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Abstract:The paper considers the influence of thermal Maragoni convection on boundary

layer flow of two-phase dusty fluid along a vertical wavy surface. The dimensionless bound-

ary layer equations for two-phase problem are reduced to a convenient form by primitive

variable transformation (PVF) and then integrated numerically by employing the implicit

finite difference method along with the Thomas Algorithm. The effect of thermal Maragoni

convection, dusty water and sinusoidal waveform are discussed in detail in terms of local

heat transfer rate, skin friction coefficient, velocity and temperature distributions. This in-

vestigation reveals the fact that the water-particle mixture reduces the rate of heat transfer,

significantly.

1 Introduction

Surface-tension-driven convection occurs when there is temperature or concentration dif-

ferences on the surface of the fluid and the fluid will flow from region having low surface

tension (high temperature region) to region having high surface tension (cold temperature

region). In thermocapillary convection, the surface tension varies with temperature. How-

ever, small amounts of certain surfactant additives are also known to drastically change

the surface tension. Surface-tension induced convection is of significant importance because

it causes undesirable effects in industrial processes. The class of problems having surface-

tension-driven convection or also known as Marangoni convection, is of prime importance

in industrial, biomedical and daily life applications such as coating flow technology, mi-

crofluidics, surfactant replacement therapy for neonatal infants, film drainage in emulsions

and foams, drying of semi-conductor wafers in microelectronics and in numerous fields of

micro-gravity sciences and space processing. Napolitano ([1]-[2]) was the first who observed

the existence of such dissipative layers that can be formed along the interface of two immis-

cible fluids, in surface driven flows. With the advancement of space experimentation under

microgravity conditions, the Marangoni effect has attracted much attention. There was

an expectation that heat convection in molten systems would disappear completely under

microgravity conditions and that high quality crystals could thus be obtained as a conse-

quence (for details see Ref. [1]). Marangoni (thermocapillary) convection may also arise in

laser melt pools during epitaxial laser metal forming [3]. With mass transfer present also,

solutal Marangoni convection arises wherein the flow is caused by surface tension gradi-

ents originating from concentration gradients. Thermocapillarity is flow caused by surface
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tension gradients originating from temperature gradients. Studies of these problems are

also motivated by their importance in terrestrial materials processing, and oceanography

[4]. Batishchev [5] discussed Marangoni boundary layer degeneration at the outer boundary

and the generation of a counter stream zone, also considering convective flows with directed

crystallization, in the absence of mass forces. Napolitano and Russo [6] identified similarity

solutions for Marangoni boundary layers arising for the case where interface temperature

gradient varies as a power of the interface arc length. The significance of dissipative layers

in liquid metal and semiconductor processing is shown to be particularly strong and is a

major factor in guiding the control of industrial processes. However, although extensive

work has been done in investigating the Marangoni convection, the state of the art is still

somewhat unsatisfactory in what concerns preliminary questions of general and basic na-

ture. In this context, it was proved by Napolitano [7] that, similar to that of classical

boundary layers (also knows as non-Marangoni layers), while using the arc length x and

the distance normal to the interface as coordinates, the field equations in the bulk fluids do

not depend explicitly on the geometry of the interface. This includes, however, the average

curvature of its hydrostatic and dynamic shapes and produces the kinematic, thermal and

pressure couplings for the flow fields of two fluids. Afterwards, it was shown in [8] that,

such coupling of the fields may be removed, when i) the viscosity ratio of the two fluids,

and ii) the momentum and thermal resistivity ratios of the two layers, are strictly less than

unity. The authors in [8] reported some interesting facts about Marangoni boundary layers,

and proved that the existence of similar solutions for the class of Marangoni convection

problems is only possible if temperature gradient at the surface varies as a power of arc

length of the geometry. Besides, Christopher and Wang [9] have examined the effect of

Prandtl number to see the relative thickness of momentum and thermal boundary layers.

Furthermore, the detailed numerical as well as analytical solutions for Marangoni boundary

layers were discussed by several authors under various practical situations (For details see

[10]-[15]).

In all above-mentioned studies, attention has been given to viscous fluid which is

free from all impurities (clear fluid). But, pure fluid is rarely available in many practical

situations, for instance, common fluids like air and water contain impurities like dust parti-

cles. Therefore, investigations on flow of fluids with suspended particles have attracted the

attention of numerous researchers due to their practical applications in various problem of

atmospheric, engineering and physiological fields (see [16]). In this regard, Farbar and Mor-

ley [17] were the first to analyze the gas-particulate suspension on experimental grounds.

After that, Marble [18] studied the problem of dynamics of a gas containing small solid

particles and developed the equations for gas-particle flow systems. Singleton [19] was the

first to study the boundary layer analysis for dusty fluid and later on several attempts were

made to conclude the physical insight of such two-phase flows (see Ref. [20]-[25]) under

different physical circumstances.

It is noteworthy to mention that the irregular surfaces, say, vertical or horizontal

wavy surfaces have been considered vastly in the literature (see Ref. [26]-[31]). Through

these analysis, it has been reported that such surfaces serves practically in engineering appli-

cations (for instance in solar collectors, grain storage containers, industrial heat exchangers

and condensers in refrigerators). Motivated by the previous works and possible applications,

thermal Maragoni convection of two-phase dusty fluid is modeled along a vertical wavy sur-

face in the present study. From the present analysis we will interrogate whether i) the
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roughness element and ii) the presence of dust particles in base fluid affect the Marangoni

natural convection and alter the physical characteristics associates with the vertical wall

or not? The upcoming section contains the elementary field equations of fluid mechanics

as partial differential equations in terms of physically important unknown parameters such

as velocity, pressure and energy variable for two-phase dusty fluid. To study the effects

of surface-tension-driven convection, it is assumed that the temperature gradients for both

phases at the wavy surface are in the form of power law function. In addition, dusty fluid

flow equations are developed by considering the assumption made by Marble in [18]. The

governing equations for two-phase model are then transformed into dimensionless boundary

layer equations by incorporating a set of suitable transformations. After that, coordinate

transformation (primitive variable formulation) is employed to transform the two-phase

boundary layer model into a convenient form, which are solved numerically by hiring an

implicit finite difference method along with the Thomas Algorithm (For details see Ref.

[32]). Afterwards, results and discssion section is given, in which, computational data is

presented graphically in the form of skin friction coefficient, heat transfer rate, velocity and

temperature profiles, streamlines and isotherms by varying several controlling parameters.

A tabular comparison of wall skin friction and rate of heat transfer for pure and dusty fluid

is also given in the result and discussion section. Besides, the effect of Maragoni convec-

tion parameter, dust particle loading parameter and surface waviness parameter are taken

into account and presented graphically. Lastly, important results from the present analysis

are summarized in the conclusion section. We believe that the present results are a new

addition to the open literature on thermal Maragoni convection in dusty fluids.

2 Mathematical Formulation

Considerations have been given to steady coupled problem of thermal Marangoni natural

convection along an isothermal vertical wavy surface, as shown in Fig. 1. The shape of

the wavy surface, σ (x̄), is arbitrary, but our detailed numerical work will assume that the

surface exhibits sinusoidal deformations. Thus, the wavy pattern of the vertical surface is

described by:

ȳw = σ (x̄) = ā sin

(
2πx̄

L

)
(1)

where ā is the dimensional amplitude of the wavy surface and L the characteristic length

associated with the uneven surface. The working fluid is taken to be viscous, dusty and

incompressible, which is originally at rest along a vertical heated wavy surface. Initially,

the system is having a uniform temperature T∞. Suddenly, the surface of the vertical plate

at ȳ = 0 is heated to a temperature T + ∆T and natural convection starts due to this. The

temperature gradients for both phases are in the form of power law function. Under the

assumptions of the dusty fluid flow given in (For details see Ref. [21], [22]), the governing

system of equations is developed as:

For gas phase:
∂ū

∂x̄
+
∂v̄

∂ȳ
= 0 (2)

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= −1

ρ

∂p̄

∂x̄
+ ν∇2ū+ gβT (T − T∞) +

ρp
ρτm

(ūp − ū) (3)

3



u

x

L

y

v

yw = σ(x

Fig. 1 The physical model.

ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
= −1

ρ

∂p̄

∂ȳ
+ ν∇2v̄ +

ρp
ρτm

(v̄p − v̄) (4)

ū
∂T

∂x̄
+ v̄

∂T

∂ȳ
= α∇2T +

ρpcs
τTρcp

(Tp − T ) (5)

For the particle phase:
∂ūp
∂x̄

+
∂v̄p
∂ȳ

= 0 (6)

ρp

(
ūp
∂ūp
∂x̄

+ v̄p
∂ūp
∂ȳ

)
= −∂p̄p

∂x̄
− ρp
τm

(ūp − ū) (7)

ρp

(
ūp
∂v̄p
∂x̄

+ v̄p
∂v̄p
∂ȳ

)
= −∂p̄p

∂ȳ
− ρp
τm

(v̄p − v̄) (8)

ρpcs

(
ūp
∂Tp
∂x̄

+ v̄p
∂Tp
∂ȳ

)
= −ρpcs

τT
(Tp − T ) (9)

where (ū, v̄), T , ρ, cp, βT α, µ are respectively the velocity vector in the (x̄, ȳ) direction,

temperature, density, specific heat at constant pressure, volumetric expansion coefficient,

thermal diffusivity and kinematic viscosity of carrier fluid. Similarly, (ūp, v̄p), Tp, ρp and cs
corresponds to the velocity vector, temperature, density and specific heat for the particle

phase. In addition, g is the gravitational acceleration, τm (τT ) is the momentum relaxation

time (thermal relaxation time) for dust particles.

The fundamental equations stated above are to be solved under appropriate boundary

conditions to determine the flow fields of the fluid and the dust particles. Therefore, the

boundary conditions for the problem under considerations are:

For gas phase:
µ∂ū∂ȳ (x̄, ȳw) = ~T ∂T∂x̄ (x̄, ȳw), v̄(x̄, ȳw) = 0,

T (x̄, ȳw)− T∞ = T0, ū(x̄,∞) = 0, T (x̄,∞) = T∞.
(10)
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For particle phase:

µ
∂ūp
∂ȳ (x̄, ȳw) = ~T ∂Tp∂x̄ (x̄, ȳw), v̄p(x̄, ȳw) = 0,

Tp(x̄, ȳw)− T∞ = T0, ūp(x̄,∞) = 0, Tp(x̄,∞) = T∞.
(11)

Here, ~T = − ∂~
∂x̄ , where ~ is the surface tension which is assumed to be given by the linear

relation:

~ = ~m − ~T (T − T∞) (12)

where ~m is the surface tension at a reference temperature T∞ and assumed to be constant.

In order to transform all the above-mentioned quantities in Eqs. (1)-(12) in uniform order

of magnitude, the following continuous dimensionless variables have been employed:

x =
x̄

L
, y =

ȳ − σ (x̄)

L
Gr

1/4
L , (θ, θp) =

(T, Tp)− T∞
T0

(u, up) =
ρL

µ
Gr
−1/2
L (ū, ūp), (p, pp) =

L2

ρν2GrL
(p̄, p̄p)

(v, vp) =
ρL

µ
Gr
−1/4
L ((v̄, v̄p)− σx (ū, ūp)) , a =

ā

L

σx =
dσ̄

dx̄
=
dσ

dx
, σ(x) =

σ(x̄)

L
, GrL =

gβTT0L
3

ν2
,

ν =
µ

ρ
, Pr =

ν

α

(13)

By incorporating Eq. (13), the dimensional continuity, momentum and temperature equa-

tions for both phases will be transformed in underlying form.

For the gas phase:
∂u

∂x
+
∂v

∂y
= 0 (14)

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ σxGr

1/4
L

∂p

∂y
+
(
1 + σ2

x

) ∂2u

∂y2
+ θ +Dραd(up − u) (15)

σx

(
u
∂u

∂x
+ v

∂u

∂y

)
+ σxxu

2 = −Gr1/4
L

∂p

∂y
+ σx

(
1 + σ2

x

) ∂2u

∂y2
+ σxDραd(up − u) (16)

u
∂θ

∂x
+ v

∂θ

∂y
=

1

Pr

(
1 + σ2

x

) ∂2θ

∂y2
+

2

3Pr
Dραd(θp − θ) (17)

For the particle phase:
∂up
∂x

+
∂vp
∂y

= 0 (18)

up
∂up
∂x

+ vp
∂up
∂y

= −∂pp
∂x

+ σxGr
1/4
L

∂pp
∂y
− αd(up − u) (19)

σx

(
up
∂up
∂x

+ vp
∂up
∂y

)
+ u2

pσxx

= −Gr1/4
L

∂pp
∂y
− αdσx(up − u)

(20)

up
∂θp
∂x

+ vp
∂θp
∂y

= − 2

3γPr
αd(θp − θ) (21)
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The corresponding boundary conditions for gas and particle phase becomes:

For gas phase:
∂u
∂y (x, 0) = −λ ∂θ∂x(x, 0), v(x, 0) = 0, θ(x, 0) = 1

u(x,∞) = 0, θ(x,∞) = 0.
(22)

For particle phase:

∂up
∂y (x, 0) = −λ∂θp∂x (x, 0), vp(x, 0) = 0, θp(x, 0) = 1

up(x,∞) = 0, θp(x,∞) = 0.
(23)

where, λ = Ma/Gr
3/4
L is a function of Marangoni number and Ma takes the form as:

Ma = ~TT0L/µν. The dimensionless mathematical expressions for the interaction of two-

phases are gives as:

γ =
cs
cp
, τT =

3

2
γτmPr, Dρ =

ρp
ρ
, αd =

L2

τmνGr
1/2
L

(24)

where, γ, Dρ, αd are respectively symbolizing the specific heat ratio of the mixture, mass

concentration of particle phase and the dust parameter. It is important to mention here that

for different mixtures, the interaction term γ may vary between 0.1 and 10.0 (For details see

[16]). It can also be observed that for αd = 0.0, the flow governs by the natural convection

in the absence of the dusty particles (i.e carrier phase only). Further, the Eqs. (15) and

(19) respectively indicate that the pressure gradient of the gas and the particle phase along

the y direction are of O(Gr−1/4), which implies that the lowest order pressure gradient of

both phases along the x direction can be determined from the inviscid-flow solution. In the

present problem, this pressure gradient is zero because there is no externally induced free

stream. Moreover, Eq. (15) shows that Gr1/4∂p/∂y is of O(1) and can be determined by

the left-hand side of this equation. Thus, the elimination of ∂p/∂y from Eqs. (15) and (16)

leads to:

u
∂u

∂x
+ v

∂u

∂y
+

σxσxx
(1 + σ2

x)
u2 =

(
1 + σ2

x

) ∂2u

∂y2
+

θ

(1 + σ2
x)

+Dραd (up − u) (25)

On the similar lines, removal of ∂pp/∂y from Eqs. (19) and (20) results into:

up
∂up
∂x

+ vp
∂up
∂y

+
σxσxx

(1 + σ2
x)
u2
p = −Dραd (up − u) (26)

Now, for numerical treatment for the present problem, we have employed the implicit finite

difference (Thomas Algorithm). For this, first we introduce the following transformations

to reduce the system of boundary layer equations into some convenient form:

x = X, y = x
1
4Y, (u, up) = x

1
2 (U,Up),

(v, vp) = x−
1
4 (V, Vp), (θ, θp) = (Θ,Θp)

(27)

By incorporating the transformation defined in Eq. (27), the above system of dimensionless

boundary layer equations can be further mapped into the non-conserved form as follows:

For gas phase:
1

2
U +X

∂U

∂X
− 1

4
Y
∂U

∂Y
+
∂V

∂Y
= 0 (28)

6



(
1

2
+
XσXσXX(

1 + σ2
X

) )U2 +XU
∂U

∂X
+

(
V − 1

4
Y U

)
∂U

∂Y
=
(
1 + σ2

X

) ∂2U

∂Y 2

+
Θ(

1 + σ2
X

) +DραdX
1/2(Up − U)

(29)

XU
∂Θ

∂X
+

(
V − 1

4
Y U

)
∂Θ

∂Y
=

(1 + σ2
X)

Pr

∂2Θ

∂Y 2
+

2

3Pr
DραdX

1/2 (Θp −Θ) (30)

1

2
Up +X

∂Up
∂X
− 1

4
Y
∂Up
∂Y

+
∂Vp
∂Y

= 0 (31)(
1

2
+
XσXσXX(

1 + σ2
X

) )U2
p +XUp

∂Up
∂X

+

(
Vp −

1

4
Y Up

)
∂Up
∂Y

= −αdX1/2(Up − U) (32)

XUp
∂Θp

∂X
+

(
Vp −

1

4
Y Up

)
∂Θp

∂Y
= − 2

3γPr
αdX

1/2 (Θp −Θ) (33)

The transformed boundary conditions can be written as:

For gas phase:
∂U
∂Y (X, 0) = −λX−1/4 ∂Θ

∂X (X, 0), V (X, 0) = 0,
Θ(X, 0) = 1, U(X,∞) = 0,Θ(X,∞) = 0.

(34)

For particle phase:

∂Up

∂Y (X, 0) = −λX−1/4 ∂Θp

∂X (X, 0), Vp(X, 0) = 0,
Θp(X, 0) = 1, Up(X,∞) = 0,Θp(X,∞) = 0.

(35)

A numerical solution for the coupled system of non linear partial differential Eqs. (28)-

(35) by a finite difference method is straightforward, since the computational grids can be

fitted to the body shape in (X,Y ) coordinates. The discretization process is carried out by

exploiting the central difference quotients for diffusion terms, and the forward difference for

the convection terms. The computational process is started at X = 0.01 as the singularity

at this point has been removed by the scaling. At every X station, the computations are

iterated until the difference of the results, of two successive iterations become less or equal

to 10−6. In order to get accurate results, we have compared the results at different grid size

in Y direction and reached at the conclusion to chose ∆Y = 0.003. In this integration, the

maximum value of Y is taken to be 30.0. A detail description of discretization procedure

and numerical scheme is presented in [32].

The measurable physical quantities like local skin friction coefficient, τw, and rate of heat

transfer, Qw, are used to express the solutions of the current scenario. These quantities

are much significant from an engineering point of view, as both can be served to improve

many equipments in aerodynamics. After some algebraic manipulations, the dimensionless

expressions for skin friction coefficient and heat transfer rate are obtained as:

τw = Cf

(
Gr−3

X

)1/4

=
√

1 + σ2
X

(
∂U

∂Y

)
Y=0

Qw = Nu

(
Gr

X

)−1/4

= −
√

1 + σ2
X

(
∂Θ

∂Y

)
Y=0

(36)

In the upcoming section, the obtained results are graphed and discussed.
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3 Results and Discussion

The main purpose of present analysis is to investigate the effects of thermal Maragoni

convection on two-phase dusty fluid flow past a vertical wavy surface. We performed two-

dimensional simulations in order to obtain solutions of mathematical model presented in

terms of primitive variables given in Eqs. (28)-(35) from the two-point implicit finite differ-

ence method. Numerical results are reported for the overall effectiveness of mass concen-

tration of dust particles in fluid which is moving along a transverse geometry. Particularly,

the solutions are established for the water particulate suspension (i.e, Pr = 7.0, Dρ = 10.0

and γ = 0.1). The parametric values for dusty water are taken from study of Apazidis [33].

While the numerical computations are performed by setting the values of other parameters

as: λ = 1.0, αd = 0.1, 0.5, 1.0 and a = 0.3, 0.4, 0.5. The numerical values of τw and Qw for

clear and dusty fluid are entered in Table 1. It is important to mention here that, Dρ = 0.0,

recovers the model for one phase flow. The quantitative data clearly shows the influence of

mass concentration of dust particle parameter on the skin friction and rate of heat transfer.

The data for τw and Qw indicates that the both physical quantities are maximum for clear

fluid and reduces due to the increment in values of particle loading parameter Dρ.

Graphical presentation of τw and Qw is given in Fig. 2 for water particle mixture. For

Table 1: Numerical values of τw and Qw for Dρ = 0.0, 5.0, Pr = 0.7, γ = 0.1, αd = 0.1,
λ = 1.0 and a = 0.3.

X
τw Qw

Dρ = Dρ = Dρ = Dρ =
0.0 5.0 0.0 5.0

0.01999 0.00168 0.00162 0.93411 0.90981
1.00900 0.00189 0.00162 1.03399 0.93683
2.00800 0.00202 0.00170 1.03882 0.93766
3.00700 0.00210 0.00177 1.03478 0.93366
4.00600 0.00217 0.00183 1.02852 0.92861
5.00500 0.00224 0.00190 1.02153 0.92337
6.00400 0.00230 0.00196 1.01432 0.91823
7.00300 0.00236 0.00203 1.00711 0.91330
8.00200 0.00242 0.00211 1.00001 0.90863
9.00100 0.00248 0.00218 0.99307 0.90425
10.0000 0.00255 0.00226 0.98634 0.90016

comparison, skin friction coefficient and rate of heat transfer are plotted for the suspension

without dust particles (clear fluid). In Fig. 2, it can be seen that both the skin friction

coefficient and rate of heat transfer decreases by increasing the value of mass concentration

parameter Dρ. Such behavior is expected because the carrier fluid loses the kinetic and

thermal energy by interacting with the dust particles and this leads to decrease the velocity

of carrier fluid as compared to pure fluid case. Ultimately the velocity gradient for the car-

rier fluid decreases at the surface of the wavy plate. Particularly, It can be seen from Fig.

2(b) that the rate of heat transfer shows a considerable decline by increasing the mass con-

centration parameter, Dρ, for water particulate suspension. Therefore, it happened subject

to the interaction of the two phase flow.

8



X

τ w

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.000

0.005

0.010

0.015
Pure water
Water with particles

(a X

Q
w

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.90

0.99

1.08

1.17

Pure water
Water with particles

(b)

Fig. 2(a) Skin friction and (b) Rate of heat transfer for Dρ = 0.0, 10.0 while
Pr = 7.0, γ = 0.1, αd = 0.1, λ = 1.0 and a = 0.3.

Fig. 3 is plotted to visualize the effect of amplitude of wavy surface on the distribu-

tion of physical quantities, namely, τw and Qw. The change in surface contour is followed by

raise and fall of the curves. As it can be visualize from Fig. 3(a), that the influence of am-

plitude a, on average, is to reduce the rate of skin friction. Similar behavior is recorded for

the rate of heat transfer (see Fig. 3(b)). As a whole, the rate of heat transfer, Qw, reduces

when the amplitude of the sinusoidal waveform increases. As the amplitude increases the

shape of the wave gradually changes from sinusoidal waveform to the unusual shape. The

reduction in the magnitude of the temperature gradient happened due to the simultaneous

influence of centrifugal and buoyancy force. Furthermore, we notice that the change in rate

of heat transfer is more pronounced for larger values of the amplitude a and this factor acts

as a retarding force for heat transfer coefficient.

Fig. 4 displays the variation in quantities: τw and Qw that are brought by changing

the value of dust parameter (αd) of the water suspension. It is interesting to infer from

this figure that the skin friction coefficient remains insensitive but rate of heat transfer

shows reduction within the boundary layer region when αd increases. The presence of inert

particles in water are responsible for reduction of Qw. Higher the value of dust parameter,

smaller will be the rate of heat transfer. As observed from the expression of αd that dust

parameter is inversely proportional to the velocity relaxation time (τm). Therefore, for

τm >> 1 the dust parameter will be small, i.e., αd << 1, on the other hand, for τm << 1

the dust parameter must be large enough. Keeping this in mind, the numerical results

displayed in Fig. 4 ranges from 0.1 to 5.0.

Fig. 5 is plotted to visualize the detailed scenario of velocity and temperature profiles

of carrier and particle phases for various values of amplitude of wavy surface a. As it can

clearly seen form Fig. 5(a), that the velocities for both phases decreases significantly owing

to increase in value of amplitude a. Such behavior is expected, because when amplitude of

the wavy surface increases, the water particulate suspension between crust and trough of

the waves undergoes more resistance to flow and hence fluid velocity decreases. As, small

values of a offers no resistance to flow and suspension quickly attains its asymptotic value
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Fig. 3(a) Skin friction and (b) Rate of heat transfer for a = 0.3, 0.4, 0.5 while
Pr = 7.0, Dρ = 10.0, γ = 0.1, αd = 0.1 and λ = 1.0.
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Fig. 6 Streamlines for (a) Dρ = 0.0, (b) Dρ = 10.0 for Pr = 7.0, γ = 0.1, αd = 0.1,
λ = 1.0 and a = 0.3.

in the boundary layer region. However, the parameter a has reverse affect on temperature

profile (see Fig. 5(b)). This may happens due to the fact that, the dust particles near the

surface attains the thermal energy from the hotter surface of large amplitude and ultimately

give rise to the temperature of dusty fluid in whole convective regime.

In order to illustrate the influence of mass concentration of dust particles parameter,

Dρ on streamlines and isotherms for water particulate suspension, Figs. 6 and 7 are plotted.

For comparison, suspension without particle cloud (pure water) is also presented in Figs.

6(a) and 7(a). It is observed that by loading the dust particles, the velocity and the

temperature of dusty fluid reduces significantly as compared to clear fluid (pure water) as

shown in Fig. 6(a) and 7(a). When particles are loaded extensively, (i.e, Dρ = 10.0), the

base fluid loses the kinetic and thermal energy due to inter-collisions of particles, which

ultimately decrease the overall velocity and temperature into the boundary layer region.
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Fig. 7 Isotherms for (a) Dρ = 0.0, (b) Dρ = 10.0 for Pr = 7.0, γ = 0.1, αd = 0.1,
λ = 1.0 and a = 0.3.

4 Conclusion

In this study, detailed numerical solutions are obtained for thermal Maragoni convection

of two phase dusty boundary layer flow, induced by the semi-infinite vertical wavy surface.

Coordinate transformations (primitive variable formulations) are applied to switch the gov-

erning equations of the carrier and the dispersed phase into another set of equations. Two-

point finite difference solutions are obtained for the whole length of the irregular surface.

The focus of this study is to analyze the behavior of thermal Maragoni convection on dusty

fluid flow along an uneven surface. Effect of various emerging parameters are explored by

expressing their relevance on skin friction coefficient and rate of heat transfer. Numerical

results give a clear insight towards understanding the response of the present physical sit-

uation. Velocity and temperature distributions are plotted and visualized as well through

streamlines and isotherms. From this analysis, it is observed that mass concentration pa-

rameter and amplitude of wavy surface parameter reduces the rate of heat transfer within

the boundary layer region.
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