozotocin- induced hypergly-
cemic rat (Mikrut et al., 2001). Also, kinin 
infusion protected against salt-induced renal 
dysfunction (Oeseburg et al., 2009). Moreo-
ver, it has also been shown that after mala-
thion exposure, the total globulin concentra-
tion, IgG, IgM, total immunoglobulins and 
circulatory immune complexes were signifi-
cantly decreased. In contrast, after injection 
of BPF, bone marrow and splenic changes 
and peripheral blood elements were recov-
ered to control levels and the elevated proin-
flammatory markers (IL-2, IL-4 and TNF-α), 
total plasma peroxide and oxidative stress 
index were reduced associated with an in-
crease in total antioxidant capacity (Ahmed, 
2012). The present findings indicated the 
important role of kinins in control the devel-
opment of oxidative stress. However, the 
mechanism by which kinins could chelate 
free radical and inhibit peroxide production, 
as well as SOD, CAT and GSH activities in 
vivo, is not clearly defined. The effects of 
bradykinin are mediated via local stimulation 
of prostaglandin synthesis (Dietze et al., 
1978; Camargo et al., 2012). The decreased 
level of MDA, observed after bradykinin 
administration, may thus be due to a reduc-
tion in free radical production.  

Additionally, CCl4-induced liver injury 
was protected by bradykinin infusion, as re-
vealed by a dramatic reduction of serum liver 
enzyme levels in bradykinin- treated rats and 
in turn decreased hepatic injury (Sancho–Bru 
et al., 2007). BPF activates the hepatic gly-
cogen synthetase that enhances hepatic gly-
cogen synthesis that potentiates integrity of 
hepatocytes and detoxification capability. 
Moreover, it increases immunoglobulin pro-
duction either in bone marrow or plasma 
cells and either directly or through the cyto-
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kine regulation (Liu et al., 1992). After irra-
diation of rats, significant increases in renal 
MDA and advanced oxidation protein prod-
uct and serum urea and creatinine levels as-
sociated with significant decrease in renal 
GSH and uric acid levels. After injection of 
BPF all these parameters were corrected to 
control levels (Ashry et al., 2012). Bradykin-
in inhibits renal fibrosis by increasing the 
NO production, suppression of TGFβ1 ex-
pression and mitogen-activated protein ki-
nase (ERK and p38) phosphorylation 
(Hagiwara et al., 2004). 

Thus, it is clear that administration of 
BPF is effective in reducing biochemical al-
terations and oxidative stress caused by 
HgCl2 in rat liver and kidneys. BPF had free 
radical-scavenger effect and/or an enhancing 
effect on the antioxidant capacity of the 
body. Therefore, activation of the kallikrein-
kinin system is a promising prophylactic ap-
proach for the management of subacute he-
patic and renal toxicities. 
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