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Ordinal patterns provide a method to measure correlation between time series. In
contrast to classical correlation measures like the Pearson correlation coefficient they
are able to measure not only linear correlation but also non-linear correlation even
in the presence of non-stationarity. Hence, they are a noteworthy alternative to the
classical approaches when considering discharge series. Discharge series naturally
show a high variation as well as single extraordinary extreme events and, caused by
anthropogenic and climatic impacts, non-stationary behaviour. Here, the method
of ordinal patterns is used to compare pairwise discharge series derived from macro-
and mesoscale catchments in Germany. Differences of coincident groups were de-
tected for winter and summer annual maxima. Hydrological series, which are mainly
driven by annual climatic conditions (yearly discharges and low water discharges)
showed other and in some cases surprising interdependencies between macroscale
catchments. Anthropogenic impacts as the construction of a reservoir or different
flood conditions caused by urbanization could be detected.
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1 Introduction

Hydrological catchments are the basic spatial units considered in hydrology. They are con-
ceptualized as complex dynamical systems where deterministic and stochastic processes occur
simultaneously. It is recognized that there is a strong need for the classification of catchments
and hydrological phenomena ([4]) in the framework of comparative hydrology. The similarity of
discharge regimes is a fundamental criterion for regionalisation. For this purpose, time series of
characteristic runoff values (averages, upper and lower extremes), which are derived from dis-
charge series have to be compared to analyse the impacts of spatial heterogeneous distributed
climate characteristics as well as of differences of hydrological processes at the catchment scale.
The spatial covariance (correlation) is often applied as a measure of the interrelationship be-
tween time series. It is the statistical basic tool for interpolation and consistent mapping of
runoff and its statistical descriptors. One problem of this approach consists in the non-linearity
of runoff processes. To give an example: an urbanized catchment will react more directly on
a flood inducing rainfall than a natural one. If we consider two rain events, which differ in
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2 Methodology

size, the urbanized catchment will produce more runoff from the higher amount of rainfall in
relationship to the natural catchment. If we compare the runoff data from both catchments we
see the same tendencies (one event is higher than the other), but the quantitative relationships
between both events differ between the two catchments. As a result, a linear regression model
would not be appropriated to describe the statistical relationship between the two runoff series.
Ordinal patterns (|2]) are a simple approach to characterize the synchronicity of time series
without quantification of the variances of the time series, which are affected by non-linearities
or scale effects and not comparable in many cases. Ordinal patterns were applied in hydrology
for time series analyses, e.g. to separate deterministic and stochastic parts of daily discharge se-
ries ([10]). [10] estimated two indices, the permutation entropy and the permutation statistical
complexity to quantify order pattern distributions by their information content and complexity.
Ordinal patterns have been used in other fields of science for pattern recognition e.g. to analyse
EEG data ([8]), sunspot numbers ([3]), speech signals ([I]) and chaotic maps ([2]). Further
applications include estimation of the Hurst parameter in long-range-dependent data ([19]) and
the approximation of the Kolmogorov-Sinai entropy ([9]). Let us emphasize that before [15]
appeared, all of the above mentioned authors used ordinal pattern analysis only for a single
time series. In difference the ordinal patterns are applied to characterize space-time relation-
ships between runoff series. This methodology is used to estimate the synchronicity of time
series of annual runoff means, low water discharges and flood peaks between gauges at different
spatial scales. Its potential to characterize long memory processes is shown as well as options
to identify anthropogenic changes in runoff series.

2 Methodology

When comparing time series one often has to face the following problem: two data series are
correlated, but not in the mathematical sense of the word. Let us explain this in detail: in
every-day-live, one would say that two data series are positively correlated if the following holds

true: . .
if X 4 DOl hen Vs likely tod oo L a0,
decreases decrease

Negative correlation would then mean that

if X{ HCreases },then Y is likely to{ decrease }

decreases increase

Admittedly, in the context of certain models this behaviour is caught nicely by the mathematical
correlation between time-series (or their increments). On the other hand it is well known
that mathematical correlation measures linear dependence. If data is correlated, but not in
a linear way, mathematical correlation might not be the method of choice. Furthermore, in
order to deal with mathematical correlation, both time series have to have second moments,
that is, the variance has to be finite. Several interesting models, like so called a-stable random
variables, do not have this property. This means between two a-stable time series, we cannot
use mathematical correlation. Last but not least in all classical approaches the time series have
to be stationary from the beginning (or after a careful pre-processing).

Nevertheless, hydrological time series often are modified by anthropogenic or climatic impacts.
Climate variability as well as water management or land-use changes lead to a non-stationary
behaviour like changing means or variances in hydrological time series. A reservoir for example
has the aim to compensate the fluctuations of runoff at the annual time scale. In this case,
especially the upper and lower extremes may show significant changes. Hence, many recent
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results consider the non-stationarity of the data (see [5], [14], [12], [I7] and the references
therein).

Here, we suggest a simple approach to describe correlation between time series by ordinal
patterns ([I5], [16]), where the probability measures do not need to have second moments. The
time series we consider do not have to be stationary. And: in a certain sense we are able to
measure non-linear correlation. The basic idea is to reduce the data to so called ordinal patterns
and then count, how often one finds pairwise the same patterns at the same instants of time in
two data sets.

2.1 The specification of ordinal patterns

For a fixed number of consecutive data points n, their ordinal pattern describes the relative
positions of the points. Let x1,xs,... be the realized data of a time series. Fix the number of
considered data points n = 4 (often n € {2,3,4,5,6}), respectively the number of increments
h = n—1. Let us consider the first four data points x1, x2, 3, z4 and assume that the four values
are pairwise different, e.g. 1 = 2,29 = 9,23 = 3 and x4 = 11. Order them top-to-bottom:
x4 > x9 > w3 > x1. Then write down the indices of the data points in that order: (4,2,3,1).
This vector in N” is called the ordinal pattern of (z1,x2,zs,2z4). We write (rq,...,74) for this
vector. The pattern (rq,...,74) contains the whole information of relative positions of the data
points, but nothing more. Therefore, the information is reduced significantly. For each time
point ¢ one now has to consider (z;41, Tri2, Tri3, Tryq) in the same way. For each starting point
t we obtain an n-dimensional vector consisting of the entries 1,2,3,...,n. A vector of this kind
is called a permutation.

It could be a problem that for different ¢ and j the measured values of z; and x; do coincide.
In order to have a unique representation, we demand in addition:

if 1 < j and z; =x; then r; < rj.

For example, in the case (241, Tr+2, Tres, Trra) = (7,10,7,5) we would obtain (2,1, 3,4) as the
ordinal pattern at time t.

In order to get a better intuition of the meaning of the permutations, one could in fact think of
the patterns as an archetype structure as in the Figure [II

Instead of the two data sets x and y we, from now on, consider only the sequence of patterns
in both time series.

We count how often we find coincident patterns in two series. Coincident patterns do mean
that for the given length n (of the time windows) the up-and-down behaviour of the two time
series is similar within the two synchronous windows (Figure 2]). E.g. if we have (4,2,3,1) this
means we start on a low value, increase, go back to a point in between the first two and then
have the highest value in the end.

2.2 A measure to assess the significance of coincidences of ordinal patterns
between two times series

In the second step, we estimate a measure to compare the number of coincident patterns with
its random value. This comparison value is obtained in the following way: we assume for a
moment that the two time series are independent. Let us denote by Px(r) the probability that
the pattern r appears in the time series X (same with Y). In the case h = 3 we would have
the 24 different patterns that are shown in Figure [l If the time series were independent, the
probability that  appears in both time series at the same time would be Px(r) - Py (r) and the
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(4,3,2,1) / (4,3,1,2) \/ (4,1,3,2) \/ (1,4,3,2) \/
(4,2,3,1) /\/ (4,2,1,3) /\/ (4,1,2,3) \/ (1,4,2,3) \/
(2,4,3,1) /\/ (2,4,1,3) /\/ (2,1,4,3) /\/ (1,2,4,3) \/
(3,4,2,1) /\ (3,4,1,2) \/\ (3,1,4,2) \/\ (1,3,4,2) \/\
(3,2,4,1) /\ (3,2,1,4) /\ (3,1,2,4) \/\ (1,3,2,4) \/\
(2,3,4,1) /\ (2,3,1,4) /\ (2,1,3,4) /\ (1,2,3,4) \

Figure 1: The 24 ordinal patterns of length 4 (h = 3)
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Figure 2: Example of the ordinal patterns of two time series.
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overall probability to find the same pattern in both time series at a given time would be:

¢:= 3 Px(r)-Pr(r) (1)

r=(r1,sn)

where we sum over all patterns r of length n. This is only a theoretical construct. Caused
e.g. by seasonality, some patterns will occur more often in hydrological time series than others.
Empirically, for each time series we estimate the empirical probabilities of the single patterns
by their relative frequencies. The comparison value v, is the estimator of ¢, based on relative
frequencies of the patterns in both time series multiplied with (N — k), where N is the number
of observations. This means: The comparison value v. is the number of coincident patterns
which we would expect if the time series were independent.

ve=(N-h) > Px(r) Py(r), (2)

r=(T1,..,Th41)
where px(’l“) denotes the relative frequency of the pattern r in the sample X.

Let us recall some of the advantages of the method which have been emphasized in [16]: the
whole analysis is stable under monotone transformations of the state space. The ordinal struc-
ture is not destroyed by measurement errors or small perturbations of the data. Structural
breaks in a single time series do not effect the ordinal pattern dependence significantly. There
are fast algorithms to analyse the relative frequencies of ordinal patterns in given data sets (cf.
[7], Section 1.4). Furthermore, let us again emphasize that unlike other concepts which are
based on mathematical correlation, we do not have to impose the existence of second moments.
This allows us to consider a bigger variety of model classes. Last but not least, our concept is
more intuitive, than using Kendall’s tau or Spearman’s rho ([18]).

2.3 Criteria of similarity among patterns by a metrical approach

A drawback of the method described above is that we only count the number of completely
coinciding patterns. In particular, if n is large we will find maybe several instants in time where
the patterns are ‘almost similar’. Schnurr and Dehling (2015) proposed a method to overcome
this problem. To this end, distances between ordinal patterns are measured and weight functions
are used.

The procedure consists of the following steps: At first we introduce a so called metric on the
space of ordinal patterns, that is, a function d which describes how far away two ordinal patterns
are from each other. The mathematical definition is as follows: let r and s be permutations of
length n and set

d(r,s) :=1|r1 — s1| + ... + |rn — Snl- (3)

If the up-and-down behaviour of two patterns is similar one gets a small number for d. Coin-
cident patterns yield d(r,7) = 0. We would like to calculate a kind of score with the opposite
property, i.e., coincident patterns should be assigned the number 1 while patterns which are
close to each other should get a number less than (but close to) 1. Finally, patterns that are far
away from each other should get the value zero. The above metric d yields only even numbers
as values. Instead of using d directly, we use the following anti-monotone weight function on
the values of d:
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w(m) =1- 1{90:0} +0.75 - 1{90:2} +0.5- 1{35:4} +0.25 - 1{35:6}’ (4)

where 1,_ is the indicator function, being one, when x = ¢, and zero else. Note, that this
function is defined especially for small n. For larger n an appropriate weight function has to be
defined, for example by using smaller steps of weights.

As our score we set:

s(rys) :=wod(r,s) =w(d(r,s)) (5)

This score has the desired property. Coincident patterns yield s(r,r) = 1 and the bigger the
distance between the patterns, the lower the score. As in the classical case described above,
we compare the score with a comparison value v.,, . This comparison value v, is (again) the
score, which we would expect if X and Y were independent. In the following this methodology
is called the metrical approach.

2.4 Pre-processing, considering data uncertainty

A specific problem when considering real data sets is the uncertainty of the data. Uncertainty of
discharges can arise e.g. from errors in measurement, especially from uncertain stage-discharge
relationships. Especially for low discharges occasional deviations from the real value can occur.
The classical ordinal pattern approach would declare two patterns as unequal if in both patterns
synchronously two consecutive values would deviate with the value €, but in the one case the one
value is larger by the factor € and the other one it is smaller. If € is small, this different behavior
could result from data uncertainty. For such cases, we do not want to categorize the patterns
as different. Thus, we need a method to consider these possible sources of uncertainty and take
them into account in the ordinal pattern approach. We call this procedure pre-processing.

For every time step t we consider the subsample x¢y1,Z¢12, ..., Ty, fforanyi=1,...,n—1
T
Sl e 11— €1+
Ti+i
for € > 0 we define the pattern of xyy1,xiy2,. .., Tirn to be partly random.

If at least one of the patterns 7, s’ at time step ¢ of the two compared time series is partly

random, replace s(rf,s') by max (s(r!,s') — 1/4,0). For the non-metrical approach we simply
count the coherence by 0.75 instead of 1. Since the uncertainty is very high when considering
extreme discharges (flood peaks, low water), for these cases € is chosen as 0.1, whereas for mean
discharges (MQ) it is 0.05.

When using pre-processing this also influences the comparison value. Hence, the calculation of
it changes in this case. First we have to estimate the probability px that a pattern in sample X
is partly random by the relative frequency. Considering two samples X and Y the probability
that at arbitrary time at least one sample is partly random is then

Z=px +Py —PX  Dy-

For the classical approach we now have to take into account that with probability z the weight
of the coincidence is reduced to 0.75 whereas it remains 1 with probability (1 — z). This leads
to a mixing-type calculation of the comparison value denoted with v, ;.
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In the metric approach we have to consider that, if we have a partly random pattern, the weight
is reduced by 0.25. The modified metric then is defined as

wy(z) :=(1(1 —2) +0.75-2) - 15—y + (0.75(1 — 2) + 0.5 2) - 11,9y
4+ (0.5(1 —2) +0.25- 2) - 1gz—qy + (0.25(1 — 2) + 0 2) - 11—}

and the comparison value v pp is calculated as before using this new metric.

2.5 Introducing example

To demonstrate the application of the methodology described above, we compare series of annual
flood peaks in winter from two gauges (Golzern and Bad Dueben) which are located in line at
the same river (Mulde River in South-Eastern Germany). The Golzern gauge has a catchment
of 5433 km? in size, the Bad Dueben gauge of 6170 km?2. Table [ shows winter maximum
discharges from 6 years. Both time series differ as the discharge estimation in Bad Dueben is
more erroneous than at the Golzern gauge.

Table 1: Annual winter maximum discharges [m?/s] for the years 1961-1966 of the gauges Golz-
ern and Bad Dueben

Golzern Bad Diiben
1961 402 347
1962 218 209
1963 595 354
1964 336 134
1965 410 403
1966 236 287

As shown by Table[I] for smaller flood events the downstream gauge delivers smaller flood peaks
than the upstream gauge. Note that for this subsample no pre-processing is necessary.

If we want to calculate the ordinal pattern with number of increments h = 4 (that is number
of data n = 5) for the first sub-sample (X, X3, X3, X4, X5) we have to calculate the order
of the indices of the data for this sub-sample. For the Golzern gauge the first sub-sample is
(402,218,595, 336,410), that is X3 > X5 > X; > X4 > X, resulting in the ordinal pattern
r) = (3,5,1,4,2). This is compared with the ordinal pattern of the first n = 5 data of the Bad
Dueben gauge s = (5,3,1,2,4). We can see that there is no match between the patterns. Now
the next possible sub-sample (X2, X3, X4, X5, Xg) = (X1, X5, X5, X}, X{) is considered, that is
for Golzern (218,595, 336,410,236) with X} > X} > X, > X! > X{ and resulting ordinal
pattern r®) = (2,4,3,5,1) and for Bad Dueben (209, 354,134,403, 287) with ordinal pattern
s = (4,2,5,1,3). Again there is no match and we can go on to the next sub-sample and so
on.

The first coincidence can be found when comparing the seventh subsample (X7, Xg, X9, X109, X11)
(X7, X3, X3, X, X?) of the Golzern gauge (Table ).

The ordinal pattern appears to be r(7) = (2,4,1,3,5) = s(M and we find a match. After com-
paring all 49 sub-samples 30 matches between the ordinal patterns were found. This indicates
a very high coherence between the flood behaviour of both gauges. Of course, this is not so
surprising since both gauges are located consecutively and no larger tributary enters in between.
Therefore, the relative contributions of runoff from the catchment between both gauges is small.
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Table 2: Annual winter maximum discharges [m?/s] for the years 1967-1971 of the gauges Golz-
ern and Bad Diiben

Golzern Bad Diiben
1967 354 357
1968 623 684
1969 319 280
1970 477 465
1971 224 197

We mentioned in the description of the methodology that it is not always useful to only compare
exact matches of patterns. Especially when considering hydrological time series with periods
of extreme small or high discharges, the ordinal patterns are affected by errors in discharge
estimation such that small deviations in the patterns should not automatically be rejected.
Here we use the metrical approach of ordinal patterns. For the example above we have to
calculate the score (see eq. (B))

S(T(l), 8(1)) =1- 1{d(r(1),s(1)):0} +0.75 - 1{d(r(1),s(1)):2}
105 Lige s)=ay + 025 - Ligr s0)=6)
:0,

since

dirW, sW)y =13 =5/ + 53|+ |1 - 1| +[4—2[+|2 -4/ =8

and analogously
ar®,s¥) =12 = s, 5%) =0,

This means that the first ordinal pattern of Golzern is more similar to the first pattern of Bad
Dueben than both second patterns are, but we still give zero weight to the pattern since the
difference is too large. This coincides with the intuitive classification of the coherence when
only looking at the data. If we sum up the numbers for all patterns we get

49
S = Z s(r®,s0)) = 42,
1=1

The pre-processing has to be applied if in both series a large number of values are located within
the same moderate range. In such cases small differences between these values are random and
can be caused by errors in measurements. Therefore, these small differences should not influence
the detected coherence. For the two subsamples above the pre-processing does not have to be
applied since all two consecutive values of a sample differ with more than 10%. For all of the 51
pairs of consecutive values we find 4 that only differ with less than 10% for Golzern and 3 for
Bad Dueben, where this occurs two times at the same time step for Golzern and Bad Dueben.
All in all 20 of the 49 possible patterns are declared as partly random and we only count 16
coincident patterns. That is, for the non-random patterns we have a coincidence of 55.17%.

To compare both series, the comparison value has to be calculated by summarising the multiplied
empirical frequencies of each possible pattern. For example, the pattern r(!) = (3,5,1,4,2) can
be found in one of the 49 sequences for the Golzern gauge (in the first possible subsample)
and also for one sequence at the Bad Dueben gauge. Therefore, the joint probability under
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assumption of independence is the sum term 1/49 - 1/49 = 1/2401 = 0.000416. The pattern
r@ = (2,4,3,5,1) appears twice in the sample of the Golzern gauge and not at all in the sample
of Bad Dueben. This leads to a sum term of 0 for the calculation of the comparison value. After
doing this for all 120 possible patterns, the single sum terms are summarised and multiplied
with the number of subsamples (here 49) to get the comparison value v, = 49 - 0.0503 = 2.47.
If the Golzern and Bad Dueben gauges were independent, we would expect only 2 to 3 (exactly
2.47) coincidences of the patterns. Actually, we find 30 coincidences. That is, the Golzern and
Bad Dueben gauges show a significant deviation and cannot be assumed to be independent.

Additionally, one can also calculate the comparison value for the metrical approach of ordinal
patterns. In this case, not only the frequencies of one pattern for both samples are multiplied,
but all possible combinations of patterns in both samples. This is then weighted by using the
weighting function in eq. (). For the gauge pair Golzern and Bad Dueben we get a comparison
value v.,, = 7.199 that can be compared with the number of coincidences under the metrical
approach of 35.25.

For the comparison value under pre-processing v, ,, we have to calculate the empirical frequency
of a random pattern z. Since px = 16/49 = 0.327 and p, = 12/49 = 0.245 we have z = 0.492.
Thus vepp = (1—2)-ve+2- (v)) = 1.98, where (v,,) is the comparison value based on the reduced
coherence of 0.75. This means, for v/, we do not calculate a pattern with one in the sum of eq.
@) but with 0.75 if it is partly random.

3 Application

To test the applicability of ordinal patterns to characterize differences and similarities of the
runoff regime at different spatial scales and different runoff characteristics we use several exam-
ples:

e Series of flood peaks from 19 mesoscale catchments which belong to the same river basin
are compared for the Mulde River Basin, which has a total area of 6171 km?

e Pairwise comparisons of discharge series from catchments which are located in different
but adjacent river basins

e Runoff series from large catchments (area between 47496 and 144232 km?) in different
parts of Germany.

3.1 Comparison of flood series within one river basin

Beside these differences in catchments size and neighbourhood, different runoff characteristics
were analysed. For the 19 mesoscale catchments series of the winter and summer floods were
compared. We analysed annual winter and summer maximum discharges of several gauges
within the river basin Mulde in Eastern Germany (Figure [B). The Mulde river basin is located
in Saxony and has a catchment area of 6170 km? (at the Bad Dueben gauge). The Mulde River is
a tributary of the Elbe river and consists itself of three main sub-catchments, Zwickauer Mulde,
Zschopau and Freiberger Mulde. The mountainous head areas are located at the foothills and
hilly country of the low mountain range Ore mountains leading to an amount of 1/3 of the
whole area being mountains and 2/3 being lowlands (< 500m a.s.l.) ([I3]). The highest rise is
the Fichtelberg mountain with 1214m a.s.l..
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Figure 3: The Mulde river basin in Eastern Germany

3.1.1 Flood series

The data base consists of annual winter (November-April) or summer (May-October) maximum
discharges measured at 19 gauges in the Mulde basin during the time period 1961 to 2013.
As it is possible only to compare time series of the same observations period some series were
shortened to a common time period. For all gauges the ordinal patterns were calculated pairwise
with the number of increments h = 4 and the number of consistent patterns was counted.

The degree of coincidence of a gauge was obtained by comparison to other pairs of gauges. To
evaluate the coincidences we apply the comparison value v. (eq. ([2)). A coincidence of more
than 10% is statistical significant in the sense that it is more than 50% higher than a random
coincidence under independence of both time series.

An overview over all calculated coincidences (in %) with pre-processing and application of the
metrical approach for the annual winter maxima in the Mulde river basin can be found in Table

10
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(above the main diagonal) in the Appendix. The colour of cells was chosen to separate three
classes (high, medium, low coincidence). It becomes obvious that the series of winter floods
(part of the table above the main diagonal) shows more coincidences than series of summer
floods. The same pattern of coincidence can be found, regardless of using the simple or the
metrical approach, although the coincidence within the single sub-catchments is larger for the
metrical approach. The usage of the metrical version, where small deviations between patterns
are taken into account, seems in this case favourable. It was applied for all calculations which
are presented by their results below.

From Table [6] we see that a slight coincidence exists between most of the gauges in winter.
This indicates that there are winter events, which influence the whole river basin at the same
time. This is the result of winter flood events which are mainly caused by stratiform rainfall or
by snow melt in spring. For the annual summer maximum discharges of the 19 gauges (values
below the main diagonal) in the Mulde basin, the tendential relations of the coincidences remain
similar. However, the number of coincidences above 30 percent is lower in general. This can be
explained by more localized rain events inducing floods in summer, which only affect parts of
the river basin. We can also see that nearly all gauges coincide with the all-embracing Golzern
gauge by more than 30%, where the Nossen, Niederstriegis, Erlln and Lichtenwalde gauges have
the largest coincidence. Among the gauges that show a coincidence of less than 30 percent with
Golzern gauge are the Goeritzhain gauge that is strongly affected by urbanization which becomes
evident in connection with convective rain cells in summer and the Streckewalde gauge, where
the summer flood peaks are affected by a reservoir. Gauges which do not belong to the same
sub-basin and therefore are rather far away from each other do not show any coincidence. This
indicates that there are only few or none summer events, which influence the whole catchment
area at the same time.

To compare patterns of discharges within a river basin the spatial relationships between gauges
have to be considered. Here we differentiated between gauges which are arranged in series or
parallel. In the first case, if two gauges are located in line, the coincidence of patterns depends
on the impact of the intermediate catchment, in the second case, if the catchments are parallel
situated (which seems to be more interesting here), it depends on the similarity of rainfall and
runoff formation between the watersheds. Coinciding patterns characterize the similarity of
series at gauges downstream with their tributaries and difference of their runoff synchronicity
with the main river. To give an example in Figure M the pairwise coincidence between gauges
in the lower part of the basin is shown. The tree structure of the river network, the catchment
size and the percentages of coinciding patterns for winter and summer floods are visualized. It
can be seen that the percentages, characterizing the degree of coincidence, are higher in winter
than in summer. The high coincidence of the series of winter floods at the Erlln gauge with the
series at Nossen gauge and the lower ones between Erlln and Lichtenwalde demonstrates, that
similarities between flood series in winter depend not necessarily on the catchment size. The
series of summer floods at the Goeritzhain gauge shows a different behaviour if it is compared
with the summer flood series at the Wechselburg or Zwickau gauges. As mentioned above, this
is caused by a large urbanized part of this catchment, which reacts directly on rainfall events
summer and modifies the series of summer floods peaks.

For both studies, using simple ordinal patterns and metrical ordinal patterns, it is striking that
the Aue 1 gauge shows no coincidence above 30% with any other gauge in the basin for winter
floods. This small catchment with its special location in the Western part of the Ore mountains
seems to have a different flood behaviour during winter than the gauges located in the Eastern
part of the Ore mountains. A visual presentation of the detected pairwise coherences between
the gauges can be found in Figure [B] for winter floods and in Figure [l for summer floods. For

11
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Figure 4: Pairwise coincidences of the lower parts of the Mulde river basin.

every gauge the inner circle indicates the colour of the gauge and the colours of the outer
circle are the gauges for which a significant coherence is detected. For a better readability, we
only show coherences larger than 50%. It becomes obvious that the catchments of headwaters
show less coincidences of flood series than the catchments with larger drainage areas located
downstream.

The results show that the maximum floods in summer as well as in winter in general exhibit a
local behaviour, that can be explained by the climatic conditions, especially the different types
of flood events (see [6]). Similar results were also detected by e.g. [13] using circulation patterns.
The results for summer floods demonstrate the highest coincidences between gauges which lie
very close together, in fact no more than 30 km measured as Fuclidean distances between the
centres of the catchment areas. Additionally, one can find coincidences of nearly all gauges in
a basin with the discharge series at the basin outlet (Golzern gauge) as it is shown in Figure [7.

Again, we can see for the summer as well for the winter annual maxima a decreasing progression
for increasing area relation of the catchment, related to the area of the catchment Golzern.
Consider that the abscissa is subdivided in a logarithmic scale. The coincidences decrease with
the ratio of areas. They are higher in winter. The differences between winter and summer
coincidences scatter. E.g. the coincidence of the gauge Goeritzhain with Golzern is in winter
close to the average (blue line) but in summer much lower. In difference the gauge Aue shows
a coincidence with gauge Golzern in summer but not in winter. The distribution of magnitude
of coincidences within the Mulde river basin implies the assumption that the distance of the
gauges plays a crucial role for the coincidence. Of course, gauges that are located in row within
the basin tends to have a more similar behaviour than gauges that are parallel. But at least
the winter annual maxima show coincidences between gauges with parallel catchments that are
located close together. We therefore want to have a closer look at the relation of the distance
between the centroids of the catchments and the coincidence. For this we use the distance of
the centroids of the single catchments and compare all gauges that are parallel and head water
catchments. The results can be found in Figure Rl
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Figure 5: Coherences of patterns in the winter annual maxima of the Mulde river basin.

We can see a linear relationship between the distance and the coincidence of the winter annual
maxima. With increasing distance the coincidence decreases as one would expect. For the
summer annual maxima no such relationship can be found. The applicability of ordinal patterns
to estimate changes of the flood regime by human intervention can be demonstrated by an
application for the gauge Streckenwalde. The time series at this gauge which dates back to
1921 is affected by a new-built reservoir since 1973. By comparison with the flood series at the
gauge Hopfgarten for the same time period, a break point of coincidences becomes evident (Table
[B). The coincidence of the summer floods is reduced by operation of the reservoir especially in
summer time.

3.2 Comparison of series of mean discharges and low water discharges at different
spatial scales

Annual mean discharges are an indicator for the annual weather conditions, whereas low water
discharges indicate dryness and evapotranspiration. Both hydrological characteristics depend
on weather conditions for time periods of several months, which are similar on the regional
scale. To characterize differences and similarities of these characteristics, the developed method
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Figure 6: Coherences of patterns in the summer annual maxima of the Mulde river basin.

of ordinal patterns was applied to annual mean discharges and discharge means during low
water periods. Here we used the annual minimum of moving averages of mean discharges over
D days in one year (NMDQ). If the catchment area of a gauge is smaller than 1000 km? we
considered a time span of D = 7 days otherwise of 30 days.

To analyse the differences in similarities of runoff series, we used pairwise comparisons of dis-
charge series from catchments, that are located in the Mulde Basin, from adjacent catchments in
the same geographical region (Saxony) and from large catchments in different parts of Germany.
To estimate coincidences in a regional approach, we have considered a data sample consisting
of three pairs of gauges located in different basins all over Saxony, belonging all to river systems
entering the Elbe. The pairs were chosen by the similarity of the catchment size. We chose
the pairs Aue 1 (Zwickauer Mulde)-Adorf (Weisse Elster), Wechselburg (Zwickauer Mulde) -
Spreewitz (Spree) and Nossen 1 (Freiberger Mulde) - Merzdorf (Elbe) (Figure @) with sample
length of 50 up to 90 years. In the following, we will call this sample the Saxony-sample.

As a more global sample, we chose gauges from three of the main rivers in Germany. The gauges
Cologne, Maxau (both Rhine), Neu-Darchau, Dresden (both Elbe) and Hofkirchen (Danube)
are located all over Germany (Figure [I0) and have a sample length of about 100 up to 200
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Figure 7: Relation of the catchment size quotient to the coincidence with the gauge Golzern for
the whole Mulde river basin.

Table 3: Coincidence of the Hopfgarten and Streckewalde gauges before and after the building
of a dam in 1972.
Coincidence in % ‘ from 1921 to 1971 from 1972 to 2014
Winter floods 23 18.5
Summer floods 31.25 11.25

years. We will call this the Germany-sample.

Additionally, we compared the global samples with pairs of gauges of the Mulde river basin
having similar catchments. In the evaluation of the results we will concentrate on the case
h = 4, that is four increments or five data points, and the metric approach with pre-processing
compared with the corresponding comparison value v pp,-

The 10w v, ppoy gives the random coincidence under assumption of independence, the row relation
the multiple of this number reached by the coincidence value. To give an example: The annual
mean discharges of the gauges Hofkirchen/Danube and Maxau/Rhine with a common sample
length of 86 years have 39.63% coincidence of the length h = 4, where we would expect under
independence 7.70% (remember that we used the metrical approach and pre-processing). The
relationship between both values is 5.15. Likewise, the gauges Wechselburg/Zwickauer Mulde
and Spreewitz/Spree have 37.79% coincidence (7.61% expected under independence), leading
to a relation of about 5 between observed and expected percentage number of coincidences.
This means, we have five times more coincidences than one would expect under independence.
A relation between about 4 and 5 can be found for all pairs of gauges in the sample Saxony.
Also for the Mulde sample these relation differs distinctly. Nevertheless, there are also gauge
pairs with a small relation. For example the Berthelsdorf and Niederschlema gauges, which are
also located close together but belong to different sub-basins, have only a relation of percentage
coincidence of 3.93. This can be explained by a reservoir which increase the low water at the
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Figure 8: Relation of the distance and the coincidence for all head water catchments.

Niederschlema gauge since 1980. For all pairs of gauges in the Mulde river basin we can find
coherences whose number is significantly higher than one would expect under independence. For
example the Hopfgarten and Niederschlema gauges mentioned 54.91% of the mean discharges
behave alike where we would expect a coherence of 8.11%. This behaviour can be also found
for the gauges in geographical region Saxony but with lesser coherence, though still highly
significant. All gauges are located close together in a distance of at most 150 km (concerning
the gauge) and belong to the Elbe system.

For the Germany sample this relation varies much between a lowest value of 2.49 and the largest
value of 8.15. The results show that the mean charges have very similar behaviour within a
river basin (Table 2).Even for the sample of gauges located all over Germany the detected
number of coherences is much higher than one would expect under independence. That is, we
can find a noticeable similar behaviour in the mean discharges. Especially gauges belonging
to the same river (Cologne and Maxau/Rhine and Neu-Darchau and Dresden/Elbe) have an
extremely large number of coherences. Surprisingly, gauges belonging to different basins show
in some cases (Cologne/Rhine versus Hofkirchen/Danube) an almost as high relation as rivers
of the same basin (Neu-Darchau/Elbe versus Dresden/Elbe). Nevertheless, the coincidences
behave disconcordantly. That means, if the series at gauge A has a high coincidence with the
series B and gauge B with gauge C, this does not imply that gauges A has also a high coincidence
with gauge C.

In general the results show that the series of mean discharges show a more similar behaviour
for all gauges compared to floods. That is, the annual average discharge at gauges behaves
nearly the same, regardless of the distance of the gauges. Of course there are gauges, where
the coincidence is higher (these are mostly gauges, which lie closely together - Golzern- Bad
Dueben, Niederschlema-Hopfgarten, or gauges belonging to the same river - Cologne-Maxau

16



3 Application

Mérzdorf

Spreewitz

¥

?‘?«{fﬁvf"" i

®  Gauges in Saxony DEM

— Rivers [m]
1215
|:| basins -
[

0 10 20 30 40
w1 Kilometer

Figure 9: The gauges in the Saxony-sample

(Rhine)), but all pairs of gauges have a number of coincidences which is significantly higher than
the comparison value. The coincidence in mean discharges show a general weather depending
behaviour of the discharges, which is averagely the same in whole Germany. For example, there
are rather wet or dry years leading to high or low mean discharges.

These results now should be compared with results of another type of extreme event, the
Minimum discharges over D days (NMDQ)(Table []).

In general, there is less coincidence in the behaviour of NMDQ in comparison with the an-
nual runoff means, independent of the considered sample. Somewhat surprising is the slight
coincidence between the Cologne and Hofkirchen gauges, which was also found for the mean
discharges.

If we only consider the gauges in the Mulde sample we can find high coincidences mainly in
the same sub-basin, though it seems that the eastern sub-basins have more coincidences in
their NMDQ values than the western. This can be explained by the dominating Atmospheric
Circulation Pattern resulting North-West-cyclonic conditions, departing the Mulde river basin
into two different climate parts, the eastern part of the Zwickauer Mulde und the western part
with the Freiberger Mulde (see [13]). Additionally, the eastern part is much more influenced
by the Ore mountains. The Niederschlema gauge, which is highly influences by a reservoir only
shows little coincidence to the other gauges. The low water regulation of the dam therefore
prevents the gauge of low water.

We also calculated the number of coincidences for other values of h, namely h = 2,3,5,6,7 and
always also for the non-metrical approach. Since the results create the same picture as in the
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case of h = 4 and the metrical approach we spare the presentation of these results.

4 Discussion

The results above show the applicability of the ordinal pattern approach to hydrological time
series. For different types of discharges, significant coincidences can be found between the
gauges. The information obtained by this new method cannot only be used to analyse the spatial
extent of weather phenomena but it also provides useful information about the similarities and
differences between hydrological characteristics. In the case study described above it became
possible to identify differences in the flood regime caused by urbanization and reservoirs. The
relatively similar behavior of the time series of runoff means and low waters at the gauges
Cologne/Rhine and Hofkirchen/Danube were surprising. This is especially the case as the
gauge Maxau, that is located also at the Rhine, shows less coincidences with the series at the
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Table 4: Number of coincidences and comparison value (in pct., respectively) for the mean
discharges of the sample Mulde, Saxony and Germany calculated with the metrical
ordinal pattern approach with h = 4 and pre-processing.

Sample Gauge pair Coincidences v ppw  Relation
Mulde Wechselburg Nossen 49.39 8.89 5.56
Same basin Berthelsdorf Hopfgarten 45.78 8.76 5.23
Berthelsdorf Niederschlema 34.51 8.79  3.93
Hopfgarten Niederschlema 54.91 8.11 6.77
Saxony Aue 1 Adorf 37.01 7.51 4.93
different Wechselburg Spreewitz 37.79 7.61 4.97
mesoscale basins Nossen 1 Merzdorf 37.00 8.98  4.12
Germany Cologne/Rhine Neu-Darchau/Elbe  27.69 6.83  4.05
Cologne/Rhine Hofkirchen/Danube 47.33 729 649
Cologne/Rhine Dresden/Elbe 24.47 733 334
Cologne/Rhine Maxau/Rhine 64.58 792 815
Neu-Darchau/Elbe  Hofkirchen/Danube 31.31 744 421
Neu-Darchau/Elbe  Dresden/Elbe 55.58 8.33  6.67
Neu-Darchau/Elbe = Maxau/Rhine 22.59 729  3.10
Hofkirchen/Danube Dresden/Elbe 28.16 8.01  3.52
Hofkirchen/Danube Maxau/Rhine 39.63 770  5.15
Dresden/Elbe Maxau/Rhine 21.31 8.56  2.49

Danube-gauge. A practical application of the described methodology could be in the planning
hydrometric networks. To give an example, a nested group of gauges of the Zschopau sub-basin
in the Mulde river basin is compared. In Figure [0l we show the coincidence of this group of
gauges in relation to the quotient of their catchment area with that of the Lichtenwalde gauge
at the sub-catchment outlet for both annual summer and winter maxima. As comparison also
the relation of the Erlln gauge, that is located downstream, is shown.

It can be seen that for winter as well as for summer floods the coincidence decreases with
increasing relation of the catchment sizes. That is, the smaller the catchments compared to
the gauge at the outlet the less similar the annual maxima are. Whereas for the winter annual
maxima the coincidence decreases linearly, for the summer events a logarithmical decrease can
be detected. However, the very striking deviation of the Streckewalde gauge for the summer
events can be explained by the dam located upstream to this gauge which is modifying the
flood peaks. The Tannenberg and Borstendorf gauges show nearly no differences with the
Lichtenwalde gauge for winter and summer floods. This is not the case for the other gauges.
The results in this work show that there exist strong coincidences between the discharge be-
haviour of gauges. These can be found for extreme events (floods and low water) as well as
medium discharges. The degrees of coincidences differ between the hydrological characteristics
of interest depending on the main factors of influence: spatial relationships between gauges
(consecutive or parallel gauges), the catchment size relation and the distance.

This study presents a possibility to measure non-linear dependence between non-stationary
discharge series. The classical method of ordinal patterns is extended by a pre-processing
method taking into account the high variability of discharge series. The application to several
winter and summer annual maximum series of catchments located in different distances from
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Table 5: Number of coincidences and comparison value for the NMDQ (in pct., respectively) of
the sample Mulde, Saxony and Germany calculated with the metrical ordinal pattern
approach with h =4 and pre-processing.

Sample Gauge pair Coincidences v.,, Relation
Mulde Wechselburg Nossen 24.39 6.15 3.97
Same basin Berthelsdorf Hopfgarten 34.51 6.85 5.04
Berthelsdorf Niederschlema 22.54 6.05 3.73
Hopfgarten Niederschlema 18.66 6.14 3.04
Saxony Aue 1 Adorf 15.58 5.90 2.64
different Wechselburg Spreewitz 28.49 5.22  5.46
mesoscale basins Nossen 1 Merzdorf 13.75 6.53 2.11
Germany Cologne/Rhine Neu-Darchau/Elbe  19.27 5.79 3.33
Cologne/Rhine Hofkirchen/Danube  37.62 5.9 6.73
Cologne/Rhine Dresden/Elbe 19.34 5.51 3.51
Cologne/Rhine Maxau/Rhine 31.47 6.10 5.16
Neu-Darchau/Elbe  Hofkirchen/Danube 22.82 5.66 4.03
Neu-Darchau/Elbe  Dresden/Elbe 45.42 6.13 7.41
Neu-Darchau/Elbe = Maxau/Rhine 18.75 598 3.14
Hofkirchen/Danube Dresden/Elbe 24.03 5.65 4.25
Hofkirchen/Danube Maxau/Rhine 34.15 5.99 5.70
Dresden/Elbe Maxau/Rhine 14.77 5.97 2.98

each other illustrates the possibility to detect groups behaving alike in their seasonal flood
regimes. Moreover, anthropogenic impacts like the construction of a reservoir can be detected
by changing coherences between time series. This information can be used not only to detect
homogeneous groups but also for the planning of new gauges by using the coherence within a
catchment related to a specific gauge at the estuary. If the application is extended to larger
scales of catchments and different types of discharges, such as mean annual discharges or low
water, still coherences between several gauges can be detected. Nevertheless, in this case no
specific climate impact can explain these coherences, but there seems to be a Germany-wide
coincidence of wet or dry years. For low water the coherence is the lowest, though still significant.
This study underlines the usefulness of the usage of ordinal patterns in the hydrological context,
since this method is not influenced by non-stationarity and is able to detect even non-linear
dependence. Classical correlation methods like the Pearson correlation coefficient would fail
here. Moreover, the detected coherences can be related to certain climatic or anthropogenic
circumstances.

A further application could be the detection of cycles implying possible long range dependence
in the data. For this, certain patterns have to be detected that indicate a change of a period of
high floods to a period of lower floods or vice-versa. First results show a cycle of seven years in
the winter annual maxima series of the Mulde river basin, which corresponds with many results
on cycles in hydrology.
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Table 6: Coincidences (in %) between the winter (above main diagonal) and summer annual maximum discharges (below main diagonal) of gauges in the
Mulde basin with the metrical approach with h = 4 under pre-processing. Coincidences of more than 50% are highlighted in red, below 30% are
highlighted in blue. The black boxes indicate groups of gauges belonging to the same sub-catchment.

Gauge River | Wolfsgrund ~ Berthelsdorf Nossen 1 Niederstriegis Erlln  Rothenthal Zblitz Pockau 1 Borstendorf Streckewalde Tannenberg Hopfgarten Lichtenwalde Golzern 1 Bad Dben 1 Aue 1 Niederschlema Zwickau-Plbitz ~Gritzhain  Wechselburg 1
AE [km?] 36 245 586 286 2980 76 125 385 640 206 92 530 1572 5433 6170 363 754 1021 532 2099

Wolfsgrund Chemnitzbach 36 - 388 31.6 19.4 23.0 21.9 32.7 40.8 35.7 34.2 31.6 311 28.6 23.5 29.6 16.8 20.9 32.1 26.5 28.1

Berthelsdorf Freiberger Mulde 245 27.6 - 65.3 43.9 35.2 43.4 27.0 47.5 14.8 34.7 42.9

Nossen 1 Freiberger Mulde 586 25.0 44.4 - 37.2 311 18.4 38.8

Niederstriegis | Striegis 286 15.8 27.0 28.1 - 48.5 35.2 372 372 32.7 18.4 40.3

Erlln Freiberger Mulde 2980 26.5 37.8 | 526 45.9 - 37.8 35.7 47.5 48.5 38.8 34.2 16.3 38.8

Rothenthal Natzschung 76 26.5 23.5 25.0 23.5 28.6 - 44.4 38.8 34.2 45.9 29.1 24.0 43.9

Zblitz Schwarze Pockau 125 24.0 28.6 38.3 22.5 35.7 29.1 - 46.9 33.7 20.4 34.7

Pockau 1 Flha 385 25.5 36.7 43.9 35.2 45.4 35.2 41.3 - 48.5 21.9 39.3

Borstendorf Flha 640 30.1 311 38.3 311 44.9 36.7 30.6 49.0 - 43.9 372 13.8 28.6 42.9 42.9

Streckewalde Prenitz 206 18.4 23.0 26.0 24.5 32.7 20.9 37.8 29.1 31.6 - 35.7 24.5 424

Tannenberg Zschopau 92 16.3 24.5 30.6 24.5 35.7 27.0 29.1 33.2 27.0 26.0 - 15.3 32.1

Hopfgarten Zschopau 530 23.0 21.9 38.8 29.1 44.9 29.1 44.9 41.3 40.8 36.7 429 18.9 34.2

Lichtenwalde [ Zschopau 1572 26.5 41.8 48.0 39.3 36.7 35.2 454 8050 29.1 32.7 19.4 36.7

Golzern 1 Vereinigte Mulde 5433 24.5 34.2 41.3 28.6 25.0 31.6 372 26.5 35.7 15.8 41.3

Bad Dben 1 Vereinigte Mulde 6170 25.0 25.5 34.2 40.3 35.7 24.0 33.2 40.3 25.5 321 18.9 40.8

Aue 1 Schwarzwasser 363 19.9 30.1 29.1 21.9 32.7 24.0 214 31.1 24.0 25.0 40.3 - 23.5

Niederschlema | Zwickauer Mulde 754 174 29.1 245 29.6 25.0 23.0 18.9 25.0 25.0 16.8 32.1 28.1 29.6 33.7 434 -

Zwickau-Plbitz | Zwickauer Mulde 1021 19.9 31.6 21.9 27.0 26.5 30.1 22.5 30.6 29.6 20.4 33.7 27.6 28.6 33.2 45.4 49.5

Gritzhain Chemnitz 532 15.8 17.4 14.8 20.4 21.4 10.7 14.3 18.9 16.3 14.3 23.5 18.4 20.4 27.6 23.5 214 18.4

Wechselburg 1 | Zwickauer Mulde 2099 20.9 311 276 [ BL5 | 413 19.9 235 372 31.1 18.4 31.1 35.7 35.7 856 | 490 29.6 40.8
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