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A Multivariate Approach for Onset Detection Using
Supervised Classification

Nadja Bauera,∗, Klaus Friedrichsa, Claus Weihsa

aDepartment of Statistics, TU Dortmund University, D-44221 Dortmund, Germany

Abstract

In this paper we introduce a new onset detection approach which incorporates a
supervised classification model for estimating the tone onset probability in signal
frames. In contrast to the most classical strategies where only one detection
function can be applied for signal feature extraction, the classification model
can be fitted on a large feature set. This is meaningful since, depending on the
music characteristics, some detection functions can be more advantageous that
the others.

Although the idea of the considering of many detection functions is not new
in the literature, these functions are, so far, treated in a univariate way by, e.g.,
building of weighted sums. This probably lies on the difficulties of the direct
transfer of the classification ideas to the onset detection task. The goodness
measure of onset detection is namely based on the comparison of two time
vectors while by the classification such a measure is derived from the frame-
wise matches of predicted and true labels.

In this work we first construct – based on several resent publications – a
comprehensive univariate onset detection algorithm which depends on many free
settable parameters. Then, the new multivariate approach also depending on
many free parameters is introduced. The parameters of the both onset detection
strategies are optimized for online and offline cases by utilizing an appropriate
validation technique. The main funding is that the multivariate strategy outper-
forms the univariate one significantly regarding the F -measure. Furthermore,
the multivariate approach seems to be especially beneficial in online case since
it requires only the halve of the future signal information comparing to the best
setting of the univariate onset detection.

Keywords: Online Onset Detection, Model Based Optimization, Supervised
Classification.
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1. Introduction

A tone onset is the time point of the beginning of a musical note or another
sound. Tone Onset Detection (OD) in music signals is an important step for
many subsequent applications like music transcription and rhythm recognition.
Several approaches have been proposed, but most of them can be reduced to
the same basis algorithm just differing in the parameter settings ([1], [2], [3],
[4]). They all follow the same scheme: windowing the signal, calculating an
Onset Detection Function (ODF) for each window and localizing the tone onsets
by picking the relevant peaks of the ODF. Many numerical and categorical
parameters are involved in this procedure like the window size, the window
overlap and the applied ODF.

In the classical procedure only one signal feature is considered for identifying
tone onsets. While there exist several promising features, feature combination is
an intuitive way. Since onset detection is a binary decision problem, supervised
classification approach is suitable.

Another way, which is proposed in several recent publications, is to aggregate
the features into one combining feature. For example, in [3] three OD features
are considered in each signal frame based on spectral magnitude, phase and
pitch. The onset decisions are first made for each feature separately and than
merged to one feature by summing and smoothing the individual vectors. As
a further example, in [5], the audio signal is disassembled in 40 frequency bins
using an auditory model. The same OD feature is computed in each channel
while for each signal frame the vector of 40 feature values is reduced to only one
feature by using the quantile function. The general problem of such aggregating
approaches is the loss of the information. Therefore, supervised classification
which considers all features separately is a more appropriate solution.

Although in each signal frame a binary decision has to be performed (onset
or no onset), onset detection is not a classical classification problem due to time
dependencies.

The classification goodness measure considers matches between the predicted
and the true class labels. However, in onset detection small detection delays
are allowed, i.e, a tone onset might be correctly detected even if it found in
a neighboring frame which would be counted as a misclassification in classical
classification. Hence, it is not meaningful to minimize the misclassification rate
since it does not automatically implies optimal OD performance. A similar
problem is connected with overlapping frames where each onset obligatorily
occurs in several neighboring frames. Furthermore the problem of unbalanced
data arises since the most frames do not include an onset. This is a big challenge
for most classification methods as the naive classification rule which assigns the
label ‘no onset’ to all frames is already a good model w.r.t. misclassification
rate.

There exist only few publications with application of supervised classification
for tone onset detection (see, e.g.,[6] or DAVY).

[6] test different architectures of neural network model for onset detection.
As input variables the output of the Short Time Fourier Transform is compared
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with the Constant-Q transform. As the number of frequency bins (i.e., the
number of input variables) in each signal frame is to high for efficient learning
the neural network model, the authors use just some selected bins. The output
of the learning model is not a binary vector (onset or no onset), but the smooth
transitions provided by mixture of Gaussian. The peak extraction is based on
the model output by its filtering, thersholding and calculation of center of mass
positions inside each peak. They also remark, that using of high level features
would be more beneficial in regard of training time.

? WAS ZU DAVY?
Our novel approach for multivariate OD is introduced in Section 3. Here,

we consider the classical univariate OD procedure as the reference. For this
reason, in Section 2 a comprehensive univariate OD algorithm is proposed first.
It combines ideas of many state-of-the-art publications while instead of fixing
the algorithm parameters (as done in the most publications) we will optimize
them. Moreover, depending on the certain algorithm parameter settings which
consider the required future signal segments, either online or offline OD can be
achieved. Also the multivariate approach depends on a set of free parameters
which have to be optimized.

For optimization, we use a sophisticated sequential model based approach
shortly introduced in Section 4. The optimization is conducted on the data
base of manual annotated music pieces described in Section 2.8. The result
validation is conducted in a sophisticated manner by repeatedly dividing the
data base into training and test data as provided in Section 4.2.

Section 5 presents research questions and analysis of the experimental re-
sults. Finally, in Section 6 the main findings are summarized and several ideas
for future research are discussed.

2. Classical Onset Detection Algorithms

A tone onset marks, intuitively, the time point of the beginning of a new tone.
However, there exist several formal definitions of the tone onset time ([1, 2, 7, 8]).
The perceptual tone onset is defined as time point where a human listener can
firstly recognize it while the physical onset represents time point of the first
amplitude rise from zero (see [2]). There exist several statements regarding the
delay in ms between the physical and perceptual onset times while in the most
studies this delay does not exceed 50 ms. According to [9], the human listeners
perceive – depending on the tempo of a music piece – two tone onsets withing
20 to 30 ms interval as simultaneous.

There exist two kinds of OD: online and offline. The offline OD is insofar
easier as the whole signal information is allowed for making ‘onset’ vs. ‘no
onset’ decision in the current signal frame. However, for many real applications
(like for the hearing adds) the online OD is particularly important. In this
case, just very small time delay (called latency time) is allowed for detecting a
tone onset. In this paper, we also define a third detection type – pseudo-online
OD – which is motivated through the works of [9] and [10]. The both papers
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consider originally the case of the online OD as they respect the latency time.
But they use audio recordings whose signal amplitudes are re-scaled in advance
in a uniform interval (e.g., [−1, 1]). Note, for this reason, the knowledge of
the absolute amplitude maximum of the whole recording is needed. Hence, the
whole audio signal is incorporated indirectly. For the offline OD the amplitude
re-scaling is allowed and will also be applied here.

In our pre-experiments we found that, after optimization, the pseudo-online
OD significantly outperforms the online one. Although we will consider only
online and offline approaches in the following, we would like to emphasize the
pseudo-online OD in two respects. Firstly, the developers of online capable
signal processing applications (not only limited to onset detection) should pay
attention to using non standardized audio recordings as they can lead to too
optimistic results which can not be achieved by the real online applications.
Secondly, because of the high improvement potential, an adaptive signal am-
plitude re-scaling technique can be proposed for the online applications while,
e.g., the amplitude maximum can be estimated in regular time intervals.

In this section, we will explain the individual steps of the classical onset
detection scheme introduced in Algorithm 1. The main ideas of this algorithm
are base on the tutorial of [1] while some extensions are motivated through [4,
2, 10] or are newly proposed here. Each OD step depends on many parameters.
Instead of fixing, we will optimize them in the following, so that the set of
possible levels or a region of interest is provided for each categorical or numerical
parameter.

Algorithm 1: Classical onset detection.

1 split the signal into small (overlapping) windows;
2 pre-process the signal;
3 compute an ODF;
4 normalize the ODF;
5 threshold the normalized ODF;
6 localize the tone onsets;
7 measure the goodness of the detection.

2.1. Signal Windowing and the STFT

We assume a digital audio signal sampled with a rate of 44.1 kHz. This
signal is split into l (possibly overlapping) windows of length N samples. Since
we intend to carry out a Short-Time Fourier Transformation (STFT) in each
of these windows, powers of 2 are chosen as window lengths. We will consider
512, 1024, 2048 and 4096 samples as possible values for N . The hop size param-
eter h determines the distance in samples between the adjacent windows. We
vary the hop sizes between N/10 and N samples (i.e., we allow the maximal
frame overlap of 90%). Note, the smaller h, the more overlapping windows are
generated and the more computational time is needed. This might affect the
online capability of OD.
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If required by the used OD feature (see line 3), a STFT is applied in each
signal frame ([2]):

X[n, j] =
1

N

N∑
k=1

x[h · (n− 1) + k]wN (k)e−2πijk/N , (1)

where X[n, j] is the Fourier coefficient (a complex number) of the jth frequency
line in nth frame, n = 1, . . . , l. wN () is the window function which can be
optionally used to weight the signal amplitude in the frames before STFT cal-
culating. A detailed overview about window functions and their characteristics
is given in [11]. Here, we consider four popular functions as possible values
of window .fun parameter: ‘Uniform’, ‘Hanning’, ‘Blackman’ and ‘Gauss’ (with
σ = 0.4).

The spectral magnitudes |X[n, j]| are defined as the absolute values of the
Fourier coefficients while |z| =

√
Re(z)2 + Im(z)2. The Polar coordinate equiv-

alence of the complex numbers is

X[n, j] = |X[n, j]|eiφ[n,j]. (2)

|X[n, j]| is the spectral magnitude and φ[n, j] is the phase (also called shift).
φ[n, j] is an angle in interval [−π, π] and can be calculated using the so called
atan2 function1:

φ[n, j] = atan2 (Re(X[n, j]), Im(X[n, j])) . (3)

2.2. Pre-Processing

A popular pre-processing method is the Adaptive Whitening (AW) proposed
in [9] which leads to a signal based re-weighting of the STFT so that the activity
variations of the different frequency lines are mapped to a similar range. The
method can operate in online manner and depends on two parameters. The
rounding parameter depends thereby on the maximal signal amplitude, where
values greater than the spectral magnitude maximum switch off the AW2. As the
author standardize the signal amplitude before applying of AW, the proposed
region of interest for this parameter lies in interval [0, 1]. In the real online appli-
cations the maximal amplitude can not be known in advance so that the upper
limit of this interval can variate strongly. In our pre-experiments for the online
OD, we varied the both parameters of the AW fixing all other OD parameters
to the state-of-the-art settings while no AW effect could be recognized. For this
reason, the AW option will not be considered in our algorithm.

Instead, two other pre-processing options introduced in [10] will be used
her: spectral filtering and logarithmising the spectral magnitudes (only for OF

1https://nf.nci.org.au/facilities/software/Matlab/techdoc/ref/atan2.html, state:
01.03.2016.

2Absolute amplitude values effect directly the spectral magnitude values.
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features utilizing the STFT). By spectral filtering (parameter spec.filt with lev-
els ‘yes’ and ‘no’) a pseudo constant-Q filter bank is applied to the spectral
magnitudes which bounds the frequency lines according to the semitones of the
western music scale (from 27.5 Hz to 16 kHz). The resulting filter bank F [j, b]
contains then b = 82 frequency lines. If many Fourier coefficients are matched
to one (new) frequency line, their magnitudes are weighted by a triangle window
and summed. The filtered spectral magnitudes are gives as:

|Xfilt [n, b]| =
N/2∑
j=1

|X[n, j]| · F [j, b]. (4)

Logarithmizing the spectral magnitudes is successfully applied by [10] and
[12] and is presented in our algorithm by the categorical parameter spec.log with
levels ‘yes’ and ‘no’. The main idea here is to multiply the spectral magnitudes
with the so called compression parameter ` and then take the logarithm. The
region of interest for ` is here [0.01, 20]. Adding of a one is important for avoiding
the negative values:

|X log [n, j]| = log10(`|X[n, j]|+ 1). (5)

Note, the logarithmizing can be conducted for the original as well for the filtered
spectral magnitudes.

2.3. Onset Detection Functions

Computation of an onset detection function in windows of the pre-processed
signal is often called reduction ([1]), since after this step not the signal is ana-
lyzed anymore but only the vector of ODF values – odf . Many ODFs are based
on the comparison of neighboring windows. An increase of an ODF generally
indicates an onset, a decrease an offset. Also, offset information can improve
onset detection ([13]). Subsequently, we will briefly discuss the 18 ODFs utilized
in this study, represented by the categorical parameter od .fun in our optimiza-
tion. Features which (in different ways) consider the tone offset information are
marked with an offset index. Each feature is also highlighted with its individual
number. Furthermore, for the purpose of better compactness, the frame index
n− 1 is abbreviated with n′.

Signal Amplitude Based Features. The Zero-Crossing Rate (ZCR) is one of the
simplest signal features. It gives the number of sign changes of the signal am-
plitude in a window. The direction of such changes can be ignored. Therefore,
the absolute difference of the ZCR to the previous window (ZCR.Abs.Diff ) is
of interest (the greater the difference, the greater the likelihood of an onset):

ZCR(n) =
1

N − 1

N−1∑
k=1

I{x[hn′ + k] · x[hn′ + k + 1] < 0}.

(1)
ZCR.Abs.Diff (n) = |ZCR(n)− ZCR(n′)|.

(6)
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I is an indicator function which takes the value 1 if the condition is fulfilled.
For example, [14] use ZCR for classification of drums sounds.

The next amplitude based feature – Absolute Maximum (AM ) – considers
the difference between the absolute maxima of neighboring windows, as defined
in [15]. In our optimization, we will consider two features, the difference and
the absolute difference of AM in the neighboring windows:

AM (n) = max (|x[hn′ + 1]|, . . . , |x[hn′ +N ]|) ,
(2)

AM .Diff (n) = AM (n)−AM (n′),

(3)AM .Abs.Diff offset(n) = |AM (n)−AM (n′)|.

(7)

A further possibility of amplitude change measuring is the summing of all
squired samples in each frame, also called as Amplitude Energy (AE, see [16]):

AE (n) =

N∑
k=1

(x[hn′) + k])2. (8)

Again, two features are of interest: the difference ((4)AE .Diff ) and the abso-

lute difference ((5)AE .Abs.Diff offset) of the amplitude energy in neighboring
windows whose formal definitions are analog to the Formula 7.

Spectral Magnitude Based Features. The first feature in this category is based
on the spectral energy: summing the squared spectral magnitudes in each frame.
However, in this form, the spectral energy would have exact the same values
in each frame as the amplitude energy (due to the definition of the Fourier
transformation). Furthermore, a tone onset can often be distinctly recognized
in some special frequency lines, whereas other frequencies provide a blurred
image. By the so called ‘hard’ onsets (mostly occurring by percussive or string
instruments) the increase of the spectral energy is especially strong for the higher
frequency lines. Therefore, [17] proposes a linear weighting of the absolute values
of the Fourier coefficients – High Frequency Content (HFC ) feature:

HFC (n) =
2

N

N/2∑
j=1

(j · |X[n, j]|)2. (9)

The difference ((6)HFC .Diff ) and the absolute difference ((7)HFC .Abs.Diff offset)
of the linearly weighted spectral energy in neighboring windows are considered
as OD features. According to [1], HFC feature is not well suited for other
instrument classes (like wind instruments) or for detection of the ‘soft’ onsets.

As an alternative method, the Gauss window function can be exemplary
used for the weighting (s. Section 2.1). In this way, the middle frequency
lines are more influencing. This proposal will be called Gauss Frequency Con-
tent (GFC ). The corresponding two features are then named (8)GFC .Diff and
(9)GFC .Abs.Diff offset .
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The following three features ([18]) – Spectral Centroid (SC ), Spectral Spread
(SSp) and Spectral Skewness (SSk) – consider the distribution properties of the
spectral magnitude over the frequency lines. The spectral centroid indicates the
location of the spectral distribution while smaller values mostly correspond to
the lower tones. The direction of the change can be ignored here, so that only
the absolute SC differences in the neighboring windows are considered:

SC (n) =

∑N/2
j=1 j · |X[n, j]|∑N/2
j=1 |X[n, j]|

,

(10)
SC .Abs.Diff (n) = |SC (n)− SC (n′)|.

(10)

The spectral spread of a window represents the timbre of the playing instru-
ment:

SSp(n) =

√∑N/2
j=1 (j − SC(n))2|X[n, j]|√∑N/2

j=1 |X[n, j]|
. (11)

Small values indicate instruments with only few overtones. Again, we are
only interested in absolute differences of this feature in neighboring windows
– (11)SSp.Abs.Diff .

The spectral skewness is a measure for the skewness of the magnitude dis-
tribution.

SSk(n) =

∑N/2
j=1 (j − SC (n))3|X[n, j]|

(SSp(n))3
∑N/2
j=1 |X[n, j]|

. (12)

Low tones with few overtones will cause a positive skew. In contrast, the white
noise or other unsystematic signal components should have the SSk values in
the near of 0. Also here, analog to Formula 10, we only consider the absolute
differences of SSk values: (12)SSk .Abs.Diff .

Because of its particularly good recognition rate ([2, 4, 19]), the Spectral Flux
(SF ) is one of the most popular features for onset detection. The basic idea
is to sum up the positive differences of the spectral magnitudes of neighboring
windows for all frequencies. Negative differences are related to tone offsets and
are hence not considered:

(13)
SF (n) =

N/2∑
j=1

H(|X[n, j]| − |X[n′, j]|) (13)

with the filter H(x) = (x+ |x|)/2.
Alternatively, instead of the summing of the filtered absolute differences,

the Euclidean distance of the spectral magnitudes in neighboring windows can
be calculated. Hence, the new feature – Spectral Euclidean distance (SE ) –
considers tone offsets:

(14)SE offset(n) =

N/2∑
j=1

(|X[n, j]| − |X[n′, j]|)2. (14)
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Spectral Magnitude and Phase Based Features. This category of OD features
concerns both the spectral magnitude and the phase (see Formula 3). It is
expected that within one tone the growth of the phase between neighboring
windows stays somewhat constant ([12]). The Phase Deviation (PD) feature is
then defined as the mean of the absolute values of the second differences of the
phase over all frequencies:

(15)
PD(n) =

2

N

N/2∑
j=1

|φ
′′
[n, j]|,

φ
′′
[n, j ] = φ[n, j]− 2φ[n′, j] + φ[n′ − 1, j].

(15)

Further on, [2] proposes the Normalized Weighted Phase Deviation (NWPD)
where the second differences are weighted by the corresponding percentage share
of the absolute amplitude value regarding the signal itself:

(16)
NWPD(n) =

∑N/2
j=1 |X[n, j]φ

′′
[n, j]|∑N/2

j=1 |X[n, j]|
. (16)

The Complex Domain (CD) feature estimates the Fourier coefficients in
the actual window according to the values in the two previous windows while
assuming a stationary signal ([2]). If the sum of the absolute differences of the
estimated and the actual values over all frequencies is big, this can be interpreted
as an indicator for a tone onset or offset.

(17)
CDoffset(n) =

2

N

N/2∑
j=1

|X[n, j]− X̂[n, j]|,

X̂[n, j] = |X[n′, j]|ei(2φ[j,n
′]−φ[j,n′−1]).

(17)

Since it is important to distinguish between onsets and offsets, [2] proposes
the Rectified Complex Domain (RCD), where magnitude differences are only
taken into account if the absolute magnitude is increasing with respect to the
previous window:

(18)
RCD(n) =

N/2∑
j=1

H ′(n, j),

H ′(n, j) =

{
|X[n, j]− X̂[n, j]|, if |X[n, j]| > |X[n′, j]|,
0, otherweise.

(18)

2.4. Normalization

The aim of normalization is to transform the odf feature vector into a stan-
dardized form for the subsequent thresholding. First, exponential smoothing
with parameter α ∈ [0, 1] can be applied, where for α = 1 the time series stays
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unchanged and for α = 0 all values of a feature are equal. The smoothed vector
will be termed sm.odf :

sm.odf 1 = odf 1,

sm.odf n = α · odf n + (1− α) · sm.odf n−1.
(19)

Most normalization methods are aiming at the scaling of sm.odf to a stan-
dard interval utilizing, e.g., max(sm.odf ) and affecting the online ability of the
method (see [4]). In what follows, we will, therefore, introduce threshold func-
tions working with not normalized but only smoothed features (as also done in
[10]).

2.5. Thresholding

Since not every local maximum of the sm.odf vector represents an onset,
the threshold function aims at the distinction between relevant and irrelevant
variations. A fixed value for the threshold is unfavorable since the method could
then not react to dynamic changes of the signal. Instead, moving threshold
functions are widespread ([10]):

Tn = δ + λ ·mov .fun(|sm.odf n−lT |, . . . , |sm.odf n+rT |), (20)

where the parameter mov .fun (moving function) is either the median or the
arithmetic mean. lT and rT are the numbers of windows to the left and to
the right, respectively, of the nth window which are used in the calculation of
mov .fun. Since sm.odf was not normalized and, hence, can lie in very differed
intervals, it is difficult to a priori define the regions of interest for the parameters
δ and λ which are meaningful for all OD features. For this reason, e.g., [10]
optimizes δ separately for each ODF. However, as we are aiming in a global
optimization using a sophisticated approach which can consider the interaction
between the algorithm parameters, we optimize δ ∈ [0, 10] and λ ∈ [1.1, 2.6] for
all ODF’s. These regions of interest are in accordance with the results of the
similar optimizations ([10]) as well motivated through many pre-experiments.

Following [20], we also allow a moving p-quantile function as the third option
of the mov .fun parameter. However, in this case, the parameter λ is fixed to 1
and p is optimized in the interval [0.8, 0.98] instead. The allowed values for lT
and rT will be discussed later.

2.6. Localization of Tone Onsets

The finally localized tone onsets should fulfill the following two conditions:
sm.odf values should exceed the threshold being a local maximum. Following
[10], we also use a third condition: A minimum distance min.dist (in number
of windows) between the actual window and the window of the previous tone
onset nprev .onset should be exceeded. To summarize:

On =


1, if sm.odf i > Tn and

sm.odf n = max(sm.odf n−lO , . . . , sm.odf n+rO ),

n > nprev .onset + min.dist ,

0, otherwise.

(21)
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O = (O1, . . . , Ol)
T is the tone onset vector and lO and rO are additional param-

eters, namely the number of windows to the left or right of the actual window,
respectively, which are used for the calculation of the local maxima. The left
limits of windows with On = 1 are taken as the time points of the tone onsets.

In [10], it is proposed to report the onsets one window later as actually
detected. The authors argue that some features can increase earlier than a
human listener would firstly recognize and note a tone onset. For the window
length used in [10] it would correspond to a fix time shift of 10 ms. In our work,
we will consider the parameter onset .shift ∈ [−0.01, 0.02] s for optimization.
The negative values are allowed as it can not be excluded that some features
report tone onsets with a certain time delay.

In contrast to the most papers on the topic, we do not fix window length
N and hop size h a priori but optimize them. This means, that parameter
settings corresponding to the number of windows (like rT ) could stand for very
different time periods depending on N and h. Therefore, all such parameters
are re-defined according to the desired time length, N and h. Hence, we will not
consider the parameters rT , lT , rO, lO and min.dist , but the times t(rT ), t(lT ),
t(rO), t(lO) and t(min.dist). For online applications, t(rO) and t(rT ) are set to
0 s. In the offline case and universally for t(lO) and t(lT ) these intervals are set
to [0, 0.5] s. The region of interest for the parameter t(min.dist) is [0, 0.05] s.

To summarize, there are two application problems to optimize: online and
offline OD. Offline OD has a set of 17 parameters while for online OD two
parameters are fixed to 0 (i.e., 15 parameters remain for the optimization). In
both cases four parameters are categorical and the remaining are numerical.

2.7. Goodness Measure for Onset Detection

The so called F -measure used here is proposed by [21] and defined as

F =
2 · TP

2 · TP + FP + FN
, F ∈ [0, 1], (22)

where TP , FP , and FN stand for the number of true positive cases, false positive
cases, and false negative cases, respectively, and F = 1 represents the optimal
goodness.

The F -measure was originally defined for the classification problems but
then adapted for onset detection applications (see, e.g., [2]). Hence, we will
call the classification F -measure Fclass in what follows. Since the true and the
estimated onsets are compared in the time domain, a certain tolerance interval
around the true onsets has to be defined in advance for the TP cases. We use
here ±25 ms as such tolerance interval (according to [10]) while ±50 ms setting
is also frequently applied in the literature ([1, 2]). This adapted F -measure will
be called Fonset -measure in the following.

The first shortcoming of such adaption is the dependence on the defined tol-
erance interval and the lack of the precise measuring of the exact differences be-
tween true and estimated onset times. Secondly, as criticized in a comprehensive
tutorial of [22], the common disadvantage of the F -measure is not considering
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of the true negative (TN ) cases. For example, if the same Fonset -value can be
gained for two different music pieces while one of them is much longer then the
other one, only the TN amount could help to identify the better detection rate.
However, none of numerous publications cited in [22] proposes an alternative
goodness measure which considers TN for comparing of two time vectors.

2.8. Music Data Base

The used data base consists of three frequently used manually annotated
data sets: data base introduced in [1] with 23 pieces, in [3] with 92 recordings and
in [10] with 206 music pieces. Altogether it counts 2 750 tone onsets. Many music
instruments (like wind or string) and music styles (like European or oriental)
are represented in this data set. According to [10], we aggregated true onset
times which are reported within the 30 ms interval to only one onset.

3. Multivariate onset detection

Algorithm 2 provides our proposal for multivariate OD while the details of
the individual steps are discussed in the subsequent subsections. Our approach
allows overlapping signal frames and optimizes the desired Fonset -measure in-
stead of Fclass (although Fclass is used in some steps for the reasons of simplic-
ity).

Note that discussed procedure aims in optimization of algorithm parameters
including the fitting of the best classification model. For real application many
algorithm steps will be skipped.

The main idea for the optimization phase is the splitting the training data
in two part: one for learning the classification rule for a given set of algorithm
parameters and one for evaluating the goodness of this rule. The learning phase
implies also the determination of the most important signal features which is
realized by the variable selection step. In the evaluation phase only the few
selected feature have to be calculated in signal frames. The novelty of the
approach is that we are not interested in the predicted class labels but in the
probability of a tone onset for each frame which is than handled as a single
feature.

3.0.1. Spliting the Training Data Set

In the first line of Algorithm 2 the training data set is split into two parts:
learning and evaluation data set. Learning data set is used for learning a clas-
sification rule which goodness is then verified on the evaluation data set. The
proportion between both parts plays an important rule for the multivariate OD.
On the one hand, a large learning data set implies a more common classification
model, but, on the other hand, affects the model fitting time3. In this work we
use 20% of the training data for learning purpose.

3The kind of the relationship between the size of the learning matrix and the model fitting
time (e.g., linear, logarithmic or exponential) depends strongly on the utilized classification
model.
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3.0.2. Calculating of the ODF-matrix

In each signal frame 18 OD features (s. Section 2.3) can be calculated. In the
most easy case the rows of the ODF-matrix would represent the signal frames
and the 18 columns the values of the associated ODF’s. Since the number of
signal frames depends on the length of the music piece, the window size N and
the hop size h, the dimension of the ODF-matrix can variate very strongly.

Obviously, not only the information of the actual frame, but also of the
previews and the future frames can be employed for building the classification
rule. In this manner we can consider the window overlapping effect as well the
development patterns of tone onsets. Two important aspects should be tak-
ing into account here. Firstly, the inclusion of one additional frame leads to
extension of the ODF-matrix by 18 new columns. Secondly, an a priori specifi-
cation of the number of the additional frames is not meaningful as – depending
on N and h – very different periods of time would be captured thereby. On
that score, the number of frames to the right (rM ) and to the left (lM ) of the
actual frame is defined here – similar to the procedure in Section 2.6 – as the
function of the desired time interval in the past (t(rM )) or the future (t(lM ))
signal, N and h. However, this number should not exceed thee frames (in each
direction) in order to not substantially expand the dimension of the related
ODF-matrix. For the online OD t(rM ) = 0 s and t(rM ) = 0.15 s while for
offline case t(rM ) = t(lM ) = 0.15 s. This time limits are fixed in order to avoid
additional parameters for the following optimization.

The matrix Dlern (line 2 of Algorithm 2) results from the row-by-row merge
of all ODF-matrices of the learning data set. The subsequent analysis of the
experimental results shows that the row number of Dlern varies in the five-figure
region and the number of columns lies mostly between 55 (3 signal frames) and
126 (7 signal frames).

In the third line of Algorithm 2 the matrix Dlern is extended by the binary
(0, 1)-column of the true onset information while the digit ‘1’ notes a tone onset
in the respective signal frame.

3.0.3. Variable Selection

The variable selection is an important but also very time intensive step.
The aim of this step is the model based identification of the most important
OD features which have to be calculated in the test phase. Reducing of the
features number is especially relevant for the online OD.

The forward variable selection is implemented here via selectFeatures func-
tion of the mlr R package ([23]). The required time effort depends on the used
classification model and on the dimension of D̃lern matrix. Pre-experiments
show that for the most classification models the variable selection can be con-
ducted in acceptable time on a data matrix of 20 000 rows. Hence, if the row
number of D̃lern exceeds this ‘threshold’, 20 000 rows are sampled randomly for
the variable selection purpose.

Furthermore, the holdout approach is applied for measuring the goodness
of fit in each variable selection step. For this reason, 50% of the (possibly
previously reduced) D̃lern are used for the model fitting and the remaining 50%
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Algorithm 2: Multivariate onset detection.

1 split the training data set into the learning and the evaluation data sets;
2 calculate for all pieces of the learning data set the ODF-matrix and

merge them to one learning matrix Dlearn by rows;

3 add the column of the true class labels to Dlearn : D̃learn ;

4 select the most influencing features of D̃learn via the forward variable
selection based on the used classificator;

5 fit the classification model Mclass on the matrix of the selected features

D̃sel
learn ;

6 for music pieces of the evaluation data set do
7 calculate the ODF-matrix of the selected features;
8 predict for each signal frame the probability ponset of the tone onset

according to Mclass;
9 estimate onset times using ponset vector;

10 compute the Fonset -value;

11 end
12 mean the Fonset -values over of the evaluation data set.

for the goodness verification (the data split proceeds randomly). Note, the
parameter stratify of the makeResampleDesc function (in mlr R package)
was set to TRUE as a problem of unbalance data occurs here: There are more
observation with ‘no onset’ as these with ‘onset’ labels. Through the mentioned
setting, the training data is sampled in such a way that the number of positive
and negative examples is approximately the same (if possible).

The goodness measure of the variable selection is the classification F -measure
Fclass . An additional feature is included only in the case if it contributes a min-
imum improvement of 0.01 to the already achieved Fclass -value. The result of
the selection step is the set of the selected features and the associated learning
matrix D̃sel

lern (only with selected features). Note, even if the matrix D̃lern had

to be reduced for variable selection purpose (to 20 000 rows), D̃sel
lern contains now

all rows of D̃lern .

3.0.4. Fitteng the Calssification Model

In line 5 of Algorithm 2 the final classification rule Mclass is fitted on the
D̃sel

lern data matrix. This model is then used in the succeeded evaluation step
(lines 6-11). Also in the validation phase (see Section 4.2) no new model has
to be fitted. Instead, the model related to the best found parameter setting is
utilized. The classification rule is, hence, also an output of the optimization.

In this work, we aim to compare three classification models: logistic Re-
gression (from R package stats, [24], abbr. with logReg), random forest (from
R package randomForest, [25], abbr. with randForest) and support vector
machines (from R package e1071, [26], abbr. with SVM ). The theoretical
foundations of the referred classification methods are provided in [27]. For each
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model a separate optimization is conducted.
Since the goodness of randForest and SVM can strongly variate depending

on their internal settings – so called hyper-parameters – these parameters were
tuned in advance on a small data bank of 30 music pieces (real recordings as well
MIDI-pieces) according to Fclass . The details of the hyper-parameter tuning will
be skipped here. The optimal found settings are:

• ν-SVM ([28]): ν = 0.56 with kernel K(x, y) = 5xT y + 57;

• randForest : number of trees = 174, minimal node size = 9, number of
candidate variables in each step = 27.

3.0.5. Evaluataion Phase

In lines 6 to 11 of Algorithm 2 the goodness of the onset detection is evalauted
for each music piece of the test data set and subsequently averaged in line 12. For
this reason, the ODF-matrix of selected features is calculated in line 7 and the
classification model Mclass (fitted in the training phase) is used for predicting
the probability of a tone onset ponset for each row (i.e., signal frame). This
probability vector is then handled as an univariate OD feature by using the
Formula 21 (see Section 2.6) while instead of sm.odf the vector ponset is used:

On =


1, if ponset

n > class.thresh and

ponset
n = max(ponset

n−lO , . . . , p
onset
n+rO ) and

n > nlast.onset + min.dist ,

0, otherwise.

(23)

Furthermore, we use here a fix threshold class.thresh. The standard setting
of class.thresh for the class assignment is 0.5. However, [29] advice to tune this
threshold in the case of unbalanced classifcation problmes. So we optimize the
parameter class.thresh in interval [0.05, 0.95]. Parameters rO, lO and min.dist
will be optimized on the same regions of interest for online and offline approaches
as by the univarite OD. The estimated onset times are detected according to
the O = (O1, . . . , OM ) vector (analogue to Section 2.6). The individual Fonset -
values are calculated in line 10 and then averaged over the evaluation data set
in line 12.

The multivariate OD has a smaller set of influencing parameters than the
univariate OD. Not considered are parameters of the exponential smoothing (as
no more smoothing is required) and the moving threshold parameters. Also no
onset shifting will be applied here since the optimal values of onset .shift in the
univariate case have been found to lie in the near of 0. Furthermore, fixing this
parameter to 0 reduces the optimization time. Overall, there are 10 parameters4

to be optimized (3 categorical and 7 numerical) for the offline multivariate OD.
In the online case there is one numerical parameter fewer (since rO = 0 s).

4N , h, window .fun, spec.filt , spec.log, `, rO, lO, min.dist and class.thresh.
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4. Optimization Strategy and Validation Approach

4.1. Model Based Optimization

Sections 2 and 3 describe the algorithms of univariate and multivarate OD
which depend on many free settable continuous and categorical parameters.
These parameters have to be optimized in an appropriate manner. We use for
this reason the sequential surrogate Model Based Optimization strategy (MBO)
(s. Algorithm 3). Here, we will skip many details of this method as they can
be found, e.g., in [30, 31, 32, 33] and mention only its main ideas instead. An
onset detection algorithm is supposed to be an unknown nonlinear black-box
function f : X ⊂ Rd → R of d parameters. Each parameter has a region of
interest [`i, ui] while the Cartesian product X = [`1, u1] × . . . × [`d, ud] defines
the interesting parameter space for the optimization. One possible parameter
setting xi ∈ X is called a point while yi = f(xi) is the value of the target
function in this point. For onset detection applications, y is the Fonset -value of
the associated algorithm configuration. A design D = (x1, . . . ,xn)T is a set of
n points and y = (f(x1), . . . , f(xn))T is the vector of the target values for this
design.

Algorithm 3: Sequential model based optimization.

1 generate an initial design D ⊂ X ;

2 evaluate f on the initial design: y = (f(x1), . . . , f(xn))T ;
3 while optimization budget is not exhausted do
4 fit the surrogate model on D and y;
5 find x∗ with the best infill criterion value;
6 evaluate f on x∗: y∗ = f(x∗);

7 update D ← (D,x∗)T and y ← (y, y∗)T ;

8 end
9 return ymin = min(y) and the corresponding xmin .

The MBO procedure in Algorithm 3 can be summarized as follows: In the
first step, an initial design with n points is evaluated and a surrogate model
is fitted. The surrogate model is then used for the prediction of a new design
point. As long as the optimization budget is not exhausted, the new point x∗

is chosen in the parameter space based on a so-called infill criterion derived
from the surrogate model. The target function is evaluated in this point. The
surrogate model is then updated on the design extended by the new point while
the updated model is used for the next iteration. The point with the minimal
target function value is taken as the result of the optimization.

In line 1 the latin hypercube sampling ([34]) designs with 5 · d points are
used for the initialization step. The number of sequential steps is set to 20 · d.
Theoretically, an arbitrary regression model can be used as a surrogate. We use
here the very popular ordinary Kriging model [31] which is, however, limited
to only continuous parameters. As there are also categorical parameters to be
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optimized, we use a simple strategy – naive Kriging – where each level is assigned
to an integer resulting in a continuous parameter. The proposed values of the
corresponding continuous parameter in the sequential steps are rounded and
converted back to the nearest categorical level. Although we artificially define
order and intervals between the levels which actually do not exist, this strategy
showed satisfying results for onset detection applications ([33]).

The Expected Improvement (EI) criterion, as proposed in [32], is used in line
5 as an infill criterion. EI supports the global convergence [35] and becomes the
standard criterion in many applications. In each MBO iteration a new point is
chosen by maximizing the infill criterion (line 6). To solve the corresponding
non-linear optimization problem, we use the focus search algorithm implemented
in the R package mlrMBO [36] which successively focuses the parameter space
on the most promising regions.

4.2. Validation

When an onset detection algorithm is optimized on a music data set and
then the best found Fonset -value is reported as the result, a strong over-fitting
to the used data appears. The correct approach is to find the optimal settings of
algorithm parameters on a train data set and then verify them on an additional
test data set. Unfortunately, in many onset detection papers no validation is
conducted, so that too optimistic Fonset -values are reported. Also [2] draws
attention to over-fitting and other problems occurring in onset detection tasks.

Here, we apply the holdout validation approach by randomly spiting the
data set in a training part (2/3 of the whole data) and a test part (the re-
maining 1/3). This approach is replicated 30 times so that in each replication
the MBO optimization provides an own set of optimal algorithm parameter set-
tings. Hence, a vector of 30 validated (mean) Fonset -values over the associated
test data corresponds to each optimization problem (e.g., univariate OD in on-
line case). The optimization problems can then be compared by these vectors
both descriptively and using appropriate statistical tests. As the Fonset -values
are not assumed to be normally distributed, the Wilcoxon signed rank test [37,
p. 128 ff.] is considered here as a non-parametric alternative to the t-test. In
accordance with [37] (p. 132) the sample size of 30 observations is sufficient for
the desired asymptotic property of the test statistics. The significance level is
assumed to be 5%.

4.3. Implementation

The experiments were executed in parallel using the BatchExperiments
R package [38] on the Linux-HPC cluster system5 of TU Dortmund University.
The MBO optimization is conducted using a developing version of mlrMBO R
package [36]. The univariate and multivariate OD algorithms are implemented
in the R programming language [24] and can be provided on request.

5http://lidong.itmc.tu-dortmund.de/ldw/index.php?title=System_overview&oldid=

259.
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Figure 1: Comparisson of the optimization results for the univariat and the multivariate OD
(with three classificators: logReg, randForest and SVM) in online and offline cases.

5. Experiments

The main research question is whether the multivariate OD outperforms
the univariate one both in online and offline cases. The experimental results
are illustrated in Figure 1 which shows the distribution of mean Fonset -values
on the test data splits corresponding to the best parameter settings found by
the used model based optimization strategy in 30 replication runs. Note, for
the online OD (four left boxplots), optimization runs are conducted for each
classification model (randForest, logReg and SVM ) while for the offline OD
(two right boxplots) only the best classificator (randForest) is used. It is obvious
that the utilized classificator has an essential effect on the optimization results.
While both SVM and logReg models seem to perform similarly to the univariate
OD, randForest model outperforms it significantly. The results of multivariate
OD using randForest clearly outperforms the results of univariate OD for online
as well offline approach. For the online approach, p-value of the associated
Wilcoxon signed rank test is 1.25 · 10−4 and for the offline 2.91 · 10−6.

Regarding the optimization effort, very different time intervals could be ob-
served depending on the optimization problem. Figure 2 shows die distribution
of the overall time for function evaluations in the sequential steps of MBO.
Time for surrogate model fitting and EI optimization is not considered here as
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Figure 2: Common time in hours for function evaluations in sequential steps of MBO. Opti-
mization problems: univariate and multivariate OD (with three classificators: logReg, rand-
Forest and SVM) for online and offline cases.

it strongly depends on the number of parameters to optimize which is different
for univariat and multivaraite OD. As can be seen, the model fitting time for
SVM model is extremely large and shows a big variation. In contrast, the fitting
time variation of randForest and logReg models is small. This fact facilitates
the planning of the experimental time. Optimization time of randForest based
multivariate OD exceeds this time for univariate OD optimization in several
times. However, the multivariate approach is well capable for online applica-
tions as the time intensive model fitting and variable selection steps have to be
conducted only in the optimization phase. In real applications, only few OD
features (s. Figure 3 discussed later) have to be calculated in the signal frames
and then the already available model applied.

Table 1 compares the averaged validated Fonset -values and its standard devi-
ations for univariate OD optimized with MBO, for parameter settings proposed
in [10] (supposed as the state-of-the-art here) and for multivaraite OD. On
the one hand, the global optimization of univariate OD does not show better
performance as the state-of-the-art settings (the difference between the both
approaches is, however, not significant according to the Wilcoxon rang sign
test). To remain, the latter ones were optimized in [10] on the used data set so
that they good performance was also expected in this study. Also the standard
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Table 1: Mean validated Fonset -values und standard deviations (in braces) of the optimized
OD algorithm paramater settings as well of the settings proposed in [10] (state-of-the-art).

approach
mean Fonset -value

(standard deviation)
online offline

univriate OD 0.709 0.756
MBO optimization (0.029) (0.035)

univriate OD 0.714 0.756
state-of-the-art (0.018) (0.018)

multivariate OD 0.735 0.794
MBO optimization (0.218) (0.019)

variation for state-of-the-art setting is fewer as for the optimized ones. On the
other hand, the multivaraite approach improves the mean Fonset -value by 0.021
in online case and by 0.035 in offline case (comparing with the state-of-the-art).

Now let as compare the best algorithm parameter settings. As in the case
of the optimitzation in each otpimization run different settings were found, all
30 best combinations were applied on the whole data set. The setting with
the best performance on the whole data is supposed here to be the best one
for MBO and is presented in Table 2. This is done both for univariate and
multivariate OD in online and offline case. Furthermore, the state-of-the-art
setting as proposed in [10] is also listed6. Note, the full specification of the best
multivariate OD setting is not possible here as the best random Forest model
can not be presented in values. The associated fitted model can be provided on
request.

From Table 2 can be followed that the most successful window length is 2048
samples (46 ms) both for online and for offline OD. However, the advantage of
the best multivariate OD setting is the window length of 1024 samples which
effects the halving of the latency time (s. Section 2). Moreover, the large hop
size implies building of only 54 windows in a second which also reduces the com-
putational time and makes the approach more interesting for real applications.
Further on, the best onset detection feature in univariate case is the spectral
flux. The most preferred window function is the Hunning function. Similar to
[10], spectral filtering and logarithmizing of the spectral magnitudes improve
the detection ability.

Other interesting funding is that much more signal windows are needed
for computing the moving threshold function (see parameters t(lT ) and t(rT ))
than for localizing the tone onsets (parameters t(lO) and t(rO)). Finally, the
classification threshold for multivariate OD lies in the online case by 0.310 which
is noticeable smaller than the standard setting of 0.5. In offline case, in contrast,
the optimal value lies in the near of the standard one.

6In offline case the parameter onset .shift is set to 0 s as it leads to much better Fonset -value
as with the originally proposed setting onset .shift = 0.010 s with Fonset = 0.744.
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Table 2: Comparisson of the best parameter settings of the optimized univariate and multi-
variate OD algorithm as well the reference state-of-the-art setting (proposed in [10]).

Fonset -value / MBO state-of- MBO
parameter univ. OD the-art multiv. OD

o
n

li
n

e

Fonset 0.763 0.725 0.787
N 2048 2048 1024
h 389 441 816

wind .func Hanning Hanning Hanning
spec.filter yes yes yes
spec.log yes yes yes

` 0.085 1 19.250
od .fun SF SF -
α 0.699 1 -

mov .fun median mean -
λ 1.180 1 -
δ 1.634 2.500 -

t(lT ) 0.403 0.100 -
t(rT ) 0 0 -
t(lO) 0.030 0.030 0.027
t(rO) 0 0 0

min.dist 0.042 0.030 0.025
onset .shift 0.008 0.010 -
class.thresh - - 0.310

offl
in

e

Fonset 0.800 0.790 0.838
N 2048 2048 2048
h 563 441 1043

wind .func Hanning Hanning Blackman
spec.filter yes yes yes
spec.log yes yes yes

` 4.174 1 1.017
od .fun SF SF -
α 0.711 1 -

mov .fun median mean -
λ 1.342 1 -
δ 1.580 2.500 -

t(lT ) 0.395 0.100 -
t(rT ) 0.452 0.100 -
t(lO) 0.029 0.030 0
t(rO) 0.051 0.030 0.052

min.dist 0.041 0.030 0.037
onset .shift −0.009 0 -
class.thresh - - 0.546
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Figure 3: Number of selected features in the variable selection step (s. line 4 of Algorithm 2)
for online and offline multivariat OD with randForest model.

The last evaluation question considers the variable selection step of multi-
variate OD with randForest classification model. To remain, this step is applied
in order to reduce the number of ODF’s to be computed in each signal window.
Especially for online multivariate OD this number might play an important rule
(for reducing the computational time).

Figure 3 shows the distribution of the number of selected features in 30 repli-
cations for online and offline multivariate OD. The larger number of selected
features in offline case can be explained by the higher number of available vari-
ables in D̃learn matrix (s. Section 3.0.2). Overall, the variable selection step
is very efficient since the number of features which have to be calculated in
each window is reduced by several times. Moreover, in the most cases several
variables refer to one feature: to its value in the current and next or previous
windows which are already determined.

Finally, Table 3 provides the most frequently selected onset detection fea-
tures (see Section 2.3) in 30 replications. The labels ‘ a’, ‘ left 1’ or ‘ right 2’
indicate the feature values in the actual, first left or second right frame, respec-
tively (see parameters lM and rM in Section 3.0.2). The table consist of three
parts: the upper part presets the most frequently selected features (i.e., which
were selected in at least 10% of replications) in online case. The right column
gives the selection frequency of these features in offline case. The middle part
of the table shows the features frequently selected for offline OD which consider
only actual or left frames but are not (or not frequently) selected in online case.
Lastly, the last part of the table provides frequently selected features for offline
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OD which consider the right (i.e., future) frames and hence can not occur in
online case.

Table 3: The most frequently selected features in the feature selection step of the online and
offline multivariate OD with randForest model (s. line 4 of Algorithm 2). The frequencies of
feature selection in 30 replications of the associated optimization approach are presented.

OD feature
frame frequency in %

position online OD offline OD

SF actual 97 47

SE offset left 1 67 30

RCD actual 27 3

HFC .Diff actual 27 7

GFC .Diff left 1 23 7

SF left 1 23 23

CD actual 20 3

CDoffset left 3 17 10

SC .Abs.Diff actual 13 0

NWPD actual 10 7

RCD left 3 10 3

AE .Abs.Diff offset actual 10 0

AE .Diff left 1 10 0

RCD left 1 0 17

NWPD left 1 0 10

SF left 2 0 10

SF right 1 0 100

SE offset right 1 0 33

SF right 3 0 33

SF right 2 0 27

SE offset right 2 0 23

HFC .Diff right 2 0 23

AM .Diff right 2 0 23

HFC .Diff right 3 0 20

RCD right 2 0 10

GFC .Diff right 3 0 10

According to Table 3, the most important features in online case are the
spectral flux of the actual frame as well the spectral Euclidean distance (here
the offset information is considered) of the first previews frame. For offline OD,
the spectral flux feature of the first future frame is by far the most important
one, followed by spectral flux and spectral Euclidean distance of the neighboring
frames. Furthermore, in 10% - 27% of replications also different variants of
high frequency content and complex domain features are selected in online and
offline cases. Underrepresented or not at all selected are, in contrast, amplitude
based features as well the features based on statistical measures of the spectral
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magnitude distribution like spectral centroid or spectral skewness.

6. Conclusion

In this paper we first composed and optimized a comprehensive algorithm
for classical (univariate) onset detection which is based on the several state-of-
the-art publications. The algorithm can operate in online and offline manner,
depending on certain parameter settings. For avoiding the over-fitting, the used
data set is randomly split in training and test part while the best algorithm
parameter settings are determined on the training data and then validated on the
test data. This procedure is replicated 30 times. The optimization is conducted
by means of a sophisticated sequential surrogate model based approach.

On the one hand, the state-of-the-art setting of [10] shows slightly better
mean and fewer variation of the validated Fonset -values compared with the op-
timal settings found in every MBO replication ran. On the other hand, however,
the best determined setting over the whole data set performs noticeable better
that the state-of-the-art setting in online case.

The main contribution of this work, however, is introduction and optimizing
of the new multivariate approach for onset detection where many detection fea-
tures are considered in each signal frame for detecting a tone onset by utilizing
a classification model. As the direct application of the classification techniques
is not possible for tasks where two time vectors have to be compared for the
goodness measurement, the classification model is used for computing the prob-
ability of a tone onset in each frame which is then treated as an univariate
feature. Three classification models are used for this purpose: logistic regres-
sion, support vector machines and random forest. While the first both models
does not show satisfying results, the multivariate approach with random Forest
model outperforms the univariate one significantly for online as well offline onset
detection.

Further advantage of the online multivariate algorithm is that its best pa-
rameter setting leads to halving of the latency time since the optimal frame
length is found to be 23 ms in contrast to 46 ms of univariate detection algo-
rithm. Due to the implemented feature selection step, only few features have to
be determined in each signal frame in real time applications so that the online
capability of the multivariate approach is well kept.

In our future research we aim to improve the multivariate onset detection
in several aspects. On the one hand, also other classification models should be
considered and compared for this task. On the other hand, instead of utilizing
the original signal, its decomposition to many frequency bands according to an
acoustic model can be meaningful. Also here the most important features and
frequency bands can be determined via variable selection step for the subsequent
fitting of a classification model. In this manner we would further develop our
acoustic model based approach proposed in [5].
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