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1. Introduction

Language has always drawn the attention of people. “I do not know any person, who is not

interested in language”. This is a quote from Steven Pinker who wrote one of the most influential

commercial books about language: The language instinct [Pin94]. In linguistics, researchers

investigate and study language in all its aspects. Understanding language is the key to understand

the history and the development of mankind. From the beginning of language studies, major

directions in the field of linguistics have developed. The two most general fields in linguistics

are spoken and written language. Especially written language has been investigated extensively

over the last centuries.

Written language enables to store and to transmit information among people, over distance and

time. This decouples the human evolution from purely environmental influences to knowledge-

based influences. Before we started to keep track of our experiences as stories, poems or reli-

gious texts, only a very limited amount of knowledge could be kept within the generations of

men. Preserving knowledge by writing makes human achievements and experiences available
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1. Introduction

for future generations.

The language used in written records can be used to extract more than pure information.

The context, writing style or used language elements is investigated to understand meaning and

intention of written records. For this purpose, whole collections of documents and texts are

compiled to so called corpora (singular: corpus). A (text) corpus is a collection of texts that is

compiled for certain analytical tasks. It is generally not simple to decide if a collection of texts

is a corpus or just a collection of texts. The easiest way to distinguish a corpus from a simple

text collection is by the intention behind the compilation. If documents or texts are collected

to perform analyses, we could speak about a corpus for example. If texts are only collected

for storage, we could speak about document collections. In [Hun06], Susan Hunston describes

a corpus as collection of documents helping linguistic researchers to perform certain tasks. A

corpus is coherent to accomplish, to validate and to extract linguistic hypotheses. On the other

hand, a corpus contains variance to accomplish a broad variety of possible hypotheses to validate

or extract. Throughout this thesis we use the notation of a document or text collection to describe

compiled written records that are used for any analysis (linguistic or not). If we refer to certain

linguistic tasks, we use the notation of a corpus.

One of the oldest corpora used for linguistics is the Bible. Already 1790, Alexander Cruden

published ”A Complete Concordance to the Holy Scriptures” [Cru06]. In this book, the author

compiled a collection of all words from the King James Bible including references and informa-

tion about the use. For centuries, the availability of the Bible for such linguistic analyses was

only possible for a few cleric persons. Before the first German translation of the Bible by Martin

Luther (1522) for example, most people could not read the Bible at all.

Prior to the dawn of modern computers to become available for linguistic and language ex-

perts, analyses on corpora were done by hand. With increasing numbers of documents available,

systematic analysis of the language in the texts became possible. The field of corpus linguistics

uses corpora for systematic linguistic analysis. While classical corpus linguistic studies are con-

centrated on small text collections to perform qualitative linguistic tasks, quantitative methods

based on modern statistical and automatic analysis methods enable to perform large analyses on

bigger text corpora.

From the 1960s on, modern digital text corpora offer large text collections like newspaper

articles, social media content, but also language reference corpora. Since the beginning of the

Internet, more and more textual information has become available for everybody. With the

availability of such large collections of digital documents, electronic document collections and

corpora start to be used for linguistic analysis. To use such large amounts of digital texts, non-

manual methods to extract information for linguistic research become more important. Natural

Language Processing (NLP) methods [MS99] for example can help to automatically analyze

large document collections and corpora. In NLP we try to discover knowledge from language

data sources. NLP uses methods that perform automatic analysis tasks based on identification

of patterns in texts. The goal is to find information in the data when manual analyses are not

possible, too expensive or too time-consuming.

Two major sub-fields of linguistics can extraordinarily benefit from such automatic data driven

analyses as being offered by NLP methods. First, in lexicography the uses of words and expres-
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1.1. Impact in Computer Science

sions is studied. In dictionaries like the Cambridge dictionary1, different usages and senses of

words are collected. To keep these information up to date and enrich them with examples for

the individual usages and sense, large text corpora are used. In [BRP14, LPDG] and [GPB], we

show how useful NLP methods are to assign a large number of documents to possible senses

from dictionary entries.

Second, the meaning of texts and parts of texts is investigated to infer the writers intention. In

sentiment analysis or analysis of Internet-based communication for instance, we want to extract

sentiments or intentions of the writers from reviews or chat entries. The field of semantics con-

centrates on studying meanings. Common large digital text corpora do not distinguish between

different meanings of word forms, intense manual effort has to be done for disambiguating texts.

Automatically disambiguating texts from large digital corpora by NLP methods is proven to be

effective in our works in [PB14b, BLMP14, PB14a] and [BPMS14].

In both fields, our investigations show that we are actually extracting latent aspects from the

documents in the corpora that can be associated with meanings. Latent means that we do not

directly see the meaning, we need to infer it from context. Meanings in this context means a

significant usage of words in a document for a certain purpose. For example the word ”bank”

can be associated with the possible meanings from a dictionary:

• a financial institute, or

• a land along some water

From an example sentence like ”I was standing at the bank of the river Thames all day long.”,

we do not directly know which meaning fits best. But, considering accompanying words, we can

infer the latent concept behind the use of the word and map this to a meaning. All this results in

an extraction of the hidden concepts from the documents to infer meanings.

1.1. Impact in Computer Science

So far, we motivated this thesis for the benefits in corpus linguistics. Next, we describe the

significance of this thesis in computer science. Corpus linguistics on digital text corpora is a

special research fields of Natural Language Processing (NLP). It is one of the oldest fields in

computer science. Starting with Alan Turing’s test about computer intelligence in 1950 [Tur50],

NLP was thriving force of new computer science methods as well as application. The earliest ap-

proaches in NLP are from the fields of machine translation of different languages and automatic

syntactic annotations. From the late 1960s, computer linguistic conferences like the Associ-

ation for Computational Linguistics (ACL) and the Conference on Computational Linguistics

(Coling) present linguistic research in these fields using computer science (cf. [Cul65, ST69]).

Already in 1965, computer linguistics investigated [PD65] automatic learning for linguistic clas-

sifications. Since then, data analysis and artificial intelligence methods provide a large range of

sophisticated methods in NLP. Named Entity Recognition [CMP03], Sentiment Analysis [PL08]

1http://dictionary.cambridge.org/
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1. Introduction

or Word Sense Disambiguation [Nav09] are only a few examples of how modern NLP or gen-

eral automatic analyses methods are applied in linguistics. In these areas, new computer science

methods emerged due to the need of automatic language processing.

The methods that we develop in this thesis and the studies we perform, contribute to these

NLP methods for computer science. Especially in the last years with the enormous growth

of digital texts available from social medias, search engines or online applications, methods

to analyze (written) language become more and more important. Facebook for example uses

NLP for automatic text understanding from user communications2. Researchers and engineers

face similar challenges in NLP as we do in corpus linguistics for social media analysis. Such

analyses on social media content can be supported by the methods and studies performed in

this thesis. Especially, large scale statistical models based on artificial intelligence methods

help companies like Facebook to understand their users. Our developments on data analysis

for diachronic linguistics and variety linguistics are easily applicable for text understanding in

social media. Varieties on language of the users and changes of user behavior over time are

present in Facebook’s user content in the same way as they are in the corpora that we investigate

in this thesis. Further big IT companies like Google or Apple need techniques and analysis

methods for text as the ones we develop in this thesis. For Google, NLP was important from

the beginning to support their search engine. Currently, both Google and Apple highly bet on

Language Processing for Human Computer Interactions (HCI)3. Both companies possess large

amounts of written text from their users. Whether query logs from Google or user data from

Apple, these big text collections offer large potentials for linguistic analysis that support HCI

systems.

1.2. Contributions

The main contribution of this thesis is the improvement of the performance of empirical lin-

guistic tasks on large digital document collections and digital corpora with automatic analysis

methods. Available heterogeneous and structured language resources provide a plethora of tex-

tual, statistical or expert information for linguistic research. In this environment, the use of

modern NLP methods to support linguistic studies is investigated. Based on large digital cor-

pora, novel approaches to efficiently perform linguistic tasks in lexicography and semantics are

developed.

Contribution in Corpus Linguistics

Current research in corpus linguistics uses modern digital corpora only to search and retrieve

samples from documents. These samples are usually manually processed further. Such post-

processing includes annotating texts and words with syntactic and semantic information in con-

text. So far, automatic computer-aided methods have been applied to infer syntactic information

2https://code.facebook.com/posts/181565595577955/introducing-deeptext-

facebook-s-text-understanding-engine/
3http://www.forbes.com/sites/jaysondemers/2015/08/12/how-far-can-googles-

linguistic-analysis-go/#1290f0516eba

10



1.3. Corpus Linguistics

like word classes (verb, noun, etc.). The methods developed in this thesis provide additional an-

notations of semantic categories for diachronic and variety linguistic tasks by automatic analysis

methods in the fields of lexicography and semantics.

The identification of semantic categories in corpora is done by latent variable methods. We

accomplish interpretability of results by providing associations of the latent variables to words.

This is in strong contrast to black box approaches as offered by Neural Networks and current

Deep Learning approaches. In pre-studies, a list of words and document collections that are

of interest in (computer) linguistic research is compiled. These words are expected to show

differences in use depending on time and text genre. On large scale use cases, the benefit of the

proposed methods are shown.

Finally, a tool to perform linguistic tasks on large scale digital corpora is developed. This

makes the methods available for linguistic research and teaching.

Contribution in Computer Science

The contribution to computer science research are inherent in the methods developed. First,

Chapter 4 of this thesis unifies latent variable methods that use additional information about

the data and regularized optimizations. This results in a common framework for latent variable

methods with additional information. For evaluating the latent variable methods, Chapter 3 dis-

cusses methods that estimate the quality of temporal topic models with Sequential Monte Carlo

methods. A novel Monte Carlo method for the estimation of joint and conditional likelihoods

of temporal topic models is developed. A new temporal coherence measure that compares the

modeled time from a temporal topic model with the empirical distribution of the time stamps in

a corpus is proposed.

The methods in the use cases are non-trivial extensions of latent variable methods that al-

low efficient and effective extraction of hidden information from large data collections with

additional heterogeneous data resources. In Chapter 5, latent variable models for diachronic

linguistics are introduced. These models extend standard latent topic models with a temporal

distribution that is based on diffusion processes. Compared to previous approaches for temporal

topic models, we model an attention process that more precisely covers temporal distributions

in document collections. Chapter 6 introduces effective methods to integrate word information

from heterogeneous language resources to extract latent information from corpora with scarce

and sparse data. Via lasso and group lasso regularization, background information about words

are integrated into the extraction of latent meanings in digital corpora. In Chapter 7, an opti-

mization problem is set up for variety linguistics that is a novel method to efficiently extract

latent subspaces that model similarities and dissimilarities of large data collections. An efficient

method is elaborated to perform an extraction of latent factors by an optimization on a matrix

manifold.

1.3. Corpus Linguistics

Before the technical foundations of this thesis, we give motivation from the linguistic point of

view. We will describe corpus linguistics as field that extraordinarily benefits from NLP meth-
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1. Introduction

ods. In a pre-study we show how automatic analysis methods help supporting corpus linguistic

tasks.

A (text) corpus is a collection of text documents that has been assembled for a special pur-

pose. In linguistics, such corpora are used to perform linguistic analyses or validate linguistic

hypotheses. The field of corpus linguistics studies language based on such corpora. There ex-

ist not only text corpora, but also corpora of spoken language for example. In this thesis, we

concentrate on text corpora. Modern digital corpora offer a large number of pre-processed text

documents of different genres and sources for linguistic tasks. In recent years, language re-

sources have been built, including large digital corpora. The Common Language Resources and

Technology Infrastructure (Clarin)4 for example establishes a collection of language resources

around Europe.

Interfaces accomplish efficient access to the texts. This access can be on document level or

on snippet level. Document level access allows for retrieval of whole documents including meta

information like source, genre, time of publication or authorship. Snippet level access allows

only for retrieval of document parts. These parts are usually identified by linguistic queries. A

linguistic query is analogue to queries for modern search engines, but offer additional linguistic

features.

Besides the documents in a digital corpus, modern linguistic infrastructures offer external

information and statistics about the documents and words in the corpus. Language resources

like the Dictionary of the German Language [Gey07] provide large text corpora and interfaces to

extract text snippets as result of linguistic queries, see Figure 1.3. Such queries ask, for instance,

for all occurrences of a certain word. Additional constraints like considerations of lemmas or

Parts-of-Speech can be used as complex linguistic queries. The results of such queries are so

called KWIC-lists. These Key-Word-in-Context (KWIC)-lists contain text snippets of small

contexts that match the corresponding query. Given a KWIC-list for a given key word query,

the snippets are used for different linguistic tasks. Additional to the KWIC-lists, we can extract

several information about the corresponding documents and the contained words.

1.3.1. Evolution of Digital Corpora

Since the merit of computers, digital text collections have been compiled for storage and analysis

of written language. Similar to [BS06], we distinguish four major periods in the dissemination

of digital text corpora:

1. Hand-crafted digital corpora (1960)

2. Scanned texts collections (1990)

3. Internet Content (2000)

4. Social Media Content (now)

From the 1960s on, the Brown Corpus [FK79] has been compiled as one of the first digital

corpora. The first version of this corpus contained approximately 1 million running word tokens

4http://clarin.eu/
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1950 2016
1960

Brown Corpus

1980

Bank of English Corpus

2000

Internet as Corpus

2014

Wikipedia Corpus

Figure 1.1.: Examples of the development of digital text corpora from the early 60s with hand-

crafted text collections (Brown Corpus) to social media content today (Wikipedia).

from publications from different text categories. At this early time, the compilation was done by

hand. With the availability of scanners, printed documents could be automatically collected to

compose corpora. The Bank of English corpus for example was one of the first digital corpora

that was compiled by scanning documents with OCR5, see [Jär94] and [BS06]. Since the Internet

age, corpora based on World Wide Web content have been used more and more [Hof00]. Further,

with the availability of the Internet for almost everyone, the access to large digital corpora by

web services becomes the norm [Dav10]. Recently, social media content is used for linguistic

analysis. The analysis of Internet-based communication via large collections of chat or blog

entries for example becomes an emerging trend in linguistics [BLMP14]. A time line of example

corpora over the last 60 years is illustrated in Figure 1.1.

German Corpora

For German linguistics, over the last years several text corpora have been assembled for linguis-

tic research. One of the largest German text corpora is the “Core-Corpus” of the German lan-

guage from the Dictionary of the German Language, see [Gey07]. This corpus is maintained at

the Berlin Brandenburg Academia of Science. The corpus contains 100 million running words,

balanced chronologically (over the decades of the 20th century) and by text genre (fiction, news-

papers, scientific and functional texts). Additional, newspaper text collections are available to

picture the course of the current affairs over time. The newspaper corpus Die ZEIT covers all the

issues of the German weekly newspaper Die ZEIT from 1946 to 2009, approximately 460 mil-

lion running words. An overview of the available text collections can be found on the home page

of the Dictionary of the German Language: www.dwds.de. Another large German text corpus is

DeReKo (Deutsches Referenz Korpus) [KK09] provided and maintained by the Institute of the

German Language (IDS). Similar to the corpora from the Dictionary of the German Language,

DeReKo contains documents from fictional, scientific and newspaper texts. The corpus contains

approximately 30 billion running word tokens with additional syntax information.

5Optical character recognition: Automatic conversion of images of text into electronic texts.
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1. Introduction

Corpus running words

Brown (first version) 1 million

DeReKo (1992) 28 million

DWDS Core 125 million

Die Zeit 225 million

Bank of English 650 million

Wikipedia (engl. articles) 3 billion

DeReKo (2015) 28 billion

Table 1.1.: Examples of digital corpora and the sizes. The first column names example corpora

and the second column tells the number of word with repetition in the corpora.

Development of Digital Corpora

The development of the different digital corpora has led to an increase in available texts for

linguistic analyses. While the early corpora like the Brown Corpus consisted of up to 1 mil-

lion word tokens, modern corpora like the Corpus of Contemporary American English [Dav10]

contain already several hundred million word tokens. In Table 1.1, we report the sizes of a num-

ber of available digital corpora. In the last years, the size of available digital corpora blew up

tremendously. The DeReKo for example started from 28 million [KK09] running words to 28

billion running words by now6. In Figure 1.2, we illustrate to growth of DeReKo during the last

15 years.

Besides these corpora, further corpora and document collections from different sources from

Internet communications provide a valuable language resource. Social media corpora like the

Wikipedia articles and discussion pages [ML14] provide large amounts of texts for linguistic

analysis on Internet communication. Further, Amazon reviews [BDP07] about different products

provide a large source to compile a social media corpus that enables investigations of Internet

communication. Also the 20 newsgroups dataset [Lan95] or the Reuters dataset [LYRL04] are

commonly used free document collections as social media corpora.

1.3.2. Retrieval and Concordances

The retrieval of texts from the corpora offered by the different language resources is done via so

called KWIC-lists. A KWIC-list contains texts that match a linguistic query - the snippets. Such

queries can be single words, phrases or logical expressions. Given for example the query “bank”,

we retrieve a list of texts containing this word, see Figure 1.3. Beside this retrieval of KWIC-

lists, the whole corpus can also by accessed. In this case we use whole books or documents from

the corpus for linguistic tasks. The publicly available language resources usually do not allow

to retrieve the whole corpus due to copyright.

Considering KWIC-lists of contexts of a certain word, we also speak about concordances.

Concordances list words from corpora with references and possible information about the con-

crete use. In lexicography, we use concordances since we are interested in the usage of words

6http://www1.ids-mannheim.de/kl/projekte/korpora/archiv.html
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Figure 1.2.: Increase in corpus size for the DeReKo from the Institute of German Language. For

the years 2000 to 2016 (on the x-axis), the number of words with repetition (running

words) in the DeReKo corpus at these years are plotted on the y-axis.

Figure 1.3.: For the word “Bank”, example sentences are retrieved from the DWDS Core-

Corpus. The examples are called KWIC-lists and contain sentences containing the

word “Bank” and the 3 sentences before and after. The figure shows the web inter-

face to retrieve the examples.
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1. Introduction

and the extraction of possible meanings or word classes. In semantics we are usually consider-

ing whole documents or text snippets that might contain a certain word, but the focus lies on the

whole context.

In this thesis, we speak about copora and documents. For the developed methods, we use

only samples from the corpora (as KWIC-lists for example). For notational convenience, we

call the collection of these samples also a corpus or simply a text collection. The term document

is handled similarly. Although we may use only samples from documents that contain word

examples (sentences with context), we call these samples also documents if this notation is clear

in the context.

1.3.3. Additional Language Resources

Besides the pure text documents from the corpora, modern language resources as offered by the

Dictionary of the German Language, provide additional information about texts and words. For

instance, for words we can extract word profiles. Word profiles are statistics of the occurrences of

words in a large text corpus and co-occurrences with other words. The statistics can be estimated

based on the given corpus or can be provided from an external data source. WordNet [Mil95] for

example contains information of hypernyms (the general topic) and hyponyms (more specific

subtopics) of words and senses of words.

Meta data and information about the documents in the corpora provide valuable additional

features for analyses. Such information can be for instance the author or the publication date of

the documents. The snippets from the KWIC-lists have references to the corresponding docu-

ments with information about the author, genre and publication date. Additional links between

documents within a corpus can be implicitly given by common meta information like the same

genre, the same publisher or author. On the other hand explicit links between documents are

given in large web corpora, for instance.

Another important language resource are dictionaries. The dictionary of the German lan-

guage [KG10] or etymological dictionaries provide valuable information about words, like defi-

nitions, lemmas, hyponyms or homonyms. This information gives background knowledge about

classes and groupings of words. Word nets like GermaNet [HF97] offer information about rela-

tions of words based on concepts and semantic relations between them. These word relations are

based on ontological and semantic information. Additional co-occurrence information as in the

German word profiles [DG13] provide insight about affinity of words in certain relations. Such

relations can be words always appearing together if one of them is a direct object for instance.

The Dictionary of the German Language provides access to additional language resources ac-

companying the text corpora via a web interface. For individual words, we can retrieve word

profiles or corresponding dictionary entries. See Figure 1.4 for the web interface of the addi-

tional language resources offered by the Dictionary of the German Language.

The reason to use additional language sources besides the text corpora is manifold. For ex-

ample, we might have only small result lists or a small number of documents retrieved from a

digital corpus. This can be, for instance, the case for concordances of rare words. Then, we want

to use the external data to support the linguistic tasks by information about the words.
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1.4. Empirical Extraction of Meanings in Corpora

Figure 1.4.: Web interface to the DWDS language resources. For the word “Ampel”, dictio-

nary entries, synonyms (top) and text examples (bottom) are retrieved via the web

interface: www.dwds.de.

1.4. Empirical Extraction of Meanings in Corpora

Extracting meanings from large digital corpora for lexicography and semantics helps maintain-

ing dictionaries and investigating language and writing styles. The major concern of this thesis is

the extraction of possible meanings of words and documents (snippets) in large digital corpora.

In the field of corpus linguistics, automatic extractions of possible meanings help researchers in

many linguistic tasks.

We investigate two main use cases that stem from current corpus linguistic research. First,

diachronic corpus linguistics investigates the distribution of linguistic phenomena over time.

Especially the change of meaning over time is of interest. The German word Ampel for example

was used in the meaning of a hanging light (on streets for instance) until the second half of the

last century. Second, variety linguistics investigates the distribution of linguistic phenomena

over different kinds of texts. In sentiment analysis for instance, positive or negative opinions

might depend on the context. In product reviews, technical products for instance might be

described as well functioning, while books might be described as exciting. Both expressions

”well functioning” and ”exciting” have positive meanings but are surely differently distributed

in technical reviews and book reviews. Both, diachronic linguistics and variety linguistics, find

applications in lexicography and semantics.
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1. Introduction

1.4.1. Diachronic Linguistics and Variety Linguistics

There are two main applications that can benefit especially from NLP methods on large digital

corpora: diachronic and variety linguistics. In diachronic linguistics, we study linguistic phe-

nomena or certain aspects of language over time. The term diachronic is literally translated as

“across time”. Diachronic linguistics is also referred to as historical linguistics since it studies

language and language changes over time with respect to humanity. In [Byn77], Bynon de-

scribes diachronic (or historical) linguistics as: “[...] seeks to investigate and describe the way

in which language chance or maintain their structure during the course of time.”. Given the

German word Ampel for example, we have several possible meanings. In its ancient meaning,

the word Ampel is used as a light. Recently, the term Ampel is used in the sense of a coalition

of the Social Democratic Party, the Liberal Party and the Green Party. The use of these different

senses in a text collection will depend on the writing time of the corresponding document. In

this thesis we concentrate only on the language changes in digital text corpora over time. By

contrast, the whole field of diachronic linguistics covers more areas like etymology, language

families, syntax, morphology or phonology.

In variety linguistics, we study different use and user related varieties in texts. In [Hud96],

Hudsen defines a variety in linguistics as: “a set of linguistic items with similar distribution”.

Such varieties can be for example different sources or text genres that also differ in the use of

language. Certain writing styles are clearly source or genre dependent. In fictional literature

we can, for instance, expect more figurative speeches and first-person narration. In scientific

literature on the other hand, we will find more neutral and passive narrations. The German word

Leiter for example can be used in the meaning of a ladder or in the meaning of head, director or

manager. In fictional literature, we can expect that none of these meanings will be more present

in the texts. In newspaper articles on the other hand, we will very likely have more usages of the

word Leiter in the meaning of head, director or manager. While variety linguistics covers many

different areas like dialects, jargons or sociolects, we concentrate on investigations of different

genres and document sources in this thesis.

1.5. Pre-studies in Corpus Linguistics

In two studies, we investigate the use of NLP methods for corpus linguistics as part in the

Bundesministerium für Bildung und Forschung (BMBF) Project KobRA7. First, we study how

certain words are used across different text genres. Second, we investigate the development of

meanings over time. These investigations motivate this thesis. The results will show how useful

NLP methods can be for the different linguistic tasks. While these first experiments use state-of-

the-art methods, in the thesis we will show how to systematically extend the standard approaches

to explicitly adopt to corpora from heterogeneous language resources with information about

time and document source (genre).

In both studies, we extract meanings of words that appear together in documents for inferring

semantic relations. Individual words and documents can be assigned to the meanings by esti-

mated likelihoods. We analyze how these meanings are distributed over text genres and time.

7Korpus-basierte linguistische Recherche und Analyse mit Hilfe von Data-Mining
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These studies are reported in the joint publications [PB14a] and [BPMS14]. From the DWDS

Core-Corpus, we retrieved a KWIC-list of snippets containing the German word Platte. The

snippets are drawn from documents from different genres over a time period from 1900 to 1999.

The used genres are ”Belletristik” (fiction), ”Zeitung” (newspaper), ”Wissenschaft” (scientific)

and ”Gebrauchsliteratur” (functional texts).

For these snippets, we extract meanings of words by Latent Dirichlet Allocation [BNJ03] (In

the survey chapter, we explain this method in detail). In Figure 1.5, we illustrate two extracted

meanings for the word “Platte”. At the top, we show the words that are most important for each

meaning by a Word Cloud8. We see that we extract two different usages of the word Platte.

First, Platte in the meaning of a hard drive is found. The most important words in this group are

highly computer related. The second meaning presents the word Platte as photographic plate.

The important words are all connected to photography. In the middle of the figure, we show the

presence of the meanings in different genres by counting how many times the word “Platte” in

a document from a certain genre in the corpus has been identified as belonging to one of these

meanings. The meaning of hard drive is mostly found in newspaper articles, while the meaning

of photography is more present in scientific articles. Here, we see a clear variety of the meanings

over the genres. At the bottom, we plot how much present the meanings are over the time in the

whole corpus. We count how many times the word “Platte” appears in each meaning in each

year in the whole corpus. We see that Platte in the context of a hard drive is mostly used at

the end of the 20th century, while Platte in the context of photography has its climax in use in

1950s.

1.6. Outline

In the next chapters, we present the course of the research from this thesis in corpus linguistics

with NLP methods. First, different approaches and state-of-the-art methods for latent variable

models are discussed. The foundations of text representation for the application of NLP meth-

ods are introduced and we motivate the use of latent variable models to extract hidden concepts

from a document collection. In Chapter 2, a detailed introduction to factor and topic models,

including mathematical and geometrical principles is given. The methods and methodologies to

evaluate latent variable models in qualitative and quantitative ways are described in Chapter 3.

After this introduction, we present in Chapter 4 a general outline of the methodology we use to

solve corpus linguistic tasks on heterogeneous language resources with large text corpora. In

three extensive use cases, we present the results of the methods for corpus linguistics. These use

cases are research oriented and proved to be useful for linguistic researches. In the BmBF (Bun-

desministerium für Bildung und Forschung) project KobRA9, the significance of these use cases

for linguistic research have been shown. For diachronic linguistics, a study on the development

of word meanings and subjects in different text collections is presented in Chapter 5. In Chap-

ter 7, we report the results of a study on variety linguistics to compare large text collections by

latent factor models. A final study is performed in Chapter 6 to investigate the use of the devel-

oped methods for non-standard text collections as they appear in Internet-Based Communication

8A Word Cloud visualizes frequent words and their importance by font size
9http://www.kobra.tu-dortmund.de
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1. Introduction

for example. In Chapter 8, we will give a description of the software developed to implement

the discussed methods. We explain how the software is used to perform corpus linguistic tasks.

Finally, a conclusion of the success of the methods developed in this thesis is drawn and the im-

pact in research and teaching is shown. In the appendix, collaborations and publications in the

context of this thesis are discussed. At the end, a summary of the used notations, short references

of the used methods and principles together with their acronyms are given in the Glossary.
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Figure 1.5.: Two meanings extracted from a KWIC-list of snippets for the query Platte (plate)

from the DWDS Core-Corpus. The first column shows the results for the word

“Platte” in the meaning of a hard drive, the second column shows the results for the

meaning of a photographic plate. Top: The most important words for the meanings

are plotted as word cloud. The larger the word is in size, the more important the

word is for this meaning. Middle: The distribution of the meaning over the docu-

ment sources Wissenschaft (scientific literature), Gebrauchsliterature (non-fictional

literature), Belletristic (fictional literature) and Zeitung (news papers) are showns

as pie charts. The pie charts show how many times the meaning of a hard drive

or a photographic plate for the word “Platte” can be found in the different sources.

Bottom: The temporal distribution of the meanings is plotted. For each year from

1900 to 2000 (x-axis), we count how many times the word “Platte” appears in the

two meanings in a document (y-axis).
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2. Latent Variable Models

In this chapter, we give the mathematical and methodical background for the thesis. We describe

latent factor models that are used in the use case in Chapter 7. Further, latent topic models are

explained to pave the ground for the use case in Chapter 5. Finally, we mention previous work

on prior distributions for topic models which is the motivation for the use case in Chapter 6.

Analyzing corpora, compiled from large collections of documents, by Natural Language Pro-

cessing methods helps to automatically and autonomously extract descriptions and summariza-

tion of the contained texts. In order to apply such methods, we need to represent the documents

in an appropriate way. We distinguish two major approaches for document representation: the

Vector Space Model and the Multinomial Model. The Vector Space Model (VSM) represents

the documents as vectors in the Euclidean space. In the VSM, we define a basis {w1, · · · ,wV }
for basis vectors wi ∈ R

V associated with the words in the vocabulary, with V the number

of words in the vocabulary of the corpus. The {wi}Vi=1 are the standard basis vectors in the

Euclidean space of dimension V . This means, wi is a sparse vector that has only one non-zero
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2. Latent Variable Models

entry at the component i with a value of one. Now, each document can be represented as linear

combination of these basis vectors. This representation is called the Word-Vector representation

of a document in the VSM and is based on the so called Bag-of-Words. The Bag-of-Words

(BoW) Model simplifies a document to the set of its words, keeping multiplicity of words but

no further structure. We note the Word-Vector of a document d as vector wd. Given for exam-

ple a corpus of only the document “a b a c”. The BoW representation is: d = {a, b, c}. The

corresponding VSM uses three basis vectors of dimension three:

w1 =





1
0
0



 w2 =





0
1
0



 w3 =





0
0
1



 .

The first basis vector is associated with the first word from the vocabulary (a), the second

basis vectors is associated with the second word (b) and the third basis vector with the third

word (c). Using these basis vectors, we can now write the document as a linear combination

wd = a1dw
1 + a2dw

2 + a3dw
3.

In the literature several ways to define this linear combination have been proposed. The

simplest approach is to define the weights aid as the multiplicity of word i in the corresponding

document d. This results in the following Word-Vector that collects the number of occurrences

of the words in the document:

wd =





2
1
1



 = 2





1
0
0



+ 1





0
1
0



+ 1





0
0
1



 .

This representation considers only the number of times a word appears in a document, but

does not consider how many words the document has. The relative frequency of the words

can be used to explicitly model the importance of a word wi in document d by a weight value:
nd,wi∑

wj∈d nd,wj

, with nd,wi
the number of times word wi appears in document d. This results in the

following Term Frequency (TF) Word-Vectors of the document from above:





0.5
0.25
0.25



 = 0.5





1
0
0



+ 0.25





0
1
0



+ 0.25





0
0
1



 .

Further weightings for the Word-Vectors are possible. The most prominently used weights are

the so called Term Frequency Inverse Document Frequency. The TF-IDF-values additionally

weight the term frequency by the inverse document frequency. The inverse document frequency

is the logarithm of the inverse frequency of the word in all documents. By this, words that appear

in many documents are weighted down. For different learning tasks such weighted Word-Vectors

have proven to be more representative for the words in a document. See [SB88] for a discussion

on different weights for terms.
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An advantage of the VSM representation is that it allows for a geometric interpretation of the

documents and the collection of documents from the corpus: In the VSM, a document is repre-

sented by a geometric object (the Word-Vector) in the Euclidean space. The document content

stems from a combination of the geometric objects (the basis vectors) in the space. Further,

we can calculate distances between documents to estimate similarities between documents and

words.

Given a corpus as a document collection {d1, · · · , dM}, we can collect all Word-Vectors

{wd1 , · · · ,wdM } into a whole matrix X . This Term-Document Matrix contains the Word-

Vectors as columns:

X = [wd1 , · · · ,wdM ].

The matrix can be used to describe the document collection as a single object. We can use Linear

Algebra to model the space spanned by the Word-Vectors and the space spanned by the rows of

the term document matrix. The first space can be seen as description of the documents in the

collection based on the contained words. This space is spanned by the basis vectors wi ∈ R
V

associated with each word. Every column vector of X lies in this space. The second space can

be seen as description of the words in the collection based on the documents they appear in. This

space is spanned by basis vectors associated with the documents. Every row vector of X lies in

this space. Later we will explain how this representation of the collection can be used to extract

properties of the corpus.

Another way to represent documents is the Multinomial Model (MM). The MM models docu-

ments as sequence of words drawn from a multinomial distribution. The multinomial distribution

is a discrete probability distribution over a number of objects. In our case, the objects are the

wordswi from the vocabulary. Each word has probability p(wi) of occurring in a document. The

document is assumed to be generated by a random process that generates a sequence of words

which each word generated with probability p(wn). Hence, the documents in the corpus are rep-

resented as sequences of realizations of random variables - the words: d = (w1, · · · , wN ). The

probability distribution of such a sequence is modeled by a statistical Language Model (LM) -

see [PC98]. A LM is a model that estimates the probability of a sequence of words.

The individual probabilities need to be estimated from the corpus. Depending on the

LM, we estimate the marginal distributions p(wn) and additional conditional distributions

p(wn|w1, · · · , wn−1) based on counts of the appearances of the words in the documents.

If we assume an uni-gram LM, each word is independent of all other words in a document.

The probabilities p(wn) can be derived by Maximum Likelihood Estimation (MLE). In MLE,

the probabilities are estimated that maximize the likelihood of the data given these probabilities.

An introduction into MLE can be found in [Myu03].

Using MLE, we estimate the word probabilities

p(wn) =
nwn
∑

j nwj

,

for nwn the number of time word wn occurs in the document collection. This is the relative

frequency of the word wn in the document collection. Now, given the documents as sequences
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2. Latent Variable Models

of randomly drawn words we can calculate the probability of any document as

p(d) =

∑

w∈V nd,w
∏

w∈V nd,w!

∏

wi∈V
p(wi)

nd,w ,

for nd,w the number of occurrences of word w in the sequence of words from document d and

V the vocabulary of the corpus. This is the definition of the multinomial distribution. For

example, given a corpus of two documents: “a b a c” and “a a c”, represented as the sequences:

d1 = (a, b, a, c) and d2 = (a, a, c). Using the Uni-gram LM, we get the following word

probabilities:

p(a) =
4

7
p(b) =

1

7
p(c) =

2

7
. (2.1)

Now, we can estimate the probabilities of the documents. For document d1, for example, we

have:

p(d1) =
4

2
p(a)2p(b)p(c).

Different Language Models are also possible. For instance in a tri-gram LM, we estimate

conditional distributions p(wn|wn−2, wn−1) additional to the marginal distributions p(wn) of

word wn in the sequence d = (w1, · · · , wN ). The conditional probabilities can be estimated

using the frequencies of the tri-grams in the corpus. Under this LM, the probability of a sequence

of words is

p(d) ∝ p(w1)p(w2)
N
∏

n=3

p(wn|wn−1, wn−2).

Here, we assume independence of the words in the document given two previous words. The

last equation is noted proportional since we might have to normalize the left hand side to get a

proper probability distribution.

In contrast to the VSM, the MM allows a probabilistic interpretation of the documents and

words in the text collection: A document is represented as sequences of random draws of words.

The content of the document stems from a combination of word probabilities which are specified

by a LM.

The VSM and the MM represent documents (the words) as variables: in the VSM we have

deterministic variables, in the MM random variables. The documents from a given text col-

lection in the corresponding representation are realizations of these variables. The realizations

of the variables stem from a process that generates the words in each document. In the VSM

this process is deterministic, in the MM this process is probabilistic. Deterministic means that

each observed document will always have the same Word-Vector representation. The proba-

bilistic process on the other hand results in variable representations as sequences of words for a

document.

The generation process for the Word-Vectors of the documents in the VSM is:

1. For each document d:

a) For each word wi in V:
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wN· · ·w1 w
N

Figure 2.1.: Graphical representation of N independent variables w in the Plate notation. Left:

notation of N independence variables as shaded rectangular nodes, right: summa-

rized notation of N independent variable as N times a single variable. For example,

the VSM with binary occurrences can be graphically represented in such a way.

i. Draw wdi = aid

The value aid of the variable wdi depends on the individual representation as Bag-of-Words

(Occurrences, TF, TF-IDF). Using pure occurrences for instance, the generation process builds

the Word-Vectors as linear combination of the standard basis vectors wi in R
V as described

above:

wd =

V
∑

i=1

aidw
i,

with aid ∈ {0, 1} indicating the presence (as 1) of wordwi in document d. Here, we assume total

independence of the words in the document. This means, the components in the Word-Vectors

have no information about possible correlations.

The generation process in the MM on the other hand generates for each document d the

sequence (w1, · · · , wN ) of words via:

1. For each document d:

a) For each word wn in d:

i. Draw wn ∼ p(w)

The word probabilities p(w) depend on the used LM such that d = (w1, · · · , wN ) ∼ p(d) for

the joint probability p(d). Using a uni-gram LM for example, the generation process builds the

sequences as random draws from

p(d) =
N
∏

n=1

p(wn).

As in the last example, we assume that each word is generated independently of all other words

in the document.

Depending on the used Word-Vectors, respectively LM, the generation process imposes de-

pendences among the variables for the realizations. The previous examples showed generation

processes under fully independence assumptions among the words. The process (deterministic

or random) produces the realizations of the variables wi independent on all other realizations wj

for j 6= i. In Figures 2.1 and 2.2, this is graphically visualized by the so called Plate diagram.
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2. Latent Variable Models

wN· · ·w1 w
N

Figure 2.2.: Graphical representation of N independent random variables w. in the Plate no-

tation Left: notation of N independence variables as shaded circular nodes, right:

summarized notation of N independent variable as N times a single variable. For

example, the MM with uni-gram LM can be graphically represented in such a way.

The Plate diagram or Plate notation formalizes a graphical model with (random) variables, de-

pendencies and repetition as a graph. Although this notation is mainly used for probabilistic

models, we also use this for the deterministic VSM (here we have only non-random variables).

Given a document, the contained words are visualized as observed variables wi. In the VSM,

we show the variables as shaded rectangular nodes. In the MM, we show the random variables

as shaded circular nodes. Dependence between the variables is shown by edges. For fully inde-

pendent models, no edges are given - seen on the left of the figure. For simplification, equivalent

variables are summarized as block with their multiplicity - seen on the right of the figures.

The full independence assumptions on the variables ignore possible correlations between the

words (the realizations). Assuming full dependence between the variables on the other hand

can include such correlation information in the generation process of the Word-Vectors, respec-

tively the word sequences. As shown in Figure 2.3, assuming each variable depends on each

other makes the model more complicated. On the other hand, this assumptions might result in

better representations of the documents. A fully dependent VSM uses for example term fre-

quency values in the Word-Vectors. The frequency value of a word depends on how many times

this word is among the realizations of the variables and the number of variables in the Word-

Vector. Given for instance a document containing the word president several times, will have

a larger value in the Word-Vectors component that corresponds this word. A possible fully de-

pendent MM on the other hand assumes that the realizations stem from conditional probabilities

p(wi|w1, · · · , wi−1, wi+1, · · · , wN ). For instance, the occurrence of the word States as realiza-

tion of variable wi might depend on the occurrence of the word United as realization of variable

wi−1. Hence, p(States|United) ≥ p(States|w) for any other word w.

In real world corpora, we do not know the true generation process. We only know, that the

observations are either vectors in R
V for the VSM or random sequences drawn for multinomial

distributions for the MM. The simplest way to describe the process of generating the realizations

of the variables is to assume the fully independent model. In the VSM with occurrence counts

in the Word-Vectors for instance, we can write each Word-Vector wd as sparse combination of

the standard unit vectors wi in R
V such that

wd =

V
∑

i=1

aidw
i,

with aid ∈ {0, 1}. In the MM on the other hand, the fully independent model assumes that the
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w1

w2

w3

w4

w5

w6

w7

. . .

· · ·wN

Figure 2.3.: Graphical representation of N fully dependent random variables w by a fully con-

nected graph in the Plate notation. The dependence is visualized by edges. The

VSM with TF Word-Vectors and the MM with N-gram LM follow this dependence

assumptions.

sequence d of words is distributed via

p(d) =
N
∏

n=1

p(wn) =
∏

wi∈V
p(wi)

ndi ,

for ndi the number of occurrences of word wi in document d. These descriptions have little

expressiveness, since we model the data as high dimensional with many variables and no infor-

mation of correlations between the variables. Hence, the fully independent model is only a weak

approximation of the true generation process. A fully depend model as described above on the

other hand could remedy the missing correlations between the variables, but at the expense of

that we need all variables to describe the process.

In order to reduce the number of variables needed to describe the process of generating Word-

Vectors for the VSM and random sequences for the MM, we use latent variable models. This

models a relation between the observed variables and a number of latent variables. Here, latent

means we do not observe these variables, we have to extract them from the data. The observed

variables can be described by a small number of these latent variables. Using latent variables,

we approximate the process of generating the realizations by modeling the observed variables

as conditional independent given latent variables.

Conditional independent variables are independent of each other, given additional variables.

We assume that the observed variables can be fully described given the latent variables. In

Figure 2.4, we show the graphical representation of observed random variables w, that are con-

ditional independent given latent (unobserved) random variables t. Such an approach models
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2. Latent Variable Models

t w
N

Figure 2.4.: Graphical representation ofN conditionally independent random variables w, given

the unobserved random variable t in the Plate notation. The conditional dependence

is visualized by an arrow.

the correlation between the variables over common latent variables. Given a small number of

latent variables, this description is more expressive as the fully independent approach and less

complex than the fully dependent approach. The latent variable models we consider are all of

this type: We have a number of observed variablesw with a large number of possible realizations

- the words. These variables depend on latent variables t with a smaller number of realizations

t ∈ {1, . . . , T}. This reduces the dimensionality of the data from V to T .

Using the latent variable model to approximate the generation process of the words repre-

sented as Word-Vectors or random sequence, we can describe the process with fewer variables

(latent variables).

Before we go into the details of different latent variable methods, we will discuss the in-

terpretation of these latent variables in terms of the document context. Based on the different

representations of the documents, we can assume that the document content does not only stem

from the basis in the VSM or the marginal word probabilities in the MM. We assume that the

content stems from a number of latent informations which originates from a combination of

words.

This assumption originates from different works from linguistics and information retrieval.

First, we assume that the content of each document can be described by contexts. The context

as for instance discussed by [DG92], identifies the focus of a text. It can by used to distinguish

documents and words by different contexts. Identifying the contexts by NLP methods can be

done by analysis of the documents in the different representations in the VSM or in the MM.

The context is collected in the Word-Vectors for the VSM and in the random sequences in the

MM. The Word-Vectors and random sequences from the documents describe the context by

co-location information of other words. Hence, the context is described by the words. This

assumption goes back to research for word senses in linguistics in the 60s. John Rupert Firth,

for instance, investigated this in [Fir57]. He is know for the sentence:

“You shall know a word by the company it keeps.”

In [RG65] Rubenstein and Goodenough investigated this assumption on synonymy. They

studied how similarity between contexts correlates with similarities of meanings of words. Fur-

ther, Wittgenstein already stated [Wit53]:

“The meaning of a word is its use in language.”
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Relation Description

synonym different words with same meaning

polysemy same word with different sense

homonymy similar pronounced words with different meaning

hyponym subordinate word

hypernym superordinate word

antonym oppositional word

Table 2.1.: Word sets based on relations among words.

A study on how contexts given by co-occurring words can describe language is given by Zel-

lig Harris in [Har81]. He introduced the distribution of a language element (a word for example)

as sum of the environments. Each such environment consists of all co-occurring elements of

a given element. Regularly co-occurring elements in these environments define structure - dis-

tributional structure. The environments can be seen as the contexts described above. Further,

elements (words) can be grouped such that given the group, the elements have similar distribu-

tional structure.

As pointed out by Koll in [Kol79], relations between words can be more easily described by

underlying concepts. The underlying concepts summarize the meaning of the words. The term

meaning in this context means the intent behind words or documents. For words, this can be

different senses, synonyms, hyponyms, hypernyms or antonyms. For documents, this can be a

subject in the text collection. The meaning summarizes the content of the documents and the

words as intention of the texts. In linguistics the study of meanings is called semantics.

We distinguish two major fields for semantics in linguistics [Par95]: Lexical semantics and

compositional semantics. Lexical semantics concentrates on words and word senses. Words

can be grouped into classes based on relations among them. The word senses and these classes

are parts of dictionaries. The most prominent word classes and the relations are reported in

Table 2.1.

Compositional semantics on the other hand concentrates on meanings based on parts in the

texts and combinations of these text parts. Complex meanings can be extracted from a context

by small text fragments and their combinations in context. While traditional compositional

semantics considers also syntax to identify parts in texts that convey the meaning, we concentrate

only on words as part of a text and co-occurrences in a given context.

Classical approaches from linguistics extract such meaning by hand. For example by substitu-

tion, words are grouped into semantically related sets if they they can be exchanged in example

sentences. Glinz [Grö73] proposes a test by substituting words to find semantically related words

like synonyms. If we can simply replace a given word in a sentence with another word without

changing the meaning of the sentence, we expect these two words to be synonym. In contrast

to the classical approach that replaces words in context (several sentences including a sentence

with the word of interest) and counts exact matches, the work in this thesis estimates statistics

of similar contexts. Based on the distribution of co-occurring words possible substitutions are

automatically extracted.

Considering the distributional structure as introduced by Harris, the words with similar distri-
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d1 c1 w1

· · · · · · · · ·

dM cV wV

Figure 2.5.: Mapping of documents to concepts and concepts to words. The observed words in

the documents depend on concepts that are induced by the documents themselves.

butional structure can be grouped to concepts. Each concept can be described by the words and

the distributional structure. Hence, the words and documents build semantic groups associated

with the concepts. Each concept can be connected to a meaning. The latent variable methods

extract mappings of words and documents to these concepts to infer meaning. By these maps,

the words and documents are related to the concepts with different strength based on statistics.

The latent variables that are used to approximate the generation process of the documents are

associated with the concepts. In Figure 2.5 we illustrate the mapping of words and documents

to concepts by Plate notation using random variables.

2.1. Overview

In this section, an overview on the existing latent variables methods for document collections is

given. We distinguish between latent factor models in the Vector Space Model and latent topic

models in the Multinomial Model. The notation latent factors originates from factorization. The

latent factor models factorize the Term-Document Matrix in a product of a document-concept

matrix L and concept-word matrix R:

X ≈ LR.

The notation of a topic originates from [PTRV98]. The authors introduce a topic as probability

distribution of terms (words) that reflect the word distribution with respect to a certain subject.

The latent topic model models the joint probability of words and documents as mixture over

latent concepts c (later called topics t):
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2.1. Overview

VSM MM

Observations Word-Vectors Sequence of words

Process wd =
∑

aidw
i (w1, · · · , wN ) ∼ p(d)

Latent Variables Vectors vi Random variables t1, · · · , tT
Approximated Process wd ≈

∑

i ωidv
i p(w1, · · · , wN ) ≈

∏

n

∑

t p(wn|t)p(t)

Table 2.2.: Approximation of the generation process of the documents in the different represen-

tations.

p(w) ≈
∑

c

p(w|c)p(c).

This notation is short for
∑T

i=1 p(w|c = i)p(c = i).
Both models assume that the generation of the documents in their corresponding representa-

tion can be approximated by combinations of latent variables. For example, given a document

as Word-Vector wd ∈ R
V , we assume that

wd ≈
T
∑

i=0

ωidv
i,

for the T factors vi. Hence, we approximate the Word-Vector by a linear combination of the

column vectors from the concept-word matrix with weights ωid.

For a document d as a sequence d = (w1, · · · , wN ) of word-tokens (or simply tokens) wn

drawn from a probability distribution p(w), we assume

p(d) ≈
∏

n

∑

t

p(wn|t)p(t),

for the topics t. Hence, the words conditionally depend on the topics with probability p(wn|t). In

Table 2.2, we summarize the generation process for the VSM and the MM and the corresponding

approximations by latent variables.

The latent variables are used to extract certain meanings or groupings of the words and the

documents. Based on co-occurring words, either in common Word-Vectors or in sequences

of tokens from the documents, these groupings induce meanings. For example consider the

following text: ”It is raining cats and dogs. In such weather I rather stay at home and watch

TV.” By the model of distributional structure, we assume that the meaning of each word in this

text is determined by the other words present in the text. For instance, we assume that the word

”cats” together with ”and”, ”dogs” and ”raining” is meant in a metaphorical way rather than as

an animal. This gets more support considering that the word ”weather” is also present in the

text.

A document can have several such meanings in certain amounts. While at first sight the text

above might be assigned to the meaning of weather rather than animals, the concept animal is

present. Intuitively speaking, we assume that the meaning of the above text is a combination of

weather and animals.
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2. Latent Variable Models

This combination of meanings is expressed as combination of latent variables. In the VSM,

latent factor models express the Word-Vectors as weighted sum of vectors (latent factors) that

summarize certain meanings in the vector space spanned by the words (respectively the docu-

ments). In the MM, latent topic models express the document and word probabilities as weighted

combination of (multinomial) probabilities conditioned on latent topics that summarize certain

meanings.

2.2. Factor Models

Factor models assume that the Word-Vectors, representing the documents, can be expressed as a

combination of certain vectors, also called factors. These factors can be used as summarization

of the documents or as low-dimensional representation of the Word-Vectors. The underlying

assumption for factor models in language processing is that the context in which a word appears

determines its meaning. The mathematical background of factor models is linear algebra. The

documents are represented as vectors in a certain space (usually a Euclidean or a Hilbert space).

Within this space a subspace that contains certain (or all) moments of the data is extracted.

A basis of this subspace can be used as factors. In the next subsections we explain the most

prominent factor models. First, we explain a factor model that assumes that the documents are

represented as Word-Vectors in a Euclidean space. Second, we discuss how factor models can

be estimated when we assume that the documents are represented as high (possibly infinite)

dimensional vectors in a Hilbert space.

2.2.1. Latent Semantic Analysis

Latent Semantic Analysis (LSA) as described by Landauer et al. in [LD97] and Deerwester et

al. in [DDF+90] extracts usage patterns in documents by grouping words into latent dimensions

in the vector space. LSA assumes that words that appear in common text documents are also

semantically related. In the Vector Space Model, the Word-Vectors represent the co-occurrences

of words in a certain document. The Term-Document Matrix is factorized by a Singular Value

Decomposition (SVD) [GVL96] to extract low dimensional subspace in the space spanned by

the documents and in the space spanned by the terms. We factorize the Term-Document Matrix

such that

X = LER,

for the concept-term matrix R that consists of the right singular vectors of X , the document-

concept matrix L that consists of the left singular vectors of X and E the diagonal matrix of the

singular values of X . The singular vectors define a basis in the space of the Word-Vectors and

in the space of the Document-Vectors. The singular values sum up the lengths of the projections

of the Word-Vectors onto the (right) singular vector. The larger this value, the more variance of

the Word-Vectors lies in this dimension (the dimension that is spanned by the singular vector).

Sorting the singular values, we get a ranking of the singular vectors that span the subspace that

contains most of the information of the Word-Vectors. The diagonal matrix ET contains the T
largest singular values and the approximation

X ≈ LETR,
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Figure 2.6.: Illustration of the matrix decomposition in LSA by an SVD. The term-document

matrix X is factorized into the matrix L that contains the left singular vectors (in-

terpreted as concept distributions in each document), the diagonal matrix E that

contains the singular values (interpreted as intensity of each concept) and the matrix

R that contains the right singular vectors (interpreted as word distributions for the

concepts). This results in the decomposition X = LER. In LSA, we use the largest

singular values to identify those singular values that span the subspace that contains

most of the information from X . This subspace is called the semantic subspace and

the largest singular values with the corresponding singular vectors are associated

with concepts present in the document represented as Word-Vectors in X .

is the best rank T approximation of the Term-Document Matrix X . This means LETR is a

projection of the Word-Vectors and the document-vectors onto a T -dimensional subspace. The

projected Word-Vectors and document-vectors in this subspace have the lowest reconstruction

error among all possible subspaces. Hence,

‖X − LETR‖22

is minimized. In Figure 2.6, we schematically illustrate LSA by a Singular Value Decomposi-

tion. The geometric interpretation of LSA as extracting a basis spanned by the singular vectors

is sketched in Figure 2.7.

This means, the T left singular vectors that correspond to the largest singular values span the

T dimensional subspace in the document space and the right singular values in the term space

that contain most of the variance of the Word-Vectors. The value of the components of the right

singular vectors multiplied by the corresponding singular values indicate the variance of the

terms in a certain direction of the subspace. The space spanned by the first T singular vectors is

called the concept-space. The components of the singular vectors describe the importance of the

words for a concept. The biggest of these values can be interpreted as the terms most important

35



2. Latent Variable Models
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Figure 2.7.: Illustration of the decomposition of the matrix X. Given two documents d1, d2 with

three words w1, w2, w3 the Word-Vectors in X span a space as depicted on the left.

SVD extracts a new basis in the space spanned by the words and a new basis in the

space spanned by the documents illustrated on the right. Using the first T left and

right singular vectors results in two subspaces in the words and documents space.

This subspace can be interpreted as spanned by concepts.

in a certain usage pattern. Each singular vectors is associated with a concept and we use them

as factors to approximate the Word-Vectors.

In LSA we assume that the Word-Vectors wd can be expressed as linear combinations of latent

vectors vi plus a normally distributed error term ǫd:

wd =

T
∑

i

ωiv
i + ǫd

with ωi ∈ R and vi ∈ R
V . Using SVD to find the basis vectors, we can truncate the right

singular vectors with small singular values and still keep a large amount of the information from

the data to define the factors as the right singular vectors.

There are several algorithms to perform an SVD. The simplest method is the power method,

see [KW92]. This method, as described in Algorithm 1, can be used to extract the left and right
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2.2. Factor Models

Algorithm 1 Power method for SVD.

function POWERMETHOD(X)

for i = 1 : T do

w = urand // random initialization

repeat

w := X ′Xw

until convergence

ri = w/‖w‖
ei = ‖Xri‖
li = Xri/ei
X = X ′X(I − rir

′
i)

end for

return [li]i=1···T , [ei]i=1···T , [ri]i=1···T
end function

singular vectors. The method uses the property that the sequence (X ′X)iwd converges to the

first (largest to the corresponding singular value) right singular value of X . To see this, we

write wd =
∑

i ωiri as linear combination of the eigenvectors ri of (X ′X) 1, where X ′ is the

transpose 2. Since ri span a basis in R
V , we can define wd in this way. Multiplying wd by

(X ′X)j results in:

(X ′X)jwd =(X ′X)j
∑

i

ωiri (2.2)

=
∑

i

ωi(X
′X)jri

=
∑

i

ωie
2j
i ri

=e2j1 c1r1 + e2j1
∑

i>1

ωi(
ei
e1

)2jri.

The right hand side of Equation 2.2 converges for j → ∞ to e2j1 c1r1 under the assumption

that e1 > ej . Normalizing this results in the right singular vector r1. The corresponding singular

value is the length of the projection onto ri, i.e. ei = ‖Xri‖. SinceX ′l1 = e1r1 by the definition

of singular vectors, we get the left singular vectors by: l1 = Xr1/e1. After the extraction of

the first left and right singular vectors, we deflate the corresponding eigenspace from X ′X ,

by projecting X ′X onto its orthogonal subspace: X = X ′X(I − rir
′
i). Next, we extract the

eigenvectors in the deflated space as before and continue until we have extracted all T vectors.

In LSA, the left singular vectors and the right singular vectors are used as a semantic grouping

of words and documents based on the magnitude of the length of the projections onto them. For

1Note that the eigenvectors of (X ′X) are the same as the right singular vectors of X . To see this we write A =
LER. We get A′A = (LER)′LER = R′EL′LER = R′E2R

2Throughout this work, we use the symbol ’ for the transpose.
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Algorithm 2 Partial Least Squares to extract the latent factors.

function GETCOMPONENT(X,y, T )

for i = 1 : T do

u = urand // random initialization

repeat

w = X ′u
vi = Xw, vi = vi/‖vi‖
c = y′vi

ui = yc, ui = ui/‖ui‖
until convergence

X = X − vivi′X
y = y − vivi′y

end for

return V = [vi]i=1···T and U = [ui]i=1···T
end function

example, the right singular vector r contains at some components (indices of the vector) large

absolute values. The words that span the corresponding dimensions in the vector space can be

grouped together. This group is interpreted as prominent in this latent dimension and treated as

semantically connected words. They belong to the same concept and have similar meanings.

Next, we explain a similar method when additional labels of documents can be explicitly

taken into account. While LSA finds only semantic subspaces describing the documents, we can

also look for subspaces that reflect the given label information about the documents.

2.2.2. Partial Least Squares

Partial Least Squares (PLS) is a method that finds low dimensional subspaces, which maximally

align with label information. Given documents as Word-Vectors and labels of the documents,

PLS finds low dimensional Word-Vector representations that are the optimal covariates for a

linear regressor to predict the labels. These labels can be time stamps indicating the date of

publication of the documents or information about the content like sentiment information or a

classification of the tone used in the document. Algorithm 2 describes the steps of PLS for a

given Term-Document Matrix X of Word-Vectors and a label vector y as described by Rosipal

and Trejo in [RT02]. The algorithm successively extracts latent factors as linear combinations

of the input Word-Vectors. These components are removed from the Word-Vectors by deflating

the term-document matrix by X − vv′X . Deflating means we remove the dimension spanned

by v by projecting all Word-Vectors onto its orthogonal complements. This process is repeated

until we have found T components. This method is analogue the power method used for SVD.

The result of the algorithm are so called loadings vectors. These vectors can be seen analogous

to the singular vectors extracted by SVD. Each loadings vector is a low dimensional represen-

tation of a corresponding Word-Vector. These loadings can be used to estimate the amount of

rotation the words in the vector space experience when mapped onto the vectors - similar to the

interpretation of the singular vectors in LSA.
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The extracted loading vectors can be easily used to predict new unlabeled documents. Note

that PLS is a linear regression model. The label is simply modeled as regression: y = Xω + r

for the term document matrix X , the regression coefficients ω mapping onto the latent factors

and a residual vector r. For V = [v1, · · · ,vT ] and U = [u1, · · · ,uT ] from PLS via Algorithm

2, we can estimate the coefficients by

ω = X ′U(V ′XX ′U)−1V ′y. (2.3)

A new document represented as Word-Vector wd is assigned label sign(w′
dω) for binomial

labels like sentiments, respectively w′
dω for numeric labels like time spans.

The interpretation of the latent factors, respectively loading vectors is not simple. One aspect

for the importance of a word for one latent factor is the value of the corresponding component

in the loading vector. The amount of the jth component of vi tells how much weight the cor-

responding word has to predict the label when we project it onto the latent factor vi. In order

to better interpret the importance of some words for the latent factors we can rotate the load-

ing vectors such that the variance in these vectors is maximized. Intuitively, we want loadings

that have few large components and near zero components elsewhere. The method Varimax

Rotation [Kai58] does exactly this. This method rotates the coordinate system spanned by the

latent factors such the loadings in the new coordinate system have maximum variance in their

components.

For LSA and PLS is difficult since components can be arbitrary, positive or negative. It would

be more intuitive if we could model (the positive) word presence (or frequency) as combination

of certain amounts (positive) of latent factors. This results in a simpler interpretation of factors.

2.2.3. Non-negative Matrix Factorization

While LSA factorizes the Term-Document Matrix via an SVD, Non-negative Matrix Factoriza-

tion (NNMF) factorizes the Term-Document Matrix in the product of two non-negative matrices.

Consequently, we assume that each document can be expressed as positive mixture of positive

factors. This enables a more intuitive interpretation of the factors compared to LSA. Formally,

we model each document d as

wd = V ωd + ǫd,

such that ωd ∈ R
V
+ for all documents d, V = [v1, · · · ,vT ] with vi ∈ R

V
+ and with no assump-

tion on ǫd. Under this model we want to find two non-negative matrices W = [ω1, · · · ,ωM ] ≥
0 and V ≥ 0, such that

X ≈WV.

In [LS01], Lee and Seung introduce algorithms for this factorization. The authors propose to

extract the corresponding matrices by minimizing the l2 matrix norm

dist(X,WV ) :=‖X −WV ‖22
=
∑

i,j

(Xi,j − (WV )i,j)
2,W ≥ 0, V ≥ 0, (2.4)
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2. Latent Variable Models

Algorithm 3 Nonnegative Matrix Factorization.

function GETNNMF(X, k)

W = urand, V = urand // random initialization

k = 0
repeat

W k+1 = argminW≥0 dist(X,WV k)
V k+1 = argminV≥0 dist(X,W

k+1V )
k = k + 1

until convergence

end function

respectively the KL-Divergence

dist(X,WV ) :=
∑

i,j

(Xi,j log
Xi,j

(WV )i,j
−Xi,j + (WV )i,j),W ≥ 0, V ≥ 0.

Since both distance functions are non-convex in both arguments, but convex keeping one

argument fix, Lee and Seung propose to solve

min
W≥0,V≥0

dist(X,WV ) (2.5)

in an alternating fashion. To solve the optimization we alternate between minimizing the dis-

tance function with respect to W keeping V fix and with respect to V keeping W fix. Since

the distance function is convex in a single argument this will converge, but likely to a local

minimum. In Algorithm 3 we summarize these steps.

Depending on the concrete distance function, we iteratively (over k) solve the two optimiza-

tion problems

argminW≥0 dist(X,WV k), (2.6)

respectively

argminV≥0 dist(X,W
k+1V ) (2.7)

analytically or by gradient descent. If we use, for example, the distance function from Equa-

tion 2.4 we get the following two gradients:

∇W dist(X,WV ) =
1

2
W ′(WV −X)

∇H dist(X,WV ) =
1

2
V ′(WV −X)

As discussed by Lin in [Lin07], projected gradient methods can be used to solve the optimiza-

tion problems in Equations 2.6 and 2.7 by Stochastic Gradient Descent [Bot98] and Projected
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2.2. Factor Models

Algorithm 4 Projected Gradient Method.

function GETARGMIN(X,W, V k)

W = urand // random initialization such that W ≥ 0
repeat

W = P [W − λk∇W dist(X,WV k)]
k = k + 1

until convergence

end function

Gradients Methods. The details are given in Algorithm 4. The step size λk can be estimated by

line search methods and the projection P is defined as

P [X] =

{

X, if X ≥ 0

0, otherwise .

Similar to LSA and PLS, the column vectors in V and the row vectors inW can be interpreted

as semantic grouping of the words and the documents.

An interesting extension of NNMF was proposed by Liu and Wu in [LW10]. The authors

include document labels as hard constraints in the optimization for NNMF. The constraints

force the Word-Vectors from documents with the same label to be mapped into the same low-

dimensional latent feature representation.

The previous methods performed a factorization of the documents in a Euclidean space using

Word-Vectors. Besides this BoW representation of the documents, different more structured

representations are also possible. In the next subsection, we describe a non-linear factorization

methods that can be performed in arbitrary Hilbert spaces.

2.2.4. Kernel Principal Component Analysis

Kernel methods accomplish to apply linear methods on non-linear representations of data. Any

kernel method uses a map from a compact input space - we focus on R
V - into a so called

Reproducing Kernel Hilbert Space (RKHS). In this space, linear methods are applied to the

mapped elements like Linear Regressions or Support Vector Machines. The RKHS H is a space

of functions that allows point evaluations by inner products:

f(wd)(w) = 〈φ(w), φ(wd)〉,

where φ(wd) is a function in H and f(wd)(w) is the function value for the Word-Vector w for

the function f(wd) indexed at wd. For example, using the Bag-of-Words as features, we have

(φ(wd))i = adi a V -dimensional vector having at component i the frequency of word wi for

instance.

For the mapping φ from above, Kφ is the integral operator for a probability distribution P on

the input space X . It is defined as

Kφ(f)(wd) =

∫

f(w)〈φ(w), φ(wd)〉dP (w). (2.8)
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For this integral operator, we denote 〈φ(w), φ(wd)〉 = k(w,wd) with a kernel k(w,wd). By

Mercer Theorem [Mer09] there is a one to one correspondence of the above defined RKHS and

the integral operator via the kernel k(x, y). This correspondence is given by the expansion

k(w,wd) =

∞
∑

i=1

φi(w)φj(wd)

for {φi} an orthonormal basis in the RKHS.

Now, the covariance operator C on a Hilbert space H is defined as E[Z × Z∗] the outer

product of a random element Z ∈ H with its adjoint Z∗. This is analogue to the covariance of

centered random elements in R
V where we have C = E[XX ′] for the Term-Document Matrix

X . The empirical covariance is estimated via Ĉ = 1
M

∑

φ(wdi)φ(wdj )
′ for a centered sample

{φ(wd1), · · · , φ(wdM )} with wdi drawn from distribution P . Consequently the kernel matrix

approximates the covariance operator: K ∼ C.

Schölkopf et al. proposed in [SSM99] to perform Principal Component Analysis

(PCA) [Hot33] in a kernel defined RKHS based on the eigenfunctions and eigenvalues of the

covariance operator C to extract low-dimensional approximations of the mapped data.

Analogue to SVD, we use PCA to extract orthogonal vectors that span a subspace in the

data space that contains most of the variance. In contrast to standard SVD, in PCA we use the

covariance matrix C = XX ′ to extract the vectors. The connection between SVD and PCA is

straight. While SVD uses the data matrix to perform the following factorization:

X = UEV ′.

PCA performs this factorization:

XX ′ = UE2U ′.

We can use the power method for SVD to get the factorization since

XX ′ = UEV ′(UEV ′) = UEV ′V EU = UE2U.

Similar to LSA, we extract eigenvectors such that the mapped data φ(wd) can be expressed

as linear combination of these vectors. Kernel Principal Component Analysis (kPCA) extracts

an orthogonal basis, also called principal components, in a kernel induced RKHS. Projecting the

data onto the subspace spanned by the first T components captures most of the variance among

the data compared to all other possible subspaces where the data lies in. The T components are

exactly the eigenfunctions corresponding to the largest T eigenvalues of the covariance operator

of the kernel.

An eigenvalue decomposition on C results in a set of eigenvalues {λi} and eigenvectors {vi}
such that λiv

i = Cvi. A projection of a sample wd in the RKHS onto U = {vi} is done by

PU (φ(wd)) = (〈vi, φ(wd)〉, · · · , 〈vT , φ(wd)〉) ∈ U.

Since, the vi lie in the span of the {φ(wdi)}, each component is given by vi =
∑

j ωj,iφ(wdj ).
This results in the projection:

PU (φ(wd)) = (
∑

j

ωj,1〈φ(wdi), φ(wd)〉, · · · ,
∑

j

ωj,T 〈φ(wdi), φ(wd)〉) ∈ U.
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Algorithm 5 Kernel Principal Component Analysis.

Center kernel matrix K
Perform eigenvalue decomposition: [V,Λ] = eig(K)
Calculate kernel matrix KP of the mapped data samples onto the subspace

Algorithm 6 Kernel Partial Least Squares to extract the latent factors.

function GETCOMPONENT(K,Y )

· · ·
u = urand // random initialization

repeat

v = Ku, v = v/‖v‖
c = y′v
u = yc, u = u/‖u‖

until convergence

K = (I − vv′)K(I − vv′)
Y = (I − vv′)Y (I − vv′)
vi = v

ui = u

i = i+ 1
· · ·
return [vi]i=1···T

end function

The eigenvalues can be calculated by: ωi,j = ( 1√
λi
vi)j .

The steps of kernel PCA are summarized in Algorithm 5 as described by Shawe-Taylor and

Cristianini in [STC04].

Similar to PLS, we can also use document labels to find subspaces in the kernel defined RKHS

that align to these labels. Compared the PLS, kernel Partial Least Squares (kPLS) can also use

structured, high or even infinite dimensional labels for the documents.

2.2.5. Kernel Partial Least Squares

Similar to kPCA, kPLS performs PLS in a kernel defined Reproducing Kernel Hilbert Space

(RKHS). From the definition of PLS, we see that computing a component v is done by v =
XX ′u. The matrix XX ′ is the empirical covariance matrix between the Word-Vectors in X .

This matrix is the approximated true covariance matrix for random Word-Vectors drawn from

the same distributions as the Word-Vectors. The idea now is to apply kernel methods for the

extractions of the latent factors.

The algorithm of kPLS is analogue to PLS. In Algorithm 6 we shortly show the differences

compared to the standard PLS. The only differences are that we directly calculate v as Ku and

that the projection onto the orthogonal complement respectively the deflation of v is done by

(I − vv′)K(I − vv′).
Like PLS, kPLS can be used as regression to predict the labels for unlabeled documents. The
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d t w

M
N

Figure 2.8.: pLSA represented as graphical model in the Plate notation. For M observed docu-

ments, each contained (observed) word depends on a latent variable t.

regression model is : y = Φβ + r and the coefficients β can be estimated by

β = Φ′U(V ′KU)−1V ′y,

with V = [v1, · · · ,vT ] and U = [u1, · · · ,uT ].
The interpretation of the latent factors vi is more difficult than before. Compared to LSA that

finds subspaces in the space spanned by the words, kPCA finds subspaces that are spanned by

large (possibly infinite) dimensional vectors. Hence, the factors vi are linear combinations of

possible infinite dimensional Hilbert space elements. In order to interpret them, we can only

investigate the documents that are mapped the closest to the one dimensional subspace spanned

by each vi. The idea is that these documents contain the (possible not countable) structures that

are important for the corresponding factors. This renders the interpretation of the factors into a

Pre-Image problem as described by Gökhan et al. in [BWS04].

2.3. Topic Models

Topic models are statistical models that extract semantics in text corpora based on co-occurrence

statistics. For these models, we assume the MM such that the words in the documents are drawn

from multinomial distributions. The most prominent latent topic models are the probabilistic

Latent Semantic Analysis and Latent Dirichlet Allocation. Both models are mixture models

[MB88] that model the joint probability of words as linear combinations of conditional distribu-

tion of the latent topics.

The Aspect Model, as for instance used by Hofmann in [HPJ99], models the observed words

in the documents dependent on unobserved latent variables. These random variables are the

aspects, respectively the latent topics. Further, the words in the documents are conditionally

independent given latent random variables and the latent variables are independent given a doc-

ument. In the literature there is the notation of aspects synonym to topics. We use the notation

of topics throughout this thesis. Both topics and aspects stand for a concept hidden in the docu-

ments.
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2.3.1. Probabilistic Latent Semantic Analysis

One of the first models for co-occurrence data by an Aspect Model is probabilistic LSA (pLSA).

It can be seen as a probabilistic version of Latent Semantic Analysis. As introduced by Hofmann

in [Hof99], pLSA models the probability of the words in the documents as mixture over latent

topics t. Hence, we assume that the probability of a word w in document d can be expressed as

p(w|d) =
∑

t

p(w|t)p(t|d).

This notation is short for
∑T

i=1 p(w|t = i)p(t = i|d). The overall joint probability is given by

p(d, w) =p(d)p(w|d)
=p(d)

∑

t

p(w|t)p(t|d)

=p(d)
∑

t

p(w|t)p(t)p(d|t)
p(d)

=
∑

t

p(w|t)p(t)p(d|t),

for p(t|d) = p(t)p(d|t)
p(d) by the Bayes rule [KSO87]. The graphical representation of this joint

probability is given in Figure 2.8 and the generative process3 for the words in a document can

be summarized by

1. For each document d:

a) For each word wn in document d:

i. Draw tn ∼ p(t|d)
ii. Draw wn ∼ p(w|tn)

To find the conditional probabilities of the documents given a latent topic and the words

given a latent topic, an Expectation Maximization (EM) algorithm [DLR77] is used. An EM

algorithm iterates between an E-step that estimates a distribution empirically and an M-step that

finds parameters that maximize the likelihood of the distribution. In the E-step we estimate the

posterior distribution:

p(t|d, w) ∝ p(t)p(d|t)p(w|t).
In the M-step we maximize the likelihood with respect to the parameters: p(t), p(d|t) and

p(w|t). The likelihood L, respectively the log-likelihood, for documents d as sequences d =
(w1, · · · , wNd

) is

3For the probabilistic models we use the term generative process instead of generation process that is used for

non-probabilistic models as the factor model and the probabilistic models as the topic models.
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L =
∏

d

Nd
∏

n

p(d, wn)

=
∏

d

∏

w∈V

∏

n

I[w = wn]p(d, w)

=
∏

d

∏

w

p(d, w)n(w,d)

⇒ logL =
∑

d

∑

w

n(w, d) log p(d, w),

for n(w, d) the number of occurrences of word w in document d.

Setting the partial derivatives with respect to p(w|t), (d|t) and p(t) to zero, we end up with

the following update rules that maximize logL:

p(w|t) ∝
∑

d

n(d, w)p(t|d, w)

p(d|t) ∝
∑

w

n(d, w)p(t|d, w)

p(t) =

∑

d

∑

w n(d, w)p(t|d, w)
∑

d

∑

w n(d, w)
.

The EM-algorithm alternates between the E-step and the M-step until convergence.

There is also a geometric interpretation of the pLSA analogue to LSA. While LSA extracts

factors that span subspaces in the space spanned by the Word-Vectors, pLSA extracts probability

distributions that span simplices. A simplex is the geometric object

S
V = {(p1, · · · , pV )|

∑

i

pi = 1}

and can be interpreted as the set containing all multinomial distributions. Hence, the probability

distribution p(w|d) for each document lies in a probability simplex S
V . The topics span a sub-

simplex in S
V by the topic-word distributions p(w|t) such that

∑

i p(w|ti) = 1. The probability

distribution p(t|d) is the projection of the probability distribution p(w|d) onto this sub-simplex.

In Figure 2.9, we illustrate this geometric interpretation.

There is an interesting connection between pLSA and NNMF: Both methods optimize the

same objective but with different algorithms. Using the tact, that we can write the maximization

of logL as minimization, Ding et al. in [DLP08] performed the following reformulations:

argmax logL =argmin− logL

⇒ − logL =
∑

d

∑

w

n(w, d)
1

log p(d, w)
.
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p(w|t1)

p(w|t2)

p(w|t3)

.

p(w|d)

Simplex

Super-simplex containing p(w|di)

Figure 2.9.: Illustration of probabilistic LSA as decomposition of probability distributions.

In the super-simplex containing all word-document probabilities p(w|d), a sub-

simplex is extracted that contains the word-topic distributions p(w|t). The word-

topic distribution p(w|t) for document d is the projection of the word-document

probabilities p(w|d) onto this sub-simplex.

Scaling the left hand side of Equation 2.9 by S =
∑

d

∑

w n(d, w) and adding the constant

∑

d

∑

w

n(d, w)

S
log

n(d, w)

S

results in the equivalent formalization

∑

d

∑

w

n(w, d)

S
log

n(w,d)
S

p(d, w)
. (2.9)

Since p(w, d) is a probability we have
∑

d

∑

w p(d, w) = 1 and
∑

d

∑

w
n(d,w)

S = 1, adding
∑

d

∑

w p(d, w)−
n(d,w)

S to the previous equation results in the same optimum. All these refor-

mulations lead to the following optimization problem:

min
∑

d

∑

w

log
n(w, d)

S

n(w,d)
S

p(d, w)
+ p(d, w)− n(d, w)

S
. (2.10)

If we set (p(d, w))d,w = X = WHS we get the objective of NNMF as proposed by Lee and

Suang in [LS01].
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2.3.2. Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) as proposed by Blei et al. [BNJ03] is a generative probabilis-

tic topic model similar to Probabilistic Latent Semantic Analysis. The difference to the previous

model is the additional assumption of Dirichlet priors on the document-topic and the topic-word

distributions.

Given a corpus C of M documents each represented by sequences of words d =
(w1, · · · , wN ), LDA models the generative process of generating documents as random draws

over random mixtures of latent topics. We briefly summarize the generative process of docu-

ments as the following:

1. For each topic t:

a) Draw βt ∼ Dir(η)

2. For each document d ∈ C:

a) Draw θd ∼ Dir(α)

b) For each word wn in document d:

i. Draw tn ∼ Mult(θd)

ii. Draw wn ∼ Mult(βtn)

First, we draw for each topic t the word probabilities βt for each word in the corpus. Next, for

each document we draw a T -dimensional Dirichlet distributed random vector θd. Then, for each

token in the document dwe draw a topic tn from a multinomial distribution parametrized with θd
and a word wn from a multinomial distribution parametrized with βtn . In the original approach

by Blei et al., βt does not have a Dirichlet prior Dir(η). This becomes important for sampling

based approaches for LDA and for possible extensions with different (more complicated) priors.

In the literature there are conceptually two major approaches to estimate an LDA topic model.

First, variational inference can be used to approximate the posterior distribution of the latent

variables by a simpler variational distribution. Second, Gibbs sampling defines a sequence of

random draws that converges to a sequence of topic assignments that follows the joint distribu-

tion of the topic model.

Variational Inference for LDA

In Variational Inference complex posterior distributions are approximated by simple distribu-

tions that are close in terms of a divergence measure like the KL-divergence4. A general intro-

duction into Variational Inference methods can by found in [JGJS99] by Jordan et al.

For LDA, the posterior distribution is given by

p(θ, β, t|d, α, η) = p(θ, β, t,d|α, η)
p(d|α, η) (2.11)

4The KL-divergence measures the distance between two probability distribution p and q. It is calculated as :

KL(p||q) =
∫
x
p(x) log p(x)

q(x)
.
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for t = (t1, · · · , tN ) given topic assignments for each token and with the joint probability in the

nominator

p(θ, β, t,d|α, η) = p(θ|α)
T
∏

t=1

p(βt|η)
N
∏

n=1

p(tn|θ)p(wn|tn, β)

and the marginal distribution of a document in the denominator

p(d|α, η) =
∫

p(θ|α)
(

T
∏

t=1

p(βt|η)
N
∏

n=1

T
∑

t′=1

p(t′|θ)p(wn|t′, βt′)
)

dθdβ.

The random variables θ and β are Dirichlet distributed and lie in the (T-1)-simplex with prob-

ability density

p(θ|α) = Γ(
∑T

t=1 αt)
∏T

t=1 Γ(αt)
θα1−1
1 · · · θαT−1

T .

Since the posterior distribution in Equation 2.11 is intractable, a so called variational dis-

tribution q(θ, β, t|γ, λ, φ) with variational parameters γ, λ and φ approximates the posterior

distribution p(θ, β, t|w, α, η). This variational distribution shall have minimum KL-divergence

to p. The KL-divergence D(q‖p) is minimized when we maximize the term

L(γ, λ, φ;α, η) = Eq[log p(θ, β,d, t|α, η)]− Eq[log q(θ, β, t|γ, λ, φ)]. (2.12)

This is justified by the following inequality based on Jensen’s inequality [Jen06]:

log p(d|α, η) = log

∫

∑

t

p(θ, β, t,d|α, η)dθdβ (2.13)

= log

∫

∑

t

p(θ, β, t,d|α, η)q(θ, β, t)
q(θ, β, t)

dθdβ (2.14)

≥
∫

∑

t

q(θ, β, t) log
p(θ, β, t,d|α, η)

q(θ, β, t)
dθdβ (2.15)

=

∫

∑

t

(q(θ, β, t) log p(θ, β, t,d|α, η)

− log q(θ, β, t))dθdβ

=

∫

∑

t

log p(θ, β, t,d|α, η)q(θ, β, t)dθdβ (2.16)

−
∫

∑

t

log q(θ, β, t)q(θ, β, t)dθdβ

= Eq(θ,β,t)log p(θ, β, t,d|α, η)− Eq(θ,β,t)log q(θ, β, t).

Equation 2.13 writes p(d) as marginal distribution over the random variable θ, β and t. In

Equation 2.14 the inner addend is expanded by
q(θ,β,t)
q(θ,β,t) . Since this is like multiplying with 1,
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we did not change the equation. Next in Equation 2.15, Jensen’s inequality is applied. This is

possible since the logarithm is a concave function, respectively the negative logarithm is a con-

vex function. Further, the right hand side of Equation 2.14 is the logarithm of the expectation of
p(θ,β,t,d|α,η)

q(θ,β,t) under q(θ, β, t). Consequently, we can apply Jensen’s inequality. In the remaining

equations the terms are rearranged such that in the end we get a bound for an arbitrary variational

distribution q.

If we add the KL-divergence of p and q on the right hand side of Equation 2.13, the inequality

becomes an equality. The KL-divergence of p and q is

D(q(θ, β, t|γ, λ, φ)‖p(θ, β, t|d, α, η) =

∫

q(θ, β, t|γ, λ, φ) log q(θ, β, t|γ, λ, φ)
p(θ, β, t|d, α, η)

=

∫

q(θ, β, t|γ, λ, φ) log q(θ, β, t|γ, λ, φ)

−
∫

q(θ, β, t|γ, λ, φ) log p(θ, β, t|d, α, η).

The first term of the right hand side of the last equation can be rewritten as

Eq(θ,β,t)log p(θ, β, t,d|α, η) = Eq(θ,β,t)log p(θ, β, t|d, α, η)p(d|α, η)
= Eq(θ,β,t)log p(θ, β, t|d, α, η) + log p(d|α, η)
= Eq(θ,β,t)log p(θ, β, t|d, α, η) + Eq(θ,β,t) log p(d|α, η)
= Eq(θ,β,t)log p(θ, β, t|d, α, η) + log p(d|α, η).

Here, we use the fact that p(θ, β, t,d|α, φ) = p(θ, β, t|d, α, η)p(d|α, η) and Eq c = c if c does

not depend on q. Finally, we can reformulate the lower bound to

L(γ, λ, φ;α, η) +D(q(θ, β, t|γ, λ, φ)‖p(θ, β, t|d, α, η) = log p(d|α, η). (2.17)

Since log p(d|α, η) does not depend on the variational parameters γ, λ and φ, it can be

seen as constant. Consequently, minimizing the KL-divergence is the same as maximizing

L(γ, λ, φ;α, η). Now, we only need to specify an appropriate variational distribution with vari-

ational parameters. Based on the original graphical model for LDA (see Figure 6.2), a simple

graphical model for the variational distribution is derived. The variational distribution with vary-

ing variational parameters builds a family of functions that shall be used as lower bounds for the

posterior distribution p(d|α, η). To gain tight bounds, Blei et al. [BNJ03] propose to derive

a simpler graphical model by removing some edges and nodes from the original model. This

results in the following variational distribution:

q(β, θ, t|γ, φ) = q(θ, γ)
T
∏

t=1

q(βt|λ)
N
∏

n=1

q(tn|φn). (2.18)

Now everything is at hand to optimize L from Equation 2.12 by the following variational EM

algorithm:
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Figure 2.10.: LDA represented as graphical model in the Plate notation. For M documents, we

draw a topic distribution θ with Dirichlet prior Dir(α). For each of the N tokens

in a document, we draw a topic t from θ. Given the topic and the topic-word

distribution β, we draw the words.
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Figure 2.11.: Variational distribution for LDA as graphical model in the Plate notation.

1. (E) Find optimal variational parameters γd, φd for each document d and λt for each topic

t by maximizing the likelihood from Equation 2.12.

2. (M) Find maximum likelihood estimate from the model parameters α, η with sufficient

statistics estimated under the posterior from the E-step.

The single steps for the optimization in the E-step and the parameter estimation in the M-step

can be found in the original LDA paper by Blei et al. In the following, we summarize the most

important equations for the steps:

To calculate L in Equation 2.12, we need several expectations. Here, we must take care that

we always take the expectation with respect to the variational distribution q. By the definitions

of the posterior distribution p and the variational distribution q, we can rewrite L to
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L(γ, λ, φ;α, η) =Eq[log p(θ|α)] +
∑

t

Eq[log p(βt|η)] (2.19)

+
∑

n

Eq[log p(tn|θ)] +
∑

n

Eq[log p(wn|tn, β)]

−Eq[log (q(θ|γ))]−
∑

t

Eq[log (q(βt|λ))]

−
∑

n

Eq[log (q(tn|φn))].

We summarize the most important terms in the following. The expectation of the log-

probability of a Dirichlet distributed random variable θ is

Eq[log p(θ|α)] =Eq[log exp (
∑

t

(αt − 1) log θt + log Γ(
∑

t

αt)−
∑

t

log Γ(αt))]

=
∑

t

(αt − 1)Eq[log θt] + log Γ(
∑

t

αt)−
∑

t

log Γ(αt)

=
∑

t

(αt − 1)(Ψ(αt)−Ψ(
∑

t′

αt′)) + log Γ(
∑

t

αt −
∑

t′

log Γ(αt′)),

and the expectation of the log-probability of a word is

Eq[log p(d|t, β)] =
∫

∑

t,n

log βt,wnq(t)q(β)dβ

=

∫

∑

t,n

log βt,wnφt,nq(β)dβ

=
∑

t,n

φt,n

∫

log βt,wnq(β)dβ

=
∑

t,n

φt,n Eq[log βt,wn ].

These are all expectations of the factors of the joint probability in L. Finally, we need the

expectation of the variational distribution q(t):
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Eq[log (q(t|φ))] =Eq[log (

N
∏

n=1

q(tn|φ))]

=Eq[

N
∑

n=1

log (q(tn|φ))]

=
∑

t

N
∑

n=1

log (q(tn|φ))q(tn|φ)

=
∑

t

N
∑

n=1

log (φt,n)φt,n.

Remembering that q(t|φ) = φt,., the expectation of the logarithm of a Dirichlet distributed

random variable θ is

Eq(θ|α)[log θi] = Ψ(αi)−Ψ(
∑

j

(αj))

and inserting the corresponding expectations in the lower bound results in the equation as shown

in Figure 2.12. This is the final lower bound that is optimized. Minimizing the bound, the

updates of the M-step are summarized in the equations in Figure 2.13.

Online LDA by Stochastic Variational Inference

Online LDA, as introduced by Hoffmann et al. [HBB10], uses Stochastic Gradient Descent

(SGD) to find the optimal variational distribution (the parameters). To account for the non-

Euclidean geometry of the parameters, a Riemann metric between probability distributions is

used. So called natural gradients are used for the SGD. The natural gradient is especially easy

to compute for probability distributions of the exponential family.

During the SGD two parameter sets are distinguished, the local parameter depending on a

document d and the global parameters independent of certain documents. The local parameters

are γd and φdn, the global parameters are λtv. The local parameters are estimated for each

document as in standard LDA. The global parameters are updated based on the current topic

distributions and the estimates from the last iteration j:

λ̂t,v = ηt,v +D
N
∑

n=1

φtd,nwd,n

λj+1
t,v = (1− ρj)λjt,v + ρj λ̂t,v.

The stochastic variational variance can be summarized as in Algorithm 7.
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L(γ, λ, φ;α, η, d)

= log Γ(

T
∑

j=1

αdj)−
T
∑

j=1

log Γ(αdj) +

T
∑

i=1

((αdi − 1)Ψ(γdi)−Ψ(

T
∑

j=1

γdj))

+ log Γ(

T,V
∑

j=1,v=1

ηjv)−
T,V
∑

j=1,v=1

log Γ(ηjv) +

T,V
∑

i=1,v=1

((ηiv − 1)Ψ(λiv)−Ψ(

T,M
∑

j=1,v=1

λjv))

+

N,T
∑

n=1,i=1

φni(Ψ(γdi)−Ψ(

T
∑

j=1

γdj))

+

N,T,V
∑

n=1,i=1,v=1

φniw
v
n(Ψ(λi,v)−Ψ(

T
∑

j=1

λj,v))

− log Γ(

T
∑

j=1

γdj)−
T
∑

j=1

log Γ(γdj) +

T
∑

i=1

((γdi − 1)Ψ(γdi)−Ψ(

T
∑

j=1

γdj))

− log Γ(

T,V
∑

j=1,v=1

λjv)−
T,V
∑

j=1,v=1

log Γ(λjv) +

T,V
∑

i=1,v=1

((λiv − 1)Ψ(λiv)−Ψ(

T,M
∑

j=1,v=1

λjv))

−
N,T
∑

n=1,i=1

φni log φni

Figure 2.12.: Lower bound that is maximized in LDA.

φdni ∝βiwn exp (Ψ(γdi)−Ψ(
T
∑

j=1

γdj))

γdi =αdi +

N
∑

n=1

φdni

βij ∝
M,N
∑

d=1,n=1

φdniw
j
dn

λij =ηij +

M,N
∑

d=1,n=1

φdniw
j
dn

Figure 2.13.: Updates for the parameters in LDA in the M-step.
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Algorithm 7 Online algorithm for LDA

Initialize λ0

repeat

Sample wd

Initialize γ
repeat

φtd,n ∝ exp (E[log θd,t] + E[log βt,wn ])

γd,t = αd,t +
∑N

n=1 φ
t
d,n

until convergence

λ̂t,v = ηt,v +D
∑N

n=1 φ
t
d,nwd,n

λj+1
t,v = (1− ρj)λjt,v + ρj λ̂t,v

until done

Gibbs Sampling for LDA

Variational inference only approximates the true posterior distribution. The quality of this

approximation highly depends on how good the variational distribution can approximate the

true distribution. Another approach for inference with complicated posterior distributions are

Markov Chain Monte Carlo (MCMC) methods, see [GS90] for an introduction. The idea of

MCMC methods is to define a sequence of random draws such that after a number of such

draws, these samples follow a certain distribution of interest. In the case of LDA, we want that

the samples follow the joint distribution p(t, w).
Using a Gibbs sampler (as MCMC method) [GG84] for example, we draw the topics directly

from the topic distribution given only conditional distributions. In [GS04], Griffiths and Steyvers

applied this on LDA for topic models. The idea is not to sample all topic assignments for given

documents and words at once, but each at a time. Hence, beside the words, we also observe the

topics t−i = (t1, · · · , ti−1, ti+1, · · · , tn), only topic ti remains an unobserved random variable.

Iterative sampling one topic ti for a wordwi given all other topic assignments as fixed, converges

to a sequence of samples from the joint probability p(t, w) of all topics and words. This is easy

to show by the following equation:

p(ti|t−i, wi) =
p(t−i

+ti
, wi)

p(t−i, wi)
(2.20)

∝ p(t, wi),

for t−i
+ti

= (t1, · · · , ti−1, ti, ti+1, · · · , tn). Since the p(wi, t) are independent for all words wi,

the Gibbs sampler results in the joint probability p(t,d) =
∏

n p(t, wn).
To derive the corresponding joint probabilities from Equation 5.1, the random variables from

p(t,d) are integrated out. Then, we get for the probability of a sequence of topics tn and a

sequence of words wn from a document d under the generative model of LDA:
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p(t,d|α, η) =
∫ ∫

p(t,d, θ, β|α, η)dθdβ (2.21)

=

∫ ∫

p(θ|α)p(β|η)p(t|θ)p(d|t, β)dθdβ

=

∫

p(t|θ)p(θ|α)dθ
∫

p(d|t, β)p(β|η)dβ.

Due to independence and the definition of the multinomial distribution, we have p(t|θ) =
∏

n p(tn|θ) =
∏

n θtn and p(d|t, β) =
∏

n βtn,wn . Finally, a random sequence t =
(t1, · · · , tN ) of topic assignments for a token sequence d = (w1, · · · , wN ) from documents

has probability p(t|θ) =
∏

tn
θ
nd,tn

tn . The sequences of tokens themselves have probability

p(d|t, β) =
∏

wn
β
nt,wn

t,wn
. Since, we integrate whole random variables out, this sampling method

is called collapsed Gibbs sampling.

We denote nt,w the number of times topic t has been assigned to word w, nd,t the number of

times topic t has been assigned to any word in document d, further nt the number of times topic

t has been assigned to any word, V the number of words in the vocabulary from the document

collection and dn the number of tokens in document d (words with multiplicity).

Since the prior distributions p(θ|α) and p(β|η) are Dirichlet distributions which are conjugate

to the multinomial distribution, the two terms on the right hand side of Equation 2.21 can be

easily calculated.

Remember the definition of the Dirichlet distribution5, the two terms in Equation 2.21 can be

reformulated as

∫

p(t|θ)p(θ|α)dθ =
∏

d

∫

1

B(α)

∏

tn

θ
nd,tn+αtn−1
tn dθ

=
∏

d

B(nd + α)

B(α)

∫

∏

tn

1

B(nd + α)
θ
nd,tn+αtn−1
tn dθ

=
∏

d

B(nd + α)

B(α)

∫

Dir(nd + α)dθ

=
∏

d

B(nd + α)

B(α)
,

and

5Dir(θ|α) = 1
B(α)

∏
k
θαk−1 for the Beta function B(α) =

∏
k
Γ(αk)

Γ(
∑

k
αk)
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∫

p(d|t, β)p(β|η)dβ =
∏

tn

∫

1

B(η)

∏

w

β
ntn,w+ηw−1
tn,w dβ

=
∏

tn

B(ntn + η)

B(η)

∫

Dir(ntn + η)dθ

=
∏

tn

B(ntn + η)

B(η)
.

Now, we can write the joint probability as

p(t,d|α, η) =
∏

d

B(nd + α)

B(α)

∏

tn

B(ntn + η)

B(η)
.

For the definition of the conditional distribution p(ti|t−i) we use n−i
d for the number times

any topic has been assigned to any token in document d when we exclude the assignment ti,
hence n−i

d = nd− 1 and n−i
t,w for the number of times topic t has been assigned to word w when

we exclude the assignment ti, hence n−i
t,w = nt,w − 1. Further, we use the definition of the Beta

function and the following equality: Γ(x+ 1) = xΓ(x).
Finally, we get the following conditional distribution for the Gibbs sampler:

p(ti|t−i, w) =
p(t−i

+ti
, w)

p(t−i, w)
(2.22)

∝
∏

d

B(nd + α)

B(n−i
d + α)

T
∏

t

B(nt + η)

B(n−i
t + η)

∝(n−i
d,t + α)

n−i
t,w + ηw

∑

w′ n
−i
t,w′ + ηw′

.

After a sufficient number of samples from the Gibbs sampler we get estimates of the word

distributions for the topics and the topic distributions for the documents. Given the topic assign-

ments {td,w} for the words w in the documents d, we get

βw|t = p(w|t) =
∫

p(w|β)p(β)dβ =
nw,t + ηw

nt +
∑

w′ ηw′

and

θd|t = p(t|d) =
∫

p(t|θ)p(θ)dθ = nd,t + αd

nd +
∑

d′ αd′
.
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Online LDA by Resampling Topics

Analogue to the online version of Variational Inference, Gibbs sampling strategies are also used

in an online manner. In [YMM09], Yao et al. propose to use Gibbs sampling for online LDA.

The authors test several strategies to sample topic assignments for new documents. Based on

a converged run of the Gibbs sampler on a training set, the topic assignments so far are either

kept fixed and the new documents are used one by one or all at once to sample the assignments

for them, or all new documents and the old training documents are used together to re-sample

the topic assignments. Further to these strategies, Canini et al. [CSG09] propose a different

sampling strategy based on particle filters. They extend Gibbs sampling to perform several

weighted samples. If the variance of the weights gets too big, they re-sample to adapt for possible

changes in distribution.

Further Solutions for LDA

Variational inference (online or not) and Gibbs sampling are the most prominent solutions to

estimate topics in LDA. Besides these methods two additional methods are commonly used:

Belief Propagation and Expectation Propagation.

With Belief Propagation, the graphical model of LDA is interpreted as factor graph. The

conditional probabilities p(ti|t1, · · · , ti−1, ti+1, · · · , tn, w) are interpreted as messages being

passed in the factor graph, see [ZCL11] for more details. In Expectation Propagation on the

other hand, we approximate p(w|θ) =
∑

t θd,tβt,w by q(w|θ) = sw
∏

t θ
βt,w

d,t . In an iterative

manner, the influence of a word w is removed from q and the new sw and β are estimated such

that p and q have matching moments. An overview on Expectation Propagation for Generative

Models can be found in [ML02].

Besides these different estimation methods for LDA, Variational Inference and Gibbs sam-

pling have been optimized to reduce its complexity. In [NCL07], for example, Nallapati et al.

propose a parallel version of the Variational Inference for LDA. The authors implement the E-

step such that batches of documents are processed in parallel or even distributed. This is possible

since the variational parameters γ and φ for each document are independent of the other doc-

uments. Further, in [NSWA08] Newman et al. introduce a hierarchical version of LDA with

distributed θ and β across p processors or machines. The authors use Gibbs sampling to sample

topic assignments for each processor, respectively machine, based on only local documents.

Teh et al. propose in [TNW07] a combination of Variational Inference and Gibbs sampling

for LDA called collapsed variational inference. The authors show that this is achieved by jointly

modeling θ and β in the variational distribution without further assumptions,

q2(θ, β, t) = q2(θ, β|t)
∏

n

q(tn|φn),

as approximation of the true posterior p.

Considering all these different inference methods for LDA, Asuncion et al. investigate

in [AWST09] their connections. The authors show that all method results in similar update
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rules during the optimization of LDA. The difference is in different priors for the distributions.

This once again shows the importance of meta parameters for the Dirichlet priors.

There is also an interesting connection between LDA and pLSA. As indicated in the beginning

of this section, pLSA differs from LDA by the prior distributions. In [GK03] Girolami and

Kaban showed that with uniform priors on θ and β, we get

p(θ, β,w|α, η) =
∏

d

p(θd|α)
T
∏

t=1

p(βt|η)
N
∏

n=1

∑

t

p(t|θd)p(wn|t, β)

∝
∏

d

Nd
∏

n=1

∑

t

p(t|θd)p(wn|t, β)

=
∏

d

∏

w

(
∑

t

p(t|θd)p(w|t, β))n(d,w)

=
∏

d

∏

w

p(w|θ, β)n(d,w)

log p(θ, β,w|α, η) =
∑

d

∑

w

n(d, w) log p(w|θ, β).

The last equation is the log posterior for LDA with uniform priors and is equivalent to the log

posterior for pLSA.

Supervised Topic Models

Similar to PLS and kPLS that integrate document labels in the extraction of latent factors, topic

models can also be augmented to integrate document labels. Supervised topic models integrate

additional labels for each document such that the latent topics can be used to predict further

unlabeled documents. As proposed by Blei and Mcauliffe in [MB08], LDA can be extended to

additional observed random variables for the document labels. This supervised version of LDA

can be briefly summarized by the following generative process:

1. For each topic t:

a) Draw φt ∼ Dir(β)

2. For each document d:

a) Draw θd ∼ Dir(α)

b) For each word wn in document d:

i. Draw tn ∼ Mult(θd)

ii. Draw wn ∼ Mult(φtn)

c) Draw y ∼ GLM(t, µ, σ)
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θ t w

β η

α

yd

µ σ

M
N

K

Figure 2.14.: Supervised LDA represented as graphical model in the Plate notation. In addition

to standard LDA, an observed random variable yd that depends on a given topic t
is modeled as Generalized Linear Model with mean µ and variance σ.

The graphical model of supervised LDA is given in Figure 2.14. The difference to standard

LDA is the observed label yd for each document, (cf. Figure 6.2). The labels are assumed to

be drawn from a Generalized Linear Model (GLM) with mean µ and variance σ. The evidence

lower bound Ls is the same as for standard LDA L (see Equation 2.12) up to one term. The

difference lies in the term

E [log p(y|t, η, σ)] = log h(y, δ) +
1

δ
[µ′(E[t̂y]− E[A(µ′t̂)]]

from the GLM that is added to the bound. The terms h and A depend on the concrete GLM
used and E[t̂] = φ̂ = 1

N

∑N
n=1 φn. This results in a new lower bound:

Ls(γ, λ, φ;α, µ) =Eq[log p(θ, β,w, t, y|α, µ)]− Eq[log q(θ, β, t|γ, λ, φ)]
=Eq[log p(θ, β,w, t|α, µ)] + Eq [log p(y|z, µ, σ)]
− Eq[log q(θ, β, t|γ, λ, φ)]

=L+ Eq [log p(y|z, µ, σ)]. (2.23)

This motivates the interpretation of supervised LDA as regularization of standard LDA with

the expectation of the label distributions under the variational distributions. This means, we

optimize for variational parameters that also maximize the likelihood of the labels under the

GLM. The derivatives of the variational parameters is the same as in standard LDA for γ but

different for φ. Now in the M-step we get a new update for φ using the gradient:

∂L

∂φn
= E[log θ] + E[log p(wn|φ)]− log φn + 1 +

y

Nσ
µ− 1

σ

∂E[A(µ′t̂)]
∂φn

.

If we further assume that yd are Gaussian random variables, we can derive the following

updates for the GLM parameters:
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µ =(E[X ′X])−1E[X]′y

σ =
1

D
{y′y − y′E[X](E[X ′X])−1E[X]′y}

with E[X ′X] =
∑

dE[t̂′dt̂d] and E[X] = E[t̂]′.
A different approach for supervised LDA is proposed by Zhu et al in [ZAX09]. The authors

use a maximum margin approach to integrate nominal and numeric labels into topic models.

Instead of assuming that the label comes from a GLM, the labels are the expected outcome of

a linear classifier that belongs to a class that induce a maximum margin for the labels. This

combines the generative power of LDA and the discriminative power of Support Vector Ma-

chines [Vap95].

Additional extensions of LDA to model document labels have been proposed by Lacoste-

Julien et al. in [LJSJ09] and Ramage et al in [RHNM09] to include categories of documents into

topic models. Lacoste-Julien et al. use a transformation of the T -dimensional document-topic

distribution into an l-dimensional document-category distribution that models the distribution of

a document over all possible document categories. Ramage et al. on the other hand, model the

assignment of a document to a category as additional Bernoulli distributed random variable.

An especially interesting type of supervision for document are time stamps. Time stamps

telling when the documents were written can be used to investigate the temporal distribution of

the topics. In [WM06] Wang and McCallum extend the LDA topic model such that observed

time stamps (or simple time values) are assumed to by generated by the latent topics, independent

of the words given the topic. This method enables a temporal alignment of the topics that reflects

when the documents have been written.

Different Priors for LDA Parameters

There are usually two reasons to include additional priors on the parameters for LDA. First,

due to lack of information in the data, we expect that the pure likelihood can not be estimated

accurately enough and prior belief in the distribution can compensate this. Second, additional

information about the data is available and we want that our topic model reflects the information.

For instance information about authors of texts can be used to estimate topics such that texts from

the same authors have an affinity towards certain topics.

In the literature (see for instance [WMM09]) integrating priors on the meta parameters for

LDA is motivated by fully Bayesian modeling. This means, the meta parameters of LDA are

also random variables that follow a certain (prior) distribution. Hence, instead of specifying α
and η as fixed parameters, they are modeled for instance as Gamma distributed random variables.

Alternatively, the meta parameters are modeled as α = α′a and η = η′b for fix concentration pa-

rameters α′, η′ and base measures a, b which again are modeled with certain prior distributions.

Further approaches model the meta parameters as logistic function: α = ea and η = eb, respec-

tively α = ea
′
xd and η = eb

′
xw for k1 additional document features xd = [xd,1, · · · , xd,k1 ] and

k2 word features xw = [xw,1, · · · , xw,k2 ] with appropriate additional prior distributions for a

and b.
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Note, when modeling the meta parameters as non-random variables, we can either choose

them by hand or try to find the optimal parameters by maximizing the log-likelihood for LDA

with respect to the parameters. As proposed by Blei et al. [BNJ03] the latter can be easily done

by Newton-like optimization. This means, the parameters are estimated directly from the data

without any prior belief or information.

With the different Bayesian models of the meta parameters, different approaches are possible

to efficiently integrate the priors. If we choose the prior distribution to be a conjugate prior

we can easily integrate the random meta parameter out. For instance, if we model the meta

parameterα as also Dirichlet distributed then the document-topic distribution θ has a hierarchical

Dirichlet prior and we can integrate it out. The same is also true if we model α = α′a and a has

a Dirichlet prior and is to be integrated out.

Instead of integrating out, we can also optimize the log-likelihood with respect to the param-

eters a or b depending on the prior. This is especially interesting if we cannot integrate the

corresponding parameter out. In case we define α = ea
′
xd , respectively η = eb

′
xw , as link func-

tion for document features xd, respectively word features xw, with additional prior distributions

p1(a) and p2(b), gradients of the log-likelihood of the LDA topic models can be estimated and

Newton-like or general gradient based optimization methods can be used to find the optimal a

and b.

Examples for different link functions for the meta parameters α and η with different priors are

in the works of Mimno and McCallum in [MM12] and Petterson et al. in [PSC+10]. Mimno and

McCallum propose to set α = ea
′
xd for document features xd with a Gaussian prior N(0, σ2)

on a with mean 0 and variance σ. For document features like author indicator features (binary

vectors with 1 at a certain component indicating the author of the document), the optimal a is

estimated by maximizing the log-likelihood via gradient ascent with the partial derivatives for

the features f and topics t

∂L

∂at,f
=
∑

d

xdf e
a
′
txd(Ψ(

∑

t

ea
′
txd)−Ψ(

∑

t

ea
′
txd + nd)

+Ψ(ea
′
txd +nd,t)−Ψ(eatxd))− at,f

σ2
,

with Ψ the first derivative of the logarithm of the Gamma function, named the Digamma func-

tion. For LDA with Gibbs sampler, the authors propose to perform this gradient ascent every

other iteration via the standard non-linear optimization solver BFGS [LN89].

Petterson et al. on the other hand define a link function on the meta parameter for the topic-

word distribution prior, hence η = eb
′
xw . By this, we can include additional information about

the words via word features xw. Further, the authors propose a special prior on b that includes

similarity information sim(w,w′) about the words by a graphical model. The optimal parameters

b are estimate similar to the approach by Mimno and McCallum via gradient based optimization.

The major difference is the special prior

p(b) = e
−1

2σ2

∑
w,w′,t sim(w,w′)(bt,w−bt,w′ )2 .
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In [WXK10], Wahabzada et al. propose to integrate relations among documents via Gaussian

Processes. The link function is defined as α = ef(d) with a Gaussian Process prior on f(d).
Yuan et al. use in [YZX12] the approach by Mimno and McCallum to define a topic model over

geographical regions with feature information about the regions and certain points-of-interest.

In [He12], He proposes to define the meta parameter for the word-topic distribution as linear

combination of sentiment specific word prior information. These approaches show that priors

can be used to integrate arbitrary information about documents and words into topic models.

2.3.3. Further Topic Models

In the previous sections, we described a fixed model. Latent Dirichlet Allocation uses multino-

mial distributions with Dirichlet priors as depicted in Figure 6.2. Setting the meta parameters as

link function or adding additional priors on the parameters did not change this model. On the

other hand, there are many different approaches to slightly change LDA to model the documents

and words differently.

We can, for instance, change the assumption in LDA that the document-topic and the topic-

word distributions are multinomial distributions with Dirichlet priors. Instead of the Dirichlet

priors different prior distributions can be used. This is different to the previous section where

we used priors on the meta parameters of the Dirichlet distributions. In [NBB11a] for instance,

Newman et al. propose structural priors based on side information instead of the Dirichlet priors.

Given covariance information about the words in a matrixK ∈ R
V,V they propose the following

prior on the topic-word distribution:

p(β|K) ∝ (β′Kβ)ν .

The prior allows the inclusion of correlation information about words into topic models. The

integration of the prior into the topic modeling is done by maximizing the posterior of this new

model, resulting in the following word-topic distribution:

p(d|t) ∝
∏

n

β
nt,wn

t,wn
(β′tKβt)

ν .

Another prominent adaptation of standard LDA is the so called Correlated Topic Model. In

order to also model correlation between topics (not between documents or words), Blei and

Lafferty propose in [BL06a] to model the topics as parametrized multinomial distribution:

p(t|a) ∝ ea
′
x .

The mapping into the probability simplex for the multinomial distribution θ is than via

θi =
eai

∑

j e
aj
.
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LDA sLDA

pLSA

LSA

NNMF

kPCA kPLS

PLS

Figure 2.15.: Schematic view of the relations of the most prominent factor and topic models. In

contrast to LSA, NNMF puts non-negativity constraints on the factors. A proba-

bilistic interpretation of NNMF leads to pLSA. In pLSA we perform a decomposi-

tion of the joint probability of words and concepts while in LSA the decomposition

is on the term-document matrix. Via kernels, kPCA can extract non-linear factors

in contrast to the linear factors from LSA. The methods PLS and kPLS extent the

extraction of latent factors (linear in LSA, non-linear in kPCA) to consider given

document labels. Integrating Dirichlet priors on the probability distributions of

pLSA results in LDA. Jointly modeling words, concepts and document labels ex-

tends LDA to sLDA.

The additional normally distributed prior on the parameters a allows the estimation of a mean

and a covariance between topics. The estimation of the topics, the topic mean and the topic

covariance can be done by variational inference. The only caveat is that the proposed normal

prior is not conjugate to the multinomial distribution θ. To solve this, Blei and Lafferty propose

to bound the expectation Eq[p(t|a)] via Taylor approximation.

These are only two examples of the several approaches to alternate LDA to enhance the ex-

pressiveness of the topic model. Further works are for instance Dynamic Topic Models [BL06b]

that also model the evolution or temporal order of topics. In [LM06] hierarchies of topics are

included; in [SN10] the topic-word distribution also consider Zipf’s law; in [DE09] word proba-

bilities also account for burstiness and in [BGBZ07] the topic-word distribution is replaced by a

topic-path distribution of semantic nets like WordNet to name only a few additional approaches.

To conclude, in Figure 2.15 we illustrate the relations between the latent variables models in

a schematic why. The connections between the different latent variable methods is illustrated as

graph.
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We distinguish between qualitative and quantitative methods to evaluate the quality of the latent

variable models for a given linguistic task as introduced in Chapter 1. Such methods shall indi-

cate the value of the extracted factors and topics for linguistic tasks. While qualitative evaluation

methods show how useful the extracted information about latent topics or factors are for linguis-

tic research, the quantitative evaluation methods provide mechanisms to automatically compare

the models.

3.1. Qualitative Evaluation Methods

In practice, the factor and topic models are used qualitatively. Experts interpret results of the

models by exploring the factors and topics. For the linguistics tasks for example, the results of

latent variable modeling are mostly manually investigated. For example, if we are interested in

usage patterns of expression and words in context and over time, we need methods to evaluate
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LDA LSA PLS NNMF kPLS/kPCA

pt(w) Mult(βt) N(Ri, 1) N(vt, 1) N(Vt) N(φt, 1)

pd(t) Mult(θd) Mult(Ld, 1) Mult(ld, 1) Mult(Wd) N(ψ, 1)

p(τd) Beta(τ)/SG(τ) - N(τ, 1) - N(τ, 1)

Table 3.1.: Probability distributions of words, documents and time stamps for visualization. For

factor models, we use the normal distribution N based on distances as surrogate mea-

sure for the word probability distribution p(w|t) and the document distribution p(t|d)
with respect to a given latent variable t. For topic models, these probability distri-

bution are explicitly modeled as multinomial distributions Mult during model infer-

ence.

the results of a latent variable model in terms of the words and documents. Rather, than abstract

numbers that describe the results, we are interested in how explanatory the factors, respectively

the topics, are. A good format and a visualization of the results is needed to help evaluating

the models by linguists. There are several possible ways to visualize the results of factor and

topic models. In the literature there are usually the following aspects considered: First, how

can we show the tendency of words and documents to certain topics. Second, how can show

the distribution of the topics over the words and documents. Finally, how can we show the

distribution of topics, words and documents over time. The latter is important for diachronic

linguistics.

3.1.1. Ranking Lists and Word Clouds

One straightforward way to qualitatively evaluate the factors, respectively the topics, is to inspect

the ”importance” of the words given a latent variable. This importance shall measure how much

influence words have for given factors or topics. Using such a measure, we can rank all words

such that the most important words have highest rank. As concrete importance measure, we use

the probability of a word w for a given latent variable t noted as p(w|t).
For topic models, we can quite easily measure the importance of words given a topic by the

probabilities estimated during inference. This can directly be read off from the parameters βw,t

for the multinomial distribution of the words for topic t, (see 2.3.2). Hence,

p(w|t) = βw,t.

For a factor model this is not straightforward. In order to estimate the importance of a word

for a given factor, we need a surrogate measure that can be used as probabilities: Let vi be the ith
factor. This can be the ith column from R in LSA or V in NNMF, the ith loadings vector from

PLS or the projection onto ith component in a Hilbert space by kernel PCA or kernel PLS. A

word represented as Word-Vector can be associated with a similarity value based on the distance

in the Euclidean (or Hilbert) space to vi. This can be seen as the reconstruction error for the

word in the vector space after projection.

Formally, the distance of a Word-Vector wj for word wj to a latent factor is defined as

‖Piw
j‖22,
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for

wj =

















0
...

1
...

0

















the standard unit vectors that corresponds to wordwj and the projection matrix Pi onto the factor

vi:

vi =







vi1
...

viV






.

This is the length of the orthogonal projection of wj onto vi and is equal to the component in

vi that corresponds to the dimension spanned by the word wj in the vector space. We note this

value as vi
j . Hence, vi

j is the value in vector vi at position j that corresponds to the dimension

in the VSM of word wj .

Since we are only interested in the order of words based on their importance, we can apply any

order preserving transformation. This motivates the definition of word probabilities p(wj |t = i)
based on this distance measure. For factor models, we define the probability of a word wj for a

given factor vi as proportional to the distance of the word to the factor in the vector space:

p(wj |t = i) ∝ ‖Piw
j‖22.

A simple word probability based on distances in the vector space is the normal distribution

with mean 0:

p(wj |t = i) =
1

2σ
e−

1
2σ2 ‖Piw

j‖22 .

Now, we can define ranking lists of word associated with each factor or topic as

Vt = (w1, · · · , wk)

such that

∀m ≤ n < k : p(wm|t) ≥ p(wn|t).
This ranking list contains the top-k words in decreasing order of the word probability p(wi).

With similar consideration, we can also define rankings of documents for each topic. In LDA

for instance the document-topic distribution p(d|t) with parameter θ can be directly used as

importance of a document for a topic. In factor models, we use a similar surrogate measure as

for the words based on the distance of the document represented as Word-Vector to the factor:

p(t = i|d) = 1

2σ
e−

1
2σ2 ‖Piwd‖22 .

A particular visualization of the word with respect to its importance is now easily done. Via

world clouds for example, we can visualize the importance of words based on p(w|t). Each
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Figure 3.1.: Visualization of the most important words for a given factor or topic. Left: a Word

Cloud from the highest ranked words from a topic model on Wikipedia talk pages

containing the word “president”; The larger the size of the word, the more frequent

is this word. right: a sorted list of the highest ranked words (y-axis) from a topic

model about presidents with frequency values on the x-axis.

of the top-k words from the ranking list is written in a figure with size proportional to p(w|t).
On the left in Figure 3.1, we see a Word Cloud from a topic model containing topics about

presidents. Besides Word Clouds, we can also just list the top-k words in decreasing order of

importances in the concrete values of p(w|t) can be additional plotted as histogram. This can be

seen on the right in Figure 3.1.

3.1.2. Temporal Distribution

Ranking lists and Word Clouds can visualize the word distributions for factors or topics. For

the temporal distributions of the documents with respect to the factors or topics, we need to

display the course of the importance of the latent variables over time. The amount of a certain

factor or topic in a given time can be estimated by grouping documents by time and averaging

the document-topic proportions. Analogue to the importance of a document to a certain latent

variable, the document-topic proportion tells how much present a certain topic is in a document.

Each document d has its time stamp τd. Grouping these values into e intervals

[0, τ1], [τ1, τ2], · · · , [τe−1, τe],

we assign the documents to the corresponding intervals, hence d → [τi, τi+1] with τi ≤ τd ≤
τi+1. Now, we can average the p(t|d) in each interval to get a histogram of topic proportions

over time.

Similar to the word importance measures from the last section the document-proportion can

be easily derived. For topic models the document-topic proportions are the multinomial distri-

butions Mult(θd). Hence

p(t|d) = θd,t.

For the factor models we need again the surrogate measures that can be used to estimate

probabilities of documents for certain topics based on distances in the vector space of the Bag-

of-Words. This can be done as discussed in previous sections. An other approach is to apply a
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Figure 3.2.: Visualization of the distribution of topics over time. Left: Histogram of topic pro-

portions for a given topic over time from a topic model on Wikipedia talk pages

about presidents. On the x-axis, the years form 2002 to 2014 are marked. On the

y-axis, the amount of topic 7 by the number of document assigned to this topic for

each of these years in the Wikipedia talk pages is plotted. Right: Plot of stacked

time series derived from histograms of topic proportions for all topics over time

(x-axis).

multinomial transformation to map the factors into a ,ultinomial distribution. For factor models

the document-factor proportions are T−dimensional vectors ωd for

wd ≈
∑

ωdiv
i.

Depending on the used factor model, the document-factor proportion can be directly derived

from the factorization. For LSA, the document-factor proportion is the left singular vector (mul-

tiplied by its singular value) ld. For NNMF, the document-factor proportion is the vector ωd

from the factorized term-document matrix W . These proportion vectors can be transformed into

a probability, by projecting them onto the probability simplex:

ωd → (
ωd1
∑

j ωdj
, · · · , ωdT

∑

j ωdj
).

This is a multinomial distribution just like the document-topic distribution θd from LDA. Now,

we define the probability of a factor t for a given document d as

p(t|d) = ωdt
∑

j ωdj
.

Again, these proportion values can be aggregated, grouped by documents that fall into a cer-

tain time interval. Since the proportions are multinomial distribution for factor and topic models,

we can compare them and use the same visualization.

In Figure 3.3, we show how the histograms over time can be visualized to qualitatively evalu-

ate topic distributions over time. On the left, we show that a simple plot of the histogram can be

used to inspect a single topic or factor for its distribution over time. On the right, we show the
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Figure 3.3.: Visualization of the distribution of a topic over time as histogram (on the left y-axis)

of the number of document assigned to topic 2. From the year 2002 to 2014 (x-axis),

the number of texts with topic 2 is counted (left y-axis). Additionally on the right

y-axis, we plot the density of the time stamps fitting the corresponding time stamps

for this topic.

yearly sub-view of from the DRF-Browser by Andrew Goldstone1. This visualization enables

to compare distributions of several factors or topics over time at once. Here, the histograms are

used as time series. These series are plotted and stacked on top of each other.

Since we can also explicitly model time stamps with a certain distribution by factor and topic

models, we can further use this estimated distribution for qualitative evaluation. As discussed

in the last chapter, for topic models we can model the time stamps as Beta distributed. Now,

the density of the estimated temporal distribution for certain topics can be visually inspected to

investigate the course of the time stamps and the likely continuation of the topic in the future.

In Figure 3.3, we show the density of an estimated distribution of time stamps together with the

corresponding histogram of time stamps for a topic from a topic model about presidents.

3.1.3. Geometric Interpretation

A geometric interpretation of the latent variable models, especially the factor models, allows for

a visualization of the underlying document representation. For factor models we can visualize

the Word-Vector and the words in a vector space. Since in the VSM, we associate the standard

unit vectors that span a vector space with the words from a vocabulary of a corpus, we can

inspect individual words by visualizing the Word-Vector in the corresponding dimensions. Each

word is identified by a corresponding unit vector wi. The position of the vectors in the vector

space shows relations between words. By this, we can explore possible correlations between

the words. Totally independent words, for examples, will be orthogonal in the corresponding

dimensions. Co-occurring words, on the other hand, will have a clear functional relation in the

vector space. In Figure 3.4 on the left, we visualize the two dimensional subspace spanned by

the words good and professional in the VSM for a corpus containing reviews about books. The

words are highly correlated as seen by the linear relation between the words in the vector space.

Besides the location of the Word-Vector and the words in the vector space in the VSM, the

distance between the words helps to interpret the factors. The space spanned by the factors in

1https://agoldst.github.io/dfr-browser/
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Figure 3.4.: Left: Subspace spanned by the words ”good” and ”interesting” in the vector space

spanned by the Word-Vectors with frequency value. The axis tell the frequencies of

the words in the book reviews. Right: Words projected onto the first two compo-

nents extracted from a term-document matrix via an SVD.

the vector space shall make semantically related words more similar in terms of lower distance.

In Figure 3.4 on the right, we plot the words projected onto the first two components from an

SVD of the Term-Document Matrix from reviews about books. We see, that pronouns are very

close in this subspace. This visualizes the semantically related words as group of words with

low distance in the vector space.

3.2. Quantitative Evaluation Methods

Quantitative evaluation methods measure the quality of the proposed models on a numeric scale.

In contrast to the qualitative evaluation methods, we can automatically compare the models on

large data sets. We can perform large numbers of evaluations on many different data sets to

assess the quality of the models.

3.2.1. Coherence Measures

Frequently used quantitative evaluation methods are based on the relations of the highest ranked

words in each topic. The coherence measures estimate how well the model fits an as coherent

expected outcome. The definition of this expected coherent outcome is usually based on user

studies and experience with topic modeling in practice. A fundamental assumption for topics

or factors to be coherent is based on the top ranked words. Each topic is associated with a

value how present this topic is for given words. In LDA, this value is from the multinomial

distribution βt, in LSA, it is the length of the projection of this word onto the latent factor in

the vector space spanned by the Word-Vectors. Ranking the words for each topic results in a

compact representation of the each topic.

For T latent variables with the corresponding top k words in ranking lists Vt =
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{w1t, · · · , wkt} with respect to each latent variable that is extracted by a latent variable model,

the overall coherence measure is the mean over individual coherence values U(Vt):

U(V ) =
1

T

T
∑

t=1

U(Vt).

To estimate the individual values for a given latent variable model, we use several coherence

measures that have been proposed in the literature. All measures use statistics of co-occurring

words from an additionally given reference document collections like Wikipedia articles. In all

later experiments, we use the tool Palmetto2 to estimate the individual coherence values. For a

detailed description of the tool and the quality measures see [RBH15]. In the next subsections,

we describe the coherence measures mostly used in literature for topic models. Nonetheless,

these methods are also applicable to factor models.

UMass

In [MWT+11], Mimno et al. propose a topic coherence measure that depends on co-occurrences

of words. Based on user studies, they show that this measure corresponds well with the top

ranked topics by the users. In the literature the measure is called the UMass measure and is

defined as

UMass(Vt) =

k
∑

m=2

m
∑

l=1

log
D(wmt, wlt) + 1

D(wlt)
. (3.1)

The measure is the sum of the log-ratios of the by 1-smoothed co-occurrence frequency of any

two ordered words in the top ranked list, D(wmt, wlt), and the document frequency of the lower

ranked word, D(wlt).

Pointwise Mutual Information

The authors in [NLGB10] introduce Pointwise Mututal Information (PMI) as measure for topic

coherence. The PMI is the log-ratio of the joint probability of two random variables and the

product of their marginal probabilities. It measures how likely two random variable are jointly

distributed and not independently distributed. The PMI of two words w1 and w2 is defined as

PMI(w1, w2) = log
p(w1, w2)

p(w1)p(w2)
.

The PMI can be interpreted as how much likely the two words w1 and w2 appear together in

contrast to how likely they appear alone.

For a latent topic, respectively factor t and the top k ranked words Vt, the PMI is defined as

PMI(Vt) =
1

(k − 1)k/2

k
∑

m<n

log
p(wmt, wnt)

p(wmt)p(wnt)
. (3.2)

2https://github.com/AKSW/Palmetto
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Aletras and Stevenson propose in [AS13] to also use Normalized Pointwise Mututal Infor-

mation (NPMI) to estimate the coherence of the topics. The NPMI is the PMI divided by the

negative log probability of the two words appearing together. The reason to use NPMI is twofold.

First, NPMI is normalized between−1 and 1. Second, low frequencies of the words are less crit-

ical. Especially the second reason is important, since small outliers can result in very small joint

probabilities that overtake the whole coherence measure. Formally the NPMI is defined as

NPMI(Vt) =
1

(k − 1)k/2

∑

m<n

log p(wmt,wnt)
p(wmt)p(wnt)

− log p(wmt, wnt)
. (3.3)

Temporal Coherence

Similar to the coherence of the top ranked words, we estimate the temporal coherence as distance

of the distribution of the time stamps associated with a latent variable, with the distribution of the

time stamps for the top words over all documents in the corpus. This is a new quality measure

for factor models with temporal information. We assume that the documents containing the top

words from latent variables approximate the content of the underlying concept. The temporal

difference of the time stamps of these documents indicates how well this latent information

captures the true temporal dynamics in the corpus. Here, we concentrate only on latent topic

models, but latent factor models can be treated in the same way. A topic is temporal coherent if

the estimated distribution of the time stamps in this topic is similar to the temporal distribution

of the time stamps for the top words in the whole corpus. The documents that contain the top

two words approximate the semantic behind the topic or factor. Hence, documents containing

the top two words in the corpus can be used as coherence reference. In all experiments (cf.

Chapter 5), we perform all our empirical estimations based on the top two words in the topics,

but higher order n-grams are also possible.

The empirical distributions of the time stamps of the topics and the top words in the corpus

are estimated by histograms ht and hw1,w2 . For a topic t, the empirical probability of the time

between two time stamps τ1 and τ2 can be approximated by

P ([τ1, τ2]|t) = p(τ2|t)− p(τ1|t) ∝
∑

τ

Iτ1≤τ<τ2(τ)nτ,t.

For nτ,t the number of tokens assigned to topic t from a document with time stamp τ and the

indicator function

Iτ1≤τ<τ2(τ) =

{

1, τ ∈ [τ1, τ2]
0, else.

Now, we define the histogram of the temporal distribution of topic t as function ht : N → N

such that

ht(τ1, τ2) =
∑

τ

Iτi≤τ<τi+1(τ)nτ,t,

for a given number of intervals [τ1, τ2], · · · , [τe−1, τe].
For two words w1 and w2 for topic t, the empirical probability can be approximated by

P ([τ1, τ2]|w1, w2) = p(τ2|w1, w2)− p(τ1|w1, w2) ∝
∑

τ

Iτ1≤τ<τ2(τ)nw1,w2,τ
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for nw1,w2,τ the number of tokens in the documents that contain both words w1 and w2 in the

corpus with time stamp τ . The histogram of the temporal distribution of the words w1 and w2

in the corpus is the function hw1,w2 : N→ N such that

hw1,w2(τ1, τ2) =
∑

τ

Iτ1≤τ<τ2(τ)nw1,w2,τ .

There are several distance measures possible. We propose to use the Minkowski distance

to estimate how much the distributions over the time stamps differ based on histograms. The

Minkowski distance of two histograms for topic t and the corresponding top two words w1t, w2t

is defined as

D(ht, hw1t ,w2t
, p) = p

√

∑

i

|ht(τi, τi+1)− hw1t ,w2t
(τi, τi+1)|p.

Using p = 2 is the Euclidean distances and p = 1 is the l1 distance. In all our experiments, we

use p = 1.

3.2.2. Likelihood

The coherence measures estimate the quality of latent variable models based on statistics from

different document collections and user information. To estimate how good a factor or topic

model fits the corpus we estimate the likelihood of the data under this model. Depending on

the specific model, we can directly estimate the likelihood or we need special assumptions. For

topic models, the likelihood of a set of test documents in corpus Cte given a topic model by its

parameters is

p(Cte|α, β) =
∏

d∈Cte

p(d|α, β).

This involves difficult normalization constants as described above. In the next subsection, we

describe efficient sampling methods that estimate the probabilities.

For factor models, the likelihood is more difficult to estimate. We cannot directly get prob-

abilities of the words from the model. Instead, we must use a language model that depends on

the factor model. This language model defines the probabilities of the words, given the factors

vi. Formally, this is

p(Cte|vi) =
∏

wd∈Cte

p(wd|vi).

At the end of this section, we give an example to estimate p(wd|vi) for a given factor model.

Importance Sampling

A simple and straight forward way to estimate p(w) for topic models is the use of Importance

Sampling. Importance Sampling uses re-weighted samples from a simpler distribution such
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that the weighted samples approximately follow the distribution p(w). Consider the following

reformulation of the probability:

p(w) =
∑

t

p(w, t) =
∑

t

p(w, t)q(t)

q(t)
= Eq [

p(w, t)

q(t)
] ∼ 1

S

∑

s

p(w, ts)

q(ts)
.

This means, we approximate the word probability p(w) by S weighted samples ts from a so

called proposal distribution q(t). This approximation depends on q(t) and its deviation from

p(t). For the concrete proposal distribution, it should be simple to sample from and its support

must be a superset of the support of p(t). Wallach et al. [WMSM09] propose for instance to use

p(t|α) ∼ Dir(α) as proposal distribution.

Harmonic Mean Method

Another approach to estimate the probability p(w) by sampling methods is to approximate it by

harmonic means of conditionals p(w|ts). Consider the following reformulations using the Bayes

Rule:

p(w)p(t|w) = p(w|t)p(t).
Dividing this equation by p(w|t) and assuming p(w|t) 6= 0, we get

p(w)
p(t|w)
p(w|t) = p(t).

Since this equation is true for every t, we can sum over all latent variable on the left and the right

hand side to get

p(w)
∑

t

p(t|w)
p(w|t) =

∑

t

p(t).

Since p(t) is a probability, we have:
∑

t p(t) = 1. Now, we can reformulate the last equation

such that
1

p(w)
=
∑

t

p(t|w)
p(w|t) = Ep(t|w)[

1

p(w|t) ].

Consequently, the reciprocal value of the word probability can be expressed as the expected

value of 1
p(w|t) from the probability p(t|w). Finally we can approximate the expectation by

samples ts ∼ p(t|w):
Ep(t|w)[

1

p(w|t) ] ∼
∑

s

1

p(w|ts) .

This results in the following estimator:

p(w) ∼ 1

S

∑

s

(p(w|ts)−1)−1.

The right hand side of the last equation is the Harmonic Mean of {p(w|ts)}Ss=1, that is where

the name Harmonic Mean Methods comes from. Again, as proposal distribution p(t|w) we can

use Dir(α).
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Sequential Monte Carlo

As proposed by Wallach in [WMSM09], Sequential Monte Carlo methods can be used to esti-

mate the likelihood of a topic model. For a sequence of words from a hold-out test data set, the

probability of the test words w is

p(d|α, β) =
∏

m

p(wm|d<m, α, β).

A Sequential Monte Carlo algorithm to estimate the likelihood of a held-out data set for a given

topic model can be defined in the following way: Given a new document d as sequence of tokens

d = (w1, · · · , wN ), we re-sample topic proportions for each token wm in d, given all tokens

before, d<m = (w1, · · · , wm−1), using the point estimate of the topic-word distributions. To

compensate the uncertainty in these estimates for a single document, we keep M independent

samples. These samples are called particles. For the mth word in the sequence, the probability

is

p(wm|d<m, α, β) =
T
∑

i=1

p(ti|θ)p(wm|d<m, ti, β) (3.4)

=

T
∑

i=1

p(ti|θ,d<m)p(wm|d<m, ti, β) (3.5)

=

T
∑

i=1

p(ti|θ,d<m)p(wm|ti, β) (3.6)

=

T
∑

i=1

nd,i,<m + αk

ni +
∑

k′ αk′
βti,wm . (3.7)

This is a mixture of multinomial distribution with Dirichlet prior Dir(η), with mixing weights

p(ti|θ) for Dirichlet (Dir(α)) distributed p(t|θ). Due to the independence assumption in LDA,

we get from Equation 3.5 to Equation 3.6. In Equation 3.7, we apply the definition of the

Dirichlet distributed multinomial distribution p(t|θ) and the definition of the point estimated of

the topic-word distribution p(w|t) from a trained LDA topic model.

We apply Sequential Monte Carlo Methods using particle learning (PL) methods as proposed

by [SB13] and by [NLS14]. To get an estimate for the topic weights, we use aggregated counts

of topic assignments for topics i, ni, respectively for the document d, nd,i. For m = 1, · · · ,M ,

we use aggregated counts nd,i,<m, with count assignments for all tokens up to the mth, sampled

iteratively from

p(t = i|wm, t<m) ∝ αk
∑

k′ αk′
βm,i

and collected as particles. We re-sample for topic proportions for the documents, but use the

point estimate for the word distribution in each topic from LDA.

Then, we sample for each particle and its corresponding aggregated counts, topic assignments

and add them to these counts. This means, we have Z estimates of the aggregated counts and
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consequently can estimate Z times p(wm). This models the uncertainty about the assignment

by Z particles.

We define particles Tm,z ∼ p(t|w1, · · · , wm, τd, β) for z = 1, · · · , Z. The Tm,z are iteratively

sampled such that TN,z ∼ p(t|d, τd, β).
For supervised topic models by additional random variables that depend on the latent topics,

we can easily extend to Sequential Monte Carlo method from above to estimate the likelihood

of hold-out documents with addition document features like time stamps:

p(wm, τd|d<m, α, β) =
T
∑

i=1

p(ti|θ)p(wm, τd|d<m, ti, β) (3.8)

=

T
∑

i=1

p(ti|θ,d<m)p(wm|d<m, ti, β)p(τd|ti) (3.9)

=

T
∑

i=1

p(ti|θ,d<m)p(wm|ti, β)p(τd|ti) (3.10)

=
T
∑

i=1

nd,i,<m + αk

ni +
∑

k′ αk′
βti,wmp(τd|ti). (3.11)

This is a mixture of multinomial distributions with Dirichlet prior Dir(η), with mixing weights

p(ti|θ)p(τd|ti) for Dirichlet (Dir(α)) distributed p(t|θ) and Shifted-Gompertz distributed p(τ |t).
This density is analogue to Equation 3.4 using additional time stamps. The difference lies in the

integration of the temporal distributions. This is easy due to the independence assumption in

temporal topic modeling. We see this as we get from Equation 3.8 to Equation 3.9.

Besides the joint likelihood of the words and the time stamps, we are also interested in the

conditional likelihood. The conditional likelihood p(d|τd) is the likelihood of the sequence

of words in a test document given the time stamp. This conditional likelihood estimates the

likelihood of words from the documents at the time of the document. This measure focuses on

the quality of the estimated word distribution. Due to the independence assumption in the topic

models, we have the following conditional probability of a sequence of words in a document

given the corresponding time stamp:

p(d|τd) =
∏

n

p(wn|τd).

The partial conditional probabilities can be calculated via

p(wn|τd) =
p(wn, τd)

p(τd)
.

The joint probability p(wn, τd) is estimated as in Equations 3.7 and the probability of the time

stamp τd is

p(τd) =
∑

t

p(τd|t).
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Language Model from Distances

Unlike for topic models, factor models assume that the Word-Vectors can be expressed as a

linear combination of factors in a Euclidean space. Hence, we have no notion of probability

distributions. To estimate the quality of a factor model, an intuitive measure is the distance of the

Word-Vector in the Term-Document Matrix X to their low-dimensional feature representation

induced by the factors. As discussed above for qualitative evaluation this indicates the relation of

the factors to the original data. In LSA or PLS for example, the Word-Vectors are projected into

the low-dimensional feature representation PX in a corresponding subspace via a projection

matrix P . Then, l2-reconstruction error for example is

‖X − PX‖22.

In NNMF on the other hand, the Word-Vectors are expressed as positive linear combination of

non-negative factors such that X ≈WV . Then, l2-reconstruction error for example is

‖X −WV ‖22.

Last, assuming more complex representations of the documents than the Bag-of-Words approach

with Word-Vectors, via high (or infinite dimensional) feature vectors in Hilbert spaces as in

kernel kPCA or kPLS, the l2-reconstruction error for example is

∑

i

‖φ(wdi)− PU (φ(wdi))‖22,

for φ(wdi) the feature maps of document di into a RKHS and PU (φ(wdi)) the projection oper-

ator onto subspace U .

Measuring the quality of the factor models by the reconstruction error in the Euclidean or

Hilbert space has the disadvantage that we cannot compare these values to the quality measure

extracted for the topic models.

To compare factor models with topic models, we need a common measure in the same space.

In factor models, the factors are vectors spanning a subspace in the vector space spanned by the

Word-Vectors. In topic models, the topics are represented by multinomial distributions drawn

from a probability simplex by a Dirichlet prior distribution.

The question is now, should we explicitly model the factors as probabilities or the multinomial

distributions of the topics as vectors in a Euclidean space to compare the qualities of factor and

topic models. We can either interpret the Word-Vectors as likelihoods of the words, using term

frequencies for instance. On the other hand, we can also model the likelihood of the words

based on the embedding of the Word-Vectors in the space spanned by the factors. This defines a

language model based on similarities of words in the subspace spanned by the factors.

Again, we use the sequential model proposed by [CJ98] for the definition of the document

probabilities for a sequence of Word-Vectors {wd1 , · · · ,wdM }:

p({wd1 , · · · ,wdM }) =
∏

i<M

p(wdi |wd1 , · · · ,wdi−1
).
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The partial conditional probabilities are defined as

p(wdi |wd1 , · · · ,wdi−1
) =

pl(wdi |wd1 , · · · ,wdi−1
)γ

∑

j pl(wdj |wd1 , · · · ,wdi−1
)γ

for factor based word probabilities

pl(wdi |wd1 , · · · ,wdi−1
) =

d(ŵi,
∑

j<i ŵj)
∑

i′ d(ŵi′ ,
∑

j<i ŵj)
,

with a distance measure d from a Euclidean space and the factor based feature representations

of the Word-Vectors ŵj =
∑T

i=1 ωdjiv
i. As proposed in [CJ98], we can use the cosine as

similarity measure to define the final word probability:

pl(wdi |wd1 , · · · ,wdi−1
) =

cos(ŵi,
∑

j<i ŵj)
∑

i′ cos(ŵi′ ,
∑

j<i ŵj)
.

Similar to the estimation of the likelihood for supervised topic models, supervised factors

model like PLS can be similarly evaluated. We estimate the likelihood of document labels as

p(wdi , τd) = p(wdi)p(τd|wdi ,ω)

with

p(τd|wdi ,ω) ∝ e−
1
2
‖τd−ω

′
wdi

‖2 .

Since PLS uses linear regression for modeling the document features, we model the probability

of a time stamp τd as proportional to the regression error of τd, under normality assumption

with variance σ and mean ω′wdi . This results in the following definition of the probability

of a document di as Word-Vector wdi given its latent factor representation ŵdi , all previous

documents and a time stamp τd:

p(wdi |wd1 , · · · ,wdi−1
, τd) =

pl(wdi |wd1 , · · · ,wdi−1
)γ

∑

j pl(wdj |wd1 , · · · ,wdi−1
)γ

e−
1
2
‖τd−ω

′
wdi

‖2

σ
√
2π

.

Using the last equation in the Sequential Monte Carlo model, we can estimate the likelihood

of a given document with a time stamp for a supervised factor model.
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4. Regularized Latent Variable Models

So far, the documents are represented as Word-Vectors or random sequences of words that are

generated by a certain process. The approximation of this generation process of the documents

by latent variables is done by finding optimal latent concepts of the corpus. The concepts are

represented as latent factors in the VSM and as latent topics in the MM.

For factor models, a linear combination of latent factors (represented as vectors) is extracted

such that the reconstruction error is minimized. The reconstruction error is the distance between

the document in the vector space and the linear combination of latent factors that approximates

it. For example, given a document as Word-Vector wd and its representation in terms of latent

factors
∑

i ωdiv
i, the reconstruction error is

‖wd −
∑

i

ωdiv
i‖22,

the Euclidean distance between the two vectors. Each of the considered factor models can be
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4. Regularized Latent Variable Models

described as extracting factors that minimize the reconstruction error.

In LSA, we minimize the reconstruction error

‖X − LER|22,

for the Term-Document Matrix and the matrices L,E and R. In NNMF, we minimize the recon-

struction error

‖X −WV |22,
for the Term-Document Matrix and the two non-negative matrices W and V . In kPCA, we

minimize the reconstruction error

‖Φ(X)− PUΦ(X)‖2H ,

for the mapping Φ(X) of the Word-Vectors into an RKHS and PUΦ(X) the orthogonal projec-

tion of Φ(X) onto the subspace spanned by the principal functions of the covariance operator

C = Φ(X)Φ(X)′. This results in a new kernel K̂ = (PUΦ(X))′PUΦ(X).
For topic models, a number of latent random variables are extracted such that the likelihood

of the corpus modeled by using these variables is maximized. The likelihood is the probability

of the documents given the approximated generation process using the latent random variables.

To avoid small probabilities that might result in mathematical overflows, the log-likelihood can

be used. This is the logarithm of the likelihood.

In pLSA, we maximize the likelihood of the documents given the topics

∏

d

∏

wn∈d
p(d, wn) =

∏

d

∏

wn∈d

∑

t

p(d, wn|t)p(t),

for the decomposition of the joint probability of the documents and words p(d, wn) over the

latent variables t. In LDA, we maximize the likelihood of the documents given the topics

p(d|α, η) = p(d|α, η) =
∫

∑

t

p(θ, β, t,d|α, β)dθdβ,

for a sequence of words d in document d. The document probability p(d|α, η) is modeled as

marginal distribution of the latent topics t and the parameters θ and β for the document-topic

distribution p(d|t) with Dirichlet prior Dir(α), respectively the topic-word distribution p(t|w)
with Dirichlet prior Dir(η).

4.1. Overview

The latent variable models described so far can be easily summarized as an optimization problem

over latent variables that are specified by parameters Θ:

Θ∗ = arg optΘ L(Θ),

for a loss function L and the optimal parameters Θ∗ of either a minimization or maximization

problem arg opt. For the latent factor models, the loss function is the reconstruction error and
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4.2. Topic Models with Regularization

LSA NNMF pLSA LDA kPCA

Θ (E,L,R) (W,V ≥ 0) (p(w|t), p(d|t)) (β, θ) K̂
L ‖X − LER‖22 ‖X −WV ‖22

∏

d p(d|t)
∏

d p(d|t) ‖Φ(X)− PUΦ(X)‖2H
opt min min max max min

Table 4.1.: Parameters for the latent variable models.

the optimization is a minimization. For the latent topic models, the loss function is the log-

likelihood and the optimization is a maximization. The parameters Θ depend on the specific

latent variable model. In Table 4.1, we summarize the loss functions, the optimizations and the

parameters to be estimated for the different models.

In corpus linguistics, we consider several language resources with different corpora. The cor-

pora contain documents from different times and from difference sources. In diachronic and va-

riety linguistics we use additional information about the documents like time stamps, the source

or the genre of the document. For diachronic linguistics, we investigate the temporal distribu-

tions of certain concepts in the corpus. For variety linguistics, we investigate the distribution of

the concepts across the sources and the genres of the documents.

To solve these linguistic tasks on large text corpora in heterogeneous language resources, we

propose regularized versions of the factor and topic models. By regularization, we mean that the

models are restricted in the following sense: the parameters of the model do not only optimize

the reconstruction error or the likelihood of the documents, but also explain the additionally

given information from the language resource. This information can be corpus specific or cor-

pus unspecific. Corpus specific information are, for instance, document time stamps or genre

information. Corpus unspecific information, on the other hand, can be information about words

from dictionaries or WordNets and are valid for all corpora.

We assume to have additional information for the document as features xd and additional

information about the words as features xw. To include these information into the latent variable

models, we propose to add additional regularization terms R(Θ) into the optimization:

Θ∗ = arg optΘ L(X,Θ) +R(Θ).

The following sections show how we can use regularized models to leverage additional infor-

mation from modern language resources to enrich corpora for analysis. These methods enable

the integration of temporal information for diachronic linguistics and source or genre informa-

tion for variety linguistics.

4.2. Topic Models with Regularization

In terms of topic models, we have a Bayesian model. In LDA, the regularization does make

sense, since we can interpret priors and joint probabilities under appropriate independence as-

sumptions as regularization terms of the log-likelihood. The dependency of the features is mod-

eled as dependency of random variables. We distinguish three approaches to regularize topic

models. First, so called upstream regularization includes regularization by modeling latent vari-

ables as depending on the additional information. In Figure 4.1 this is illustrated as a graph.
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xd

xw

· · ·

· · ·

t

w

Figure 4.1.: Upstream Model in the Plate notation: Additional observed information about the

documents and the words are integrated into the latent variable models by making

the latent variables depending on them.

The latent variable t is dependent on information about documents xd and information about

words xw. This dependence does not have to be direct. As in Dirichlet Multinomial Regression

(DMR) for instance, the dependence is given by a prior with a meta parameter that depends on

document features. A special Dirichlet prior is used on the parameter θ such that θ ∼ Dir(ea
′
d
xd)

with ad = [a1, · · · ,aT ]. This results in the log-likelihood

L = L1 +R,

for

L1 =
∑

d

(
Γ(
∑

t αdt)

Γ(
∑

t αdt + nd)
+
∑

t

Γ(αdt + nd,t)

Γ(αdt)

+
∑

t

Γ(
∑

v ηt,v)

Γ(
∑

v ηt,v + nk)
+
∑

v

Γ(ηt,v + nt,v)

Γ(ηt,v)
)

and

R =
∑

t

log p(adt) =
∑

t

log N(µt, σt)

with αdt = ea
′
dt
xd . The loss is the log-likelihood of the collapsed likelihood of standard LDA:

L1 = log
∏

d

p(d|α, η) = log
∏

d

∫

θ,β
p(d|α, η, θ, βp(θ|α)p(β|η)dθdβ.

The regularizer R adds a regularization term that stems from the prior p(ad). The parameters

for the optimization are Θ = [β, θ,ad].
Second, so called downstream regularization regularizes the topics to given document and

word information by explicitly making this information depending on the latent variables. As

seen in Figure 4.2 the given document and word information xd and xw depend on the latent

variables t. The document and word features depend on the latent variables by joint probabilities.

Hence, downstream regularization regularizes the latent factors, respectively the latent topics,

84



4.2. Topic Models with Regularization

xd

xw

· · ·

· · ·

t

w

Figure 4.2.: Downstream Model in the Plate notation: Additional observed information about the

documents and the words are integrated into the latent variable models by making

them depending on the latent variables.

such that these information are modeled as depending on them (see Figure 4.2). An example

for downstream regularized topic models is supervised LDA. In sLDA the dependency is given

by the joint probability: p(θ, β,d, t,xd|α, η), resulting in additional regularization terms in the

log-likelihood

L = lB + Eq[log p(xd|t, µ, σ)],
for the lower bound (see Section 2.3.2)

lB = Eq[log p(θ, β,d, t|α, η)]− Eq[log q(θ, β, t|γ, λ, φ)],
minimized by variational inference and the logarithm of the expectation of the document features

given the topics with respect to the variational distribution q. Using collapsed Gibbs sampling

(see Section 2.3.2) for sLDA, we minimize the likelihood

L = L1 +R = L1 + log p(xd|t, µ, σ),
for the collapsed likelihood L1 and the document features probability. The parameters for the

optimization are Θ = [β, θ, σ, µ].
Third, so called off-stream regularization regularizes the latent variables indirectly by making

the representation of the latent variables topic-word distribution depending on external informa-

tion about the words. Figure 4.3 shows this as additional parallel path in the Plate notation of

the latent variable model.

An example for off-stream regularized topic models is the method proposed by Petterson et

al. [PSC+10]. The LDA parameter β is equipped with a Dirichlet prior that depends on word

features by a functional relation f such that β ∼ Dir(f(xw)). Hence, in terms of standard LDA

we define η = f(xd) and an additional prior is put on f . This results in adding a regularization

term to the collapsed log-likelihood:

L = L1 +R = L1 + log p(f,Xw).

Petterson et al. use f = eaw,t+aw independent of the word features xw but add an additional

prior

R = log p(f,Xw) ∝
∑

sim(w,w′)

∑

t

(aw,t − aw′,t)
2 +

∑

w

a2w,
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xw

· · · · · ·

t

w

Figure 4.3.: Off-stream Model in the Plate notation: Additional observed information about the

words are integrated into the latent variable models by making the only the word

distribution depending on them.

for word features Xw indicating similarity between words with the relation sim. The parameters

for the optimization are Θ = [β, θ, aw, aw,t].
The notation of upstream and downstream regularization comes from previous works about

how to integrate document features and labels into LDA. Mimno et al. [MM12] for instance

describe DMR as upstream topic model in contrast to sLDA by Blei et al. [MB08] which is

interpreted as downstream topic model. The notation off-stream regularization comes from the

independence between the latent variables and the word information. The regularization is done

purely by restricting the factors or the word distributions representing the latent variables. LDA

with word features as proposed by [PSC+10] can be for instance interpreted as off-stream regu-

larization.

4.3. Factor Models with Regularization

For factor models the notion of regularization is straightforward. As seen above, all factor

models can be formulated as the optimization problem

min
Θ
L(Θ, X),

for a factorization of the Term-Document Matrix X , the parameters of this factorization Θ and

a corresponding loss function L. In NNMF the factorization is X = WV for example and

in LSA we have X = LER. Restricting the resulting factors towards given document and

word information is done by putting a regularization term R into the optimization problem that

punishes factors that do not go along with these information. This results in the new optimization

problem:

min
Θ
λ1L(Θ, X) + λ2R(Θ, Xd, Xw).
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Figure 4.4.: Illustration of regularization of factors for given documents with labels 1 and 2 for

two words in the VSM. We plot the Word-Vectors of documents with label 1 as blue

dots, documents with label 2 as red dots. The axis mark the number of occurrences

of the words. Left: Projecting data onto possible factors with low reconstruction

error, but with no correspondence to given labels. Right: Projection onto possible

factors that can discriminate documents with different labels.

The weights λ1 and λ2 account for different emphasizes on the reconstruction error or the mod-

eling quality of the factors for the given document or word features. Larger λ1 result in factors

that might better represent the Word-Vectors but have lower correspondence to the document and

word information. Larger λ2 on the other hand result in better correspondence to the document

and word information but at the expense of possible worse representations of the Word-Vectors.

We distinguish two approaches for regularization in factor models. First, norm or regression

based regularization adds a term to the optimization problem that estimates the distance of a fac-

tor matrix and a regularization matrix. The factor matrix contains the factors as row or column

vectors. The regularization matrix contains document and word features. This can be interpreted

as downstream regularization since the document and word features depend on the latent fac-

tors. Second, subspace and projection based regularization restricts the subspace respectively

the projection onto the subspace spanned by the factors. This can be interpreted as upstream

regularization since the factors depend on the document or word features.

In norm based regularization, the additional information from the language resources is mod-

eled as feature matrix Xd consisting of the document feature vectors xd and feature matrix Xw

consisting of the word feature vectors xw. The dependency of the features is modeled by dis-

tances between latent factors and document features, respectively word features.

In LSA for example, the optimization problem can be formalized as regularized version

min
L,E,R

λ1‖X − LER‖22 + λ2R(Θ, Xd, Xw),

with

R(Θ, Xd, Xw) = λ2
1

2
‖Xd −AL‖22 + λ3

1

2
‖Xw −BR‖22,

for Θ = [E,L,R,A,B]. This regularization models the features as linear regression of the

factors with parameter matrices A and B.
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To solve the optimization problem we need to additionally optimize over the parameter matri-

ces A and B. This can be done in an alternating manner. First, we find the optimal factorization

of the term-document matrix for the optimization problem given A and B. Next, we find the

optimal parameter matrices by minimizing R via gradient descent. The gradients are

∂ 1
2‖Xd −AL‖22

∂A
= −A′‖Xd −AL‖2

and
∂ 1
2‖Xw −BR‖22

∂B
= −B′‖Xw −BR‖2.

This regularizer results in factors that correspond to the document and word information with

an assumed linear relation. For example, given two possible labels for the documents, this

regularization shall influence the factors such that they reflect these labels. In Figure 4.4, we

illustrate this for documents that contain only two words and additional document labels 1 and

2. The labels could be, for instance, indications of positivity of negativity of the texts. While

standard LSA would, for instance, results in factors that approximate the Word-Vector well, a

regularized LSA can be used to punish factors that do not separate the documents by the labels.

To solve the diachronic linguistic task as described above, we define the matrix Xd = T of

document time stamps. The vector T contains at component i the time stamp τi from document

di. This approach has the very strong assumption that the time stamps depend linearly on the

factors.

Similar to modeling the document and word features as results of a regression based on fac-

tors, we can also model the factors as results of a regression based on document and word

features. This can be formulated using the regularization term

R(Θ, Xd, Xw) = λ1‖L−A′Xd‖22 + λ2‖R−B′Xv‖22,

with Θ = [E,L,R,A,B].
In contrast to regression based regularized models, purely norm based regularized models

regularize the latent factors such that the matrix of the factors have low distance to the matrix

containing information from document and word features. An example for norm based regular-

ized factor models is the model:

min
L,E,R

λ1‖X − LER‖22 + λ2‖L−Xd‖22 + λ3‖R−Xw‖22,

with Θ = [E,L,R]. Here, we look for a low-dimensional feature representation of the Word-

Vectors with smallest reconstruction error and matrices L,R containing factors that are similar

to given regularization matrices Xd and Xw. The regularization matrix Xw for instance can

contain prior information about the words. In variety linguistic tasks, this could be used to force

the word distribution in the factors to match a given word distribution from a different data

set. This approach can be interpreted as off-stream regularization since the document and word

features influence the factors only indirect.

In subspace based regularization, we model the words, the latent factors and the additional

information about the documents and the words jointly. Jointly modeling latent factors with
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document and word features can be done by aligning the subspaces that are spanned by the

latent factors with the subspaces spanned by the document features for instance. This regularizes

the factors based on the subspace respectively the projection onto the subspace spanned by the

factors.

Starting with LSA, we are minimizing ‖X − LER‖22 such that L′L = I and R′R = I . The

constraints L′L = I and R′R = I make them orthonormal and the row respectively the column

vectors are basis vectors of the space spanned by the Word-Vectors, respectively the Document-

Vectors. If we are considering only document features, we need only the right singular vectors.

The subspace that is spanned by the right singular vectors is such, that the projection of the

Word-Vector via projection matrix P = RR′ onto this space results in the smallest 2-norm. This

can be easily re-formulated as the optimization problem

optΘ L(X,Θ) = max
P :I=P ′P

‖PX‖22,

for any projection matrix P . Hence, we optimize over Θ = P .

In order to align the subspace with the feature space from the document features, we add a

regularization term that penalizes P when the subspace span(P ) has large principal angles to

the feature space from the document features.

This approach uses the interpretation of the factors as basis of a subspace in the space spanned

by the Word-Vectors. We can further interpret the document features as drawn from a feature

space. Aligning subspaces between the factor space and feature space means we maximize co-

variance between the corresponding bases. We assume that the factors span a subspace in the

same Rmax(p,V ) as the features from the documents. This is possible since the Word-Vectors and

the factors are vectors in R
V . The overall optimization problem with subspace based regulariza-

tion to document features is

max
Θ=[P :I=P ′P ]

λ1‖P ′X‖22 − λ2R(Θ, Xd).

The first part results in a low dimensional feature representation of the Word-Vectors as linear

combination of factors as in LSA. The second part regularizes the factors with respect to the

document features. Here, we concentrate on linear factor models and only document features

like time stamps. It is straightforward to extent the proposed model to word features. Later, we

will also discuss non-linear factor models by kernel methods.

Similar to regression based regularization, we use subspace regularization to align the sub-

space spanned by the factors to document labels like time stamps. Since we are only interested

in the factors for the Word-Vectors, we concentrate on regularizers in the form of

R(Θ, Xd) = trP ′MP, s.t.P ′P = I,

for the matrix M = X ′XdX
′
dX

′. This regularizer has its maximum at the matrix P projecting

onto eigenvectors of the matrixM . These eigenvectors are the principal vectors of the subspaces

spanned by the document features. This means, projecting the Word-Vectors via P results in a

new word representation in a subspace that maximally aligns with the document features. In

Figure 4.5, we visualize this on a low dimensional example for documents containing only two

words with time stamps.
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Figure 4.5.: Visualization of subspace based regularization by maximizing the correlation be-

tween Word-Vectors and time stamps. Left: Word-Vectors for a corpus in the VSM

with number of word occurrences marked on the axis and a latent factor as extracted

by LSA. Middle: Time stamps for the documents from the corpus plotted against

the number of documents in some order of the documents and the time in years

from 1900 to 2000. Right: In an ambient space containing both factors (from the

Word-Vector and the time), projecting the time stamps via PfY and the Word-Vector

via PfX onto the corresponding subspaces span(PfY ) and span(PfX ) results in a

maximal correlation between the time and documents.

Besides this subspace regularization, we can also regularize the projection onto this subspace.

This means we restrict the regions where the projection matrix P projects the Word-Vector

with respect to given document and word information. Given, for example, corpus unspecific

information about words from a WordNet [Mil95], we want the latent variables to reflect these

relations in the generation of the documents. If we know, for instance, that two words are

highly similar based on WordNet, these words shall also be similar in terms of the latent factors,

respectively latent topics. For latent factors models, these words shall have low distance in the

subspace spanned by the factors. This means, projecting the two Word-Vectors that represent the

words (hence sparse vectors containing only one non-zero entry at the component corresponding

to the word) onto this subspace shall decrease their Euclidean distance.

In Figure 4.6, we illustrate this regularization. The Word-Vectors w1, w2 and w3 represent

three similar words w1, w2 and w3 based on WordNet. The similarity is quantified by a function

sim(wi, wj), measuring the strength of the similarity. For WordNet, this similarity measure

can be for instance the distance in the WordNet graph. The regularization shall restrict the

factors such that a projection onto the subspace which is spanned by the factors mapped similar

words close together. A similar approach can be used to regularize the factors such that similar

documents are projected close to each other in the subspace spanned by the factors. Such a

similarity can be given by document labels, time stamps or user specific information. This can

be used to make whole sets of documents more similar on the subspace spanned by the factors.

The regularization terms to perform a projection based regularization punishes projections

that result in large distance of words or documents from which we have additional information

about their similarity. To force similar words to be projected close to each other in the space
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Figure 4.6.: Illustration of jointly modelling words and similarity information about the words

in a factor model. Given similarity information about words from WordNet like

the close semantic relation of the words dog, cat and animal, this similarity shall

also be reflected in the subspace spanned by the factors. The words represented as

Word-Vector are projected such that the Euclidean distance in the subspace is small.

spanned by the factors, we use the regularization term

R(Θ, Xw) =
∑

sim(wi,wj)

‖Pwi − Pwj‖22,

for Xw word features containing similarity information from WordNet for example. To force

Word-Vectors of similar documents to be close in the latent subspace, we use

R(Θ, Xd) =
∑

sim(di,dj)

‖Pwdi − Pwdj‖22,

for Xd document features containing similarity information about the documents.
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5. Use Case Diachronic Linguistics

In a first use case, we will introduce a regularized topic model that efficiently integrates temporal

information. In diachronic linguistics, we have additional information about the time of the

documents, telling us when the text was composed. This information can be used to investigate

the distribution of certain linguistic phenomena over time. We develop a regularized topic model

that can use time stamps as document labels. The main contribution is the introduction of an

attention based regularization of a topic model. This attention model coincides with observations

from linguistic research of the temporal distribution of certain linguistic phenomena.

5.1. Motivation

With the availability of corpora of large text collections over a long period of time, empirical

analyses of the temporal distribution of the texts are possible. For example, the frequency of
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Figure 5.1.: Temporal distributions of tokens in different text collections. Left: Frequency (y-

axis) of usage of smilies ( :) ) in Wikipedia talk pages from year 2002 to 2014

(x-axis). Right: Frequency (y-axis) of the word ”web” in the meaning of cloth

versus web page from Google n-grams from year 1800 to 1995 (x-axis).

the usage of Emoticons1 in social media content over time can be used to analyze Internet-

based communication. We assume that certain characteristics of the usage and the frequency

have a clear temporal aspect. The frequency is not constant over time, but follows a law that

is physically motivated. First, the usage of Emoticons gets hyped until a maximum is reached.

After this maximum, we expect only decrease in frequency. The decrease smoothly reaches a

saturation. In Figure 5.1 on the left, the frequency of the Emoticon ”:)” is plotted over time. We

can apply this assumption on latent aspects of the texts. Given for instance the text collection of

books used for the Google n-grams viewer. We expect that certain meanings in the text covered

by the latent aspects in the documents follow a similar frequency in usage over time. Texts

containing the word web for example, will more likely speak about cloth when they are written

before 1980s. The word web, is additionally used as web page from that time on. In Figure 5.1

on the right, we show the corresponding frequency over time from the Google n-gram corpus.

Given time stamps for the documents in a given corpus, we want that the latent variables from

a topic model do not only explain how the words are generated but also how the time stamps is

generated. Hence, we assume that the concepts in the documents also influence the time stamps.

Some concepts will be only associated with certain times. This shall be reflected in the topics.

For example, documents di with the same time stamp τ shall have the decomposition of the joint

probability

∏

d

∏

wn∈d
p(d, wn) =

∏

d

∏

wn∈d

∑

t

p(d, wn, τ |t)p(t) =
∏

d

∏

wn∈d

∑

t

p(d, wn|t)p(τ |t)p(t),

such that the probability p(τ |t) of the time stamp given a topic puts most of its probability mass

on a small number of topics. Such joint models of documents and time can be used to perform

diachronic linguistics tasks using corpora with temporal information. In Figure 5.2, we illustrate

this for a topic model on Wikipedia talk pages containing the term president.

1a pictorial representation of an emotion with ASCII symbols
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Figure 5.2.: Amount of usage (via probabilities marked on on the left y-axis) of topics over time

from year 2002 to 2014 (marked on the x-axis). The most important words for the

topics are marked on the right y-axis with most important words at the top. Certain

concepts in a corpus with additional time information have a clear temporal concen-

tration. On the left, we see that Bill Clinton is used in Wikipedia discussions more

prominently in the years before 2007, Barack Obama and his heritage is discussed

mostly around 2008.

5.2. Related Work in Temporal Topic Modeling

There are different approaches to model time in topic models. Closest related to our approach

is the work by [WM06]. The authors use a continuous non-Markovian approach to model time

within topics. The main difference is the assumed distribution over time. While Wang and Mc-

Callum assume that the time stamps of a document are Beta distributed, we assume a physically

motivated distribution that can model attentions. In our experiments this assumption results in

more reasonable topics. In [WR12], the authors propose a nonparametric mixture model of time

for topic models. This makes it necessary to use complicated Dirichlet Processes and restricts

the used mixture of time distributions to have simple conjugates to perform efficient inference.

That is why they use a mixture of Gaussians. We argue that Gaussians are not appropriate for

modeling time since they are symmetric, which is unrealistic for time periods. On the other

hand, enough components of Gaussians might be able to model time correctly. However, this

makes the inference more complicated and the model will overfit easily. A similar approach has

been proposed by [DHWX13]. The main difference to [WR12] is that the authors use an addi-

tional Hierarchical Dirichlet Process prior to remove the assumption of a fixed given number of

topics.

All these approaches model the documents, respectively the words, and the time jointly. Fur-

ther approaches to model topics and time are sequential, using for instance, Markov chains.

Such sequential models estimate conditional (transition) probabilities of a topic at time τi given

the topic at time τi−1. While standard Hidden Markov Models can handle such sequences of

latent topics, they do not cover a sequence of word-distributions associated with each topic as

in LDA. One way to compensate for this is to explicitly model sequences of multinomial dis-

tributions with Dirichlet priors drawn from a Dirichlet Processes. As proposed by [SR05] the

Dirichlet Process can be defined as depending on additional information like times associated

with observed documents. Dynamic topic models as proposed in [BL06b] for discrete time and
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in [WBH12] for continuous time model topics as sequences over time using state space mod-

els with Normally distributed transition probabilities of topic-word distributions. In [AX12]

a hierarchical Dirichlet process is used to model a possibly infinite number of topics. These

approaches model the evolution of topics. They can not model the temporal distribution of a

topic.

Also standard LDA can be used to investigate temporal behavior. Based on post-processing of

results from LDA, [NSS11] estimate trends and evolutions of topics. Such post-hoc approaches

have also been used to investigate topics over time in [HJM08]. Further work on temporal

topic modeling concentrates on the visualization. In [PZS+13], the authors propose a clustering

method to group texts and segment these groups for visualization over time. [GJG+15] estimate

a segmentation over time an apply standard LDA on windows of texts from these segments.

5.3. Topic Models for Diachronic Linguistic Tasks

For topic models like LDA, a regularization with respect to given time stamps can be de-

rived starting with different versions of supervised topic models. For example supervised LDA

(sLDA) [MB08] or Topics over Time (TOT) [WM06] model the regularization of the topics to

external information about documents by joint probabilities. The document labels are modeled

as observed random variable and a joint model is estimated.

We concentrate on the collapsed version of supervised topic models in the following sense:

Instead of observing a label (the document information) for each document, we assume that we

observe this label for each token in the document. Under this assumption, we can easily use

a collapsed Gibbs sampler for inference. In Figure 5.3, we show these different approaches

graphically. As argued by Mimno et al. in [WM06], the collapsed version of sLDA results in a

collapsed Gibbs sampler

p(ti|w, l) ∝
nw,ti − 1 + η

nti − 1 +Wη
· (nd,ti + α)p(l),

for topic ti given word w and a document label l for document d.

The first part of the right hand side of the last equation comes from standard LDA Gibbs

sampler (cf. Section 2.3.2) and the second part is the density of the labels l. Besides simpler

inference, we can also use this approach to include either document features or word features. A

disadvantage is that we cannot include structured information about words like word groups or

correlations due to the independence assumptions. Later, we will explain how we use upstream

regularized topic models to include correlation information about words in LDA in an additional

use case.

Next, we explain how temporal topic models solve the diachronic linguistic tasks by down-

stream regularization. In this scenario, we assume the document labels l to be time stamps

associated with each document.

5.3.1. Temporal Topic Modeling

While the standard topic models group only words and documents in semantically related topics

(cf. Section 2.3.2), we are further interested in the distribution of the topics over time. Certain
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Figure 5.3.: Left:SLDA represented as graphical model in the Plate notation. In contrast to LDA,

we additionally model a label as observed random variable that depends on the topic

distribution. Right: Collapsed sLDA represented as graphical model in the Plate

notation. Labels are modeled as observed random variables that depend on each

topic.
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Figure 5.4.: Temporal LDA represented as graphical model in the Plate notation. As in the col-

lapsed version of supervised LDA, the time stamps are modeled as observed random

variables that depend on each topic.

meanings of words might be used only in certain time periods. The word cloud, for instance, has

recently become a new meaning of data cloud. Further, there can be certain trends or attentions

to topics. Topics about US presidents, for example, will very likely be highly present around a

year of elections.

In order to extract the distribution of topics over time, we use topic models that consider

temporal information about the documents. Each document has a time stamp τ . As described

above, we further assume that each token in the documents is associated with this time stamp.

The time stamps follow the distribution p(τ). The time stamps are conditionally independent

given a topic. This means, given a sequence of topic assignments t = (t1, · · · , tN ) for word

tokens w1, · · · , wN from a corpus and associated time stamps τ = (τ1, · · · , τN ), the probability
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of the time stamps is

p(τ |t) =
N
∏

n

p(τn|tn).

Just as sLDA, the integration of the time stamps into LDA is done by modeling the times

stamps as additional observed random variable that depend on the topics. In Figure 5.4, the

graphical representation of LDA with time is depicted. The joint probability is

p(t,d, τ |α, η,m) = p(t|α)p(w|t, β)p(τ |t).

It is straight forward to define a Gibbs sampler for this distribution. Analogue to LDA with

Gibbs sampling, we sample from

p(ti|t−i, wi, τ ) =
p(t−i

+ti
, wi, τ )

p(t−i, wi, τ )
(5.1)

=
p(t−i

+ti
, wi)

∏

n p(τn|tn)
p(t−i, wi)

∏

n!=i p(τn|tn)
(5.2)

∝ p(t, wi)p(τi|ti).

Topic Models over Time

A specific instance of the probability of the time stamps is the Beta distribution. Wang and

McCallum [WM06] introduced this model to investigate topics over time. They call this method:

TOT. The generative process of standard LDA is extended such that for each word wi in each

document, we also draw a time stamp τi ∼ Beta(a, b) with (a, b) the shape parameters of the

Beta distribution.

The shape parameters are estimated by the method of moments. After each Gibbs iteration the

parameters are estimated in the following way: For each topic t we estimate the empirical mean

m̂ and sample variance s2 of all time stamps from the documents that have been assigned to this

topic. By the method of moments, we set a = m̂ ·( m̂·(1−m̂)
s2

−1) and b = (1−m̂) ·( m̂·(1−m̂)
s2

−1)
for each topic. Integrating the time stamp as Beta distributed random variable, we the probability

of a topic ti, given a word w in a document d with time stamp τi and all other topic assignments

p(ti|w, τi, t−i) ∝ nw,ti − 1 + η

nti − 1 +W · η · (nd,ti + α) · (1− τi)
ai−1 · τ bi−1

i

B(ai, bi)
, (5.3)

where the last term originates from the density of the Beta distribution

Beta(τ ; a, b) =
τa−1(1− τ)b−1

B(a, b)
,

at time stamp τ and B(a, b) the Beta function.

In contrast to the approach by Wang and McCallum, we use Maximum Likelihood Estimation

to find the optimal parameters for the Beta distribution for each topic. This is more consistent

98



5.3. Topic Models for Diachronic Linguistic Tasks

with the model estimation for LDA with Gibbs sampling. To ensure the positivity of the param-

eters for the Beta distribution, we redefine the Beta distribution as Beta(ea, eb). This leads to

the following log-likelihood for a sequence of time stamps τ = (τ1, · · · , τN ):

L({τn}Nn=1, a, b) = (ea−1)
∑

n

τn + (eb − 1)
∑

n

log (1− τn)−N log (B(ea, eb)).

The gradient ∇a,bL of the parameters a and b of this log-likelihood is

∇a,bL =

(

∂L
∂a
∂L
∂b

)

,

with
∂L

∂a
=

∂L

∂ ea
∂ ea

∂a
=

∂L

∂ ea
ea,

respectively

∂L

∂b
=

∂L

∂ eb
∂ eb

∂b
=

∂L

∂ eb
eb .

The partial derivatives of the log-likelihood with respect to the transformed parameters are

∂L

∂ ea
=

N
∑

n

log τn −N(Ψ(ea)−Ψ(ea+eb))

and

∂L

∂ eb
=

N
∑

n

log (1− τn)−N(Ψ(eb)−Ψ(ea+eb)).

Using the gradient information, we perform Newton-like gradient descent with a standard

BFGS optimization solver [LN89] after each Gibbs sampling iteration.

Topics with Attention Curves (@TM)

Considering TOT, it is very unrealistic that topics appear suddenly and then vanish. Beta distri-

butions model the time as sharp intervals as to be seen in Figure 5.5 on the right. We propose

to use a physically motivated model that is able to express smoother declines and has been suc-

cessfully applied to model attentions in social media [BHK15]. As proposed by Bauckhage and

Kersting in [BK14], diffusion models like the Bass model [Bas69] can be used to model atten-

tions. While Bauckhage and Kersting concentrate on search queries in the Internet, we apply

this idea on topics over time. We use the Shifted-Gompertz distribution to model attentions on

certain topics. The density of the Shifted-Gompertz distribution is

SG(τ ; a, b) = b e−bτ e−a e−bτ

(1 + a(1− e−bτ )),

with a scaling parameter b and a shape parameter a.
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(a) (b)

Figure 5.5.: Difference between the Shifted-Gompertz density (a) and the Beta distribution den-

sity (b): Gompertz decreases smoother and does not go to zero rapidly.

Figure 5.6.: Course of the frequency (y-axis) of the bi-gram ”flying cloud” in texts from Google

n-gram viewer from year 1800 to 2000 (x-axis).

In Figure 5.5 on the left for instance, we see that the Shifted-Gompertz still puts probability

mass larger than zero for larger values (hence later times). This means that topics with attention

curves never vanish completely. This makes sense, since we expect that certain topics might

become less likely over time, but the probability that this topic will appear again is not zero.

Now the question is whether this physically motivated time model is also valid for the topics

extracted by a topic model. We assume that the topics follow a growth and decline phase over

time. Depending on the corpus, we might cover only certain periods of the phases. We illustrate

this on possible word senses induced by topics from the corpus. For instance, the word cloud in

the meaning of ”computing and storage on demand” in a balanced Newspaper corpus from 1900

to 2014 is expected to be in the growth phase from the 70s to present. The decline phase has not

started yet. One the other hand, we can expect the usage of the word cloud in the meaning of

weather to be at a constant peak, that covers all the time. By contrast, the word cloud together

with flying can be assigned to the meaning of ship Flying Cloud. Topics that cover this Named

Entity have a high peak at the beginning of the 20th century and start to decline. This can be

seen from the Google n-gram viewer as depicted in Figure 5.6. In the ideal case, the growth and
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decline of a topic is completely covered in the corpus. Hence, from a corpus with more data

from before 1900, we might find both phases of the topic from growth to decline.

Analogously to TOT, we sample the topics from the distribution

p(ti|w, τ , t−i) ∝ nw,ti − 1 + η

nti − 1 +Wη
(nd,ti + α) SG(τi; ai, bi). (5.4)

to estimate topics with attention curves. Throughout this thesis, we call the method Attentional

Topic Model (@TM).

The parameters a and b are estimated by Maximum Likelihood Estimation after each Gibbs

sampling iteration. To ensure positivity of the parameters, we redefine the Shifted-Gompertz to

SG(ea, eb) with transformed parameters ea and eb. The log-likelihood of N Shifted-Gompertz

distributed time stamps τ = (τ1, · · · , τN ) is

L({τn}Nn=1, a, b) = Nb− eb
∑

n

τn − ea
∑

n

e− eb τn +
∑

n

log (1 + ea(1− e− eb τn)).

The gradient ∇a,bL of the parameters a and b of this log-likelihood is

∇a,bL =

(

∂L
∂a
∂L
∂b

)

,

with
∂L

∂a
=

∂L

∂ ea
∂ ea

∂a
=

∂L

∂ ea
ea,

respectively

∂L

∂b
=

∂L

∂ eb
∂ eb

∂b
=

∂L

∂ eb
eb .

The partial derivatives of the log-likelihood with respect to the transformed parameters are

∂L

∂ ea
= −

∑

n

e− eb τn +
∑

n

1− e(− eb τn)

1 + ea(1− e− eb τn)

and
∂L

∂ eb
=
N

eb
−
∑

n

(1− ea e− eb τn)τn + ea
∑

n

e− eb τn

1 + ea(1− e− eb τn)
.

Using these gradient information, we perform Newton-like BFGS for the Maximum Likeli-

hood Estimation to find the optimal Shifted-Gompertz distribution for each topic.

Online Downstream Regularization

Analogously to online LDA, downstream regularized topic models like sLDA, Topics over Time

topic models or topic models with attention curves can also be solved in an online manner.

We concentrate on topic models with attention curves (@TM) to illustrate this. As in online
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Figure 5.7.: Example of a topic hierarchy from a random tree based on samples from a nested

Chinese Restaurant process.

LDA, we need to define a variational bound for the joint probability of a sequence of words

w = (w1, · · · , wN ) and a sequence of corresponding time stamps τ = (τ1, · · · , τN ):

p(d, τ |α, η,m) ≤ Lτ .

For the regularization we use the loss function

Lτ = L+ Eq[log p(τ |t)]

as bound with L as defined in Equation 2.19 and

Eq[log p(τ |t)] = Nb− ebt
∑

n

τn − eat
∑

n

e− ebt τn +
∑

n

log (1 + eat(1− e− ebt τn)).

This is similar to the variational bound for sLDA. Consequently, we separate the parameters into

global and local parameters as in online LDA. The global parameters are λ as in online LDA

and additional at and bt. The online algorithm for topic models with attention curves is the

following: For each batch of documents, we estimate the local parameters as in online LDA.

After this, we perform maximum likelihood estimations for the parameters λ, at and bt.

5.3.2. Hierarchical LDA over Time

The topics extracted by TOT and @TM assume no further structure among the topics. This

assumption is very weak since topics might be related. Especially over time, some topics might

by periodic, reappearing or mixtures of smaller topics. The mentions of the president of the

USA for example will appear every four years in news papers articles or social media content.

Each appearance can be modeled by a topic with an attention curve. All these topics belong to

the same more general topic president. We propose to model such topics in a hierarchical way.

The hierarchical model we use, is an extension of the hierarchical LDA by Blei et

al. [BGJT04]. In contrast to their approach, we additionally model the time of topics with

attention curves. Hierarchical LDA is non-parametric in the number of topics. We only specify

the depth of the topic hierarchy. A fully-non-parametric model that estimates the best depth is

also possible, but not considered in this work.

102



5.3. Topic Models for Diachronic Linguistic Tasks

In hierarchical LDA, a nested Chinese Restaurant Process (nCRP) [GG06] is used as addi-

tional prior on the topic-word distribution. Each word is assumed to be drawn from p(β|η) with

β = (β1, · · · , βL) a partition of infinitely many distributions: (β)∞. The βi, respectively the

indices i, are drawn from the nCRP.

The nCRP defines a process of probability measures over infinitely many branching, (fixed

or variable depth) trees. The measures put probability masses on partitions of integers. Such

partitions can be interpreted as nested paths in a random tree. Starting at a random node as root

node, each node is associated with a topic and a word distribution β. We identify the topics

by the tuple (i, j) and the topic-word distributions by β(i,j), for a path i and a node at level j.
For example in Figure 5.7 we see two paths, c1 = (1, 2, 3) and (1, 2, 4), for the nodes 1, 2, 3
and 4. Each node represents a topic and the hierarchy in the tree represents the hierarchy of

topics. To distinguish the path, we identify c1 by ((1, 1) = 1, (1, 2) = 2, (1, 3) = 3) and

((2, 1) = 1, (2, 2) = 2, (2, 3) = 4). Note that the paths with common prefixes build the nesting

from the nested Chinese Restaurant process.

Each path in the tree is associated with an attention curve. This means the time stamps τ of

the documents for a path ci in the random tree have distribution SG(τ ; ai, bi). Similar to TOT,

we assume that the time stamps are independent of all variables in the topic model, given a path

c. In Figure 5.8 the corresponding graphical representation is shown.

The process can be summarized as the following [BGJ10]. For one document, the first token

is assigned to a node with probability p ∝ ni, for ni the number of tokens that have already

been assigned to node i. The next token considers a random but fix child of the last node. Each

node has one unique parent. Again, with probability p ∝ ni the token is assigned to this child

and with probability p ∝ γ to a child of this child for a smoothing parameter γ. This process

repeats for all tokens in all documents and results of a random subtree of an infinite tree that is

interpreted as topic hierarchic in a topic model.

The generative process of hierarchical LDA with attention curves can be summarized as

1. c1 is common root node

2. For i = 1, . . . , L and j = 1, . . . ,M :

a) Draw β(i,j) ∼ Dir(η)

3. For each document d ∈ D:

a) Draw path cd from nCRP

b) Draw τd ∼ SG(τ ; cd)

c) Draw θd ∼ Dir(α)

d) For each word wn in document d:

i. Draw level t ∼ Mult(θd)

ii. Draw wn ∼ Mult(βcd(t))

For inference of the hierarchical LDA with attention curves, we use Gibbs sampling. We

sample paths from a random tree of topics for each document. The levels encode the levels of
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the hierarchy for each token. The levels can be sampled analogue as in standard LDA the topics

are sampled. For the paths, we need to define a new Gibbs sampler. The probability of a path

cd, given the words wd in document d, all other paths c−d, the current topic assignments t and

the time stamp τ is

p(cd|w, c−dτ) ∝ p(wd|c, w−d)p(cd|c−d)p(τ |cd).

The probability of a path given a sequence of words and topic assignments depends on the path,

the probability of the words for the path and probability of the time stamp for the path. Given a

path c = (c1, · · · , cL), the time stamps have the distribution

p(τ |c) =
∏

j

p(τ |cj)

and for each time stamp we have

p(τ |cj) ∼ SG(aj , bj).

This definition is analogue to the temporal topic models with attention curves, but we have

attention curves associated with paths in the topic hierarchy.

For each document, a path is drawn by the nCRP. Each node in this path is associated with a

βi. For each token in the document a certain level in this path is drawn from p(θ|α). Since, this

is the same as in standard LDA, we can use the Gibbs sampler as before to sample the level for

each word. The probability of a sequence of word wd from document d, given paths of all other

documents and the assigned levels for each token c = (c1, · · · , cM ) with ci = (ti1, · · · , tiL) is

p(wd|c) =
∫

p(wd, β|c)dβ

=

∫

p(wd|c, β)p(β|η)dβ

=
∏

i,j

B(ni,j + η)

B(η)
,

with ni,j the number of assigned tokens to node (i, j), hence the node at level j in path i, ndi,j
the number of tokens from document d assigned to topic (i, j) and n−d

i,j the number of assigned

tokens to node (i, j) without the tokens from document d, note that ni,j = n−d
i,j + ndi,j . Finally,

the probability of a sequence of words wd from a document d, given all other tokens from the

other documents for a path c is

p(wd|w−d, c) =
p(wd, w−d|c)
p(w−d|c)

=
∏

i,j

B(ni,j + η)

B(ndi,j + η)
.
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Using a log-transformation, the last equation can be simplified for the Gibbs sampler. We use

that

log Γ(nt,i + η) = log

nt,i
∏

j=0

(i+ η)Γ(η) =

nt,i
∑

j=0

log (i+ η) + log Γ(η)

and ni,j = ndi,j − n−d
i,j . Further we define ni,j,v as the number of assignments of word v to topic

(i, j), ndi,j,v as the number of assignments of word v in document d to topic (i, j), n−d
i,j,v as the

number of assignments of word v of all documents but document d to topic (i, j). The simplified

probability is

log p(wd|w−d, c) =
∑

i,j

logB(ni,j + η)− logB(ndi,j + η)

=
∑

i,j

(
∑

v

log Γ(ni,j,v + η)− log Γ(
∑

v

(ni,j,v + η))

−
∑

v

log Γ(ndi,j,v + η) + log Γ(
∑

v

(ndi,j,v + η)))

=
∑

i,j

(
∑

v

n−d
i,j,v
∑

k=1

log (k + η)− log
∑

v

n−d
i,j,v
∑

k=1

(k + η)).

Using the simplify probability log p(wd|w−d, c), the nested Chinese Restaurant Process as

defined above and the probability distribution of the attention curves we sample whole paths in

a block.

During the Gibbs sampling for the paths, we generate a random tree of depth L and each node

has at most M children. We distinguish two cases for the Gibbs sampler. First, we sample a

path, that has been sampled before. Second, we sample a path for which only a prefix has been

sampled before. We always start at the root node (i, 1) = 1. Hence in the second case, a random

tree branches off into a new path at a certain node. Since such a new path does not have any

tokens assigned to its, each such path has the same probability and we can add a new path to the

random tree. This new path will be the new sample from the Gibbs sampler.

For every node (i, j) that has not been part of any sampled path so far, we have ni,j,v = 0.

This means, branching off a new path at any node at a certain level, adds the same amount to the

probability of the path. This makes the sampling efficient and easy to implement. Consider, for

example, a corpus with M documents and a random tree of depth L = 3 for the topic hierarchy

estimated for the first m documents as depicted in Figure 5.7. We have two possible paths from

the root to a leave, c1 = (1, 2, 3) and c2 = (1, 2, 4); the nodes in the path c1 and c2 are identified

by (1, 1) = 1, (1, 2) = 2, (1, 3) = 3, (2, 1) = 1, (2, 2) = 2, (2, 4) = 4.

Now we sample a new path for the m+ 1th document. For simplicity assume the new docu-

ment contains only one word. The probability of the path c = (1, 2, 3) is

p1 =
n1

n− 1 + γ

n2
n1 − 1 + γ

n3
n2 − 1 + γ

B(n1,1 + η)

B(1 + η)

B(n1,2 + η)

B(1 + η)

B(n1,3 + η)

B(1 + η)
.
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θ t

w τ
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Figure 5.8.: Hierarchical Temporal LDA represented as simplified graphical model in the Plate

notation.

Any path c = (1, 2, x) with prefix (1, 2) any x /∈ {3, 4} has probability

p2 =
n1

n− 1 + γ

n2
n1 − 1 + γ

γ

n2 − 1 + γ

B(n1,1 + η)

B(1 + η)

B(n1,2 + η)

B(1 + η)

B(1 + η)

B(1 + η)
.

In the sampling, we would select path c1 with probability p1 and a new path with prefix (1, 2)
with probability p2. In this example, a new path would be c3 = (1, 2, 5) with a new node

(3, 3) = 5 since we get a new path c3 (so far we had two). Analogously, the probability of a new

path (1, x, y) is

n1
n− 1 + γ

γ

n− 1 + γ

γ

n− 1 + γ

B(n1,1 + 1 + η)

B(1 + η)

1 + η)

B(1 + η)

B(1 + η)

B(1 + η)
.

Sampling this path results in c3 = (1, 5, 6) with new nodes (3, 5) and (3, 6).
The advantage of this hierarchical model is that we can identify up and downs in the usage of

certain topics over time. We can also model periodic topics that follow attention curves. Since

our proposed model is non-parametric, we need no assumption of the periodicity. The number

of nodes is variable and optimally estimated, only the depth is fixed.

5.4. Evaluation

We evaluate our approach to model topics over time with attention curves on several corpora

and different sample sizes of documents. From the DWDS2 Corpora, we use the Core-Corpus

containing almost 80.000 documents with approximately 100 million tokens. Further, we use

2www.dwds.de
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the Die Zeit magazine corpus containing news articles from the news magazine Die Zeit from

1947 to 2015 with more than 200 million tokens (see also the introduction in Chapter 1).

Beside the DWDS corpora, we consider further publicly available text collections. First, we

use Wikipedia talk pages as provided by the Institute of the German Language 3 as corpus of

social media content from 2002 to 2015. Second, we use the NIPS article from 1987 to 2006, and

the Union Addresses of current states of the nation from US-American presidents for quantitative

comparison. Finally, we use articles from the German news magazine Spiegel from 1947 to 2013

(these are unfortunately not publicly available). For visualization, we use Andrew Goldstone’s

DFR-Browser for topic models https://agoldst.github.io/dfr-browser/. The

topic numbers shown in the figures correspond to the number as given in the format used in the

DFR-Browser.

From the different corpora, we retrieve documents containing content of interest with addi-

tional information about the publication date. On these document collections, we test the dif-

ferent temporal topic models. We compare our attention based temporal topic model, noted as

@TM (for attentional topic model), with the state-of-the-art temporal topic model Topics over

Time that uses a Beta distribution to model time and standard LDA that can be seen as using a

uniform distribution to model time. We want to test the Shifted-Gompertz distribution whether

it is better suited to extract periods of certain topics in the texts or not.

We evaluate the temporal topic models qualitatively by plotting the temporal distributions of

the extracted topics, the top words within each topic and the estimated temporal distribution

(Shifted-Gompertz, Beta). Quantitatively, we estimate the log-likelihood of the estimated topic

models on a hold out data set. We split the data into two parts. The first part contains 80% of the

whole document collection and is used to estimate the topic models. The second part contains

the remaining 20% percent of the document collection and is used to estimate the log-likelihood

given the temporal topic model. Additionally, we measure the coherence of the topics in terms

of time and the top ranked words.

5.5. Qualitative Results

For a qualitative analysis of the temporal topic models, we investigate the extracted topics on

different document collections from the corpora. First, we investigate how well different word

meanings can be captured within the found topics and how these topics distribute over time.

We are interested in the change of the word meanings and word usages over time as diachronic

linguistic task. Second, we investigate how different subjects in the document collections change

over time. Here, the diachronic linguistic task is to identify different periods of interest in the

subjects.

5.5.1. Lexicography using the German Reference Corpus

In the first experiment, we investigate word senses over time as diachronic linguistic task for

lexicography. From the DWDS Core-Corpus, we extract snippets of one sentence containing

the German word Platte. Overall we have a KWIC-list of 3777 snippets from documents from

3http://www1.ids-mannheim.de/kl/projekte/korpora/verfuegbarkeit.html
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@TM TOT LDA

Topics related to photography

Topics related to electricity

Topics related to hard drive

Table 5.1.: Topics found by @TM, TOT and LDA from snippets retrieved from the DWDS

Core-Corpus containing the word Platte. Above: Topic distributions in the corpus

over time (marked on the x-axis). Different colors represent different topics. Below:

Distributions of time for the different topics. Each figure shows the frequency (left

y-axis) of the given topic over the years (marked on the x-axis) as purple bars and

the frequency of the top two words in each topic over the years as green bars. Addi-

tionally, the most important words per topic are marked on the right y-axis and the

temporal distribution is plotted as red curve.
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1900 to 2000. From the German dictionary, we know already possible meanings of the word:

disk, plate, music album, vinyl disk. In the diachronic linguistic task, we are interested in the

distribution of the different meanings of the time.

In Figure 5.1 we summarize the results of the different topic models. We show the course

of the topics on the top for each model. Below, we show three hand chosen topics. For each

topic, we visualize the histogram of the time stamps assigned to the topics over time by the

purple bars. For TOT and @TM, we additional plot the estimated Beta distribution, respectively

Shifted-Gompertz distribution as red curve. The top 10 words for each topic are plotted on the

right to each topic. Finally, we show also the histogram of the distribution of the top two words

for each topic in the text collection as green bars.

From the two distributions we see that using temporal topic models we get a much clearer

distinction of the topics over time. We can directly read off the topics and the temporal period

when this topic was prominent. From the standard LDA, we get a much more diffuse distribution

of the topics over the time.

We identify three possible main meanings in the snippets that clearly separate over time.

These topics are summarized in the figures below the temporal distribution of all topics in Ta-

ble 5.1. First, as shown at the bottom of the table, in topic 10 for @TM, topic 9 for TOT and

topic 4 for LDA, we find computer related words as the most likely ones. The distribution of

the time stamps shows a peak between 1990 and 2000. Before this period, this topic has not

appeared. Topics 5 for @TM, 5 for TOT and 7 for LDA are associated with the meaning of an

electronic plate that is mostly used between 1920 and 1930. Among the most likeliest words

are the words Elektronen (Engl. electrons) and Strom (Engl. current). From the temporal dis-

tributions of these topics, we see that the word Platte in the meaning of an electronic plate is

mostly present in the first half of the 20th century. In the topics 9 for @TM, 1 for TOT and 9 for

LDA, the most probable words indicate the meaning of a photographic plate for the word Platte.

Among the most likeliest words are the words Licht (Engl. light), Objektiv (Engl. objective) and

photographische (Engl. photographic). The distribution of the time stamps shows a major usage

of this meaning until the 50s.

The results from the first experiment show that the density of the Beta distribution of the

time stamps tends to put too much weight on single topics. This gets worse the more topics

we have since then we have less different time stamps per topic and hence the density of the

corresponding Beta distribution gets very large at these time stamps. This means, the density of

the Beta distribution is that large that the remaining parts of the topic probabilities are negligible.

The Shifted-Gompertz on the other hand, separates the topics more smoothly and allows for

several topics to exist in parallel. Comparing the extracted topics and inferred meanings from

the top words, we identify also the more modern meaning of Platte as hard disk in a computer.

By contrast, the meaning of Platte as music album or vinyl disk could not be found.

While the last experiment compares the different temporal topic models, we are further inter-

ested in how well our proposed attentional topic model identifies periods of high topic presence.

To investigate @TM and the temporal distributions of topics related to word meanings, we per-

form additional experiments on the DWDS corpora. For the two words Heimat (home) and

Wesen (being), we extract snippets of 3 sentences containing the corresponding words from the

DWDS Core-Corpus from 1900 to 2000. For the word Wende (change), we extract snippets of 3
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Topics extracted from snippets containing Heimat (home).

Topics extracted from snippets containing Wesen (being).

Topics extracted from snippets containing Wende (change).

Table 5.2.: Topics found by @TM from the DWDS Core-Corpus and Die Zeit magazine corpus.

Top: Topics extracted from snippets from DWDS Core-Corpus containing the word

Heimat (home). Middle: Topics extracted from snippets from DWDS Core-Corpus

containing the word Wesen (being). Bottom: Topics extracted from snippets from

Die Zeit magazine corpus containing the word Wende (change). Each figure shows

the frequency (left y-axis) of the given topic over the years (marked on the x-axis) as

purple bars and the frequency of the top two words in each topic over the years as

green bars. Additionally, the most important words per topic are marked on the right

y-axis.
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sentences from the Die Zeit magazine corpus from 1947 to 2015.

In Table 5.2, we report for each word three hand chosen topics from @TM. At the top: we

see that the word Heimat was before World War II rather positively related. Between 1933 and

1970, the term Heimat gets connected with war. In topic 7, we find a concept of the word Heimat

as home and family. This topic has a clear uniform distribution over the time. In the middle: the

word Wesen is used as an expression of humans and nature especially in the first half of the 20th

century. In the second half of the 20th century another concept of the word Wesen appears that

is related with socialistic society. At the bottom: the term Wende is interesting since it became a

metonym of the Reunification of Germany. In the 1980s, the term is used in general for changes

in politics, from 1990 on, it is used primarily as reference to the Reunification of Germany.

5.5.2. Semantics in Wikipedia Discussions

In the following experiment, we investigate topics extracted from Wikipedia talk pages that

contain the term president. The Wikipedia talk pages corpus contains comments on the articles

on Wikipedia from 2002 to 2014. In Table 5.3, we show for each topic model three hand chosen

topics. The topics are chosen to cover discussions about George Bush, the presidential campaign

of Barack Obama and discussions about Barack Obama’s heritage. In the first row, we show the

distribution of topics over time (the three hand chosen topics are highlighted). Comparing these

plots, we see that the uniform distribution puts equal probability on the topics at each time stamp.

The Beta and the Shifted-Gompertz distribution on the other hand are able to tell topics apart

over time. In the last three rows, we plot the hand chosen topics and their top 10 ranked words.

We also plot two histograms of the time stamps. The purple histogram shows how many times

a word with the corresponding time stamp has been assigned to the topic. The green histogram

shows the number of appearances of the top two words from the topic in the whole data collection

with respect to the time stamps. Additionally, we plot the densities of the Shifted-Gompertz and

the Beta distribution estimated for the corresponding topic as red curve.

Comparing the uniform distribution with the Shifted-Gompertz and the Beta in the topics, we

see that the uniform distribution of topic assignments reflects only the overall distribution of the

words over time. The Shifted-Gompertz distribution on the other hand extracts attention periods

for the topics quite accurately. The Beta distribution in turn is extremely sharp and models

only topic attentions for a small peak. Here we see the disadvantage of the Beta distribution:

Before and after the short peak, the topic has a probability of zero. For the topics covering

discussions about Obama’s presidential campaign for instance, the Beta distribution forces the

topic to vanish after 2008. This is not correct since people have mentioned his campaign in the

Wikipedia discussions later as well. The same is true for discussions about Obama’s heritage.

For the topic about Bush on the bottom of Table 5.3, we see that the Beta and the Shifted-

Gompertz distribution find a topic attention period that corresponds to the term of George Bush.

5.5.3. Semantics in the Spiegel Magazine

In the next experiment, we investigate topics extracted from articles containing the word Bun-

deskanzler (chancellor) in the German magazine ”Spiegel”. We investigate only one of the three

topics in detail and the temporal coherence for all topics containing German chancellors names
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@TM TOT LDA

Topics related to Obama’s heritage

Topics related to the campaign of Obama

Topics related to Bush

Table 5.3.: Topics found by @TM, TOT and LDA from the Wikipedia talk pages containing the

word president. Above: Topic distributions in the corpus over time (marked on the

x-axis). Different colors represent different topics. Below: Distributions of time for

the different topics. Each figure shows the frequency (left y-axis) of the given topic

over the years (marked on the x-axis) as purple bars and the frequency of the top two

words in each topic over the years as green bars. Additionally, the most important

words per topic are marked on the right y-axis.
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@TM TOT LDA

Topics related to Konrad Adenauer

Topics related to Helmut Kohl

Topics related to Gerhard Schröder

Table 5.4.: Topics found by @TM, TOT and LDA from snippets containing the word Bundeskan-

zler (chancellor) in the Spiegel corpus. Bellow: Topics extracted by the different

topic models that are related to three German chancellors .Above: Topic distributions

in the corpus over time (marked on the x-axis). Different colors represent different

topics. Below: Distributions of time for the different topics. Each figure shows the

frequency (left y-axis) of the given topic over the years (marked on the x-axis) as

purple bars and the frequency of the top two words in each topic over the years as

green bars. Additionally, the most important words per topic are marked on the right

y-axis.
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Adenauer Erhard Kiesinger Brandt Schmidt Kohl Schröder Merkel

Terms 1949 1963 1966 1969 1974 1982 1998 2005

LDA 17 - 17 14 20 18

TOT 16 9 1 3 17 11 15

@TM 17 19 11 12 14 20 2

LDA 0.105 - 0.105 0.156 0.084 0.156

TOT 0.528 0.181 0.197 0.511 0.654 0.486 0.415

@TM 0.246 0.266 0.180 0.140 0.056 0.087 0.089

Table 5.5.: Temporal coherences from the topics associated with individual chancellors. Above:

Terms and topic numbers assigned to each chancellor. Below: Temporal coherence

measures for the corresponding topics.

among the top ranked words. In Table 5.4 we show the distribution of the topics over time in the

news articles (the topics that contain any German chancellor in the top ranked words are high-

lighted.). Compared to the previous experiments, we get similar results in terms of the temporal

distribution. The uniform distribution is not able to tell topics apart over time. The Beta and the

Shifted-Gompertz distributions find topics that differ in popularity over time. Again, the Beta

distribution separates the topics very sharply. Further, we see that using the Beta distribution,

we get no topic that overlaps with another topic.

From 1949 to 1963, Konrad Adenauer was Germany’s first chancellor. @TM is the only

temporal topic model detecting a plausible evidence of his whole term in the news articles. TOT

finds a coherent topic, however it focuses all the attention on the years 1956 to 1958. LDA

mixes up Adenauer’s, Erhard’s and Brand’s terms in office. For Helmut Kohl who had his term

from 1982 to 1998, @TM and LDA extract topics that cover this period. TOT on the other hand

extracts only a single peak in this period at the time of the Reunification of Germany. Finally, all

temporal topic models extract a topic related to Gehard Schröder who had his term from 1998

to 2005.

We further investigate how well the different topic models are able to find periods of certain

German chancellors over time, we report the German chancellors found by each topic model in

Table 5.5. Using the uniform distribution, LDA finds only one big topic covering the fist four

chancellors but Kiesinger. TOT and @TM tell these chancellors apart. Only Kiesinger is put

into the same topic as Willy Brandt. Investigating the temporal coherence values at the bottom

of Table 5.5, we see that @TM is more coherent than TOT. Comparing @TM with LDA, topics

over larger periods of time are more coherent when uniformly distributed. But these topics are

not our main interest, as we want topics that tell periods apart. For these topics @TM results in

high coherences (low values).

5.6. Quantitative Results

To quantitatively compare the different topic models, we estimate the log-likelihood of a held-out

part from each of the text collections. First, we show the joint and the conditional log-likelihood

for the different text collections. Additional to the Wikipedia talk pages and the Spiegel articles,
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President Bundeskanzler

log p(w, τ) log p(w|τ) log p(w, τ) log p(w|τ)
@TM -147041 -82437 -4959928 -3281513

TOT -144363 -87214 -4817104 -3303567

LDA -160568 -83431 -5222189 -3256577

NIPS Union Addresses

log p(w, τ) log p(w|τ) log p(w, τ) log p(w|τ)
@TM -3568155 -3568155 -830967 -489864

TOT -3581224 -3581224 -860689 -501800

LDA -4910939 -3458160 -902309 -485450

Table 5.6.: Log-likelihoods log p(w, τ) and conditional log-likelihoods p(w|τ) for four data sets

and the different temporal topic models.

we also use the NIPS data set of papers from 1987 to 2006 and the Union Addresses data set.

The last two data sets have been used in previous experiments of topic models with temporal

information. For all models we set the number of topics to 10 for Wikipedia discussions about

presidents and for Spiegel articles about chancellors. For the NIPS data set we use 20 topics and

for the Union Addresses 40. The meta parameters from LDA are set to α = T/50 and β = 0.1.

Table 5.7 shows the resulting likelihoods. In terms of joint likelihood, the uniform distribution

has the worst results. This means, the uniform distribution is less appropriated to model time

stamps together with the words in the documents. The Sifted-Gompertz results in better likeli-

hoods for the NIPS data set and the Union Addresses, the Beta performs better for Wikipedia

talk pages about presidents and for Spiegel articles about chancellors. Later, we will see that

Beta has better joint likelihood when we increase the number of topics. This behavior is due to

the Beta distribution that models each time stamp as a topic after a sufficient number of topics.

In terms of conditional likelihood of the words given a time stamp, the Beta distribution has the

lowest likelihoods. The Shifted-Gompertz and the uniform distribution result in equally high

conditional likelihoods.

To investigate the likelihood in detail, we estimate the joint and the conditional likelihood for

different numbers of topics. In Table 5.7 we show the course of the likelihoods for the Wikipedia

talk pages and the Spiegel articles.

Finally, we compare the models by different coherence measures. As seen in Table 5.8, in

terms of the standard coherence measures UMass, UCI and NPMI (cf. Section 3.2.1), we get no

favored method - except for the Spiegel article data set, for which the uniform distribution results

in highest coherence values. These coherence measures do not seem to be useful to evaluate

topics models with time since they favor topics with top words that are constantly frequent. In

contrast, the topics over time shall find topics with frequent words in certain time periods.

5.7. HLDA with Attention Curves

To evaluate the Hierarchical Topic Models with attention curves, we use a large scale corpus

of conference publications. On the NIPS corpus of papers from 1987 to 2014, we apply the
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President

Bundeskanzler

Table 5.7.: Course of the log-likelihood (y-axis) for the different topic models for varying num-

bers of topics (x-axis). Top: Log-likelihood of topic models for Wikipedia discussion

about the president. Bottom: Log- likelihood of topic models for Spiegel news paper

article about the Bundeskanzler (chancellor).

Method UMass UCI NPMI

President

@TM -7.545 -1.545 -0.046

TOT -12.279 -1.551 -0.0460

LDA -6.353 -1.819 -0.053

Bundeskanzler

@TM -6.241 -3.639 -0.115

TOT -6.492 -3.865 -0.123

LDA -5.836 -2.831 -0.0825

UnionAdresses

TM -1.789 0.405 0.040

TOT -1.549 0.206 0.021

LDA -1.847 0.706 0.068

NIPS

@TM -2.323 0.531 0.040

TOT -2.458 0.164 0.021

LDA -2.588 0.513 0.068

Table 5.8.: Standard coherence measures for topic models for four data sets. Higher scores imply

better coherences of words.
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Figure 5.9.: Hierarchy of NIPS topics over time of research with respect to field of data embed-

dings.

hierarchical topic model with attention curves with a fixed number of L = 4 levels. We show

the results of two hierarchies that have been extracted. As seen in the Figures 5.9 and 5.10 the

hierarchy among the topics shows the refinement of general topics towards finer ones.

5.8. Conclusion

We propose a physically motivated attentional topic model. This model captures the growth

and decline of topics that are popular at certain times in large text collections. For diachronic

linguistic tasks in large digital corpora, we motivate and successfully apply attentional topic

models. The qualitative analysis shows more informative results in terms of periods of atten-
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5. Use Case Diachronic Linguistics

Figure 5.10.: Hierarchy of NIPS topics over time of research with respect to fields reinforcement

learning.

tions to certain topics. Interpreting the topics as word senses or meanings in documents, we can

model periods of affinities to certain writing styles or subjects in large digital corpora. For the

quantitative analysis of topic models with time, we find standard coherence measures rather un-

informative since they ignore the time information. We develop a temporal coherence measure

that shows that our method finds attentional topics that coincide well with the temporal distribu-
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5.8. Conclusion

tions in the corpus. Finally, from a probabilistic point of view, @TM outperforms TOT in terms

of conditional likelihood. In terms of joint likelihood, @TM outperforms LDA. To estimate such

likelihoods we derived a new sequential Monte Carlo Method to model the joint probabilities of

words and time in documents from a corpus.
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Corpus Linguistics

So far, the corpora and corresponding document collections are used as the only data source

to extract latent topics, respectively factors. Certain corpora might not be complete or contain

insufficient information. For the analysis of Internet-Based Communication for example, we

might face document collections with scarce content. Small snippets lack enough words to

effectively estimate co-occurrence statistics. The same is true if we have only a very small

document collection of a view documents. Off-stream regularized latent variables can be used to

include prior information into topic models such that the lack of information from the document

collection gets compensated.
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6.1. Motivation

The estimation of the topics highly depends on the amount of text data used. Considering the

case when we have only very limited amounts of texts to estimate a topic model, the quality of

the found topics can be quite poor. In such a situation, external information, or prior information,

about the words can be quite beneficial. For instance, prior word probabilities can help sampling

word topic distributions from a Dirichlet distribution by adding prior weights on more likely

words. In this sense, we try to align the topics with an external probability model like a Language

Model p(w) over some of the words. External structural information like similarities of words

can provide further help to align the topics. The idea is that words are similar based on external

information should also be similar in the topics. This means prior weights of whole groups of

similar words can be used to help estimating the topics.

To measure the quality of the found topics, intrinsic measures like the perplexity (cf. [BNJ03])

have been used in the past. Recently, coherence measures (cf. Section 3.2.1) have been intro-

duced as an evaluation measure for topics that agree well with human judgments. These coher-

ence measures use external information to evaluate how much related the most likeliest words

in the topics are. To extract coherent topics by a topic model we must assume to have enough

coherent documents. This is not always the case. In lexicography for instance, there may be

rare words that appear only in a few documents. In such a case, these documents might not be

enough to generate coherent topics. Further, very sparse documents as in collections of Blog

posts or Tweets might also lack information to extract coherent topics.

To increase the coherence, we propose to integrate external information like word probabili-

ties or word similarities from external data sources. To control the influence from the external

information we weight this information additionally. We integrate external word probability

information via Dirichlet priors similar to [MM12], but on word features instead of document

features. For example, for the words of a document collection we might have the external word

probabilities p(w). These probabilities are integrated into a topic model such that the prior of the

word distributions for each topic depends on it, hence the Dirichlet meta parameter β depends

on it via the external word probabilities: β ∝ p(w). Finally, we weight these probabilities by

eλw , hence we have β ∝ eλw p(w).

6.2. Dirichlet Priors

In the previous sections, additional label information about documents was integrated into LDA

as additional random variables. Besides this, additional information about documents and words

can be integrated as prior information on the random variables. In a fully Bayesian approach for

LDA, the random variable θ and β have a Dirichlet prior with meta parameters. Further, the meta

parameters are modeled as additional random variables. For instance, θ is Dirichlet distributed

with meta parameter α, hence θ ∼ Dir(α). The meta parameter α itself is modeled as random

variable f(τ) with distribution p(τ). Standard approaches define f(τ) = α′a with a ∼ p(a)
as basis measure and concentration parameter α′. This means, θ is a random variable drawn

from a Dirichlet distribution centered at a with magnitude α′. Figure 6.1 illustrates such priors

for a multinomial distribution of dimension three. We illustrate the probability simplex from
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6.2. Dirichlet Priors

Figure 6.1.: Dirichlet priors visualized in probability simplices S. The multinomial distributions

from LDA lie in the set S = {xi|xi ∈ R
+,
∑

i xi = 1}. The Dirichlet prior forces

the multinomial distributions into certain areas marked by the colors turning to red.

which the multinomial distributions are drawn in LDA. On the top left plot, we see a probability

simplex for the multinomial distribution with a symmetric prior. This corresponds to a uniform

base measure. On the top right plot, we see an asymmetric prior and at the bottom we see an

asymmetric prior with a larger concentration parameter. The more red like the region in the

simplex is, the more likely are the corresponding distributions. See [WMM09] for a detailed

analysis on symmetric and asymmetric priors for LDA.

The priors described so far are so called non-informative priors. They restrict the random

variable only to sensible values independent of data. A prior is informative if the MLE differs

from posterior estimation. The MLE is p(X|θ), hence the probability of the data given topic

model θ. The posterior estimation is p(θ|X), hence the probability of the topic model θ given

the data. Consider for instance the MLE of θ for a multinomial distribution Mult(θ), we get:

θ∗dt =
ndt
n
. (6.1)

Plugging this into the multinomial distribution p(t), we get

p(t|θ) = θ∗dt =
ndt
n
. (6.2)
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6. Use Case Non-Standard Corpora Corpus Linguistics

This results from minimizing the log-likelihood given samples tdj of topics (by Gibbs sam-

pling for instance) for words wj in documents d, with ndt =
∑

j I[tdj = t], nd =
∑

t ndt and

n =
∑

d nd.

Using a Dirichlet prior, the posterior on the other hand is equal to

p(t|θ) = ndt + αt

nd +
∑

t′ αt′
. (6.3)

We see that the posterior differs from the MLE such that the prior introduced pseudo counts αt

for a topic t. This encodes prior belief in the distribution of the latent topics for given documents

before we have seen any word. Hence, the prior can explicitly integrate information into the topic

model.

There are usually two considerations before introducing priors. First, for computational con-

venience priors like conjugate priors result in simpler posterior distributions. Second, insuffi-

cient data may prevent adequate estimation of the posterior and priors might compensate this.

We illustrate this again with Dirichlet priors: In LDA, we assume that the topic-word distribution

β has a Dirichlet prior Dir(η). This results in the following posterior distribution for β:

p(d|t) =
∫

p(d|t, β)p(β|η)dβ.

Due to the conjugacy this simplifies to (see Section 2.3.2)

p(d|t) =
∏

t

B(nt + η)

B(η)
.

On the other hand, if we have insufficient information in the corpus to estimate the posterior,

defining the right prior can help. Given for instance prior information about the word distribution

p(w), we can define the Dirichlet prior as Dir(η0p(w)). This prior information can be seen as

pseudo counts for insufficient counts of the words.

Our approach assumes Dirichlet priors on θ and β and additional modeling of the meta pa-

rameters as random variables. We propose the following priors on the meta parameters of the

(prior) distribution of the multinomial distributions θ and β with additional meta parameters

a = [a1, · · · , aT ] ∈ R
T and B = [b1, · · · ,bT ] ∈ R

V×T :

p(θ, β, t,d|a, B,xw,xd)

βt ∼ Dir(ebt
′
xw)

θd ∼ Dir(ea
′
xd)

bt ∼ p(bt|xww′).

In Figure 6.2, we show the graphical representation of our proposed extension of LDA with

priors that depend on external information about documents and words as features. We add doc-

ument features xd, word features xw and word correlation features xww′ into LDA by adequate
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θ t w β

xw

xww′

b
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M
N T V

V x V

Figure 6.2.: Graphical representation of LDA with priors influenced random variables in the

Plate notation. Additional document and word features are modeled as observed

random variables.

priors. As before the document features xd could be time stamps or class labels, the word fea-

tures xw can prior word frequency or word classes and xww′ are correlation information like

Pointwise Mutual Information between words based on WordNet for instance.

Since we have already described how to integrate document information into factor and topic

models by downstream regularized models, we concentrate here only on the integration of word

information by upstream regularized models. The integration of document features into LDA

can being done by DMR as described above.

6.3. Related Work on LDA with Additional Features

There are many previous approaches integrating external information into the generation of a

topic model. The authors in [MM12] use a regression model on the hyper parameters of the

Dirichlet prior for LDA. They use Dirichlet multinomial regression to make the prior probability

of the document topic distribution dependent on document features. Analogue for the topic-

word distribution, [PSC+10] integrate word features into LDA by adding a Logistic prior on the

parameter of the Dirichlet prior of the word topic distribution. In [NBB11b] the authors inte-

grate correlation information about words into a topic model. They propose regularized topic

models that have structural priors instead of Dirichlet priors. These structural priors contain

word co-occurrence statistics for instance. [MWT+11] propose a Pólya Urn Model to integrate

co-occurrence statistics into a topic model. Finally, [AZCR11] use First Order Logic incorpo-

rated into LDA to leverage domain knowledge, [AZC09] incorporate information about words

that should or should not be together in a topic from topic model, [CML+13] integrate lexical

semantic relations like synonyms or antonyms derived from external dictionaries into a topic

model.
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sim

p(w|t)

.

w1

.

w2

-p(w1|t)

-p(w2|t)

-p(w1|t, sim)

-p(w2|t, sim)

Figure 6.3.: Illustration of jointly modelling words and similarity information about the words.

Words that are similar based on external information, shall have similar probabilities

in the topic-word distributions.

6.4. Regularizing Topic Models by Priors

While the previous regularizations considered additional information about the documents that

are corpus specific, modern language resources deliver additional corpus unspecific information

about the words. In terms of lexicography and semantics, for example, this information can help

explaining concepts in documents from non-standard sources with insufficient data. Documents

with very few words, for instance, could lack enough co-occurrence information to extract rea-

sonable topics. We assume to have additional information about words as word distribution

p(w). For latent topic models, these words shall have similar topic-word probability p(w|t).
Hence, similar words get similar probability mass from the multinomial distribution.

In Figure 6.3, we illustrate this principle. Words that are similar might in standard LDA have

large difference in the topic-word distributions. To avoid this, the prior in the words pushes these

words also closer in terms of the distributions.

We integrate external information about words into LDA via priors on the topic-word dis-

tributions. We define an asymmetric Dirichlet prior with metaparameter η on the topic-word

distribution β. The parameter η specifies the prior belief on the distribution of the words before

we have seen any data. A non-informative prior would set η to 1 for all words. In contrast to

that, we make η informative, by making it dependent on the word distribution from the external

information p(w).
Formally we replace the Dirichlet prior βt ∼ Dir(η) with

βt ∼ Dir(eb
′
txw),

hence η = eb
′
txw . The weight parameter bt controls the individual influence of the prior infor-

mation in each topic for the word features xw. This parameter is a vector: bt = (bt1, · · · , btV )
where we index the weight for a word w by btw. In a fully Bayesian approach we model the

weight parameter bt as additional random variable. For the specification of the distribution of
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6.4. Regularizing Topic Models by Priors

bt, we need to consider the following: If bt is zero, we get an uninformative prior. If eb
′
txw is

zero, the additional information about the words are overweighted by the likelihood of the data.

On the other hand, if eb
′
txw is very larger, the additional information overweights the likelihood

of the data.

This general approach to include word features is used to add information of the expected

distribution of the words. Having this distribution p(w) estimated or extracted from external

information, we want the topics - in terms of the βt - to be regularized towards p(w). To include

prior belief in the distribution of the words, we define word features

xw := (log p(w), 1)

and parameters

(1, btw).

This results in the following Dirichlet prior:

βtw ∼ Dir(e(1,btw)′xw) = Dir(p(w) ebtw).

This means, if btw is zero, the prior belief of the probability of w is directly used as prior for

the topic-word distribution for word w and topic t. If btw is less than zero, the prior belief is

weighted down. If btw is greater than zero, the prior belief is weighted up. Clearly, this model

can be easily extended to integrate further features of the words.

The optimal parameters btw for each topic t must be found by optimizing the likelihood of

the topic model. We perform alternating optimization of the parameters with quasi Newton

methods and Gibbs sampling of topics to find the optimal topic model. For the optimization of

the parameters we minimize the part of the negative log likelihood of the documents and the

topics that depends on η integrating θ and β out. The negative log-likelihood that depends on η
is

Lη =
∑

t

log Γ(η̃t + nt)− log Γ(η̃t) (6.4)

+
∑

t

∑

w:nw,t>0

log Γ(ηw,t)− log Γ(p(w) ebtw + nw,t),

with η̃t =
∑

w p(w) e
btw .

The gradient of the negative log-likelihood is

∂L

∂btw
=ebtw p(w)(Υ(η̃t + nk) (6.5)

−Υ(η̃t) + {nw,t > 0} ·Υ(p(w) ebtw)−Υ(p(w) ebtw +nw,t).

Using these gradient informations, we can perform Newton optimization to minimize Lη.

Limited Memory BFGS [LN89] for instance can be applied to minimize Lη after one Gibbs

iteration.
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Online Upstream Regularization

As for online LDA, we can also use off-stream regularized topic models in an online manner.

Again, we separate the parameters into local and global parameters. In contrast to online LDA,

we exchange the local parameter αd to ea
′
txd with global parameters at and the parameter η

to eb
′
txw with global parameter bt for the topics t. As in online LDA, for each document, we

estimate the local variational parameters φ and γ for the global parameter: α = ea
′
txd with the

current estimate of at. With these parameters we derive the global variational parameter λ with

parameter η = eb
′
txw and the parameters at and bt by Maximum Likelihood Estimation.

For the global parameters at that weight the document features xd, we have the following

variational bound on the log-likelihood:

L =
∑

d

log Γ(
∑

t

ea
′
txd)−

∑

t

log Γ(ea
′
txd)

+
∑

t

((ea
′
txd −1)(Ψ(γd,t)−Ψ(

∑

t′

γd,t))).

For the maximum likelihood estimate, we optimize this bound via gradient descent. The gradient

of the global parameters at with respect to the bound is

∂L

∂at
=
∑

d

xd e
a
′
txd

∂L

∂ ea
′
txd

,

with the partial derivative

∂L

∂ ea
′
txd

= Ψ(
∑

t

ea
′
t′
xd)−Ψ(ea

′
txd) + Ψ(γd,t) + Ψ(

∑

t′

γd,t).

For the global parameters bt that weight word features xv, we get similar as for at the fol-

lowing bound:

L = log Γ(
∑

eb
′
txw)−

∑

t

log Γ(eb
′
txw) (6.6)

+
∑

t

(eb
′
txw(Ψ(λt,w)−Ψ(

∑

t′

λt′,w))).

The gradient of the global parameters at with respect to the bound is

∂L

∂bt
=
∑

w′

xw′ eb
′
txw′

∂L

∂ eb
′
txw′

,

with the partial derivative

∂L

∂ eb
′
txw

= Ψ(
∑

t′,w′

eb
′
t′
xw′ )−Ψ(eb

′
txw) + Ψ(λt,w)−Ψ(

∑

t′,w′

λt′,w′).
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Having found the optimal parameters at and bt at iteration j, the global variational parameter λ
is updated by

λ̂tw = e
b
′
txw

tw +D

N
∑

n=1

φtdnwdn

λj+1
tw = (1− ρj)λjtw + ρj λ̂tw.

Sparsity-Inducing Priors

We propose to use sparsity inducting priors on the parameters b to gain control of the external

information about the words. Further, we gain additional parsimony and understandability due

to the sparsity. The parameter btw weights the influence of the prior information about word

w for topic t. We expect that some parts of the prior information play a bigger role than other

parts in the estimated topic model. To find out which parts are important we impose sparsity to

identify them. This is done by adding a Laplace prior on the parameters bt:

p(bt;σ1) =
1

2σ
e−

‖bt‖1
σ .

This means, we aim to reduce the amount of off-stream regularization of the external informa-

tion. This has three advantages: First, we can easily read off from the parameters which parts

of the prior information influences the topics most. Second, we get a simpler model that adds

the external prior information only for some words. Third, we gain control on the amount of

external information to be integrated into the topic model.

Now, the process of generating documents by regularized LDA can be formulated in the fol-

lowing way:

1. For each topic t:

a) Draw bt ∼ p(bt;σ1)

b) Draw βt ∼ Dir(eb
′
txw)

2. For each document d:

a) Draw θd ∼ Dir(α)

b) For each word wn in document d:

i. Draw tn ∼ Mult(θd)

ii. Draw wn ∼ Mult(βtn)

The difference to standard LDA is that we have now an asymmetric prior that is derived from

the external information (for instance the word probabilities) and the weight of this informa-

tion has a Laplace prior. Adding the Laplace prior on the b parameters and optimizing for the

negative log-likelihood is the same as putting a sparsity inducing penalty (regularizer) on them.

Again, this results in the loss

Lη =
∑

t

log
Γ(β̃t)

Γ(β̃t + nk)
+
∑

t

∑

w:nw,t>0

log
Γ(βw,t + nw,t)

Γ(βw,t)
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with additional regularizations

Rt =
‖bt‖1
σ1

.

Hence in the final optimization, the negative log likelihood as defined in Equation 6.5 is

extended by the term ‖bt‖1:

arg optΘ Lη + σ−1
1

∑

t

‖bt‖1.

Hence, the Laplace prior is integrated into the optimization via a sparse lasso penalty ‖bt‖1.

We solve the optimization problem via Orthantwise Quasi Newton Optimization [AG07] for the

parameters Θ = [β, θ,B].

Group-Sparsity-Inducing Priors

The previous idea of limiting the adaptation of the external prior information for some words

does not consider that the information about similar words should also be treated similar. For

instance, in case the prior information about the word book is not included for some topic, we

should also not include the information about the words author or books. To formulate this idea,

we divide the words into groups of similar words. The topics prior shall reflect that only word

information for whole groups of words are either present or not present in the topic. The groups

are noted as g = {w1,g, · · ·wk,g} for groups of k words and the weight parameter is divided into

parts that correspond to these words: bg = [b1,g, · · · , bk,g].
From the group sparsity we expect more coherence since whole groups of words are con-

sidered. These groups are expected to be more coherent since they are similar based on some

external information. The group sparsity prior leads to solutions with whole groups of weights

either zero or are optimized to maximize the likelihood of the given texts. The groups will be

specified by word similarity or co-occurrence information from different data sets.

To efficiently integrate similarity information about words, we add an additional group spar-

sity inducing prior on the weight vector b:

p(b;σ2) =
1

2σ2
e
−

∑
g

‖bg‖2
σ2 .

This prior induces sparsity of whole groups.

The resulting model adds a group lasso penalty to the negative log likelihood to gain group

sparsity:

arg optΘ Lη + σ−1
1

∑

t

‖bt‖1 +
∑

g

σ−1
2 ‖bg‖2,

for the group lasso penalty
∑

g σ
−1
2 ‖bg‖2 for the groups g and the variance σ2. Conceptionally,

this is the same as having a prior on the b parameters that induces group sparsity.

Similar to above we solve the group lasso via Blockwise Coordinate Descent with Proximal

Operators for the group penalty, see [BJM11] for more details. After each Gibbs sampling

iteration, we iterate over the groups and perform Orthantwise Quasi Newton Optimization for

each group of bg keeping all other groups fix. The Newton step in the optimization is extended
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with a Proximal Operator Prox to project the parameter vectors onto the group lasso constraint.

Hence, after a Newton step the next b is projected by the Proximal Operator

Prox(b) =
∑

g

(1− σ−1
2

‖bg‖2
)+bg.

Finding Groups

To find the groups of similar words for the grouped sparsity priors on the parameter m, we use

external information about similarities of words. The similarity information we use is based on

WordNet (see [PPM04]). From the WordNet graph, several similarity measures can be derived.

One possible similarity measure is the Leacock-Chodorow-Similarity (LCS). The LCS of two

words wi, wj is defined as sLCS(wi, wj) := − log
sp(wi,wj)

2D with sp the shortest path between

the synsets of the two words in the WordNet graph and D the maximum length of such a path,

see [NLGB10].

From such similarities we can easily generate clusters that are used as groups. We divide

the weight parameter B = (b1, · · · ,bG) into G partial weights bg = (bw1,g, · · · , bwk,g). The

partial weights build a group g, if the words w1, · · · , wk build a cluster based on the similarities

from the external information.

To extract the groups of similar words, we perform a clustering based on the similarity infor-

mation. We generate a so called affinity matrix M such that (M)ij = e−(1−sim(wi,wj)) for sim
the similarity measure derived from WordNet. Next, we perform a spectral clustering [NJW01]

to find the groups. Spectral clusterings performs a k-means clusterings on the words projected

onto low-dimensional space spanned by the eigenvectors of the affinity matrix. Other clustering

or grouping methods are also possible but not examined in this thesis. Finally, the clusters group

the words and the corresponding weights for the group sparsity prior.

6.5. Evaluation

In this section, we investigate the topics extracted by our proposed methods (SparsePrior) for

LDA with sparsity prior, (GroupPrior) for LDA with group sparsity prior) and compare them

with two standard state-of-the-art implementations of topic models that integrate external infor-

mation about words: (RegLDA) by [NBB11b] and (WordFeatures) by [PSC+10]. Additionally,

we also compare to the standard LDA with Gibbs sampling without external information. For

each method, we use T = 20 topics, 1000 iterations and set α = 50/T , β = 0.1 (for standard

LDA and topic models with structural prior), σ−1
1 = 0.1, σ−1

2 = 0.1.

We use two standard text corpora used in previous approaches of topic modeling. First, we

use the 20 newsgroups1 corpus. The data set contains about 20.000 text documents from 20

different newsgroups. Overall we have 1000 documents per newsgroup. We additionally remove

stop words and prune very infrequent and very frequent words. Second, we use the Senseval-

32 dataset of English lexical samples. The data set contains texts from Penn Treebank II Wall

1http://qwone.com/˜jason/20Newsgroups/
2http://www.senseval.org/senseval3
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Method NPMI UCI UMASS loglikelihood

LDA -0.065 -2.268 -5.250 -2332131

WordFeatures -0.061 -2.135 -4.825 -2330149

RegLDA -0.069 -2.443 -5.520 -2332699

SparePrior -0.070 -2.472 -5.359 -2334633

GroupPrior -0.055 -2.116 -4.796 -2333298

Table 6.1.: Coherence results on the 20 newsgroups dataset.

Method NPMI UCI UMASS loglikelihood

LDA 0.015 -0.411 -2.534 -160480

WordFeatures 0.012 -0.465 -2.468 -160555

RegLDA 0.001 -1.767 -2.676 -160579

SparePrior 0.013 -0.579 2.8561 -160613

GroupPrior 0.020 -0.4714 -2.997 -160549

Table 6.2.: Coherence results on the Wikipedia talk pages.

Street Journal articles. The sizes of the data sets range from 20 to 200 documents per word.

Further, we use the Wikipedia talk pages as social media corpus to apply our methods to a more

recent data source of Internet-Based Communication. As example, we extract 10.000 postings

of discussions on Wikipedia from 2002 to 2014 that contain the term ”cloud”.

6.6. Results

In the first experiments, we compare to the state-of-the-art LDA implementations with external

information about words and standard LDA in terms of quality. We want to show that our model

produces more coherent topics. To evaluate the coherence of the found topics, we use Pointwise

Mutual Information (UCI), normalized Pointwise Mutual Information (NPMI) and arithmetic

mean of conditional probability (UMass), see Section 3.2.1. Further, for the two larger data sets

20 newsgroups and the postings from Wikipedia we also estimate the log-likelihood on a held

out data set. Finally, on the SensEval dataset, we also estimate the Mutual Information (MI) of

the found topics to the true sense.

The results on the 20 newsgroups dataset in Figure 6.1 show that our proposed group sparsity

prior results in topics with better coherence measures than the state-of-the art methods and the

standard LDA. From the state-of-the-art competitors only WordFeatures performs comparably

good. In terms of log-likelihood, WordFeatures performs best. For the Wikipedia talk pages we

get similar results as shown in Figure 6.2.

Finally, we compare the different topic model methods on collections of very small data sets.

Table 6.3 shows the resulting coherence values on the SensEval dataset. LDA with our proposed

grouped sparsity prior performs better on all data samples compared to the competitors.
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Method NPMI UCI UMASS MI

LDA -0.050 -1.712 -3.706 0.359

WordFeatures -0.058 -1.744 -4.096 0.328

RegLDA -0.056 -1.767 -3.693 0.323

SparePrior -0.025 -0.747 -3.060 0.290

GroupPrior -0.021 -0.634 -3.056 0.360

Table 6.3.: Coherence results on the Senseval-3 dataset.

Figure 6.4.: NPMI for different sample sizes and document length used.

We are especially interested in how the different methods perform on very small data sets. To

investigate this, we evaluate the NPMI for the different methods on different sample sizes and

different document lengths of the samples. For the 20 newsgroups, we sample 100; 1,000; 5,000

and 10,000 documents to extract topics. From the Wikipedia talk pages we extract postings of

different context sizes from 100 to 1,000 characters. In Figure 6.4, we see that our proposed

sparsity and group sparsity prior result for small samples and small context sizes in the highest

NMPI. In these situations our proposed method of using the group sparsity pays off the most.

6.7. Conclusion

In this use case, we propose to integrate external information about words into topic models to

increase topic coherence. In non-standard corpora, we face lack of information due to sparsity in

or the amount of available documents. We use different priors on the meta parameters for LDA.

To control the amount of the integration of the external information, we perform an individual

weighting. Adding sparsity inducing priors on these weights enables active control on how much

we adapt to the external information. By this we trade off topic coherences and likelihood of

the topics. Our proposed group sparsity prior further enables integration of external similarity

information about words. Now, we can influence the external information of whole groups of

words that are similar. The results show the benefit of our proposed methods in terms of topic

coherence. Finally, we see that on very small data sets, the group sparsity inducing prior results
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in better performance.
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7. Use Case Variety Linguistics

For variety linguistics, we use text corpora that are composed from different text collections.

Each text collection has its own writing style. They can contain documents from different genres

or sources. As stated in the introduction, in variety linguistics we want to investigate different

linguistic tasks in lexicography and semantics across the different text collections. In this use

case, we will show how regularized factor models can be used to perform linguistic tasks across

different text genre or text domains.

7.1. Motivation

For variety linguistics, information about the source or the genre of the documents in the corpus

shall be integrated such that the latent variables describe the generation of documents of differ-

ent sources. Especially corpora with documents from different genres can be difficult to analyze,

since the contexts have different writing styles. For example, a text from an SMS differs usually
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Figure 7.1.: For the VSM with word frequencies, two dimensions corresponding to the words

professional and interesting are plotted. Word-vectors in the original vectors space

(left) and projected space (right), from the regularization of latent factors to match

document distributions from reviews about books and electronics are shown. The

words professional and interesting are almost orthogonal in the original space due

to the different usage of the words in the two sources. The word professional is used

more often for electronic products, while books are described as interesting.

strongly from news articles. Matching the distributions from the genres helps finding latent vari-

ables that explain the generation of all documents, the commonalities and differences between

document sources and genres. Given for example documents containing product reviews from

two sources (hence two different products), books and electronics, we expect that words and

combinations of words are differently distributed with respect to the different sources. Now, we

are interested in finding concepts present in both sources or purely in one source. Jointly mod-

eling both sources with standard latent variable models would easily end with disjunct concepts

due to the distribution mismatch. This mismatch could for example lead to almost orthogonal

Word-Vectors that belong to the same concept. Regularizing the factors such that the source dis-

tributions match on the subspace spanned by the factors, forces also these words into the same

concepts.

In Figure 7.1, we show the distribution of the Word-Vectors for the dimensions spanned by

the words professional and interesting in the VSM before and after projection into latent factors

with regularization to match the distributions. On the left in the figure, we show the projection

of the Word-Vectors from the reviews onto the subspace corresponding to the word professional

and interesting. Although both words belong to similar positive concepts, they are differently

used in reviews. Books are described rather as interesting while electronic article are described

as professional. This results in almost orthogonal Word-Vectors in this subspace which makes it

difficult to associate the words to the common concepts.
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7.2. Projection-based Regularized Factor Models

7.2. Projection-based Regularized Factor Models

We expect that many document collections share similarities on latent factors. For instance, a

book might be described as tedious while a toaster might be described as malfunctioning. Both

words have a negative connotation and very likely appear together with other negative words

like bad, poor or poorly. Projecting the reviews onto latent factors that capture such similarities

results in a subspace, on which we expect these words to jointly span a dimension representing

their common ground. These latent factors represent the common concepts (e.g. sentiments)

between different words from different collections, and can be expected to contain less noise.

Within each document collection the factors might be different but we are interested in the

common factors.

We propose to find latent factors in the space spanned by Word-Vectors that describe the simi-

larities between document collections. This is done by a linear projection that optimally matches

text documents from one collection to another collection with different document (word) distri-

butions. The projection is performed on the Word-Vectors of the documents from the different

collections and maps into a low-dimensional subspace spanned by the latent factors. Each Word-

Vector from the different collections is projected onto factors vi by

Pwd =
∑

i

ωidv
i =

∑

i

〈wd,v
i〉vi.

In the following we no longer speak about extracting latent factors but finding projections onto

the subspace spanned by the factors.

In variety linguistics, we want to match whole collections of different document collections

to extract similarities and differences between the documents. Considering the example in Fig-

ure 7.1, the projection onto the subspace spanned by the factors shall make the two words more

similar. As seen on the right on the figure, we want the two words to be related such that both

words can be used interchangeable considering only the concept of positivity. To find these fac-

tors and the corresponding subspace, we need to consider the distribution of the words in the

documents. While the word professional and interesting are almost orthogonally used in the

two collections, they might appear together with additional words that bridge the collections.

As seen on the top in Figure 7.2, the rather domain-neutral word good correlates well with the

word interesting in book reviews and with the word professional in electronic products reviews.

If we find projections of Word-Vectors that results in a correlation across the review collections,

we expect to match even the word professional and interesting into the same concept. This is

illustrated at the bottom of the figure.

In order to efficiently perform variety linguistic tasks with factor models, we propose a

subspace-based regularized factor model that matches the distributions of the Word-Vectors in

the factor representation. Given a number of text collections C1, · · · , Cz , we use the regularizer

R(Θ, Xd) = D(p̂1, · · · p̂z),

for the document features in Xd contain information which document belongs to which col-

lection, the empirical distributions p̂1, · · · , p̂z of the Word-Vectors for each collection and the

optimization parameter Θ = P . A distance measure D estimates how close the word distribu-

tions of the collections are. This means, the factors are regularized such that the Word-Vectors
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Figure 7.2.: For the VSM with word frequencies, three dimensions corresponding to the words

professional, interesting and good are plotted. The Word-Vectors in the original

feature space are plotted on the top and the Word-Vectors in projected space are

plotted at the bottom. For the adaptation of “professional” to “interesting” the word

“good” induces correlation.

projected via P onto the corresponding subspace have a similar distribution over all text col-

lections. This casts the regularization of the factors into a Domain Adaptation task. Domain

Adaptation means to make the data sets more similar to perform certain tasks. Each document

collection is interpreted as a domain with its own word distribution. Matching these distributions

helps finding common ground between the collections and possible dissimilarities.
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7.2. Projection-based Regularized Factor Models

7.2.1. Related Work on Domain Adaptation

Before turning to the question of transferring knowledge from one domain to another for variety

linguistics, we need to discuss how to measure the distributional difference between different

data sets from different domains. In the context of Domain Adaptation, divergence measures

like KL-divergence [SNK+08b] or A-distance [BDBCP07] have been used. Such measures es-

timate the difference of distributions between domains of data. We use the kernelized Maximum

Mean Discrepancy as proposed by [GBR+08] for an estimation of the difference in distribution

between two data domains using samples. We do so, since this method is able to compare distri-

butions by using all moments of the distributions. This choice is not pivotal to the contributions

of this paper; it’s merely a parameter that can be changed at will.

A large part of the research on Domain Adaptation concentrates on estimating weights for

the target domain. Then, the data from one domain will be weighted to increase distributional

similarity to another domain. Under the so-called sample selection bias, the target domain can

be made similar to a source domain by an adapted weighted sampling. For instance, the authors

of [DSP06] propose density estimators that incorporate sample selection bias to adapt different

test domains to training domains. In [BBS09], the distance between the data from the two

domains is directly minimized to find the optimal weights. The authors of [HSG+07a] propose

to learn weights for a target domain such that the distance in distribution of the weighted target

domain to a source domain is minimized. They use Kernel Mean Matching as distance measure

between the domains and perform the search for optimal weights in a universal Reproducing

Kernel Hilbert Space. By contrast, in [SNK+08a] the authors find the optimal weights via

matching distributions by minimizing the KL-divergence.

Subspace-based Domain Adaptation, on the other hand, tries not to adapt distributions but to

transform their support to increase similarity. This results in a low-dimensional feature repre-

sentation of the original data. The transformation is done by a projection onto an appropriate

subspace. In [STG10], the authors propose to minimize the Bregman divergence for regularized

subspace learning. Via a matrix-variate optimization problem they find an optimal subspace for

a given cost function. On this subspace, two given data sets are gauged to be similar with re-

spect to a divergence criterion. Unlike the Stiefel approach, this optimization is directly done

in R
V . In [SCGF12], a low-dimensional subspace is extracted such that the data from a target

domain can be expressed as linear combination of a basis from a source domain. The authors

solve this problem by inexact Augmented Lagrangian Multipliers, which is computationally ex-

pensive, especially since it demands several Singular Value Decompositions (SVDs) on the data

matrix. The authors of [NQC13] propose to find a sequence of subspaces in which the data

from the target domain can be expressed as linear combination of a source domain. For Do-

main Adaptation they project all data onto each subspace and concatenate all resulting feature

representations. This approach needs to perform several expensive SVDs on the data matrix.

In [CLTW09] and [CSF+12], Domain Adaptation is coupled with the training of a classifier.

The authors of [CLTW09] do this by inverting the whole data matrix, which can be quite ex-

pensive. The approach in [CSF+12] needs additional labels for the target domain, and a kernel

matrix which might become prohibitively expensive to use.

In contrast to the linear subspaces in R
V of the Word-Vectors, Kernel-based methods have also

been proposed to find non-linear data representations for Domain Adaptation. In [PTKY09],
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7. Use Case Variety Linguistics

Transfer Component Analysis finds low-dimensional representations in a kernel-defined Hilbert

space to make two given data domains more similar. An extension of this approach by including

class label information is proposed by [LWD+13]. The authors in [ZZW+13] propose to transfer

knowledge in a Hilbert space by aligning a kernel with the target domain. In [MBS13], the

authors propose to learn domain invariant data transformation to minimize differences in source

and target domain distributions while preserving functional relations of the data.

7.2.2. Moment Matching

We concentrate on situations with two different text collections (in a given corpus) C1 and C2

with empirical distributions p̂1 and p̂2 andM1, respectivelyM2 samples from the collections, for

the variety linguistic task. It is straightforward to extend this to more collections. We formulate

an optimization problem to find a projection matrix P onto factors together with a subspace

based regularization in the following way:

max
P :P ′P=I

λ1‖PX‖22 − λ2D(p̂1, p̂2, P ). (7.1)

The first part accounts for a low reconstruction error of the Word-Vectors after projection. The

second part forces the empirical distributions of the Word-Vectors to be similar after projection.

In order to regularize the factors such that the distributions of the projected Word-Vectors

from both collections match, we use the following regularizer:

D(p̂1, p̂2, P ) = ‖
1

M1

∑

di∈C1

Pwdi −
1

M2

∑

dj∈C2

Pwdj‖22.

This is a mean matching regularizer that punishes factors (or projections onto these factors) that

result in new feature representations with large difference between the means of the collections

C1 and C2 in this representation. We extend this to more sophisticated mean matching methods

based on distances of mean operators in Hilbert space. Gretton et al. propose to use the Maxi-

mum Mean Discrepancy (MMD) [GBR+08] to estimate the difference in distribution between

two document collections via

MMD[p1, p2]
2 = ‖µ[p1]− µ[p2]‖2H , (7.2)

where µ[p] is the mean operator
∫

wd
wddp, p1 and p2 are the text distributions in the two domains

and H denotes the unit ball in a universal RKHS. Hence, the MMD measures the difference of

distributions as the norm in the RKHS between the means of the mappings of the distributions

into this universal RKHS. In all experiments, we use Gaussian kernels, which are universal.

Using a universal kernel, the MMD measures the difference based on any moment of the two

distributions.

In Figure 7.3, we illustrate moment matching on a subspace for Word-Vectors belonging to

documents from two different genre.
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7.2. Projection-based Regularized Factor Models

Figure 7.3.: Illustration of matching of distributions in a subspace. Top: Word-Vectors with

frequency values from documents of genre 1 and genre 2 in the subspace spanned

by word 1 and word 2 in the VSM. Top-left: Word-Vectors before projection. Top-

right: Word-Vectors after projection for moment matching. Bottom: Visualization

of the distributions of the Word-Vectors. Bottom-left: Distributions before moment

matching. Bottom-right: distributions after moment matching.

7.2.3. Online Distribution Matching

We perform a Stochastic Gradient Descent (SGD) to solve the optimization problem from Equa-

tion 7.1. SGD estimates a sequence of gradients with respect to random draws from the data.

Under simple conditions, this sequence converges to the optimum of the corresponding opti-

mization problem (cf. [Bot98]). We propose an optimization that extracts interpretable linear

factors based on the BoW representation of documents. At the same time we agree with the

previous approaches to match the distributions of the documents based on MMD. This measure

estimates the discrepancy of the two data sets based on all moments estimated from the data.

This makes the problem harder, since it is no longer convex. We have no closed-form solution

and must resort to gradient based approaches. The reason to apply SGD is twofold. First, we

make our approach applicable to large scale scenarios. For large text collections, we resort to an

online solution. Second, since our problem is non-convex and high-dimensional, we will easily

end up with local optima during the optimization. SGD, in contrast to standard gradient descent

(GD), adds additional randomness into the optimization that is gradually reduced in the course
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of the optimization. This allows to skip local minima in the beginning. The SGD is done on

the Stiefel manifold St(V, p) to find the optimal projection matrix that solves the optimization

problem. The set M(V, p) = {P | P ∈ ℜV×p, P ′P = I}, together with an inner product ·,
forms a Stiefel manifold. A manifold is a topological space that is locally Euclidean: for each

point on the manifold we find a neighborhood that is isomorphic to ℜV×p. Also, a metric is

defined on each manifold that measures the distance between two points on the manifold. This

local linearity and the metric enable us the define gradients to perform SGD.

Gretton et al. [GBR+08] describe how a linear estimation of the MMD can be defined as

empirical mean over the distances of M ′ random draws from the two distributions in an RKHS

by

MMD[Z]2 =
1

M ′

⌊M ′/2⌋
∑

j=1

h(z2j , z2j+1),

where Z = {z1, · · · , zM ′} is a sample of random variables zi = (wd1i ,wd2i) with the Word-

Vectors wd1i ∼ p1, the Word-Vectors wd2i ∼ p2, and where h(zi, zi′) = k(wd1i ,wd1i′
) −

k(wd1i ,wd2i′
) − k(wd1i′

,wd2i) + k(wd2i ,wd2i′
) for a universal kernel k(., .) which induces the

RKHS H . This decomposition enables us to use SGD to minimize the MMD between two

distributions p1 and p1.

To find the optimal projection matrix onto a low-dimensional feature representation for linear

factors, we define an optimization problem that minimizes the MMD with respect to a matrix

P such that P ′P = I . The latter constraint is added to avoid rank-deficiency. Minimizing the

distance with respect to a projection matrix will easily result in projections that make the data

points small in length, collapse them into the origin or destroy the data structure to match the

two distributions (regardless of the rank). To avoid this, we propose to regularize P via ‖PZ‖22.

This leads to the optimization problem

min
P

MMD[ZP ]
2 − λ 1

M ′

M ′
∑

j=1

∥

∥z′j
∥

∥

2

2
, s.t. P ′P = I

with samples ZP = {z′1, · · · , z′M} of random variables z′j = [P ′wd1j , P
′wd2j ] for wd1j ∼ p1

and wd2j ∼ p2.

To derive a joint update rule for SGD for both the MMD and the expected length, we define

the partial cost Cp of the optimization problem for the matrix [z2j , z2j+1] drawn from Z as

Cp([z2j , z2j+1], P ) := h(z′2j , z
′
2j+1)− λ

∥

∥[z′2j , z
′
2j+1]

∥

∥

2

2
,

where the first term comes from the linear approximation of the MMD and the second term

regularizes the length of the new feature representation for the drawn pair. The overall cost after

having seen M ′ pairs, results from the M ′ partial costs

C(Z,P ) =
1

M ′

M ′
∑

j=1

Cp([z2j , z2j+1], P ).
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M * P

∇PC(Z,P )

ExpP (P + γ∇PC(Z,P ))

P + γ∇PC(Z,P )

Proj(P + γ∇PC(Z,P ))
Q : Q ·R = P + γ∇PC(Z,P )

‖ExpP (P + γ∇PC(Z,P ))−Q‖M

Figure 7.4.: Schematic view of an optimization step on the Stiefel manifold M . Starting at

point P on the manifold, we move in the direction of the gradient ∇PC(Z,P ) (cf.

Equation 7.2.3). Moving along the manifold ends in ExpP (P + γ∇PC(Z,P )).
Moving simply in direction of the gradient ends in a point that must be projected

back onto the manifold via (for instance) QR-decomposition. The difference of the

two points is ‖ExpP (P + γ∇PC(Z,P ))−Q‖M , the norm of the difference on the

Stiefel manifold.

For the SGD on the Stiefel manifold, we use the following update rule for the projection

matrix P at step j [Bon13]:

Pj+1 = ExpPj
(H(zj , Pj),−γj ‖H(zj , Pj)‖),

where H is the gradient of the cost function on the manifold. From the current projection matrix

Pj , we move along the geodesic in the direction of the negative gradient of the cost function with

respect to Pj . The length of the move is γj ‖H(zj , Pj)‖. We denote by Exp the exponential

map that moves a point along the manifold in a given direction. The exponential map can be

calculated in the following way [WY13]:

ExpP (H, s) =
(

I +
s

2
W
)−1 (

I − s

2
W
)

P, (7.3)

for W =

[

H
P

]

[P,−H].

The major reason for directly optimizing on the Stiefel manifold is that SGD performs a large

number of gradient steps. If we would not stay on the Stiefel manifold, we need to project back

onto the manifold after each step due to the constraint P ′P = I . Figure 7.4 illustrates this with

a schematic view on the manifold. The curved line pictures the Stiefel manifold. At each step in

the SGD we move from a current point P in the direction of a (partial) gradient ∇PC. Moving

just in the direction of the gradient can result in matrices that are far away from the manifold.

These matrices must be projected back onto the Stiefel manifold by a QR-decomposition for
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Algorithm 8 Stochastic gradient descent on a Stiefel manifold

Init P

for j = 1:∞ or convergence do

draw z2j , z2j+1

update P ← P + γt
1
j ∂PCp([z2j , z2j+1], P )

// via exponential map or projection on the matrix manifold in direction of the negative gra-

dient

update γj+1

end for

example. This results in an error ‖ExpP (P + γ∇PC(Z,P ))−Q‖M at each step. These errors

can result in slower convergence and suboptimal solutions.

Finally, for the proposed partial cost function Cp([zj , zj′ ], P ) and the next random draws

ẑj = [zj , zj′ ] from Z we get the gradient

H([zj , zj′ ], P ) = ∂PCp([zj , zj′ ], P )

= ∂Ph(zj , zj′)− λ2(zj + zj′)
′(zj + zj′)P

′,

consisting of the gradient of the new part of the linear approximation of the MMD and gradient

of the norm of the projected data. This means that we minimize the distance on any two sam-

ples from the target and the source domain in Z, which are projected into a low-dimensional

subspace, in a universal RKHS, while maximizing their length.

The gradient of h depends on the used kernel. For the Gaussian kernel k on the projected

points, for instance, this results in the following kernel definition with respect to the projection

matrix P :

k(P ′wd1 , P
′wd2) = exp

(

−(wd1 −wd2)
′PP ′(wd1 −wd2)

2σ2

)

.

The gradient of this kernel with respect to the projection matrix P is

∂Pk(P
′wd1 , P

′wd2) =

− 1
σ2k(P

′wd1 , P
′wd2)(wd1 −wd2)

′(wd1 −wd2)P
′.

The whole optimization procedure is summarized in Algorithm 8. Here, we use a similar ap-

proach as proposed by [QPS09].

7.2.4. Related Manifold Methods

We use optimization directly on matrix manifolds. A general introduction can be found

in [AMS08]. An early work on such optimization is [EAS99]. The authors develop a gradient-

based optimization method on Grassmann and Stiefel manifolds. They provide a general frame-

work for the optimization on these matrix manifolds. Both [BNR10] and [Bon13] describe a

stochastic gradient descent on Riemann manifolds and illustrate its use for subspace tracking

and optimization on matrices with rank constraints.
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The authors of [Gra12] and [GGS13] perform Domain Adaptation on manifolds. They project

the data onto all subspaces that lie on the shortest path (geodesic) between two subspaces from,

respectively, the source and target domain. They define a kernel on the concatenation of all

projections to extract a new feature representation. In [GLC11], the authors sample interpo-

lated subspaces on the Grassmann manifold between a target and a source subspace, extracting

domain, intermediate, and possible invariant information. Projections onto subspace samples

transform the data into new feature representations. They sample these subspaces, and use pro-

jections onto these samples to transform the data into new feature representations. The authors

of [BHLS13] perform gradient descent on a Grassmann manifold to find a subspace where the

two given data domains have a low distance.

7.3. Regularized Non-linear Factor Models for Variety

Linguistics

So far we concentrated on linear factor models for the linguistic tasks. Non-linear factor models

on the other hand can be used to extract factorizations of the document in representations be-

yond the Bag-of-Words (cf. Section 2.2.4). Using Polynomial kernels for instance, we can map

a document from its BoW representation into a new feature representation that contains collo-

cation information of the words. For example a document containing the words “this, is, true”

is represented as BoW (· · · , tfis, · · · , tfthis, · · · , tftrue, · · · ) with term frequencies tf for each

word. If we apply a polynomial kernel of degree two we get a new document representation

(· · · , tfis, · · · , tfthis, · · · , tftrue, · · · , tfistfthis, · · · , tfthistfis, · · · , tfthistftrue) with collo-

cation information. The factors are now linear combinations of these new feature representation

of the documents. As described above, we can use Kernel Principal Component Analysis to

extract non-linear components.

While kernel methods seem to be powerful enough the compensate the weaknesses of linear

factor models, their computational and space complexity can be prohibitively expensive. There

are two approaches to reduce the amount of computation and storage for kernel based methods.

First, we can reduce the amount documents used from the text corpus to reduce complexity. We

can actively sample documents, that are most promising for solving the linguistic tasks. Second,

we can approximate the features maps induced by the kernels by linear (random) features.

Next, we discuss how kernels can be approximated by random features and we explain docu-

ment sampling to match distribution to regularize non-linear factors for variety linguistics.

7.3.1. Approximating Kernels via Random Features

To avoid large computational and storage complexity of kernel methods, approximations of

the kernel can be used. Random features for instance approximate the feature maps in

Hilbert spaces by low dimensional random projections. The expectation of the inner prod-

ucts of these random features evaluate to corresponding kernel values. Any shift-invariant

kernel (as for example the Gaussian kernel) can be represented as expectation of random

features cos(ω′wd + b) for an appropriate distribution p(ω) and b uniformly drawn from

[0, 2π], see [RR08]. For Gaussian kernels, ω is drawn from the distribution: p(ω) =
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Figure 7.5.: Illustration of the samplings. Left: Source (electronic reviews in red) and target

(DVD reviews in blue) data plotted in the space of the first two components of both

of them together. Middle: Distances of source points to target mean (sorted). Right:

MMD of the selected samples from the source data by Herding based sampling.

(2π)−V/2e−‖ω‖2/2. An unbiased estimate of the kernel is zω(wdi)
′zω(wdj ) for zω(wd) =√

2
κ [cos(ω′

1wd), · · · , cos(ω′
κwd), sin(ω

′
1wd), · · · , sin(ω′

κwd)].
The deviation of the inner product of the random features of dimension κ to the true kernel

value is bounded by a tail bound using Hoeffding’s inequality [Hoe63]. Since zω ∈ [−
√
2,
√
2],

we have zω(wdi)
′zω(wdj ) ∈ [−2, 2]. This and Eω[zω(wdi)

′zω(wdj )] = k(wdi ,wdj ) justifies

the bound

P (|zω(wdi)
′zω(wdj )− k(wdi ,wdj )| ≥ ǫ) ≤ 2e−κǫ2/8.

The difference between the true kernel and the approximated kernel is important to quantify

the expected error we will get due to approximation instead of using the kernel directly. We need

to estimate how much the components for the random features deviate from the true components

the source samples in the RKHS. For this it suffices to investigate the expected difference of

the true kernel matrix K for M data points and the matrix of the inner products of the random

features Kω. An appropriate bound is proposed by [LPSS+14]:

E[‖Kω −K‖] ≤
√

2M2 logM

κ
+

√

2M logM

κ
.

7.3.2. Non-linear Factors by Distribution Matching

For variety linguistics interpreted as Domain Adaptation as described above, we use subspace

based regularized non-linear factor models to find non-linear factors across document collec-

tions. We do not directly regularize the factors but influence the extraction by choosing the right

document samples. By this we regularize the subspace spanned by the non-linear factors to the

subspace in which only these samples lie. This is important since we can not directly evaluate

the factors since they are infinite dimensional. For a variety linguistic task, we project all data

onto a low dimensional subspace that captures the structure of the document collections.
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To find the most promising documents from a given single document collection for the Do-

main Adaptation, we propose a greedy strategy to efficiently select them. The sampled docu-

ments shall be close to the other document collections. On the other hand, the samples must

keep enough structure of the given document collections to extract meaningful factors. The pro-

posed strategy is based on the distance of the the source domain distribution to the target domain

distribution. The picture in Figure 7.5 illustrates our idea on electronic (red) and DVD (blue)

reviews. We assume the reviews of electronics as target domain and the reviews about DVDs as

source domain. The reviews seem to be more similar on one direction than on the other. The

idea now is, to prefer points from the source domain that are more prominent in this direction

for the Domain Adaptation.

We propose a sampling strategy that is based on the data distribution. In a Hilbert space we

iteratively select mapped samples from a given document collection that are most similar to the

another document collection. For µp2 the expectation functional for the document collection C2

mapped in an RKHS, the difference

‖µp2 −
1

M ′
∑

wd∈S′⊂C1

φ(wd)‖2H

estimates the difference of a subset of M ′ samples from document collection C1 and another

document collection C2. Similar approaches are proposed by [CWS12]. The authors showed

that the sampling strategy introduced by [Wel09] can be used to match empirical and true dis-

tributions in an RKHS. This is analogue to our approach of matching distributions to find linear

factors. The difference lies in how we extract the factors, respectively the subspace spanned

by the factors. Here, we consider the dual case and describe the subspace by the document

mappings into an RKHS. Starting with an appropriate ω0, we select points by the following

methodology:

wdj = argmaxwd∈C1\S′〈ωj , φ(wd)〉 (7.4)

S′ = {wd1 , · · · ,wdj}
ωj+1 = ωt + Ep2 [φ(wd)]− φ(wdj ).

For deciding when to stop the sampling, we monitor maxwd∈C1\S′〈ωj , φ(wd)〉. As soon

as we have only data points from the source data set left such that the distance in distribution

no longer decreasing, we stop. Hence, we sample points such that the empirical distributions of

samples and the target data are minimal. The picture on the right of Figure 7.5 shows an example

of the course of the MMD of the samples from the source domain (electronic reviews) and the

target domain (DVD reviews). We sample as long as the MMD decreases to find all points that

make the distribution similar. This bewares us to sample points that make the two distribution

dissimilar.

For µp2 = 1
Mt

∑

wdi
∈C2

φ(wdi), our sampling strategy minimizes

E = ‖µp2 −
1

M ′
∑

wdj
∈S′

φ(wdj )‖2H .
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To see this, we rewrite

E = 〈µp2 , µp2〉 −
2

M ′
∑

wdj
∈S′

〈µpt , φ(wdj )〉+
1

M ′2
∑

wdi
,wdj

∈S′

〈φ(wdi), φ(wdj )〉,

with S′ = {wd1 , · · · ,wd′
M
}. Since 〈µpt , µpt〉 is constant, minimizing E is the same as maxi-

mizing 2
M ′

∑

wdj
∈S′ 〈µpt , φ(wdj )〉 − 1

M ′2

∑

wdi
,wdj

∈S′ 〈φ(wdi), φ(wdj )〉. Multiplying the last

expression by M ′ results in the greedy sampling as defined above when we set ω0 = µp2 . This

means the strategy matches the empirical distribution of the target samples with the empirical

distribution of the subset of the samples from the source distribution.

Our proposed sampling strategy can still result in a large number of points from the source

distribution. We further propose to combine the selection strategy and the Domain Adaptation

on a subspace by random features of dimension κ. This enables us to perform the Domain

Adaptation task in the linear space spanned by the random Fourier bases of the random features

as defined above.

We define MMDω similar to MMD in Equation 7.2 except that the kernel evaluations are

replaced by the inner products of the random features. Since MMDω ∈ [−8, 8], we can apply

Hoeffding’s inequality to bound the difference to the true MMD by

P (|MMD2
ω −MMD2| ≤ ǫ) ≤ 2e−κǫ2/128.

Due to linearity of the expectation we have EωMMDω
2 = MMD2 and from the definition of

the random features we have k(wdi ,wdj ) = Eω[zω(wdi)
′zω(wdj )]. All together results in the

bound.

7.4. Evaluation

We test the proposed method to find projection matrices by projection based regularized factor

models on several corpora with different document collections. First, we use the Die Zeit Maga-

zine corpus and the Wikipedia corpus with the discussion pages to compare two text collections.

We apply a projection base regularization to find a subspace that is suited to explain both text

collections in the vector space spanned by the Word-Vectors. We call this subspace a latent

subspace since it is spanned by latent factors. Further, we use the Amazon review corpus con-

taining reviews [BDP07] about products from the categories books (B), DVDs (D), electronics

(E) and kitchen (K). For these corpora, we evaluate the results of the regularization qualitatively

by investigating the vectors space and the Word-Vectors.

Further, we use the Amazon reviews to perform a quantitative analysis of the regularization.

To quantitatively estimate the quality of the regularization, we perform a classification of the

reviews with respect to its sentiment given in the dataset. Additionally, we use Reuters-21578

data [LYRL04]. It contains texts about categories like organizations, people and places. For

each two of these categories a classification task is set up to distinguish texts by category. Each

category is further split into subcategories and different subcategories are used as source and
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target domains. We denote the categories Organization by C1, Places by C2 and People by C3.

The third dataset is 20 newsgroups text dataset 1. We use the top-four categories (comp, rec, sci,

and talk) in the experiments. Again, we set up a classification task for each pair of categories.

Each category is further split into subcategories and different subcategories are used as source

and target domains; each such configuration is denoted by Confi. Documents of categories comp

and rec shall be distinguished in Conf1, comp and sci in Conf2, comp and talk in Conf3, rec and

sci in Conf4, rec and talk in Conf5, and sci and talk in Conf6.

7.5. Qualitative Results

In order to qualitatively analysis the regularization by moment matching on a subspace, we in-

spect projections in the vector space of the Word-Vectors. An advantage of using linear projec-

tions to find low-dimensional latent feature representations for Domain Adaptation is that they

are interpretable. The projection is performed in the vector space that is spanned by the words.

Hence, the projection in the individual dimensions corresponds to the word adaptation required

to make two domains similar in distribution. The Word-Vectors are rotated and stretched, where

the stretching is limited due to the regularization on the feature vector sizes. The amount of

rotation in the vector space in certain dimensions tells how much individual words need to be

adapted (of weighted). We can gauge how strongly individual words need to be adapted by

inspecting the magnitude of the rotation in the vector space in the corresponding dimension.

Figure 7.6 illustrates this concept with an artificial example. In two dimensions of a vector

space, Word-Vectors of two domains from different document collections are plotted. Each

axis displays the normalized term frequency values in one component; each component tells

the frequency of a certain word in a document multiplied by a normalization term. The SGD

on the Stiefel manifold method finds latent subspaces such as the diagonal line in the figure.

Projecting the vectors from both domains onto this space via the found projection matrix P
implies rotating the Word-Vectors. The vectors for word 1 and word 2 are rotated to bridge

domains. The average rotation required for the red circles is lower than the average rotation

required for the blue circles. Hence, although both words are important to bridge domains,

word 2 is more different in distribution in the two domains than word 1. If we find little or

no rotation in some dimensions, we conclude that the corresponding words are less different

distributed. In the experimental section, we explore this concept on concrete real-world results.

7.5.1. Lexicographic Varieties across Social Media and Press Media

In the first experiment, we compare two document collections with different writing styles. From

the social media corpus of Wikipedia talk pages, we retrieve postings containing the word Krise

(crisis). Similar, we retrieve snippets from articles from the Die Zeit magazine containing the

word Krise. We want to investigate the similarities and dissimilarities in the usage of this word

in the document collections. Initially, we extract 3 topics from each document collection by the

attentional topic model to get an overview. In Table 7.1, we show the topics extracted from the

collections.

1http://qwone.com/˜jason/20Newsgroups/
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Figure 7.6.: Toy example for informativeness of the projections for variety linguistics: Word-

Vectors with frequency values from text documents Domain 1 and Domain 2 are

rotated into a common latent feature; the rotation magnitude represents how strongly

the words need to be adapted to make the domains similar.

From the figure, we learn that military conflicts like the Israel-Lebanon war 2006 or the an-

nexation of the Krim in the Ukraine by Russia 2015 are highly discussed in the Wikipedia talk

pages. On the other hand, the news paper articles from the Die Zeit magazine primarily speak

about the financial and European crisis. In the different document collections we have a clear

dissimilarity in the usage of the word Krise (crisis). The Israel-Lebanon war is only in Wikipedia

discussions a topic. Nonetheless, there are also similarities. The Euro crisis for instance is a topic

in both collections.

Next, we perform the subspace based regularization to extract a subspace where both text

collections follow a similar distribution as explained above. We sample documents from the

Wikipedia talk pages and the Die Zeit magazine and perform SGD on the Stiefel manifold to

minimize the optimization from Equation 7.1. The resulting projection matrix describes the

projection onto a latent subspace spanned by the factors. To extract these factors we inspect the

matrix and use the corresponding column vectors as the latent factors. Based on these factors,

we calculate the ranking list of the top 10 words with respect to each factor as described in

Section 3.1.1. In Table 7.2, the top ranked words a reported. Comparing the top words from

the factors with the topics shown in Table 7.1, we see that the regularized factors cover main

subjects from both document collections.
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Topics from Wikipedia discussions

Topics from Die Zeit Magazine

Table 7.1.: Three topics extracted from Wikipedia discussion pages and news article from the

Die Zeit magazine that contain the word Krise. Top: In Wikipedia discussions the

focus is on military crisis. Bottom: In the news article the financial crisis is more

prominent.

”Factor 1” ”Factor 2” ”Factor 3” ”Factor 4” ”Factor 5”

”Geschichte” ”Israel” ”Euro” ”Ukraine” ”Banken”

”Ukraine” ”Libanon” ”Milliarden” ”Russland” ”Euro”

”Krim” ”Jul” ”Eurozone” ”Konflikt” ”Krieg”

”Google” ”Versionen” ”Euroraum” ”Krim” ”Meinung”

”Annexion” ”Unterschied” ”Griechenland” ”Ostukraine” ”Beitrag”

”Banken” ”Diskussion” ”Google” ”russische” ”Krim”

”Euro” ”Krieg” ”Waehrung” ”Kiew” ”Frage”

”Merkel” ”Israelisch” ”Laender” ”Euromaidan” ”Geld”

”klar” ”Libanesischer” ”Staaten” ”Kategorie” ”Geschichte”

”Regierung” ”Konflikt” ”Bank” ”ukrainischen” ”Problem”

Table 7.2.: Top ranked words for factors extracted from Wikipedia discussions and the Die Zeit

news articles containing the word Krise (crisis) by a factor model with projection

based regularization.

To qualitatively measure the projections for the distribution matching, we calculate the amount

of rotation the projection induces in the vector space for each word. To amount of rotation is

calculated by

‖P ′wi‖22.
This is the length of the word wi represented as Word-Vector wi projected onto the latent sub-

space. See for example Figure 7.6. This value can be interpreted as the amount of rotation of

Word-Vector wi when applied to projection matrix P . The more rotation, the more important is
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”Max rot.” ”Closest” ”2nd closest” ”3rd closest”

”Ukraine” ”Russland” ”Ostukraine” ”Kiew”

”Euro” ”Milliarden” ”Banken” ”Griechenland”

”Konflikt” ”Krieg” ”Bezeichnung” ”Ostukraine”

”Israel” ”Libanon” ”Jul” ”Versionen”

”Krieg” ”Konflikt” ”Bezeichnung” ”Annexion”

”Libanon” ”Israel” ”Jul” ”Versionen”

”Versionen” ”Jul” ”Unterschied” ”Libanon”

”Jul” ”Unterschied” ”Versionen” ”Israelisch”

”Krim” ”erklaert” ”Wort” ”Berlin”

”Unterschied” ”Jul” ”Versionen” ”Israelisch”

Table 7.3.: Words that face maximum rotation when projected onto the latent subspace extracted

by a projection based factor model on Wikipedia discussion and Die Zeit articles.

First column: Words most adapted to make Wikipedia discussions and Die Zeit arti-

cles similar in distribution. Columns 2-4: Closest words in the subspace spanned by

the factors in terms of Euclidean distance.

this word to make the two document collections similar in distribution.

Further, we estimate the closest words in term of Euclidean distance in the latent subspace to

the most important words. This can be used as a similarity measure:

sim(w1, w2) ∝ ‖P ′w1 − P ′w2‖22.

In Table 7.3, we report the words that are most important for making the document collections

more similar. In the first column, the words that are most rotated by the projection are reported.

Here, military related words are most prominent. In the remaining column, we report those word

that are most similar to the words that have been adapted the most by the projection.

Finally, we investigate how the two document collections get more similar in distribution in

the subspace. In Figure 7.7, we plot how the projection matrix rotates words in terms of Word-

Vectors.

7.5.2. Semantic Varieties in Social Media

Similar to the first experiment, we extract subspace based regularized factors that match the

distributions of two collections of Amazon reviews. In Figure 7.8 we plot for two words the

TF-IDF values in the vector space of the Word-Vectors from Amazon reviews about books (the

source domain) and electronics (the target domain). The top figure shows the TF-IDF values

that correspond to the words professional and interesting as Word-Vectors from both domains.

The bottom figure shows the TF-IDF values that correspond to the words display and author.

The Word-Vectors from the book reviews are represented by blue crosses and the Word-Vectors

from the electronic reviews are plotted as red circles. In each figure, the left plot shows the

Word-Vectors that correspond to the words before projection, and the right plot shows the Word-

Vectors after projecting them with the projection matrix we found with the proposed method.
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Figure 7.7.: Word-Vectors with frequency values in the original feature space (left) and projected

space (right), for the adaptation of the words “Libanon” and “Israel” (top), and

“Banken” and “Euro” (bottom).

We see that the words professional and interesting are important for the Domain Adaptation

since the corresponding Word-Vectors are rotated in the vector space. The found projection

matrix makes the corresponding components of the Word-Vector also more similar in the latent

feature representation. This makes sense, since both words represent a common positive conno-

tation; they are only differently distributed in the two original domains. On the other hand, the

conceptually orthogonal words display and author are less important for Domain Adaptation:

there is only little rotation of the Word-Vectors in the corresponding components. This backs up

the hypothesis that the found projections help interpreting the adaptation needed to bridge the

given domains of Word-Vectors.

To further investigate the informativeness of the projections learned for variety linguistics,

we visualize the words in a 2-dimensional map. We use the method of Stochastic Neighborhood
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Figure 7.8.: Word-Vectors with frequency values in the original feature space (left) and projected

space (right), for the adaptation of the words “professional” and “interesting” (top),

and “display” and “author” (bottom).

Embedding (SNE) by [vdMH08]. This methods models the joint probability of two wordswi, wj

as p(wi, wj) ∝ e−‖xi−xj‖2 for xi,xj low-dimensional feature representations of the two words

by SNE.

In Figure 7.9 we visualize positive adjectives before and after projection with the optimal

projection matrix for Domain Adaptation in the same 2-dimensional space for reviews from

books and electronic articles. The distances between the adjectives gets smaller after projecting.

For instance the words perfect and useful are much closer after projection compared to the

original data. The word perfect appears in 54 reviews of books but in none of the reviews

of electronic articles. The word useful appears in 106 reviews of electronic articles but only in

54 reviews of books. This distributional mismatch can be seen in the distance of the words in

the original space. Clearly, the new feature representation in terms of the factors by the optimal
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Figure 7.9.: Visualization of positive adjectives before and after projection in the space extracted

by the method SNE.

projection matrix results in smaller Euclidean distance and hence larger joint probability of the

two words.

7.6. Quantitative Results

To quantitatively evaluate the proposed factor models with regularization to match document

collections, we estimate how well the subspace spanned by the factors transfer information from

one collection to another in terms of a classification task. We quantify how good possible docu-

ment labels from one document collections can be classified using another collection as training

data. This is a Domain Adaptation task that evaluates the subspace spanned by the factors by

a text classification quality. For example if we use reviews for electronic appliances with la-

bels about their sentiment. We could estimate the quality of the extracted factors by a classifier

for unlabeled review about DVDs for example. When the dissimilarity increases between texts

from the labeled data set and the texts we want to classify, expected performance decreases.

[BBC+10] showed that the expected error on a data set A of a classifier trained on a data set B
correlates positively with the distributional difference between the data sets. The variety linguis-

tics task is to find common distributional ground between data sets. The quantitative evaluation

is done by estimating the quality of classifier trained on one data set and applying it on another.

To estimate the quality of the regularized factors in terms of Domain Adaptation, we estimate
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the quality of a document classification using the factor representation of the documents. For

two document collections with difference distributions of the Word-Vectors and document labels

like sentiments or time stamps, a subspace is extracted that is spanned by factors from the above

mentioned regularized factor model with distribution matching. All Word-Vectors are projected

into the corresponding factor representation and a classifier is trained on one collection and

applied the another collection as test with Nte documents.

The prediction quality is estimated by accuracy:

accuracy =
#corr

Nte
,

for #corr the number of correctly classified documents from the test document collection. The

accuracy calculates how good a classifier predicts the document labels.

We compare our proposed regularized factor model by SGD on the Stiefel manifold using

exponential maps (Stiefel) and projections based on QR-Decomposition (Projection) with five

state-of-the-art Domain Adaptation methods: covariate shift adaptation by Kernel Mean Match-

ing (KMM) by [HSG+07a], Transfer Component Analysis (TCA) by [PTKY09], SGD on the

Grassmann manifold (GrExp) by [BHLS13], Gradient Flow Kernel (GFK) by [Gra12] and Joint

Distribution Adaptation (JCA) by [LWD+13].

All experiments were repeated several times; the reported accuracy values correspond to the

smallest costs reached during the optimizations. The start points for the optimization are uni-

formly drawn from the Stiefel manifold. The SGD finds a projection matrix into a p-dimensional

latent space in the vector space of the documents that is best suited for Domain Adaptation from

the source to the target domain. For all experiments we set the dimension q = 100 for all meth-

ods and the weight λ to 5. These values have proven empirically to perform best overall data

sets; additional, we show a sensitivity analysis on these two parameters. Unless stated other-

wise, we let the SGD perform 1000 steps, after which all experiments showed convergence. We

also investigate how the dimension q influences the quality of the Domain Adaptation for the

subspace based methods. Although we get better results for higher dimensions on some data

sets, the relative order of the methods based on Accuracy does not change.

We project all sampled documents onto the new feature representation, and train an SVM

classifier on the source documents (after projection) and their labels only. Finally, we use labels

for the target domain to estimate the Accuracy of the classifier on the target domain (after pro-

jection). The labels from the target domains are only used to estimate the performance on the

target domain. We use an RBF kernel for the SVM with the meta parameter γ. The reported

accuracies are the highest ones found by a grid search over the two parameters γ for the kernel

and C for the misclassification penalty for the training of the SVM.

7.6.1. Linear Domain Adaptation

In the first experiment, we use documents belonging to one designated domain of given docu-

ment collections as source domain and a different domain as target domain. For example, we

use DVD reviews as source domain and book reviews as target domain. On the Amazon dataset,

we experiment with all possible choices for source and target domain. On the Reuters and the

20 newsgroups dataset, we configure the target and source domains as explained above. We
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Table 7.4.: Accuracies on the Amazon reviews, performing Domain Adaptation from one source

domain to one target domain. X→Y means we train on reviews from X and test the

classifier on reviews from Y.

E→D E→B E→K D→E D→B D→K

KMM 64.7 65.2 80.3 73.7 69.55 77.2

TCA 68.7 70.7 81.8 70.7 74.3 74.1

GrExp 61.8 61.8 66.2 58.2 66.0 58.8

GFK 59.8 59.3 68.2 59.4 56.3 61.2

JCA 71.0 67.2 80.8 71.6 76.6 75.4

Projection 75.0 73.7 77.2 67.6 71.7 71.2

Stiefel 75.2 75.0 81.4 75.0 78.9 76.2

B→E B→D B→K K→E K→D K→B

KMM 73.0 69.55 73.8 76.7 67.8 63.7

TCA 68.0 71.2 69.6 83.9 73.5 74.6

GrExp 57.0 59.6 59.2 62.2 60.4 60.4

GFK 60.4 58.5 61.7 66.2 62.7 60.5

JCA 70.8 73.8 75.7 77.4 71.0 62.6

Projection 66.0 71.5 68.2 79.8 78.5 74.1

Stiefel 73.4 78.1 76.8 83.3 78.9 76.2

perform SGD on the Stiefel manifold to get an optimal projection matrix. Here, we use both

domains but no labels. Then, the reviews from both domains are projected into the new low-

dimensional latent feature representation. A Support Vector Machine (SVM) is trained on the

projected source domain reviews and applied on the projected target domain reviews.

In Tables 7.4 and 7.5 we report the results of the first experiment. The SGD on the Stiefel

manifold results in a new feature representation for Domain Adaptation with the highest accu-

racies over all domains. KMM, TCA and GFK also show good results on some of the domains,

but on average they deliver worse accuracies than SGD on the Stiefel manifold. On the Reuters

dataset, Stiefel outperforms KMM and TCA. On the 20 newsgroups dataset, Stiefel outperforms

TCA and GrExp. The optimization on the Grassmann manifold has the worst performance of all

methods tested.

Comparing the projection and exponential map on the Stiefel manifold, we see differences on

all data sets. On the Amazon dataset and the Reuters data set, the optimization with exponential

map performs much better.

To investigate the quality of the SGD solution, we perform additional experiments. We com-

pare SGD to standard gradient descent (GD1) with random starting points. Further, we use the

optimal projection matrix P ∗ found by SGD as starting point for a gradient descent (GD2). The

second setting serves to illustrate that the optimum found by SGD cannot improve much more.

The rationale behind using SGD is, besides its applicability to large data sets, that the random

behavior at the start of the SGD process makes its less prone to get stuck in local optima. While

GD will stay in the first local optimum it finds, SGD still can escape the trap and end up in a

possibly better local optimum. This is important, since our optimization problem is non-convex:

157



7. Use Case Variety Linguistics

Table 7.5.: Accuracies on the Reuters and 20 newsgroups datasets

Reuters

C1→C2 C2→C1 C2→C3 C3→C2

KMM 60.1 56.8 58.5 56.2

TCA 53.0 51.5 58.1 55.8

GrExp 65.0 65.0 70.0 56.8

GFK 72.9 66.1 68.7 66.4

JCA 77.4 80.7 75.3 72.8

Projection 70.0 69.3 72.9 58.2

Stiefel 84.2 80.9 74.7 62.4

20 newsgroups

Conf1 Conf2 Conf3 Conf4 Conf5 Conf6

KMM 96.8 84.4 98.4 91.2 98.5 95.3

TCA 94.4 87.7 96.1 90.1 94.0 88.9

GrExp 88.8 86.4 98.6 87.8 96.7 89.3

GFK 84.0 74.6 91.9 72.4 86.5 79.0

JCA 99.7 73.6 55.5 73.0 96.8 88.6

Projection 98.7 87.1 99.4 96.2 99.6 96.4

Stiefel 99.4 93.0 99.3 96.6 99.5 97.4

Table 7.6.: Minima reached by SGD and GD with random starting points (GD1), respectively

starting from the SGD results (GD2).

SGD E D B K

E 0 0.0024364 0.0021104 0.0046920

D 0.0028555 0 0.0004567 0.0033506

B 0.0020263 0.0004198 0 0.0027398

K 0.0044783 0.0034033 0.0026004 0

GD1

E 0 0.0031001 0.0033133 0.0025170

D 0.0028865 0 0.0012749 0.0034631

B 0.0026958 0.0015223 0 0.0034756

K 0.0024969 0.0034155 0.0035037 0

GD2

E 0 0.0024360 0.0021101 0.0046920

D 0.0028553 0 0.0004560 0.0033503

B 0.0020254 0.0004194 0 0.0027393

K 0.0044782 0.0034032 0.0026000 0

while the MMD is convex in the Hilbert space induced by the corresponding kernel, it is not

convex with respect to a projection matrix of the Word-Vectors. All experiments are repeated 10

times and the results presented are the lowest minimum found for the corresponding methods.
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Table 7.7.: Maximum Mean Discrepancy (MMD) measure on the Amazon review category do-

mains.

E D B K

E 0 0.0177 0.0207 0.0067

D 0.0177 0 0.0174 0.0173

B 0.0207 0.0174 0 0.0200

K 0.0067 0.0174 0.0200 0

In Table 7.6, we report the optimal values found by minimizing only the linearized MMD (see

Equation 7.2.3) using the gradient methods. On the top of the table, we show the optima found

by SGD using row X as source domain and column Y as target domain. The second table from

top shows the optima found by gradient descent using random starting points (GD1). The table

at the bottom shows the optima found by gradient descent using the result from SGD as starting

point for optimization (GD2).

Comparing the different gradient methods, SGD finds always a better local optimum than GD1

except for the categories kitchen (K) and electronics (E). These two text collections are already

similar in terms of MMD, as we will discuss in the next section. We assume that this closeness

in distribution results in fewer local minima. When we start a standard gradient descent from the

result found by SGD (GD2), we see that only rarely we can find an only slightly lower MMD

(at the seventh position after decimal point).

Table 7.4 shows the accuracies on the target domains using documents from only one category

as source domain. Choosing the right category might result in better performance. In the ex-

periments on the Amazon reviews data, we find always one category that outperforms the other

categories. For instance, for the categories kitchen (K) the best results are attained when we use

the documents from the category electronics (E) as source domain. All other categories cannot

bring equivalently good results when employed as source domain.

To investigate this behavior we calculate the Maximum Mean Discrepancy as defined in Equa-

tion (7.2) to estimate the difference of the distributions of the target and source domains. Ta-

ble 7.14 shows the MMD values using documents from certain categories. For the category

electronics (E), the documents from the category kitchen (K) are closest in distributions. Com-

paring this result with the accuracies in Table 7.4 on the target domain with documents from

category electronics, the documents from category kitchen performs best for Domain Adapta-

tion. The documents from reviews about DVDs (D) have similar MMD values among the other

categories. This is also reflected in the accuracies above that show no clear category that per-

forms best as source domain. Also, the category kitchen behaves similar to electronics, and

books similar to DVDs.

Hence, employing prior knowledge of the target domain to choose the right source domain

would be beneficial. Since in many cases this information might not be available, one could

resort to using documents from a mixture of all categories but the one used as target domain. In

the next experiment, we investigate this setting on the Amazon dataset. The documents from a

designated category (E,D,B,K) are used as target domain. From this category we use only the

documents. From the other categories we use documents and labels as source domain as in the
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Table 7.8.: Accuracies on the target domains using all the other categories as source domain.

The column with label X corresponds to the Domain Adaptation task (E ∪D ∪B ∪
K\X)→ X

E D B K

KMM 81.0 75.2 72.5 83.9

TCA 81.4 77.8 74.7 84.9

GrExp 68.7 66.3 62.2 70.7

GFK 68.7 66.3 62.2 70.7

JCA 77.0 72.7 74.9 82.3

Projection 81.0 75.1 72.7 80.8

Stiefel 82.0 78.6 76.3 83.7

Table 7.9.: Accuracies on the target domains using all the other categories as source domain

using cross validation for the optimal dimension parameter. The column with label

X corresponds to the Domain Adaptation task (E ∪D ∪B ∪K\X)→ X

E D B K

TCA 81.4 78.3 75.4 85.2

GrExp 68.7 66.3 62.2 70.7

GFK 81.0 77.5 76.3 82.7

Stiefel 82.3 78.4 77.0 85.3

experiments above. Since the source documents stem from three times as many categories as

before, in this experiment we let the SGD run for three times as many steps.

In Table 7.13 we report the accuracies on the target domains for one category using all other

categories as source domains. The overall performance on the subspace found by the opti-

mization on the Stiefel manifold is better than KMM and TCA. Again, the optimization on the

Grassmann manifold results in the worst results. Comparing the exponential maps to the pro-

jections, the computationally more expensive exponential maps find more optimal subspaces for

Domain Adaptation. This shows that also on a mixture of different categories as source domain,

Stiefel manifold optimization results in suitable projection matrices for Domain Adaptation.

Additional, we perform an experiment with cross validation for the dimensionality of the sub-

space for the methods: Transfer Component Analysis (TCA), SGD on the Grassmann manifold

(GrExp), Gradient Flow Kernel (GFK) and our approach (Stiefel). We cut off 10% of the target

data to find the optimal dimensionality by maximizing the accuracy. On the remaining data, we

calculate the final accuracies. The results are reported in Table 7.9. The SGD on the Stiefel

manifold results in the highest accuracies, TCA and GFK perform slightly worse.

Convergence

The advantage of SGD directly on the Stiefel manifold is that we avoid additional projection

steps after each SGD step to satisfy the orthogonality constraint of the matrices. This additional
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Figure 7.10.: Convergence of the costs from the optimization problem after a number of docu-

ments have been seen. As target domain we use electronic reviews and the source

domain consists of the kitchen reviews. On all other possible settings of target and

source domains, we get similar convergence results.

step will induce errors after each SGD step. Consequently, we expect slower convergence when

we perform only projections onto the Stiefel manifold.

Next, we investigate the convergence of the stochastic gradient descent on the Stiefel mani-

fold. We show the costs of the optimization function for the target domain of electronic reviews.

As source domain we use reviews about kitchens. Figure 7.10 plots these costs depending on the

number of documents from both the target and source domain for the optimization. We report the

course of the costs during the optimization of the Stiefel manifold using both a projection by an

QR-decomposition onto the manifold and the exponential map that moves along the manifold.

Figure 7.10 shows a fast convergence for both methods. The exponential map has a faster

convergence than the projection method, from having seen only few documents onwards. The

convergence is quite stable for both methods. The optimization with exponential maps reaches

lower costs than the optimization with the projection. This shows that exponential maps can

indeed result in better optimization performance using the proposed cost function: optimiza-

tion on the Stiefel manifold with exponential maps converges faster and reaches a lower cost.

This matches the results from the previous experiment that showed better performance on some

domains when using exponential maps compared to projections.

Parameter Sensitivity Analysis

The proposed optimization method depends on the dimension of the latent feature representation

and the regularization parameter in the cost function. While in the main experiments we used

fixed values for the dimension and the regularization parameter, here we investigate different

values in a sensitivity analysis.
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dimensionality q E D B K C1→C2 C2→C1 C2→C3 C3→C1

40 77.0 75.9 73.3 79.9 76.5 70.7 66.8 59.0

60 72.2 66.3 70.8 75.4 75.7 70.6 65.3 58.6

80 76.3 74.1 72.2 78.3 73.2 72.3 69.8 58.1

100 74.8 73.5 72.4 80.0 72.6 72.4 72.9 58.2

dimensionality q Conf1 Conf2 Conf3 Conf4 Conf5 Conf6

40 97.7 92.5 99.9 97.3 99.2 97.0

60 99.6 92.0 99.6 97.7 99.5 98.2

80 99.2 90.8 99.7 96.3 99.7 97.4

100 99.4 91.7 99.5 95.8 99.6 98.2

Table 7.10.: Accuracies on the projected target domain onto subspaces of various dimensions q
for the target domains. The optimization is on the Stiefel manifold. The classifier is

trained on the source domains projected onto the corresponding subspace. The first

four columns with label X corresponds to the Domain Adaptation task on Amazon

reviews (E ∪ D ∪ B ∪ K\X) → X; the next four columns correspond to the

domain adaptation task on Reuters; the last six columns correspond to the domain

adaptation task on the 20 newsgroups dataset.

The dimensionality of the latent feature representation and hence the used manifold M(q, p)
is a meta parameter that has to be chosen beforehand. It is clear that for a good performance we

need a large enough number of dimensions to capture all necessary information. On the other

hand, the higher the dimensionality, the more computation is needed to estimate the gradient

steps. Beside this, too high-dimensional representations might introduce too much variance

from the different domains. In Table 7.10 we show the accuracies on the target domains in the

feature representations from the projection matrices found by stochastic gradient descent on the

Stiefel manifold for various dimensions q. The results show that higher numbers of dimensions

generally but not consistently correspond to slightly better accuracies. Hence, without labels for

the target domain, the choice should be in favor of large dimensions. In case we have labels for

the target domain, we can perform cross validation to find the optimal parameter q.

In the experiments so far, we used the maximum mean discrepancy and the regularization on

the norm for the optimization with a fixed parameter λ = 5. Here, we analyze the difference

of the Accuracy from the projections that have been found by stochastic gradient descent with

various weights on the regularization of the norm. Table 7.11 shows the accuracies for various

weights λ. We see that the regularization of the norm is vital for the performance of the domain

adaptation. Without the regularization, the found projection is not able to capture enough infor-

mation from the domains for a good classifier on the target domain. Higher weights result in

better performance on average. This means, that the regularization on the norm helps keeping

enough necessary information from the domains to train a good classifier for the target domain.
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weights λ E D B K C1→C2 C2→C1 C2→C3 C3→C1

0 64.7 62.3 62.2 64.4 76.5 70.7 66.8 59

1 79.1 71.8 70.9 80.8 74.9 70.8 69.9 58.4

4 78.9 73.2 73.9 82.3 72.4 71.6 71.3 58.8

5 79.4 73.6 74.6 81.7 75.7 70.8 71.0 59.4

10 78.9 73.6 72.8 81.5 73.4 70.6 71.1 58.8

weights λ Conf1 Conf2 Conf3 Conf4 Conf5 Conf6

0 92.4 82.2 98.8 78.3 94.0 87.7

1 99.3 89.9 99.5 97.4 99.5 98.5

4 99.1 89.4 99.4 96.6 99.5 96.4

5 99.7 87.9 98.9 96.5 99.7 96.4

10 98.8 86.8 99.5 97.1 99.4 97.0

Table 7.11.: Accuracies on the projected target domain onto subspaces with various weights λ
in the optimization problem. The optimization is on the Stiefel manifold. The clas-

sifier is trained on the source domains projected onto the corresponding subspace.

The first four columns with label X corresponds to the Domain Adaptation task on

Amazon reviews (E ∪ D ∪ B ∪ K\X) → X; the next four columns correspond

to the Domain Adaptation task on Reuters; the last six columns correspond to the

Domain Adaptation task on the 20 newsgroups dataset.

7.6.2. Non-linear Domain Adaptation

So far, we extract only linear factors. Next, we use kernel methods to extract subspaces in an

RKHS that are spanned by non-linear factors. The quality of these factors are again estimated

by the classification quality in a Domain Adaptation task,

For the non-linear subspace for Domain Adaptation, we extract the first 100 principle com-

ponents from the kernel matrix K for all samples from the sampled source domain data and the

target domain. This means, for each wdi ,wdj ∈ {T ∪ S′} we have K = (k(wdi ,wdj ))i,j .
We project all data samples (all source and training data) onto the subspace spanned by the

extracted components and train a classifier on the source domain in this subspace. Next, we

apply this classifier on the target domain in the subspace. We compare the sampling strategies

without and with random features (Sampling, Sampling+RF) with Transfer Component Anal-

yses (TCA) [PTKY11], Kernel Mean Matching (KMM) [HSG+07b], Gradient Flow Kernel

(GFK) [Gra12] and Nyström sampling (Nyström) [KMT12] that also uses random samples. For

TCA we also use 100 components. We use Gaussian kernels with optimized width parameter σ.

For the classification we train an SVM with optimized error weight. For the random features,

the results are mean values over 10 runs with random features of dimension 10.000.

The method by [GGS13] has the same objective as our sampling methods. They find those

source domain points that minimize the MMD to the target domain. Compared to our method,

the points are extracted by solving a quadratic optimization problem with constraints. This is

computationally challenging when we have large source domains. Moreover, they do not directly

select the points, they propose to learn weights of the points and remove those points that have
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Method org

vs.

places

places

vs.

org

places

vs.

peo-

ple

people

vs.

places

comp

vs.

rec

comp

vs. sci

comp

vs.

talk

rec

vs.

sci

rec

vs.

talk

sci

vs.

talk

KMM 60.1 56.8 58.5 56.2 96.9 84.4 98.5 91.2 98.5 95.4

TCA 85.4 80.5 76.5 76.5 94.5 87.8 96.2 90.2 94.1 88.9

GFK 72.9 66.1 68.7 66.4 84.1 74.7 91.9 72.5 86.6 79.0

Nyström 79 79.9 72.2 67.6 98.7 88.7 98.9 94.7 99 96.7

Sample 90 82 83.5 79.2 99.1 92 99.2 98.3 99 96.2

Sample

+ RF

84.7 82.9 85.5 77.3 98 88.4 98.7 91.7 98 93.7

Table 7.12.: Accuracies on the Reuters and 20 newsgroups datasets. We compare our proposed

greedy sampling methods (without and with random features) and projection with

Kernel Mean Matching (KMM) and Transfer Component Analysis (TCA), Gradient

Flow Kernel (GFK) and Nyström sampling (Nyström).

Method {D ∪B ∪K} →E {E ∪B ∪K} →D {E ∪D ∪K} →B {E ∪D ∪B} →K

KMM 81.0 75.2 72.5 83.9

TCA 81.4 77.8 74.7 84.9

GFK 68.7 66.3 62.2 70.7

Nyström 79.3 77.3 75.2 82.8

Sampling 82.4 79.1 77.2 85.2

Sample+RF 81.3 79.7 77.6 84.8

Table 7.13.: Accuracies on Amazon reviews using one product as target domains and all the

other domains as source domain. We compare our proposed greedy sampling meth-

ods (without and with random features) and projection with Kernel Mean Matching

(KMM) and Transfer Component Analysis (TCA), Gradient Flow Kernel (GFK),

the Landmark method (LM) with projection and Nyström sampling (Nyström) for

Domain Adaptation.

weights below a threshold. This threshold has to be chosen by hand. In the experiments we use

the same threshold as they have done in their experiments.

The results of the first experiment are shown in Tables 7.12 and 7.13. The projections onto the

components result in the best performances for all the domains. The subspace obviously covers

the important invariant parts of the data very well. Using random features to approximate the

kernel values results in the second best accuracies compared to the other methods.

Next, we explore how many source domain points have been chosen from which domain.

Figure 7.11 shows histograms of the selected data points from the source domain for the different

methods. The sampling strategy without and with random features and the GFK method uses a

similar amount of samples from the source domains. The histograms show that for each target

domain the methods have always one domain in the mixture of source domain where most of

the samples are drawn from. For sampling, there is always one clear domain from which the

method samples most from.
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Figure 7.11.: Histograms of the selected points from Amazon reviews by the different sample

strategy.

MMD E D B K

E 0 0.0177 0.0207 0.0067

D 0.0177 0 0.0174 0.0173

B 0.0207 0.0174 0 0.0200

K 0.0067 0.0173 0.0200 0

Table 7.14.: Maximum Mean Discrepancy (MMD) measure on the different domains from the

categories from the Amazon reviews.

To investigate this further we calculate the Maximum Mean Discrepancy as defined in Equa-

tion 7.2 to estimate the difference of the distributions of the target and source domains. Ta-

ble 7.14 shows the MMD values using reviews from the domains. For the electronics reviews

(E), the reviews about kitchens (K) are closest in distributions. Comparing this result with the

accuracies from above, on the target domain with reviews about electronics, source domain

kitchen performs best for Domain Adaptation. Similar results can be seen for the other domains.

Comparing the MMD of the domains with the sampled points from the last experiments, we see

that the sampling method chooses the source domain points that results in low MMD best.

Finally, we investigate the influence of the random features on the quality of the Domain

Adaptation. We perform several runs using different feature sizes. The plots in Figure 7.12

show a fast convergence already after some thousand random features. Experiments with random

features of dimension less than one thousand has let to poor performance. This might be due to

the slower convergence of the kernel matrix to the matrix of the inner products of the random

features in the norm. In the future we will investigate this further.

7.7. Conclusion

We interpret variety linguistics as Domain Adaptation tasks and propose to use SGD on Stiefel

manifolds to find a projection onto a latent subspace that is best suited to cover similarities

across text collections. We provide update rules that compel the SGD steps to remain on the

Stiefel manifold, and solve an optimization problem employing these steps. Since the Stiefel

manifold encompasses projection matrices on Word-Vectors, the results are interpretable: the
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Figure 7.12.: The classification accuracies using different numbers of random features. Left: the

Reuters dataset; right: 20 newsgroups dataset; bottom: Amazon reviews

importance of a word towards making the Domain Adaptation can be estimated by measuring

the rotation magnitude of the projection of that word, as is illustrated by Figure 7.8. Furthermore,

we have seen that in terms of quantitative evaluation, the proposed method (Stiefel method) per-

forms at least as good as or better than competing state-of-the-art Domain Adaptation methods;

optimization on the Grassmann manifold cannot compete (cf. Table 7.4). Kernel Mean Match-

ing and Transfer Component Analysis can deliver comparable accuracies, but these methods

are regularly outperformed by the Stiefel method as well (cf. Table 7.5). When increasing the

amount of domains from which source documents are taken, this behavior remains (cf. Table

7.13): accuracy of the Stiefel method is typically best or equivalent to best, while every com-

peting method performs sometimes equivalently and sometimes substantially worse. For variety

linguistics, the Stiefel method delivers interpretable results without substantial loss, and even

regularly to the benefit of accuracy. For variety linguistics with non-linear factor models, we

propose a selection strategy on samples from a source domain that are best suited for Domain

Adaptation to a target domain with a different data distribution. The samples are selected to keep

the structure of the target domain points while adding some structure from the source domain

points. Projecting onto the subspace of the selected samples and the target samples results in
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a subspace that is well suited for Domain Adaptation from the source to the target domain. To

apply this approach also on large scale data sets, we use random features to approximate kernel

values. On large digital corpora, we show that our method performs well on Domain Adaptation

tasks and variety linguistic tasks.
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Figure 8.1.: RapidMiner user interface. Left: Operators for data loading, pre-processing, Data

Mining methods, post-processing and data export. In the middle: Data Mining

process. Right: Properties and parameters of the process and the operators.

8. Software and Integration

In this chapter, we describe the software developed in the thesis. All methods that have been

used for the use cases are implemented in Java or Matlab. The code is publicly available on the

web page http://sfb876.tu-dortmund.de/auto?self=Software. In the next

section, we describe in detail the software and how it can be used to reproduce the use cases.

The software is used in corpus linguistic research and teaching at the TU Dortmund University

and the Mannheim University. Additionally, the methods have been integrated into modern lan-

guage resources that are used for linguistic studies. We start the software description with an

introduction to the Data Mining tool RapidMiner. RapidMiner is used and extended for corpus

linguistic tasks.

8.1. RapidMiner

The RapidMiner [HK13] is a Data Mining toolbox used to perform data analysis on different

data sources. RapidMiner offers the classical analysis and Data Mining steps from data retrieval

to data transformation and pre-processing, performance of analysis and Data Mining methods

169



8. Software and Integration

to evaluation methods, post-processing and visualization. Individual processing steps are per-

formed by so called Operators. The standard operators are separated into several categories and

are organized in an ontology represented as folder structure in the operator explorer view on the

left of the main screen as seen in Figure 8.1. The main categories of operators are:

• import/export operators: reading and writing of data

• data transformation operators: pre- and post-processing of data

• modeling: analytic and data mining methods on data

• evaluation operators: quality estimation of the modeling results.

The operators are compiled to a sequence of steps summarized in a so called Process. This

process defines a flow of input data to processing operators that output result data. In the middle

of the figure, an example process is shown with the execution order of the individual operators.

Starting with reading data as CSV-file, the data is pre-processed by transforming nominal to

numeric data. The modeling operator SVM builds a classification model that is applied on test

data additional read in. Finally, the Performance operator is used to evaluate the model by

standard measures. The operators have a number of parameters to be specified. On the right

of the figure, the Parameters panel is shown as input mask for all parameters. Clicking on an

operator, this panel shows the parameters that need to be set for this operator. Additional, a

description of each operator can be found on the Help panel. A general introduction into Data

Mining with RapidMiner can be found in the book [Nor12] by Matthew North.

8.2. Corpus Linguistics Plugin

The RapidMiner offers a convenient interface and a plethora of available analyses methods.

Compared to low level interfaces and libraries for different programming languages, Rapid-

Miner offers a more user friendly tool box. This makes the introduction of our methods more

easy for linguistic researchers with little knowledge in computer science. We implemented the

proposed latent variable methods as a plugin for the RapidMiner. For the different variants of

LDA, different operators are available. Besides standard LDA with Gibbs sampling and Vari-

ational Inference, supervised versions with Gaussian, Beta, Uniform and Gompertz distributed

document labels can be used for diachronic linguistic tasks. An implementation of LDA with

word features and word groups via special Laplace and Group-Sparsity inducing priors is avail-

able to integrate word informations. Some of the latent factor methods can be generated with

existing operators already available in RapidMiner. For example for LSA, the available operator

for a SVD can be used. For variety linguistic tasks, we provide an operator that extract latent

factors that match distributions of different document collections.

Additional to the latent variable methods, we also implemented a number of interfaces to the

language resources. To access the different corpora, operators to execute linguistic queries on

the different corpora at the Berlin Brandenburger Academia of Science are available. Besides the

standard corpora, we also provide access to the dictionaries and the GermaNet (the German ver-

sion of WordNet). To access the Wikipedia corpora, a TEI-reader is implemented thats extends a
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Figure 8.2.: Linguistic Query Operator as first step in a process to perform a linguistic task by

latent variable methods. For a given query, we retrieve KWIC-lists from a corpus.

standard XML-stream reader to process the Text Encoding Initiative (TEI) tags, see [BEG+12].

Finally, preprocessing operators provide methods for text transformations and text visualization.

In the next subsections, concrete examples for the use of the plugin are described. A reference

for the individual operators is given in the appendix.

8.2.1. Interface to Linguistic Resources

The first step to perform linguistic tasks with the Corpus Linguistics Plugin is the retrieval of the

data. The KWIC-lists or documents are extracted and internally represented as string. Standard

text documents can be opened by the Read CSV operator from RapidMiner. For the linguistic

corpora we implemented the Linguistic Query Operator as shown in Figure 8.2. The Linguistic

Query Operator provides access to the DWDS Core-Corpus of the 20th century, the Core

Corpus of the German text archive and the Die Zeit corpus of news articles from 1947 to 2014.

For a given linguistic query, the operator retrieves a number of concordances and generates an

example set that contains the texts, a time stamp and additional information about author and

source. The query is sent to a server at the Berlin Brandenburger Academia of Science and a Perl

script runs the query against a Dialing and DWDS Concordance (DDC) data base containing the

corpora, see [Sok03]. The KWIC-lists are returned as JSON1 files and the operator parses these

information and generates the results. Depending on the corpus additional information about the

genre of the corresponding documents are also available. Additionally, the position of the query

1http://www.json.org/
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Figure 8.3.: Result example set from Linguistic Query Operator for a linguistic query. For each

match of the query, we have an example with information about the match.

match in the retrieved snippet is given to efficiently identify to match. In Figure 8.4, we show

the resulting example set from the Linguistic Query Operator.

For corpora and documents in TEI format, the TEI Query Operator provides a stream reader

to process large files. Since these files are not indexed as the corpora from the Dictionary of the

German Language, we cannot pose linguistic queries. Instead, standard regular expressions can

be queried. For the main TEI formatted corpora, the Wikipedia articles and talk pages, the

operator retrieves matches of the regular expressions on sentence, paragraph or postings level.

These levels are semi-automatic annotated, see [ML14]. The operator itself implements an XML

based stream reader to iterate over the elements from the TEI file. The resulting example set has

the same schema as the example set from the Linguistic Query Operator.

To efficiently inspect the retrieved KWIC-lists, the Annotation Operator visualizes the text

snippets and highlights the matches in the texts. We can also add additional labels or attributes

to the texts to further annotated them. The operator generates a result as example set containing

the texts of the snippets and the additional annotations.

For the retrieval of information from the additional language resources like dictionaries and

WordNets, we implemented operators that can extract these information from local files (Word-

Net for instance) and retrieve them from the Dictionary of the German Language. The WordNet

Operator takes a word as parameter and extracts similar words from an existing WordNet in-

stance, given the path to the index, hyponyms and hypernyms for the data. The GermaNet

Operator works the same, but uses the GermaNet source provided by the Seminar für Sprach-

wissenschaften at University Tübingen. The retrieval of these information is done by a web

service at the Berlin Brandenburg Academia of Science via JSON files. The resulting example

set contains for the word of interest given as parameter, the hyponyms and hyperonyms with

additional examples and descriptions. Further, the WordProfiles Operator retrieves the word

profiles provided by the Dictionary of the German Language. These profiles contain words that

co-occur with a given word of interest and gives information about the relation between them,

see [DG13].

8.2.2. Text Processing

Before we can use the KWIC-lists for latent variable methods, we need to generate Word-

Vectors. With the Text Processing Plugin as provided by RapidMiner, text (general strings)

can be transformed into a Bag-of-Words and Word-Vectors. Given text in an example set, an
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Figure 8.4.: Annotation Operator and annotation environment. Given an example set from TEI

or Linguistic Query Operator, the snippets are visualized and the match is high-

lighted to inspect the results. Additional annotation can be added like a label.

internal data structure to represent the text is a generated. This data structure is called a Docu-

ment. These documents are further transformed into Word-Vectors containing word occurrences

and possible weights as TF-IDF. The text processing plugin offers additional methods to tok-

enize text by regular expressions or identification of words. Filtering operators can be used to

filter out stop words, large tokens or tokens with no characters. Additional pruning mechanisms

can be used to filter out words that appear in too many or too few documents. In Figure 8.5, we

show how the snippets are transformed into Documents by the Data to Documents Operator

and how we further generate Word-Vectors by the Process Documents Operator. Using the

Process Document Operator, we can use different tokenizers to separate the text into tokens and

prune words. The resulting example set contains each Document as Word-Vector in a table. In

the Word-Vectors there can be pure occurrence information or weighted values like TF or TF-

IDF values. We can choose between different methods to prune words. We can prune words

with a frequency high or lower threshold, that appear more often or less than a given number or

are below and higher a given rank.

8.2.3. Latent Topic Models

From the Bag-of-Words representation of the documents, we can use the sequences of word to-

kens for the extraction of topics by LDA. Our Latent Dirichlet Allocation operator takes the

texts as Word-Vector with pure word occurrences and extracts latent topics by Gibbs sampling.
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Figure 8.5.: Generation of Word-Vectors from example sets with a text attribute.

Figure 8.6.: Latent Dirichlet Allocation operator to extract latent topics from a document collec-

tion given as Bag-of-Words.
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Figure 8.7.: Extraction of latent factors via Singular Value Decomposition operator from Rapid-

Miner.

In addition, an operator that performs Variational Information for LDA is also available. Al-

though we implemented both variants, in our experiments we used Gibbs sampling that showed

good performance. For the Gibbs sampler, we need to specify how many iterations we want to

process. Further, the number of topics to be extracted and the meta parameters of the Dirichlet

priors need to by specified. For standard LDA, we un-check the supervised check box. For

sLDA like temporal topic modeling, we check the supervised check box and specify the label

distribution (Uniform, Beta, Gompertz). If we use sLDA, the input example set must contain a

label attribute additional to the Word-Vectors. For visualization of the results we check the dfr

check box and specify the path to the data folder for the DFR-Browser. Figure 8.6 shows the

Latent Dirichlet Allocation Operator in a process. The resulting example sets of this operator

contain the topic-distributions, the document-topic distributions and the estimated parameters

for the label distribution for sLDA.

8.2.4. Latent Factor Models

Using the Word-Vectors collected into a Term-Document Matrix, we can easily perform LSA via

a SVD. The RapidMiner operator Singular Value Decomposition extracts the singular values

and the singular vectors from an example set. This example set is used as numeric matrix. The

operator extracts only the left singular vectors. To extract the right singular vectors, we transpose

the data set by the Transpose operator and apply the SVD. Given the number of components

(factors to be extracted), the operator result is an example set containing the singular vectors and

an example set containing the singular values. In Figure 8.14, we illustrate the operator in an

example process.
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Figure 8.8.: Log-likelihood operator to calculate the likelihood of a test document collection

based on sequential Monte Carlo sampling.

8.2.5. Evaluation

Different methods to evaluate latent factor and latent topic models can be used via the Coherence

operator and the LDA Log-likelihood operator, respectively the LSA Log-likelihood operator.

The Coherence operator takes as input an example set containing word probabilities for topics

or factors as a result from the Latent Dirichlet Allocation and the SVD operator. We leverage the

Palmetto Toolbox [RBH15] to estimate the different coherence measures based on the top words.

From the word probabilities the most likeliest words (the number is given by a parameter) are

used for the coherences. To use this operator we need a Lucence-based index from a large text

collection that is used as reference. We use the Wikipedia articles to generate such an index that

contains coherence values using co-occurrences and relative frequencies. We calculated such

indices from German and English using the Palmetto library and the Wikipedia corpora from the

Institute of the German Language. The LDA/LSA Log-likelihood Operator need no additional

resources. We calculate the likelihoods of a test set of documents by Sequential Monte Carlo

methods. As input, the LDA Log-likelihood Operator takes a set of test documents as Word-

Vectors with occurrence data in an example set and the word-topic distributions resulting from

the LDA operator. The number of iterations specifies the number of Monte Carlo Samples for

the estimation of the likelihood. To reduce variance in the likelihood estimation, a number of

independent tests are performed. The result is an example set that contains for each test the log-

likelihood. The LSA Log-likelihood Operator takes as input an example set with Word-Vectors

as test input and the factor representation of the words as second input. This factor representation

are for example the left-singular vectors from the Term-Document Matrix extracted by a Singular
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Figure 8.9.: Coherence operator to estimate standard coherence measures using the Palmetto

library.

Value Decomposition. The LSA Log-likelihood Operator performs also Sequential Monte Carlo

methods but the probabilities are based on distances in the factor representation of the documents

and the words. As additional parameters, both operators can estimate joint likelihoods of the

documents and possible given labels like time stamps.

8.2.6. Results

The results from the latent factor and latent topic models can be use either in tabular or example

set form or in special formats for visualization. Using the results as it is given from the topic

models operators, we get two example set containing the topic-word distributions and document-

topic distribution. As additional attribute we report the most likeliest topic for each word and

each document in the example sets. For factor models using for instance Singular Value Decom-

position on the Term-Document Matrix, the factors are given as vectors in an example set and

can be used in similar ways as the results from the topic models. In the Figures 8.10 and 8.11,

the example sets from the results of LDA are shown as they are internally represented in Rapid-

Miner.

Additionally, we implemented an export of the results from the latent variable methods and

the corpora for visualization by the DFR-Browser from Andrew Goldstone2. To process the

documents from the corpus for information extraction needed for the visualization, we imple-

mented the Write Document Reference operator. As shown in Figure 8.12, from an example

2https://github.com/agoldst/dfr-browser
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Figure 8.10.: Document-topic distribution: For each document, one example contains the docu-

ment number, the distribution over the topics and the most likeliest topic (Topic).

Figure 8.11.: Topic-word distribution: For each word, one example contains the word, the word

id, the distribution over the topics and the most likeliest topic (Topic).

set containing texts with information about a title, author, publication date and source as at-

tribute information are saved locally where the visualization tool DFR-Browser finds them. The

DFR-Browser can be started as a web server and the visualization can be seen in web browser

like Firefox.

8.3. Diachronic Linguistics Process

To perform diachronic linguistic tasks, we use the Latent Dirichlet Allocation operator for sLDA.

From the linguistic corpora, we take the information about publication date to extract labels for

each document. The attribute date from the resulting example set from the TEI or Linguistic

Query Operator contains the time information as string. First, we need to convert this into a

numerical value by the operators Nominal to Date and Date to Numeric. Here, the concrete

date format (for example ”yyyy-MM-dd”) must be given and the we need to specify the time unit

into which we transform the date to numeric (for example years since 1900). This is illustrated

on the left in Figure 8.13 (most important operators are framed). After the extraction of the

information for visualization by the Write Document References operators, we select the text

attribute text attr and the date attribute by the Select Attribute operator and process the text

to Word-Vectors by the text processing operators. Before the date attribute can be used for
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Figure 8.12.: Write Document Reference operator: Writes formatted references from the docu-

ment collection for visualization by the DFR-Browser.

temporal topic modeling, we need to assign it to the label role via the Set Role operator. Now,

the documents can be used together with the date attribute to extract topics and to estimate

label distributions. For temporal topic modeling, we need to check the supervised check box

in the Latent Dirichlet Allocation operator. We also need to specify with which distribution the

labels shall be modeled. For time stamps we can use the Beta, the Uniform and the Gompertz

distribution. As results, we get besides the topic-word distributions and the document-topic

distributions also the parameters that are estimated by MLE during the topic modeling for the

corresponding label distribution.

8.4. Variety Linguistics Process

For variety linguistic tasks to compare and match text collections, we implemented factor mod-

els with distribution matching in the Distribution Matching operator. Given the Word-Vector

representations of two text collection the operator extracts latent factors such that on the sub-

space spanned by these factors the documents from both collections have a similar distribution.

The operator expects two inputs. The first input is a Term-Document Matrix as example set

from a text collection with a certain distribution. The second input is a Term-Document Matrix

from a second text collection with a different distribution. The results are two example sets

containing the projections of the Word-Vectors from the document collections onto the subspace

spanned by the factors. In Figure 8.14, an example process for variety linguistic by distribution

matching is shown. There are two implementations available. First, a distribution match based
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Figure 8.13.: Process for Diachronic Linguistics: From a linguistic data source, we retrieve a

KWIC-list with time information. The date is used as numeric label in temporal

topic modeling.

on a Singular Value Decomposition extracts factors as the singular vectors of the union of both

term-document matrices. Second, we implemented an online method for distribution matching,

by efficiently solving an optimization problem through Stochastic Gradient Descent directly on

a matrix manifold. We implemented the SGD in Matlab in the ManOpt library [BMAS13] for

general Riemann manifolds. To use this method, we need Matlab to be installed and the ManOpt

library.

8.5. Software in Application

We successfully integrated our developed methods and the Corpus Linguistics Plugin into the

research and teaching of linguistics through the modern language resources from WebLicht and

DWDS. Our developed methods proved useful for modern corpus linguistic research.

8.5.1. Integration into WebLicht

WebLicht is a virtual environment for annotating linguistic data. Users load up their document

collections or retrieved KWIC-lists from a language resource and perform different annotation

steps that enrich their data. So far, WebLicht offered only syntactic annotations like PoS tagging

automatically. Here. we integrated latent variable methods into WebLicht as a WebService from

RapidMiner and the Corpus Linguistics Plugin into the tool chain of WebLicht services. At the
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Figure 8.14.: Process for Variety Linguistics.

moment, we successfully deployed Latent Dirichlet Allocation with Gibbs sampling. The results

from a tool chain that contains our LDA operator can be visualized by the DFR-Browser.

8.5.2. Integration into DWDS

At the Berlin Brandenburger Academia of Science, “Das Wörterbuch der deutschen Sprache”

(DWDS) is developed and maintained. DWDS is a linguistic research environment that can be

accessed via a web interface. As described in the introduction, several language resources are

accessible. Besides different corpora, dictionaries are especially important for research in lexi-

cography. At the moment we test the Integration of our developed methods into the Dictionary

of the German Language. Large corpora can be used to find word senses that are present in

a current dictionary. These senses are automatically assigned to examples from KWIC-lists to

perform a disambiguation. Besides this, we can use the latent variables to find new senses that

are not present in a current dictionary. Currently, we implemented only the assignment of text

examples to possible senses from a dictionary.
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9. Summary and Conclusion

In this final chapter, we give a resume of the content of the thesis and draw conclusions. After

a summary, we conclude with the lesson learned and the impact of this thesis in the research

communities of computer science and corpus linguistics as well as the use of the developed

software in corpus linguistic teaching. In a final outlook we envision how the developments of

this thesis will influence future research and teaching in corpus linguistics, computer science

and more.

9.1. Summary

In this thesis, we developed methods and performed extensive studies on latent variable methods

for corpus linguistics. Starting with an extensive survey on latent variable methods, the mathe-

matical and geometrical foundations of the thesis are introduced. This survey gives an overview

on latent factor models and latent topic models. For the latent factor models, the geometrical

interpretation of documents as vectors and factorizations of the Term-Document Matrix are ex-

plained and motivated to use for the extraction of latent concepts from digital corpora to extract

hidden word senses or subjects in documents. Similarly, latent topic models are introduced as

probabilistic model with documents and words as random variables. The hidden concepts in the

corpora are modeled as latent random variables. To evaluate the quality of the latent variable

methods for the linguistic tasks in diachronic and variety linguistics, qualitative and quantitative

methods are explained. Additional methods to evaluate latent variable methods for diachronic

linguistics are introduced to complete the collection of quantitative evaluation methods.

For diachronic and variety linguistics in large heterogeneous language resources, regularized

versions of the latent variable methods are introduced and motivated. This allows the inter-

pretation of the latent variable methods as optimization over latent variables and for additional

regularizations that use further information from the language resources.

In extensive use cases, new efficient latent variable methods are developed to perform di-

achronic and variety linguistic tasks for large digital copora in heterogeneous language re-

sources. For diachronic linguistics an attention based topic model as regularized latent variable

model is developed. In many experiments, our attention based temporal topic model is compared

with standard LDA and a state-of-the-art temporal topic model. For variety linguistics, an effi-

cient method to extract latent factors that are regularized to match different corpora is proposed.

Casting the variety linguistic into a Domain Adaptation task, a number of experiments are done

to show the benefit qualitatively and quantitatively. Non-linear extensions by kernel methods and

efficient approximations are introduced to extract non-linear factors on large digital corpora.

All developed methods are implemented in the Corpus Linguistics Plugin for the software tool

RapidMiner. An extensive reference of operators that implement the methods is given together
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with examples how the use cases from above are compiled.

9.2. Conclusion and Impact

Large digital corpora from heterogeneous language resources offer valuable information sources

for language analysis. The plethora of different resources and the amount of documents from the

corpora necessitate the use of automatic methods to extract information from the data to validate

and extract linguistic hypotheses. This thesis investigated Natural Language Processing methods

for research and teaching on corpus linguistics. In lexicography and semantics, latent variable

methods were developed to perform diachronic and variety linguistic tasks. Hidden concepts

from large corpora are automatically extracted and associated with word senses and subjects

in documents. The impact of the results are shown in use cases and by the application of the

methods in modern language resource infrastructures like WebLicht. Now, we can efficiently

perform diachronic and variety linguistic tasks on large digital corpora to support linguistic

research in lexicography and semantics.

To finally conclude this thesis, we describe the impact in the research communities from

corpus linguistics and computer science. We explain the significance of the works presented in

this thesis and give an outlook of how these works can influence the future.

9.2.1. Impact

We measure the impact of this thesis in terms of relevance to computer science and corpus

linguistics. Next, we give detailed arguments for the significance in these fields.

Significance in Corpus Linguistics

In several talks at different conventions, parts from this thesis were successfully presented as

corpus linguistic research. At the 4th General Virtual Competency meeting of DARIAH-EU in

Rome [BP14], the joint work in Computer Mediated Communication analysis with the help of

the methods developed in this thesis was presented. In Berlin at the Digital Humanities Summit

2015 [BPS15], a poster highlighted our empirical work with language resources. At the Digital

Humanities im deutschsprachigen Raum convention 2015 [PM15], the methods from this thesis

were introduced to the Digital Humanities community. Further, at the Forum CA3 from Clarin-D

in Hamburg [Pöl16], the methods and software from this thesis were demonstrated.

Additionally, in papers at conferences from the Digital Humanities, parts of this thesis have

been published. At the Clarin 2014 conference and the workshop Language Technology for

Cultural Heritage, Social Sciences, and Humanities 2014, the motivation and some parts of the

pre-studies of this thesis have been published [PB14b, PB14a]. In additional technical reports,

the developed methods and parts of the use cases are published [PBB14] as part of the BmBF

project KobRA.

The Corpus Linguistics Plugin from this thesis is already used for teaching corpus linguistics.

Starting with the first joint seminar Korpusgestützte Analyse internetbasierter Kommunikation
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mit Hilfe von Data-Mining in 2014, the Artificial Intelligence Group and the Institute of Ger-

man Language and Literature introduced the Corpus Linguistics Plugin and the RapidMiner for

teaching linguistic courses. The results of this seminar were presented at the Konvens con-

ference in [BLMP14] and at the convention Neue Wege in der Nutzung von Korpora: Data-

Mining für die textorientierten Geisteswissenschaften, Berlin-Brandenburgische Akademie der

Wissenschaften [Mor15]. Further, at Mannheim University, the plugin is used in a Projekt Sem-

inar in the Master studies Spache und Kommunikation and a dedicated seminar Korpusbasierte

Sprachanalyse.

Significance in Computer Science

In computer science, the impact of this these can be evaluated by the publications at interna-

tional conference for Data Mining and Machine Learning. The main use cases are published

on peer reviewed conferences. At the conferences Text, Speech and Dialog 2015 [PBMS15]

and at the Urban Data Mining Workshop at the International Conference of Machine Learn-

ing 2015 [Pöl15b] some parts of the diachronic linguistic use case are published. The use case

in variety linguistics for regularized linear factor models is to be published as journal paper in

the Springer Machine Learning Journal. Parts of the use case for regularized non-linear fac-

tor models is published at the International Conference on Pattern Recognition Applications

and Methods 2015 [Pöl15a] and at the First International Workshop on Learning over Multiple

Contexts [Pöl14] at the ECML 2014.

Besides the publications on international conferences or journals in computer science, this

thesis provides significant contributions to computer science. The evaluation methods from

Chapter 3 that measure the quantitative quality of latent variable methods that include temporal

information provides a valuable contribution for evaluating topic and factor models. In computer

science such evaluation methods play a big role to measure the quality of existing and new

methods. The attention based temporal topic model from Chapter 5 provides new points of view

to combine Bayesian approaches with Diffusion Models. This allows for meaningful models

that comply to real world processes like attentions. The efficient optimization method on matrix

manifolds from Chapter 7 offers new solutions to extract latent factors from large document

collections. Especially from the efficiency point of view, this method provides an online solution

that can be used on big data scenarios. Previous approaches on the other hand use closed form

solutions that result in prohibitively large memory consumptions.

9.2.2. Outlook

Looking into the crystal ball, we learn several potential applications and links to future research

and developments in corpus linguistics and computer science.

Future Use in Corpus Linguistics

In the future, we will see that the methods developed in this thesis become a helpful resource

in corpus linguistic research and teaching. Linguistic research already uses the software from

this thesis to perform large linguistic studies. The usage of automatic analysis methods grows
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rapidly in linguistic research due to the amounts of natural language data that become available.

The methods and the software from this thesis become a part of these developments. The same

can be said for linguistic teaching. In order to educate linguists to perform automatic analyses to

extract and validate linguistic hypothesis in large digital copora or general document collections,

the methods and the software from this thesis support teaching in corpus or computer linguistic

courses.

Future Use in Computer Science

In the field of computer science, understanding natural language is becoming more and more im-

portant. Consequently, the methods developed in this thesis are very useful in computer science

in the future. Furthermore, the methods and the studies from this thesis will be further developed

in the future. The attentional topic model for instance is combined with different temporal dis-

tributions that model not only growth and decline, but also periodicity. Further, the optimization

on matrix manifolds to extract latent factors is the starting point to general regularized latent

factor models.

Also in the future, there are several applications for the methods from this thesis. Large IT

companies have already started to invest into analyzing the language of their customers and

users. The contributions from this thesis help to understand user interactions with modern IT

services from Google and Apple. As modern IT companies turn to Human Computer Interac-

tions (HCI) and chat bots to interact with users, the methods from this thesis are used to create

language models of the users. Temporal aspects like attentions to certain subjects and varieties

in language play an important role to create UCI systems. On large corpora of user data, latent

variable methods as those from this thesis are used to extract user preferences. Further, in big

social media companies like Facebook, the user content is already used to analysis their behav-

ior. With the growth of social media content, the contributions of this thesis help to investigate

the variation or the temporal distribution in the language of the users.
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A.1. Collaborations

Some parts of this thesis emerged from collaborations with colleagues and researchers from

the Artificial Intelligence Group and the Institute of German Language and Literature at TU

Dortmund University. Next, the chapters that contain joint work are listed and concrete collabo-

rations are described. All chapters that are not listed, stem from pure work alone from the author

of this thesis.

A.1.1. Chapter 1

The pre-studies in the introduction chapter results from collaborations with the Institute of Ger-

man Language and Literature at TU Dortmund University in the context of the BmBF project

KobRA1. The pre-studies are additionally published together with the co-researchers from the

project, Thomas Bartz, Prof. Angelika Storrer and Prof. Katharina Morik.

A.1.2. Chapter 5

The attention based temporal topic model for the use case in diachronic linguistics was jointly

worked out by Prof. Kristian Kersting, Elena Erdmann and the author of this thesis. The ini-

tial idea of the attention model is from Prof. Christian Baukhage, Prof. Kristian Kersting and

Dr. Fabian Hadiji from the Bonn University. In a joint paper, this collaborations is protocoled.

The content in this chapter is the contribution of the author of the thesis. Additionally, the corpus

of the Spiegel articles used in some experiments originates from Prof. Hendrick Müller from the

Institute of Journalistic at TU Dortmund University.

A.1.3. Chapter 7

The methods from the use case of variety linguistics stem purely from the author of this thesis.

The same is true for the analysis and the evaluation of the method. A journal publication about

this method was a joint publication with Dr. Wouter Duivesteijn and Prof. Katharina Morik.

A.2. Publications

Finally, we list all publications that have been produced for this thesis. We report papers that

already have been accepted at conferences or journals. Additionally, we report the papers that

are at the moment under review of major conferences or journals.

1http://www.kobra.tu-dortmund.de

187



A. Appendix

A.2.1. Accepted Papers

1. Christian Pölitz, Thomas Bartz, Katharina Morik, and Angelika Störrer. Investigation of

word senses over time using linguistic corpora. In Text, Speech, and Dialogue - 18th

International Conference, TSD’15, pages 191–198, Cham, CH, 2015. Springer

2. Christian Pölitz. Modelling time and location in topic models. In Proceedings of the

2nd International Workshop on Mining Urban Data co-located with 32nd International

Conference on Machine Learning, volume 1392 of MUD’15, pages 95–96, online, 2015.

CEUR Workshop Proceedings

3. Christian Pölitz. Distance based active learning for domain adaptation. In Proceedings of

the International Conference on Pattern Recognition Applications and Methods, volume 1

of ICPRAM ’15, pages 296–303, Setubal, PT, 2015. scitepress

4. Lothar Lemnitzer, Christian Pölitz, Jörg Didakowski, and Alexander Geyken. Combining

a rule-based approach and machine learning in a good-example extraction task for the

purpose of lexicographic work on contemporary standard german. In Proceedings of the

eLex 2015 conference, eLex ’15, pages 21–31, Ljubljana, SL. Trojina, Institute for Applied

Slovene Studies / Lexical Computing Ltd

5. Alexander Geyken, Christian Pölitz, and Thomas Bartz. Using a maximum entropy clas-

sifier to link good corpus examples to dictionary senses. In Proceedings of the eLex

2015 conference, eLex ’15, pages 304–314, Ljubljana, SL. Trojina, Institute for Applied

Slovene Studies / Lexical Computing Ltd

6. Christian Pölitz. Subset based hilbert space projections for transfer learning. First Inter-

national Workshop on Learning over Multiple Contexts, LMCE 2014, 2014

7. Christian Pölitz and Thomas Bartz. Enhancing the possibilities of corpus-based investiga-

tions: Word sense disambiguation on query results of large text corpora. In Proceedings

of the 8th Workshop on Language Technology for Cultural Heritage, Social Sciences, and

Humanitie, LaTeCH EACL’14, pages 42–46, Stroudsburg, PA, USA, 2014. ACL

8. Thomas Bartz, Christian Pölitz, Katharina Morik, and Angelika Storrer. Using data mining

and the clarin infrastructure to extend corpus-based linguistic research. Jan Odijk (Ed.):

Selected Papers from the CLARIN 2014 Conference, pages 1–13, 2014

9. Michael Beißwenger, Harald Lüngen, Eliza Margaretha, and Christian Pölitz. Mining

corpora of computer-mediated communication. In Gertrud Faaß and Josef Ruppenhofer,

editors, Proceedings of the 12th edition of the KONVENS conference, volume 1 of Analysis

of linguistic features in Wikipedia talk pages using machine learning methods, pages 42 –

47, Hildesheim, DE, 2014. University of Hildesheim

10. Thomas Bartz, Nadja Radtke, and Christian Pölitz. Digitale korpora in der internet-

lexikographie. Lexicographica, 30:605–610, 2014

188



A.3. Operator Reference

11. Christian Pölitz and Thomas Bartz. Using data mining and the clarin infrastructure to

extend corpus-based linguistic research. The CLARIN Annual Conference, 2014

A.2.2. Papers under Review

Additional, there are papers under review from this thesis. The use case of diachronic linguistics

with attentional topic models is submitted to the EMNLP. The use case of variety linguistics with

regularized factor models via Stochastic Gradient Descent on matrix manifolds is to be published

in the Machine Learning Journal. The use case for corpus lingustics with non-standard corpora

by sparsity inducing priors on LDA is submitted to the DMNLP Workshop at ECML 2016.

Finally, the last part of the use case on variety linguistics by regularized non-linear factor models

is submitted to the KDML 2016.

A.3. Operator Reference

Next, we summarize the operators for the RapidMiner Plugin that implement the methods from

this thesis. For clarity, we group the references into subsections.

A.3.1. Data Imports

Linguistic Query Operator : Interface to a

linguistic corpora via a data base server as

maintained by Berlin Brandenburg Academia of

Science

Parameter Description

query The linguistic query for a digital corpus.

encapsulation Character that indicates position of query match in

the results.

sample size Number of snippets in the results KWIC-list.

encoding Character encoding (UTF-8)

data source Corpus to query.

context size Number of sentences before and after the sentence

that contains the query match.

extract lemmas Retrieve additional lemma information for each

word (if available).

extract tags Retrieve additional Parts-of-Speech for each word

(if available).

Output Example set containing KWIC-list.
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TEI Query Operator: Stream reader for TEI

formatted XML-files

Parameter Description

query The query as regular expression on the TEI-file.

file Path to the TEI-file to be queried.

context Environment in which we look for query match

(posting, paragraph or sentence level).

context size Number of characters before and after the regular

expression match.

sample size Number of snippets in the results KWIC-list.

regular expression Query input mask regular expression on the TEI-file

(with editor).

encoding Character encoding (UTF-8)

output Example set containing KWIC-list.

WordNet Operator: Query word relations from

word net files

Parameter Description

query The word for the WordNet relations.

word net resource Path to the word net data base files.

output Example set containing word net relations.

Word Profiles Operator: Query word profiles

from DWDS server

Parameter Description

query The word for the word profiles relations.

number of results The number of related words by word profiles.

output Example set containing word profiles relations.
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A.3.2. Latent Topic Models

Latent Dirichlet Allocation Operator: Extracts

latent topics via LDA.

Parameter Description

iterations The number of iterations for the Gibbs sampler.

number of topics The number of latent topics to be extracted.

alpha Meta parameter for Dirichlet prior on document-

topic distribution.

beta Meta parameter for Dirichlet prior of topic-word dis-

tribution.

group Group attribute in data set.

supervised Supervised LDA or unsupervised.

label distribution The distribution of the document labels (Gauss,

Beta, Uniform, Gompertz).

dfr Print results in format for DFR-Browser.

path Path to save files form DFR-Browser.

use local random

seed

Use local random seed (for reproducibility).

local random seed The concrete seed for the random number generator.

input 1 Example set of documents as Word-Vectors with oc-

currences. (for supervised an additional attribute

with label role must be available.)

output 1 Example set containing topic-word distributions.

output 2 Example set containing document-topic distribu-

tions.

output 3 Example set containing number of assignments of

topics to words (for evaluation).

output 4 Example set containing number of assignments of

topics to any word (for evaluation).

output 5 Example set containing parameters of the estimated

label distributions.
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Hierarchical Latent Dirichlet Allocation

Operator: Extracts latent topics via LDA including

hierarchies between the topics.

Parameter Description

iterations The number of iterations for the Gibbs sampler.

number of topics The number of latent topics to be extracted.

alpha Meta parameter for Dirichlet prior on document-

topic distribution.

beta Meta parameter for Dirichlet prior of topic-word dis-

tribution.

group Group attribute in data set.

supervised Supervised LDA or unsupervised.

label distribution The distribution of the document labels (Gauss,

Beta, Uniform, Gompertz).

dfr Print results in format for DFR-Browser.

path Path to save files form DFR-Browser.

use local random

seed

Use local random seed (for reproducibility).

local random seed The concrete seed for the random number generator.

input 1 Example set of documents as Word-Vectors with oc-

currences. (for supervised an additional attribute

with label role must be available.)

output 1 Example set containing topic-word distributions.

output 2 Example set containing document-topic distribu-

tions.

output 3 Example set containing number of assignments of

topics to words (for evaluation).

output 4 Example set containing number of assignments of

topics to any word (for evaluation).

output 5 Example set containing parameters of the estimated

label distributions.
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Latent Dirichlet Allocation with Word Features

Operator: Extracts latent topics via LDA and

includes word features and relations via priors.

Parameter Description

iterations The number of iterations for the Gibbs sampler.

number of topics The number of latent topics to be extracted.

alpha Meta parameter for Dirichlet prior on document-

topic distribution.

beta Meta parameter for Dirichlet prior of topic-word dis-

tribution.

lambda

gamma

number of word

groups

for group lasso based prior.

a Meta parameter for group lasso penalty.

prior used prior

dfr Print results in format for DFR-Browser.

path Path to save files form DFR-Browser.

use local random

seed

Use local random seed (for reproducibility).

local random seed The concrete seed for the random number generator.

input 1 Example set of documents as Word-Vectors with oc-

currences. (for supervised an additional attribute

with label role must be available.)

input 2 Example set containing word relations.

output 1 Example set containing topic-word distributions.

output 2 Example set containing document-topic distribu-

tions.

output 3 Example set containing number of assignments of

topics to words (for evaluation).

output 4 Example set containing number of assignments of

topics to any word (for evaluation).

output 5 Example set containing parameters of the estimated

label distributions.
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Dirichlet Multinomial Regression Operator:

Extracts latent topics via LDA.

Parameter Description

iterations The number of iterations for the Gibbs sampler.

number of topics The number of latent topics to be extracted.

alpha Meta parameter for Dirichlet prior on document-

topic distribution.

beta Meta parameter for Dirichlet prior of topic-word dis-

tribution.

lambda

sigma

group Group attribute in data set.

dfr Print results in format for DFR-Browser.

path Path to save files form DFR-Browser.

use local random

seed

Use local random seed (for reproducibility).

local random seed The concrete seed for the random number generator.

input 1 Example set of documents as Word-Vectors with oc-

currences.

input 2 Additional document attributes.

output 1 Example set containing topic-word distributions.

output 2 Example set containing document-topic distribu-

tions.

output 3 Example set containing number of assignments of

topics to words (for evaluation).

output 4 Example set containing number of assignments of

topics to any word (for evaluation).

output 5 Example set containing parameters of the estimated

label distributions.
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A.3.3. Latent Factor Models

Distribution Matching: Extracts latent factors that

match distributions.

Parameter Description

number of factors The number latent factors to be extracted.

input 1 Example set of documents as Word-Vectors from a

certain distribution.

input 2 Example set of documents as Word-Vectors from an-

other distribution.

output 1 Example set of the documents from input 1 pro-

jected into the latent factor presentation.

output 2 Example set of the documents from input 2 pro-

jected into the latent factor presentation.

A.3.4. Evaluation Methods

LDA Log-likelihood Operator: Estimates

log-likelihood on a test collection of sequences of

words in document given the results of LDA.

Parameter Description

iterations The number of iterations for the Gibbs sampler.

tests The number of random tests.

number of topics The number to be extracted.

alpha Meta parameter for Dirichlet prior on document-

topic distribution.

supervised Supervised LDA or unsupervised.

label distribution The distribution of the document labels (Gauss,

Beta, Uniform, Gompertz).

conditional distri-

bution

use local random

seed

Use local random seed (for reproducibility).

local random seed The concrete seed for the random number generator.

input 1 Example set of test documents as BoW with occur-

rence data

input 2 Example set of word-topic distribution from an LDA

result.

output 1 Example set containing log-likelihoods from each

test.
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LSA Log-likelihood Operator: Estimates

log-likelihood on a test collection of Word-Vectors

by distance based distribution estimation.

Parameter Description

iterations The number of iterations for the Gibbs sampler.

tests The number of random tests.

number of topics The number to be extracted.

alpha Meta parameter for Dirichlet prior on document-

topic distribution.

smoothing gamma

supervised Supervised LSA (PLS) or unsupervised.

use local random

seed

Use local random seed (for reproducibility).

local random seed The concrete seed for the random number generator.

input 1 Example set of test word-vectors.

input 2 Example set of words in factor representation.

output 1 Example set containing log-likelihoods from each

test.

Coherence Operator: Estimates standard

coherence values based on top ranked word in each

topic.

Parameter Description

number of top

words

The number of top ranked words in each topic used

to estimate coherence values.

path to index The path to the lucene index files for Palmetto.

method Used coherence measure. (UCI,UMass,NPMI)

alpha Meta parameter for Dirichlet prior on document-

topic distribution.

input 1 Example set of topic-word distributions from an

LDA results.

output 1 Example set containing the coherence value for each

topic.
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Nomenclature

α, β Dirichlet meta parameter

B The Beta function

C A corpus or a document collection

Dir(α) Dirichlet distribution

d A single document

d The sequence of words in document d
E Matrix containing the singular values of X ∈ R

M,V

e A singular value

Kx A kernel matrix for documents mapped into an RKHS

K̂ Low dimensional kernel matrix approximation in kPCA

L Matrix containing the left singular vectors of X , ∈ R
M,M

li The loadings vectors in PLS

λ, γ, φ Variational parameters

l A left singular vector

M Number of documents

Mult(φ) Multinomial distribution

m Metaparameters for prior distributions and temporal distributions

N Number of tokens (in a single document)

nti The number of times topic ti has been assigned to any token

nd The number of times document d has been assigned to any topic

nti,w The number of times topic ti has been assigned to word w
nd,ti The number of times document d has been assigned to topic ti
P Projection matrix

p̂ Empirical distribution of documents in a corpus

p(w) Word probability

p(w|t), βt Topic-word distribution

p(t|d), θd Document-topic distribution

R Matrix containing the right singular vectors of X , ∈ R
V,V

r A right singular vector

Θ Parameters for any latent factor method

T Number of factors or topics

t A single factor or topic

t A sequence of topic assignments: t = (t1, · · · , tN )
ti A single topic assignment from a sequence t

t−i A sequence of topic assignments without assignment i:
t−i = (t1, · · · , ti−1, ti+1 · · · tn)

t−i
+t A sequence of topic assignments with ti replaced by t:

t−i
+t = (t1, · · · , ti−1, t, ti+1 · · · tn)

V Number of words the in vocabulary

V The vocabulary of a corpus

vi ith latent factors as vector in the VSM
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v′ The transpose of any vector v

W,H Positive matrices factorizing X in NNMF

wi Word i in vocabulary V

wn nth word token in sequence (w1, · · · , wN )
wd Word-Vector ∈ R

V

wi ith basis vector in VSM associated with word wi

X Term-Document Matrix, ∈ R
M,V

X ′ The transpose of the Term-Document Matrix, ∈ R
V,M
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Glossary

Accuracy Quality of a classification as frequency of correct classified examples. 156, 162

Bag-of-Words Representation of documents by the set of contained words. 24, 41, 78, 145,

205

Comma Separated Value Tabular data as string with fields separated by commas. 205

Das Wörterbuch der deutschen Sprache A collection of digital corpora, dictionaries and

statistics of written German language. 181, 205

Dialing and DWDS Concordance Open source (LGPL) search engine developed specially

to meet the needs of linguistic researchers. 171, 205

Dirichlet Multinomial Regression Modelling the meta parameter of a Dirichlet distribution

as a regression. 84, 205

Document-Vector Representation of words as vector in a Euclidean space. 34, 89

Domain Adaptation Methods to transfer information across differently distributed distribu-

tions. 138, 139, 145–149, 153–157, 159, 160, 162–167, 183, 205

JavaScript Object Notation Data format for fast exchanging purpose. 205

Kernel Partial Least Squares Extracts non-linear factors that maximally align with given

document labels. 43, 205

Kernel Principal Component Analysis Extracts non-linear factors with Principal Compo-

nent Analysis on a kernel matrix. 42, 145, 205

Key-Word-in-Context A usage example for a word of interest with its context. 12, 205

Language Model Probabilistic model of the generation of word sequences in documents. 25,

26, 122, 205

Latent Dirichlet Allocation Models and extract topics as latent random variables. Addi-

tional the document-topic and the topic-term distribution have a Dirichlet prior. 48, 205

Latent Semantic Analysis Extracts linear factors from term-document matrix. 34, 205
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Glossary

Maximum Likelihood Estimation Parameter estimation that maximize the likelihood given

data. 25, 101, 128, 205

Maximum Mean Discrepancy Distance measure between distributions as supremum norm

in an RKHS of the expectation functional of the distributions. 140, 206

Multinomial Model Representation of documents as sequence of words drawn from Multino-

mial distributions. 25, 32, 205

Non-negative Matrix Factorization Extracts non-negative factors from term-document

matrix. 39, 206

Normalized Mututal Information Measure of how likely two words are associated with a

normalized measure. 73, 206

Partial Least Squares Extracts linear factors that maximally align with given document la-

bels. 38, 206

Pointwise Mututal Information Measure of how likely two words are associated. 72, 206

Principal Component Analysis Extracts linear factors as orthonormal bases for a matrix.

42, 206

Probabilistic Latent Semantic Analysis Models and extract topics as latent random vari-

ables from word occurrences in documents. 45, 48, 206

Reproducing Kernel Hilbert Space A Hilbert space that allows for point evaluations via

inner products. 41, 206

Singular Value Decomposition Matrix factorization. 34, 180, 206

Stiefel manifold The set M(p, q) = {P | P ∈ ℜq×p, P T · P = I}, together with an inner

product ·. 142–144, 149, 150, 156, 157, 160–163, 165

Stochastic Gradient Descent Optimization. 53, 141, 180, 189, 206

supervised LDA Extension of LDA that jointly models document labels, words and topic.

85, 96, 206

Support Vector Machine Supervised learning method for classification and regression

based on large margins in a vector space. 61, 157, 206

Term Frequency Frequency of a word in a document. The number of occurrences of the word

token divided by the number of all word tokens in the document. 24, 206

Term Frequency Inverse Document Frequency Normalized frequency of a word in a

document. The term frequency of a word multiplied by a normalization term that is small

for words that appear in many other documents. 24, 206
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Glossary

Term-Document Matrix Matrix containing the Word-Vector from a corpus as column vec-

tors. 25, 32, 34, 35, 38, 39, 42, 71, 78, 82, 86, 175, 177, 179, 183, 199

Text Encoding Initiative Electronic text format for certain linguistic research. 170, 206

tokenizer Separation of document or texts as string into word tokens. 173

Topics over Time Topic model that additionally models time as Beta distributed random vari-

able. 96, 101, 107, 205, 206

Vector Space Model Representation of documents as vectors in a Euclidean space. 23, 32,

34, 206

Word-Vector Representation of documents as vector in a Euclidean space. 24–30, 33–36, 38,

39, 41, 43, 46, 66, 67, 70, 71, 78, 79, 81, 82, 87–91, 136–142, 148–154, 156, 158, 165,

172–175, 177, 179, 199, 203

WordNet Lexical data base of English words. In so called Synsets, words are described that are

synonym. Relations between Synsets build a graph and describe relation and similarities

between words. 83, 90, 91, 125
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Acronyms

@TM Attentional Topic Model. 101, 102, 107–109, 111–116, Glossary: Attentional Topic

Model

BoW Bag-of-Words. 24, 41, 141, 145, Glossary: Bag-of-Words

CSV Comma Separated Value. 170, Glossary: Comma Separated Value

DA Domain Adaptation. Glossary: Domain Adaptation

DDC Dialing and DWDS Concordance. 171, Glossary: Dialing and DWDS Concordance

DMR Dirichlet Multinomial Regression. 84, 86, 125, Glossary: Dirichlet Multinomial Regres-

sion

DWDS Das Wörterbuch der deutschen Sprache. 109, 171, 181, Glossary: Das Wörterbuch der

deutschen Sprache

JSON JavaScript Object Notation. 171, 172, Glossary: JavaScript Object Notation

kPCA Kernel Principal Component Analysis. 42, 43, 78, 82, 83, 198, Glossary: Kernel Prin-

cipal Component Analysis

kPLS kernel Partial Least Squares. 43, 59, 78, Glossary: Kernel Partial Least Squares

KWIC Key-Word-in-Context. 12, 14, 16, 107, 171, 172, 181, Glossary: Key-Word-in-Context

LDA Latent Dirichlet Allocation. 48, 50, 51, 53, 55, 58–64, 71, 76, 83, 85, 86, 95, 96, 98,

99, 101–104, 107–109, 112–116, 122–126, 128, 129, 131–133, 170, 173, 177, 202, 206,

Glossary: Latent Dirichlet Allocation

LM Language Model. 25–27, Glossary: Language Model

LSA Latent Semantic Analysis. 34–39, 41, 42, 44, 46, 64, 71, 78, 83, 86, 87, 89, 170, 175,

Glossary: Latent Semantic Analysis

MLE Maximum Likelihood Estimation. 25, 123, 179, Glossary: Maximum Likelihood Esti-

mation

MM Multinomial Model. 25–30, 33, 34, 44, 81, Glossary: Multinomial Model
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Acronyms

MMD Maximum Mean Discrepancy. 140–142, 144, 146–148, 158, 159, 163, 165, Glossary:

Maximum Mean Discrepancy

NNMF Non-negative Matrix Factorization. 39, 41, 46, 47, 78, 82, 83, 86, 199, Glossary: Non-

negative Matrix Factorization

NPMI Normalized Pointwise Mututal Information. 73, Glossary: Normalized Mututal Infor-

mation

PCA Principal Component Analysis. 42, Glossary: Principal Component Analysis

PLS Partial Least Squares. 38, 39, 41, 43, 59, 78, 79, 198, Glossary: Partial Least Squares

pLSA probabilistic LSA. 45, 46, 59, 64, 82, 83, Glossary: Probabilistic Latent Semantic

Analysis

PMI Pointwise Mututal Information. 72, 73, Glossary: Pointwise Mututal Information

RKHS Reproducing Kernel Hilbert Space. 41–43, 78, 82, 140, 142, 198, 202, Glossary: Re-

producing Kernel Hilbert Space

SGD Stochastic Gradient Descent. 53, 141–143, 149, 150, 156–161, 165, 180, Glossary:

Stochastic Gradient Descent

sLDA supervised LDA. 64, 85, 86, 96–98, 101, 102, 175, 178, Glossary: supervised LDA

SVD Singular Value Decomposition. 34, 36–38, 42, 71, 170, 175, Glossary: Singular Value

Decomposition

SVM Support Vector Machine. 156, 157, 170, Glossary: Support Vector Machine

TEI Text Encoding Initiative. 170, 172, 173, 178, Glossary: Text Encoding Initiative

TF Term Frequency. 24, 173, Glossary: Term Frequency

TF-IDF Term Frequency Inverse Document Frequency. 24, 152, 173, Glossary: Term Fre-

quency Inverse Document Frequency

TOT Topics over Time. 96, 98, 102, 108, 109, 112–116, Glossary: Topics over Time

VSM Vector Space Model. 23–30, 33, 34, 67, 70, 81, 87, 90, 136, 138, 141, 198, 199, Glossary:

Vector Space Model
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