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Abstract

We apply a heterogenous coefficient spatial autoregressive panel model to explore
competition/cooperation by duopoly pairs of German fueling stations in setting prices
for diesel and E5 fuel. We rely on a Markov Chain Monte Carlo (MCMC) estimation
methodology applied with non-informative priors, which produces estimates equivalent
to those from (quasi-) maximum likelihood. We explore station-level pricing behavior
using pairs of proximately situated fueling stations with no nearby neighbors. Our sam-
ple data represents average daily diesel and e5 fuel prices, and refinery cost information
covering more than 487 days.

The heterogeneous coefficients spatial autoregressive panel data model uses the large
sample of daily time periods to produce spatial autoregressive model estimates for each
fueling station. These estimates provide information regarding the price reaction func-
tion of each station to its duopoly rival station. This is in contrast to conventional
estimates of price reaction functions that average over the entire cross-sectional sam-
ple of stations. We show how these estimates can be used to infer competition versus
cooperation in price setting by individual stations.

KEYWORDS: Spatial panel data models, Markov Chain Monte Carlo, spatial
autoregressive model, observation-level spatial interaction.

JEL: C11, C23, D43
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1 Introduction

There is a great deal of literature on regional tax competition between local governments

within a country (Allers and Elhorst, 2005, Elhorst and Fréret, 2009), gas station pricing

(Pennerstorfer, 2009, Kihm et al. 2016), hospital pricing (Mobley, 2003), research activity

competition between economics departments (Elhorst and Zigová, 2014), and so on. Empir-

ical investigations often rely on spatial econometric methods developed to analyze spatially

dependent cross-sectional and panel data.

The basic methodology involves comparing behavioral outcomes in one region (or ob-

servational unit such as gas station, hospital, etc.) to actions taking place in neighboring

regions, or behavioral reactions taken by an individual or institution to actions taken by

a more general type of neighbor, a peer group or a set of peer institutions. Spatial au-

toregressive processes/models represent a parsimonious way to specify a global relationship

between a sample of (say N) regions/institutions/individuals and the average behavior of

neighboring regions/insitutions/peers in the sample. By global, we mean that the sample

of size N produces a scalar parameter indicating the average strength, sign, and statistical

significance of reaction, where averaging takes place over the sample of size N . This allows

an inference regarding the presence or absence of a positive/negative/insignificant reaction

by the typical observational unit (region, institution, or individual) to actions of neighbors.

For example, we might be able to conclude that on average over the sample of N regions

we see statistical evidence of a negative and significant reaction function involving tax rates

set by the typical region to average tax rates set by neighboring regions. This could be

interpreted as evidence in favor of tax competition between regions in our sample.

A more ideal situation would allow inference regarding how each of the individual ob-

servational units i = 1, . . . , N react to actions taken by each unit i’s neighboring units.

Some regions/institutions/individuals might exhibit competitive reactions vis à vis their

neighbors, while others react in a cooperative fashion, or do not react at all. This is an

ideal situation because competition/cooperation reflect outcomes of institutional/individual

decisions, which we might expect to vary across the sample of observational units.

As comprehensively summarized in recent surveys by Eckert (2013) and Noel (2016),

the majority of studies that address competition in the retail gasoline market averages over

the sample of stations, not allowing for the possibility that some stations interact with their
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neighbors in a collusive manner while others interact in a competitive manner. Much focus

has instead been directed at questions of station-level price dispersion (Eckert and West,

2005; Lewis, 2008; Atkinson et al., 2009) and the extent to which stations pass through

taxes and upstream cost shocks (Chouinard and Perloff, 2004; Bello and Contin-Pilart,

2012). With regard to the latter stream, several papers have addressed the influence of the

oil price on the retail gas price, interpreting differential responses to oil price increases and

decreases as evidence for market power or collusion among gas stations (Borenstein et al.,

1997; Bachmeier and Griffin, 2003; Galeotti et al., 2003; Verlinda, 2008).

Aquaro et al. (2015) make the observation that space-time panel data samples covering

longer time spans are becoming increasingly prevalent. If we let N denote the number

of spatial units in the sample and T the number of time periods, panel data sets with

sufficiently large T allow us to exploit sample data along the time dimension to produce

spatial autoregressive parameter estimates for all N spatial units. In our setting, where

we wish to examine competition/cooperation between price setting behavior of individual

fueling stations, individual estimates relating to the reaction function for a duopoly pair of

stations to their single neighboring stations’ pricing actions hold a great deal of intuitive

appeal.

Although use of georeferenced station-level data and spatial explanatory variables is

common in this literature, studies that employ spatial econometric methods to the question

of gasoline prices are relatively few in number. Exceptions include Pennerstofer’s (2009)

application of a spatial lag model to study price competition using cross-section data on

gasoline stations in Austria and, more recently, Filippini and Heimsch’s (2015) analysis of

the impact of CO2 taxes on gas demand, which employs a spatial autoregressive model with

autoregressive disturbances on panel data from Switzerland. Firgo et al. (2015) also applies

a spatial-autoregressive model to examine the importance of centrality using a measure of

network centrality based on the locations of gasoline stations in the road network of retail

gasoline stations in Vienna, Austria. Their results show that prices of gasoline stations are

more strongly correlated with prices of central competitors. Pinkse et al. (2002) apply

a semiparametric spatial autoregressive estimator to data from U.S. wholesale gasoline

markets and find that competition is highly localized. A common feature of these empirical

studies is that estimates and inferences reflect averages over either a cross-section or static

panel of stations.
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Our heterogeneous coefficient spatial autoregressive model is in contrast to conven-

tional static spatial panel models where a single (scalar) dependence parameter is estimated

that relates the NT decision outcomes in the vector y and the NT−vector of spatial lags

(IT ⊗ W )y, representing a linear combination of neighboring unit decisions. The scalar

dependence parameter averages the relationship over all N fueling stations and T time

periods.1 It is reasonable to surmise that there are a large number of situations where

the level of interaction between observational units differs greatly when considering spatial

interaction patterns, and our fueling station price setting interaction represents one such

situation.

Section 2 develops a model of (station-level) duopoly price reaction functions involving

daily prices of each station and their neighbor to changes in refinery cost.

In section 3 we adapt the heterogeneous coefficient SAR model from Aquaro et al. (2015)

to our case of duopoly station pairs, and discuss how it will be applied to our examination

of German fueling station price setting behavior. Section 3 also discusses interpretation of

the model estimates, a topic not covered in Aquaro et al. (2015). Section 4 describes a

Markov Chain Monte Carlo (MCMC) procedure for estimation of the model parameters.

In section 5 we apply the model to a sample of plausible duopoly pairs of fueling stations

located around Germany.2 Station pairs were selected such that: (1) the stations were within

1000 meters of each other, (2) had no other neighboring stations within 4000 meters, and

(3) consisted of different brands. This resulted in a sample of 188 duopoly pairs of stations

(376 stations).

Section 6 contains concluding remarks and discusses areas for future research.

2 Station-level fuel pricing decisions

We focus on the duopoly case where we have two stations labeled i and j, and will construct

a sample of duopoly stations to empirically implement the model described in what follows.

Station i’s optimization problem is given by:

1Of course, the conventional static space-time panel model can allow for station-specific and time-specific
fixed effects in an attempt to ameliorate the restrictiveness of the model. This, however, amounts to allowing
for station-specific and time-specific differences in the model intercept.

2The fueling stations in our sample represent all German stations that operated continuously between
June 1, 2014 and September 30, 2015.
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max(pi) πi(pi, pj , qi, c) = piqi − 2γicqi

s.t. qi = αi − λipi + θipj

pi > 0; pj > 0; qi ≥ 0; c > 0,

where c is marginal (refinery) cost assumed constant across stations, but varying over time,

and 2γi is a station-specific rate at which refinery costs translate into marginal operating

cost that we denote ci = 2γic.
3 Demand of station i (at time t) responds to own-price pi as

well as a single neighboring station’s price pj .

The first-order condition for station i’s optimization problem is:

∂πi
∂pi

= αi − 2λipi + θipj + 2λiγic = 0. (1)

Rearranging (11), and letting ψi = θi/2λi, and α̃i = αi/(2λi), station i’s reaction function

becomes:

pi =
θi
2λi

pj + γic+ α̃i

⇒ Ri(pj) : pi = ψipj + γic+ α̃i + εi, (2)

where we use Ri(pj) to denote reaction of station i price to neighboring station j, and we

add an error term εi. For the duopoly case we also have a reaction function for station j:

⇒ Rj(pi) : pj = ψjpi + γjc+ α̃j + εj , (3)

These reaction functions can be viewed as spatial autoregressive relationships based on

a single nearest neighbor. Numerous other authors have arrived at similar expressions,

e.g., Pinske et al. (2002) consider a more general case where each station i = 1, . . . , N

reacts to a linear combination of neighboring station prices. This can be specified using

3The term 2γi simplifies results without loss of generality.
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an N × N row-normalized spatial weight matrix W , as: pit = ψiwipt + xitβi + εit, where

pt is a vector of all prices, and the 1 × 2 vector xit =
(

1 c
)

, and β′i =
(

α̃i γi

)

,

and the 1 × N vector wi represents the ith row of the matrix W , with non-zero elements

representing weights assigned to neighboring station prices, and zero elements for non-

neighboring stations. The matrix-vector product wipt produces a linear combination of

prices from neighboring stations with weights determined by the non-zero elements in row

i of the matrix W . The scalar ψi measures the extent of (spatial) dependence of station

i’s price on that of the neighboring station(s). Spatial autoregressive models rely on row-

normalization of the matrixW so row-sums are unity, resulting in the parameters ψi, ψj < 1.

The duopoly reaction functions represent a special case of the more general spatial

autoregressive relationship, where the ith row of the matrix W contains a single non-zero

element equal to one for station j in (2), and the jth row of the matrix W for station i in

(3).

The reaction function for station i can be rearranged as:

pi =
βi

1− ψiψj
xi +

ψiβj
1− ψiψj

xj +
εi + ψiεj
1− ψiψj

(4)

If we assume the (refinery) cost (cit, cjt) facing both stations at time t is the same, we

can rearrange the expression in (4) for time t as:

pit =
1

1− ψiψj
(γi + ψiγj)ct +

1

1− ψiψj
(α̃i + ψiα̃j) +

εi + ψiεj
1− ψiψj

(5)

The coefficient estimate from the relationship between pit and ct that reflects the change

in (expected) price as a result of changes in cost will consist of two components shown in

(6) and (7), where E is the expectation operator.

∂E(pit)

∂ct
=

γi
1− ψiψj

(6)

+
ψiγj

1− ψiψj
(7)
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We note that if ψi = 0, so station i does not react to price changes by station j,4 then we

have the usual independent relationship where: ∂pit/∂ct = γi. This represents a situation

where station i’s price reaction to cost changes does not take into consideration neighboring

station j.

In cases where 0 < ψi, ψj < 1, reflecting dependence between the two stations (positively

sloped reaction functions), the expression in (6) indicates that positive reaction function

slopes 0 < ψi, ψj < 1 will have a magnifying impact on the first component of station i’s

price change in response to a cost change, since 1/(1−ψiψj) > 1, when 0 < ψi, ψj < 1. The

second component in (7) indicates that the slope of station i’s reaction function (ψi) as well

as station j’s price sensitivity to cost changes (γj) will also impact the observed changes in

station i’s price in response to cost changes.

In the duopoly case we have a symmetric expression for firm j:

∂E(pjt)

∂ct
=

γj
1− ψiψj

(8)

+
ψjγi

1− ψiψj
(9)

Figure 1 shows two positively sloped reaction functions for stations i and j (R1
i , R

1
j )

in pi, pj space, intersecting at point A reflecting p1i , p
1
j . A change in cost c will shift both

reaction functions upward, where γi, γj > 0, determines the magnitude of shift. A new

intersection of the reaction functions R2
i , R

2
j based on the cost change occurs at point B,

associated with p2i , p
2
j .

The two components of the station i coefficient from (6) and (7) are labeled D.E. and

S.I. in the figure, since these can be viewed as representing a direct effect and spillin

effect. The spillin effect represents the impact on station i’s price change attributable to its

duopoly dependence on the price set by station j. There is also a spillout effect labeled S.O.

in the figure that reflects the second expression associated with station j’s coefficient in (9),

which measures the impact of cost changes on station j price changes. The spillout effect

represents the impact on station j’s price change attributable to its duopoly dependence on

the price set by station i.

Figure 2 shows a case where ψi, ψj < 0, so that each station reacts negatively to price

4The slope of the reaction function ψi = 0.
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pj

pi

R1
i (pj , c)

R1
j (pi, c)

p1i

p1j

A

B
R2
i (pj , c)

R2
j (pi, c)

c ↑

c ↑

p2i

p2j

D.E.= γi
1−ψiψj

S.I.=
ψiγj

1−ψiψj

S.O.=
ψjγi

1−ψiψj

Figure 1: Case 1: Cooperation

pj

pi

R1
i (pj , c)

R1
j (pi, c)

p1i

p1j

A

B

R2
i (pj , c)

R2
j (pi, c)

c ↑

c ↑

p2i

p2j

D.E.= γi
1−ψiψj

S.I.=
ψiγj

1−ψiψj

S.O.=
ψjγi

1−ψiψj

Figure 2: Case 2: Competition
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changes by the rival. This situation results in a positive cost change moving us from

equilibrium point A to B, so prices are higher (p2i > p1i , p
2
j > p1j ). There is a positive direct

effect when γi, γj > 0, as we would expect. The spillin and spillout effects are however

negative, resulting in an ameliorating impact on the resulting price changes.

The empirical implications of the duopoly model are that positive (and significant) spillin

and spillout effects for both stations imply cooperation between stations i and j. Similarly,

negative (and significant) spillin and spillout effects for both stations suggest competition.

It seems reasonable to require that both stations exhibit a significant reaction (significant

spillin and spillout effects) for us to draw an inference of cooperation or competition by the

two stations.

There are however other possible outcomes, for example where: ψi = 0, ψj > 0, γi, γj >

0, suggests a scenario where station i is a price leader, and station j a follower. In this case,

station j reacts to station i’s prices, while the converse is not the case. Also, this results in

a positive spillout effect from the price leader i to station j the follower, while the spillin

effect is zero. Of course, there is a symmetric case where station j is the price leader.

This scenario is shown in Figure 3, where station i is the leader, and ψi = 0 implies a

horizontal reaction function. The magnitude of change in price for this case should be less

than that for the case of cooperation.

Given estimates for the model parameters ψi, ψj and estimates of the spillin and spillout

effects constructed from these parameters as well as estimates for γi, γj , we can enumerate

the scenarios set forth in Table 1. Estimates for the parameters γi, γj for all stations in

our empirical application were positive, or not significantly different from zero, with none

of these negative and significant. Scenarios set forth in the table are based on positive or

zero values for γi, γj . It was also the case that all but one of the estimates for ψi, ψj were

positive or zero, allowing us to ignore negative ψi, ψj scenarios in Table 1 as well.

The numerous other scenarios represent cases where either the estimates of price de-

pendence ψi, ψj are insignificant, or the spillin, spillout effects are not significant. Since

our conclusions regarding competition, price leadership and cooperation rely on non-zero

estimates for either ψi, ψj or one or the other spillin and spillout effects, we cannot draw

conclusions in the face of these outcomes for the model estimates. We can conclude that

a lack of price dependence between stations exists when ψi, ψj are not significantly differ-

ent from zero, and this would also lead to small and likely insignificant spillin and spillout
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pj

pi

R1
i (pj , c)

R1
j (pi, c)

p1i

p1j

p2i

A

B R2
i (pj , c)

R2
j (pi, c)

c ↑

c ↑

p2j

D.E.= γi
1−ψiψj

S.O.=
ψjγi

1−ψiψj

Figure 3: Case 3: Price Leader(firm i)

effects (see (7) and (9)).

3 The heterogenous spatial autoregressive model

The heterogeneous SAR model of Aquaro et al. (2015) (which we label HSAR hereafter)

can be adapted to the special case of our sample of duopoly station pairs. Focusing on

two stations that we label i = 1 and j = 2, we can write the relationships as in (10) and

(11), where w12 represents the 1, 2 element of a row-normalized spatial weight matrix with

w11 = w22 = 0, and w12 = w21 = 1.

p1t = ψ1w12p2t + ctγ1 + α1 + ε1t, t = 1, 2, . . . , T (10)

p2t = ψ2w21p1t + ctγ2 + α2 + ε2t, t = 1, 2, . . . , T (11)

The disturbances ε1t, ε2t are assumed distributed independently, and for our purposes

we can assume independent normal distributions, εkt ∼ N(0, σ2k), k = 1, 2.5

5Since we rely on the same explanatory variable ct for both equations, there is no gain in efficiency from
allowing for non-zero covariance between the two disturbance terms.
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Cooperation scenarios
Cooperation: ψi > 0 ψj > 0 spillin > 0 spillout > 0

i as Price leader ψi = 0 ψj > 0 spillin = 0 spillout> 0
j as Price leader ψi > 0 ψj = 0 spillin > 0 spillout= 0

Competition scenario
Competition: ψi < 0 ψj < 0 spillin < 0 spillout < 0

Other non-cooperation/competition scenarios (for ψi, ψj ≥ 0)
ψi = 0 ψj = 0 spillin = 0 spillout= 0
ψi > 0 ψj > 0 spillin = 0 spillout= 0
ψi > 0 ψj > 0 spillin = 0 spillout> 0
ψi > 0 ψj > 0 spillin > 0 spillout= 0
ψi > 0 ψj > 0 spillin = 0 spillout> 0
ψi > 0 ψj = 0 spillin = 0 spillout= 0
ψi = 0 ψj > 0 spillin = 0 spillout= 0

Table 1: Possible estimation outcomes given positive or zero estimates for γi, γj

The refinery cost explanatory variable ct is the same for both stations, and assumed

exogenous, and we require that covariance matrices E(ctcs), ∀ t, s are time-invariant and

finite as well as non-singular. The requirement of time-invariance arises because we are

using the time dimension of the sample data to estimate parameters for each station. Our

econometric specification relies on changes expressed as ∆pit = pit − pit−7, where we trans-

form to changes from the same day last week to eliminate day-of-the-week pricing variation.

The difference transformation is also applied to ∆ct = ct−ct−7, to meet the time-invariance

requirement.

The HSAR model (in difference form) can be written in matrix notation shown in (12)

by stacking stations, where we note that the parameters Ψ, γ do not change from those of

the levels form.

12



∆pt = ΨW∆pt + γ∆ct + εt (12)

W =





0 1

1 0



 (13)

∆pt = (∆p1t,∆p2t)
′

∆ct =





∆ct 0

0 ∆ct





γ = (γ1, γ2)
′

Ψ =





ψ1 0

0 ψ2





εt = (ε1t, ε2t)
′

ε1t, ε2t ∼ N(0, σ2k), k = 1, 2

The data generating process for the HSAR model can be written as:

∆pt = (I2 −ΨW )−1(γ∆ct + εt), t = 1, . . . , T (14)

We note that the partial derivatives of the reduced form HSAR model relationship from

(14), shown in (15) reflect those considered earlier for our pair of duopoly stations. Since the

parameters Ψ, γ are the same as those from the price and cost levels form of the relationship,

∂∆p/∂∆c = ∂p/∂c. These expressions take into account the fact that Ψ, γ do not change

over time. The partial derivatives show how price changes respond to changes in cost, taking

into account dependence on rival stations.

∂p/∂c =





∂p1/∂c1 ∂p1/∂c2

∂p2/∂c1 ∂p2/∂c2





= (IN −ΨW )−1I2γ (15)

Expression (15) is an 2×2 matrix, since a change in station i = 1 price could (potentially)
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impact the price of station j = 2, with the strength of this impact determined by the levels

of dependence between stations (Ψ).

The main diagonal of the matrix in (15) represents own-partial derivatives (∂pk/∂ck,

k=1,2), while the off-diagonal elements are cross-partial derivatives (∂pj/∂ci) showing im-

pacts of each station on the other station j 6= i.

The model provides estimates of γk, ψk, σ
2
k for each station k = 1, 2. We can interpret the

parameters γk as station-specific sensitivity to cost changes, and we note that application of

the differences transformation eliminates station-level fixed effects (that would be captured

by a station-specific intercept) as well as day-of-the-week pricing effects. Station-level fixed

effects represent time-invariant differences across stations that might arise from: branding

or location advantages, station-specific cost factors, traffic access patterns, etc. We note also

that separate variance scalar estimates for each station accommodate heteroscedasticity.

The matrix inverse: (I2 −ΨW )−1 can be written as an infinite series:

(I2 −ΨW )−1 = I2 +ΨW + (ΨW )2 + (ΨW )3 . . .

For the case of duopoly, the matrixW takes a special form, as do the matricesW 2,W 3, . . ..

To illustrate this, consider two duopoly stations, where stations 1 and 2 are rivals, leading

to:

W =





0 1

1 0





W 2 =





1 0

0 1





The matrix powers W 3,W 5,W 7, . . . =W and the matrices W 4,W 6,W 8 . . . =W 2 = I2.

In the spatial econometrics literature, the matrixW identifies neighbors to each station,

while the matrix W 2 indicates neighbors to each station’s neighbors, and W 3 the neighbors

to the neighbors of the neighbors, and so on for higher-order powers. The matrix W 2 = I2

because station 1 is a neighbor to its neighbor (rival) station 2, while station 2 is a neighbor

to its neighbor (rival) station 1. The matrix W 3 identifies neighbors to the neighbors of
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the neighbors to each station. Since there is only a single neighbor in our duopoly case, we

have that W 3 =W .

The diagonal terms of the matrix inverse: (ΨW )2, (ΨW )4, (ΨW )6, . . . capture feedback

effects arising from the rivalry, which decay in magnitude for higher-order terms, since

ψk < 1, k = 1, . . . , 2. Reactions taken by station 2 to actions of station 1 produce a reaction

of station 1 to the reaction of station 2, and so on. Of course, the limit of an infinite series

involving two stations with associated dependence parameters ψi, ψj is: 1/(1 − ψiψj) as

indicated in expressions (6) and (8).

The off-diagonal terms of the matrix inverse: ΨW, (ΨW )3, (ΨW )5, . . . capture spillover

or rivalry effects, specifically the reaction of station j to station i, and that of station i

to station j. The limiting expressions for these off-diagonal terms in the case of two rival

stations will be: ψi/(1− ψiψj) and ψj/(1− ψiψj) as indicated in expressions (7) and (9).

4 MCMC estimation of the model

We develop a Bayesian MCMC approach to estimating the model, where Bayesian estima-

tion requires that prior distributions be assigned for the model parameters. However, we

use normal priors for the parameter γk, ψk, k = 1, 2, with zero prior means and extremely

large variances, to produce posterior estimates equivalent to those from maximum likeli-

hood estimation.6 We also rely on uninformative priors for the parameters σk, k = 1, 2, as

prior information for these is unlikely to be available in applied modeling situations. As is

traditional, we assume the priors for the parameters γi, ψi, σ
2
i are independent.

Basically, MCMC estimation decomposes a complicated problem involving 2×1 parame-

ter vectors γk, ψk, σ
2
k into a sequence of simpler problems involving conditional distributions

that are typically simple. Our MCMC estimation proceeds by sequentially sampling from

the complete sequence of conditional distributions for: the 2 different parameters γk, the

2 different scalar parameters ψk and 2 different scalar noise variances σ2k. A single pass

through of the sampler involves evaluating only 6 different conditional distributions. Each

of these conditional distributions is relatively simple to sample from, and involves calcula-

tions based on matrices or vectors of small dimensions.

6Use of a normal prior for the parameters ψk might be viewed as problematical given a theoretical upper
bound of unity for this parameter. However, during MCMC estimation we reject candidate values of ψk

that exceed unity inside our Metropolis-Hastings sampling scheme.
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The likelihood function for our special case of the more general model set forth in Aquaro

et al. (2015) is shown in (16), where θ = (ψ1, ψ2, γ1, γ2, σ
2
1, σ

2
2), the model parameters.

ln L(θ) = −T ln(2π)−
T

2
(lnσ21 + lnσ22) + T ln|I2 −ΨW |

−
1

2

2
∑

k=1

(∆pk − ψk∆p
∗
k − γk∆c)

′(∆pk − ψk∆p
∗
k − γk∆c)/σ

2
k (16)

∆p∗k = ∆pj , j 6= k

Markov Chain Monte Carlo estimation consists of sampling draws from the complete

sequence of conditional posterior distributions. These are derived from the log likelihood

in (16), considering each parameter sequentially while assuming all others are known. In

our case, where extremely large prior variances are used, the prior distributions do not play

a material role in the posterior estimates or the conditional distributions. We are simply

using MCMC as an alternative to maximizing the likelihood function.

Sampling begins with arbitrary values for the parameters θ, which are updated using

sequential passes through the MCMC estimation procedure. These involve producing (in

sequence) draws for the parameters γk, σ
2
k and ψk, k = 1, 2, from the conditional distribution

for these parameters.

A number m of such passes are carried out, with draws from some initial number of

passes b discarded to allow the sampler to “burn-in”. Posterior means, standard deviations,

and other summary statistics for these distributions of the parameters are analyzed using

the sample of m − b retained draws. The number of passes usually is in the thousands to

produce an adequate sample of size m− b on which to base posterior inference.

Despite the apparent computational intensity of evaluating these 6 conditional distribu-

tions thousands of times, the conditional posteriors for the parameters γk, σ
2
k take distribu-

tional forms that are known, and easy to sample from since they involve matrices/vectors

of small dimension.

Specifics regarding the 6 conditional posterior distributions are presented. It should also

be noted that several simplifications arise in the conditional distributions because of our

use of zero prior means and very large prior variance settings. This essentially allows us to

ignore the prior distributions when constructing conditional distributions.
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We calculate the mean and variance-covariance for γk, k = 1, 2 using the conditional

posterior based on arbitrary starting values, that we label ψk(0), σ
2
k(0) in (17), where we let

p∗k represent pj , j 6= k.

p(γk, k = 1, 2|ψk(0), σ
2
k(0)) ∼ N(γk∗ ,Σk∗) (17)

γk∗ = (∆c′∆c)−1(∆pk − ψk(0)∆p
∗
k)

Σk∗ = σ2k(0)(∆c
′∆c)−1

An updated value that we label γ
(1)
k can be obtained from a univariate normal distribution

with mean γ∗ and variance equal to Σ∗. The updated values γ
(1)
k will be used in place of γ

(0)
k

when calculating the conditional posterior for updating σ2
k(0) based on the inverse Gamma

distribution shown in (18).

p(σ2k, k = 1, 2|γ
(1)
k , ψ

(0)
k ) ∼ IG(a1, b1) (18)

a1 = T/2

b1 = (∆pk − ψ
(0)
k p∗k − γ

(1)
k ∆c)′(pk − ψ

(0)
k p∗k − γ

(1)
k ∆c)/2

We label the updated value produced by this draw σ2
k(1) which replaces the initial value

σ2
k(0) in the conditional posterior expression for ψk, k = 1, 2.

While the conditional posteriors for the parameters γk, σ
2
k take known distributional

forms that are easy to sample from, the conditional posterior for the parameters ψk does

not have this property (LeSage and Pace, 2009). A Metropolis-Hastings (M-H) approach is

used to sample these parameters based on the conditional posterior. For (M-H) sampling we

require a proposal distribution from which we generate a candidate value for the parameter

ψk, which we label ψ̃k.

We use a normal distribution as the proposal distribution along with a tuned random-

walk procedure suggested by Holloway et al. (2002) to produce the candidate values ψ̃k. The

procedure involves use of the current value ψk, a random deviate drawn from a standard

normal distribution, and a tuning parameter z as shown in (19).
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ψ̃k = ψk + z ·N(0, 1) (19)

Expression (19) should make it clear why this type of proposal generating procedure is

labeled a random-walk procedure. The goal of tuning the proposals coming from the normal

proposal distribution is to ensure that the M-H sampling procedure moves over the entire

conditional distribution. We would like the proposal to produce draws from the dense part

of this distribution and avoid a situation where the sampler is stuck in a very low density

part of the conditional distribution where the support is low.

To achieve this goal, the tuning parameter z in (19) is adjusted based on monitoring the

acceptance rates from the M-H procedure during the MCMC drawing procedure. Specif-

ically, if the acceptance rate falls below 40%, we adjust z′ = z/1.1, which decreases the

variance of the normal random deviates produced by the proposal distribution, so that new

proposals are more closely related to the current value ψk. This should lead to an increased

acceptance rate. If the acceptance rate rises above 60%, we adjust z′ = (1.1)z, which in-

creases the variance of the normal random deviates so that new proposals range more widely

over the domain of the parameter ψk. This should result in a lower acceptance rate. The

goal is to achieve a situation where the tuning parameter settles to a fixed value resulting

in an acceptance rate between 40 and 60 percent. At this point, no further adjustments

to the tuning parameter take place and we continue to sample from the normal proposal

distribution using the resulting tuned value of z.

Aquaro et al. (2015) provide theoretical bounds on the parameters ψi in the more

general case involving a sample of i = 1, . . . , N observations over T time periods. In our

case where the matrix W takes the simple form shown in (13), the theoretical bounds on

ψ1, ψ2 are -1 and 1. These bounds also ensure that (I2 −ΨW ) is invertible.

The MCMC algorithm was coded to reject candidate values that fell outside the (-1,1)

range, and draw a new candidate value in these cases until a value within the (-1,1) interval

arose. However, as a practical matter, estimation did not produce candidate values outside

the (-1,1) interval, so there appears to be no issue regarding inference at the boundary of

the parameter space.7

The candidate value ψ̃k as well as the current value ψk are evaluated in the expression

7The proportion of MCMC draws outside the (-1,1) interval can be interpreted an estimate of the posterior
probability that ψk lies outside the interval.
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for the (logged) conditional posterior in (20). Note that we use updated sampled values

for γk and σ2k when evaluating the conditional posterior in (20). Since Ψ = diag(ψ1, ψ2) in

(20), the conditional distribution for ψ1 depends on ψ2 and that for ψ2 on the parameter

ψ1.

ln(p(ψk)|ψj , j 6= k, γk, σ
2
k) = −T lnπσ2k + T ln|I2 −ΨW | − ln(e′e/2σ2k) (20)

e = (∆pk − ψk∆p
∗
k − γk∆c)

If (lnp(ψ̃k)− lnp(ψk)) > exp(1), we accept the candidate value ψ̃k as an update for the

current parameter ψk. If this condition is not true, we compare ν(ψk, ψ̃k) calculated using:

ν(ψk, ψ̃k) = min

[

1,
p(ψ̃k|γk, σ

2
k)

p(ψk|γk, σ
2
k)

]

(21)

with a uniform random deviate (say r), and decide acceptance based on: r < ν(ψk, ψ̃k)

(accept), set ψ
(1)
k = ψ̃k, otherwise (reject). If we reject the candidate value, we simply set

ψ
(1)
k = ψk, that is, we stay with the current value of ψk.

Having completed one pass through of the MCMC sampler updating all parameters,

θ(1), we return to sample a second update of the parameters, sampling from the sequence of

conditional distributions as outlined above. This produces a new set of draws, θ(2), and the

process is continued making m passes through the sampler to produce m− b sets of draws

for the parameters, where values from the first b (burn-in) passes are discarded to allow

the sampler to achieve a steady-state and begin sampling from high density regions of the

conditional posterior distributions of the parameters. The set of parameter draws θ(m−b)

can be used to calculate posterior means and standard deviations for the parameters. These

draws reflect not conditional distributions of the parameters but rather the joint posterior

distribution from which we draw inferences.

5 The model applied to German fueling stations

Since September 2013, stations in Germany are legally obligated to post every price change,

the precise time stamp, the geographic coordinates of the station, the operating hours and

brand on an online portal, the so-called Market Transparency Unit for Fuel (Haucap et al.
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2015). To access these data, a script was used to continuously retrieve entries from the site

and store these on a server (Frondel et al. 2015). From the raw data, a balanced panel of

daily station-level prices was created for over 14,000 filling stations in Germany, operating

over the period from June 1, 2014 to September 30, 2015, or T = 487 days. Prices are in

nominal terms and include excise and value-added taxes. To measure the cost variable, we

use the daily refined diesel and gas prices reported in Rotterdam, where one of the major

pipelines into Germany originates.

A 2012 report by the International Energy Agency8 describes Germany as having a

deregulated oil market, with a large number of independents in the refining and retail sec-

tors. The German government does not have an ownership stake in any of the companies

operating in the oil sector. The IEA (2012) lists five major brands as having the highest

market shares, with Aral (BP) and Shell commanding 22.5% and 21% of fuel sales respec-

tively, followed by Jet (ConocoPhillips Germany) with 10.5%, and Total and Esso with

7.5% each. Nevertheless, the report also notes that numerous other refinery companies and

independent and medium-sized oil companies are active on the fuel market, including Avia,

Westfalen and Freie Tankstellen (bft). While the IEA characterizes the German market as

being largely competitive, a report of Germany’s Federal Cartel Office (Bundeskartellamt

2011) strikes a more critical tone. This report singles out the five major brands for their role

in exercising market-dominating influence as oligopolists, which it argues leads to higher

gas prices than would otherwise prevail under perfect competition.

5.1 The sample data

Starting with more than 14,000 stations, a sample was constructed to represent plausible

duopoly pairs of stations. We selected from the sample of all German stations in continuous

operation over the 487 days covered by our sample those station-pairs that were: (1) within

1000 meters of each other (2) have no other neighboring stations within 4000 meters, and

(3) are different brands. The resulting sample size is 188 duopoly pairs of stations (376

stations) after eliminating 10 pairs of Autobahn stations. One reason for the small number

of Autobahn station-pairs is that Autobahn stations are often of the same brand, located

across the highway from each other. Since we required different brands for the station-pairs,

most Autobahn station-pairs were eliminated from the sample. Both price (excluding taxes)

8Oil & Gas Security Emergency Response of IEA Countries, which we reference as IEA (2012).
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and cost were log-transformed, then differenced from the same day of the previous week.

5.2 Model estimates

Results based on 99 percent credible intervals
Cooperation scenarios

Cooperation: ψi > 0 ψj > 0 spillin > 0 spillout > 0 118
i or j as Price leader ψi = 0 ψj > 0 spillin = 0 spillout> 0 32

or ψi > 0 or ψj = 0 or spillin > 0 or spillout = 0

Competition scenario
Competition: ψi < 0 ψj < 0 spillin < 0 spillout < 0 0

Other non-cooperation/competition scenarios
ψi = 0 ψj = 0 spillin ≤, > 0 spillout≤, > 0 22
ψi > 0 ψj > 0 spillin = 0 spillout= 0 4
ψi > 0 ψj > 0 spillin = 0 spillout> 0 1
ψi > 0 ψj = 0 spillin = 0 spillout= 0 5
ψi = 0 ψj > 0 spillin = 0 spillout= 0 6

Results based on 95 percent credible intervals
Cooperation scenarios

Cooperation: ψi > 0 ψj > 0 spillin > 0 spillout > 0 150
i or j as Price leader ψi = 0 ψj > 0 spillin = 0 spillout> 0 23

or ψi > 0 or ψj = 0 or spillin > 0 or spillout = 0

Competition scenario
Competition: ψi < 0 ψj < 0 spillin < 0 spillout < 0 0

Other non-cooperation/competition scenarios
ψi = 0 ψj = 0 spillin ≤, > 0 spillout≤, > 0 10
ψi > 0 ψj > 0 spillin = 0 spillout= 0 4
ψi > 0 ψj > 0 spillin = 0 spillout> 0 0
ψi > 0 ψj = 0 spillin = 0 spillout= 0 3
ψi = 0 ψj > 0 spillin = 0 spillout= 0 2

Table 2: Classification outcomes based on estimates for diesel fuel 188 station pairs

Estimates of the model parameters were based on a set of 4,000 retained draws, ob-

tained from two separate MCMC runs of 2,500 draws, with the first 500 discarded to allow

for burn-in of the sampler. Output from the two runs was used to determine that the

MCMC sampling process converged, since the posterior means and standard deviations of

the parameter draws from the two runs were nearly identical. The set of 4,000 retained

draws were used to construct summary statistics for the parameters reported in this sec-

tion, as well as empirical credible intervals that were used to draw inferences regarding the

statistical significance of the parameter estimates.
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Results are presented in Table 2 for the sample of 188 diesel fuel prices, using the

classification system set forth in Table 1 of section 2. Estimates of ψi, ψj in conjunction with

the spillin and spillout effects were used to produce classifications. Results vary depending

on whether we use 95 or 99 percent credible intervals to test for significance of ψi, ψj and

the spillin and spillout effects, so both are presented in the table.

Based on use of the 99 percent credible intervals, the diesel fuel classification results

indicate that 118 of the 188 stations would be classified as engaging in cooperative diesel

fuel price setting behavior, and another 32 of the 188 stations reflect a price leadership

outcome. Together, this constitutes nearly 80 percent of the stations engaging in some

type of non-competitive pricing behavior. This may not be surprising given the large cost

associated with price wars that could arise in the case of duopoly stations. Using the looser

95 percent credible intervals, there are 150 stations classified as engaging in cooperative

pricing and 23 in price leadership, for a total of 173 of 188 or around 92 percent of stations

involved in non-competitive pricing behaviors. There are no cases of stations engaged in

competitive pricing based on use of either the 99 or 95 percent intervals.

Results based on 99 percent credible intervals
Cooperation scenarios

Cooperation: ψi > 0 ψj > 0 spillin > 0 spillout > 0 44
i or j as Price leader ψi = 0 ψj > 0 spillin = 0 spillout> 0 139

or ψi > 0 or ψj = 0 or spillin > 0 or spillout = 0

Competition scenario
Competition: ψi < 0 ψj < 0 spillin < 0 spillout < 0 0

Other non-cooperation/competition scenarios
ψi = 0 ψj = 0 spillin ≥, < 0 spillout≥, < 0 4
ψi < 0 ψj > 0 spillin < 0 spillout> 0 1

Results based on 95 percent credible intervals
Cooperation scenarios

Cooperation: ψi > 0 ψj > 0 spillin > 0 spillout > 0 79
i or j as Price leader ψi = 0 ψj > 0 spillin = 0 spillout> 0 104

or ψi > 0 or ψj = 0 or spillin > 0 or spillout = 0

Competition scenario
Competition: ψi < 0 ψj < 0 spillin < 0 spillout < 0 0

Other non-cooperation/competition scenarios
ψi = 0 ψj = 0 spillin ≥, < 0 spillout≥, < 0 1
ψi < 0 ψj > 0 spillin < 0 spillout> 0 4

Table 3: Classification outcomes based on estimates for e5 fuel 188 station pairs
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Classification of the 188 stations based on e5 fuel price estimates using the 99 and 95

percent credible intervals are shown in Table 3 in an identical format to those in Table 2.

Based on the 99 percent intervals, we see 44 cases of cooperation and 139 price leadership

results, for a total of 183 of 188 or over 97 percent of stations engaged in some type of

non-competitive pricing behavior. Using the 95 percent intervals, we have 79 cooperative

pricing stations and 104 price leadership cases for the same total of 183 of 188 stations.

Using the looser 95 percent credible intervals produces a shift of some of the price leadership

classifications into the cooperative behavior category, but does not change the total number

of non-competitive cases. There are no cases of competitive pricing based on use of either

the 99 or 95 percent intervals.

Comparing results from the diesel and e5 fuels shown in the two tables, one result that

emerges is that non-competitive pricing behavior (defined as both cooperative pricing as

well as price leadership) is slightly more prevalent in the case of e5 fuel than for diesel.

Specifically, for the 99 and 95 percent intervals we have 80 and 92 percent of stations

(respectively) engaging in non-competitive pricing of diesel fuel, compared to 97 percent of

stations (respectively) in the case of e5 fuel.

Another distinction is that cooperative pricing behavior is more prevalent than price

leadership for diesel fuel, while the opposite is true of e5 fuel, where we see more stations

classified as involved in price leadership situations.

These differences might be explained by the longer term trends in demand for diesel

versus e5 fuels. In this regard, the IEA (2012, page 10) notes that in Germany the de-

mand for diesel increased by around 16% between 2001 and 2011 while demand for gasoline

dropped by nearly 30% during the same period. Rotemberg and Saloner (1986) argue

that during periods of rising demand and falling cost (the case of diesel fuel), the gains

from cheating become larger, which would make successful cooperation more profitable for

both stations. Cheating might be more likely to arise in a price leadership situation with

frequently changing prices (in our case, most station prices change every day).

In the next sections, we analyze characteristics such as distance between station pairs,

brands of the two stations, magnitude of the direct, spillin and spillout effects estimates

and price markup magnitudes, based on the classification of stations into cooperation versus

price leadership. Of course, our classification scheme produces different results based on

use of the 99 or 95 percent credible intervals. Our analysis is carried out using both sets
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of classifications for stations in an attempt to see whether conclusions are robust in this

regard.

5.3 Distances between stations based on classifications

Table 4: Summary of duopoly station pair distances

Based on 99 percent credible intervals
Diesel sample of 188 station pairs

Mean distance Median distance std deviation
in miles in miles

118 cooperating 0.2693 0.2486 0.1836
stations
32 price leadership 0.2833 0.2518 0.1886
stations

e5 sample of 188 station pairs
Mean distance Median distance std deviation

in miles in miles
44 cooperating 0.2543 0.1900 0.2005
stations
139 price leadership 0.2867 0.2712 0.1810
stations

Based on 95 percent credible intervals
Diesel sample of 188 station pairs

Mean distance Median distance std deviation
in miles in miles

150 cooperating 0.2745 0.2674 0.1817
stations
23 price leadership 0.2681 0.2283 0.1814
stations

e5 sample of 188 station pairs
Mean distance Median distance std deviation

in miles in miles
79 cooperating 0.2643 0.2297 0.1891
stations
104 price leadership 0.2865 0.2692 0.1823
stations

The mean, median and standard deviation of distances between the pairs of cooperating

and price leadership stations are shown in Table 4 for both diesel and e5 fuels. In the case

of diesel fuel no clear pattern emerges that is consistent for the 99 and 95 percent intervals.

Based on the 99 percent interval classifications, cooperating stations appear closer than

stations engaged in price leadership, but this pattern is reversed when considering distances

between stations based on the 95 percent interval classifications. It is also the case that
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given the standard deviations reported in the table, the differences in mean and median

distances are not statistically significant.

A pattern emerges for the case of e5 fuels, where cooperating stations appear to be on

average closer than stations engaged in price leadership, based on classifications constructed

from both 99 and 95 percent intervals. However, given the standard deviations reported in

the table, these differences are not statistically significant.

5.4 Effects estimates for stations based on classifications

Table 5 reports direct as well as spillin and spillout effects estimates averaged over the

cooperative and price leadership stations. From the table, we see larger direct effects for

cooperating stations in the case of both diesel and e5 fuels for classifications based on both

99 and 95 percent intervals. Given the standard deviations reported in the table, these are

statistically significant differences.

The direct effects measure the elasticity response of price changes to changes in refinery

costs because of the log transformation applied to both price and cost. The results reported

suggest that stations engaged in cooperative pricing behavior are more sensitive to cost

changes than those engaged in price leadership schemes. This hold true for both diesel and

e5 fuels, and for classifications of stations based on both 99 and 95 percent intervals.

A point to note is that the magnitude of direct effects was not used when classifying

stations into cooperative versus price leadership categories.

There are also larger spillin and spillout effects for cooperating stations versus price

leadership stations in the case of both diesel and e5 fuels, and for both 99 and 95 percent

intervals. However, unlike the case of direct effects, the classification criterion for coopera-

tive pricing behavior involves positive and statistically significant spillin and spillout effects

as well as positive and significant ψi, ψj . This almost guarantees this type of outcome. Since

zero spillin or spillout effects result in a price leadership classification (in the presence of

the correct set of positive and zero dependence parameters ψi, ψj), we would expect to see

larger spillin/spillout effects for the case of stations engaged in cooperative pricing behavior.

These differences are significant given the reported standard deviations.
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5.5 Brand configurations for stations based on classifications

Table 6 shows brand configurations for the cooperative versus price leadership pricing station

pairs. The table summarizes brands into three categories, one representing a station pair

involving two name brands (Aral, Esso, Jet, Shell or Total), another where both stations

are independents (not the five large brands), and the third situation where one station is

an independent and the other a name brand.9

Comparing column elements from the table, we see that cooperative pricing versus

price leadership using 99 percent level appears more likely between two name brands than

price leadership behavior. This result holds true for both diesel and e5, and based on

classifications using both 99 and 95 percent intervals. Of course, name brand stations

may exhibit more sophisticated pricing behavior than independents, and may benefit from

coordination efforts at the company level.

Two independents are less likely to cooperate than result in price leadership, for both

diesel and e5. However, this result is the same for e5 fuel across both the 99 and 95

percent interval classifications, but not for diesel fuel, where independents are more likely

to cooperate than engage in price leadership based on the 95 percent interval classifications.

One name brand and one independent appear more likely to cooperate than engage

in price leadership, another result that is not robust over both the 99 and 95 percent

classifications.

Comparisons across row elements of the table are problematical. For example, row ele-

ments in the table suggest that cooperation and price leadership involving two name brands

is the rarest outcome, occurring in between 6 and 22 percent of the cases. However, this is

due to criteria used to construct the sample of duopoly stations. As noted, close physical

proximity, relative locational isolation, as well different brand stations were requirements

for a station pair to enter our duopoly sample. Since the larger name brand stations tend

not to operate in relative locational isolation, these represent a smaller proportion of our

sample of stations.

9As noted in the introduction to this section, numerous other refinery companies and independent and
medium-sized oil companies are active on the fuel market, including Avia, Westfalen and Freie Tankstellen
(bft). So, use of the term “independent” is used somewhat loosely.
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5.6 Price markups for stations based on classifications

The model predicts larger price changes in response to changes in refinery cost for stations

engaged in cooperative pricing than those involved in price leadership scenarios (compare

Figure 1 and Figure 3). These changes are estimated by the total derivative: ∂∆price/∂∆cost,

which consists of the sum of the direct plus spillin plus spillout effects.

The model also indicates that in the absence of a reaction to a rival’s price setting,

the price change response to cost changes would be equal to the coefficients γi, γj for each

duopoly station pair. Therefore, the price markup due to cooperation or price leadership

behavior relative to competition is reflected by the difference between these estimated pa-

rameters.

Table 7 shows estimates of the price markups due to non-competitive pricing behavior

relative to the hypothetical estimate of price changes in a competitive situation. Recall,

the price versus cost relationship was estimated using a log transformation applied to both.

The competitive situation estimate reflects an average (median, standard deviation) of the

188 pairs of estimates for the parameters γi, γj .

The first three rows in each segment of the table show total derivatives for firms classified

as engaging in cooperative and price leadership behavior as well as the competitive estimate.

The last two rows show the difference (markup) between the two non-competitive scenarios

and the third row representing our estimate of a competitive market. The standard devia-

tions reported in the table indicate that differences in total price change responses to cost

changes for the cooperative versus price leadership behavior are significant.

Results are consistent across classifications of stations based on both the 99 and 95

percent intervals. The table indicates that both cooperative and price leadership diesel

price markups relative to competition are greater than those for e5 fuel. For example using

classifications based on both 99 and 95 percent intervals, the diesel price cooperative markup

over competition is around 0.14, versus 0.11 for e5 prices.

It seems plausible that demand for diesel is less elastic than that for e5 fuel, due to the

use of diesel by trucking fleets involved in commercial transportation. Since a component

of e5 fuel demand is associated with driving for recreational purposes, this should result

in a larger elasticity relative to diesel fuel. Larger price differences due to non-competitive

behavior would be expected for the more inelastic diesel fuel, consistent with our results.
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The results also consistently indicates higher price markups for both fuels arising from

cooperative pricing behavior relative to price leadership, which is a prediction of our model.

For example, cooperative pricing behavior results in a markup of around 0.14 for diesel

at both the 99 and 95 percent interval classifications, whereas price leadership results in a

markup of around 0.08 for diesel for both of these interval classifications.

6 Conclusion

We apply a heterogeneous coefficient spatial autoregressive (HSAR) panel model that is ca-

pable of producing station-level estimates of duopoly gas station price rivalry. Our approach

allows for inferences regarding how each individual station reacts to price actions taken by

its rival. This contrasts with conventional homogeneous coefficient panel models that would

average over the sample of all duopoly station pairs to produce estimates that reflect the

typical station’s behavior. It seems reasonable to expect pricing behavior to vary across the

sample of station pairs, with some stations reacting in a cooperative fashion, while others

engage in price leadership-follower arrangements, or in competitive pricing behavior.

We derive a duopoly model of station pair price reaction functions and show that this

takes the form of a special case of the more general HSAR specification. A Markov Chain

Monte Carlo approach to estimation is set forth for our duopoly station pairs. This approach

to estimation based on prior distributions that have zero prior means with very large prior

variances produces results equivalent to those from quasi maximum likelihood estimation

set forth in Aquaro et al. (2015).

Partial derivatives that allow classification of station pairs into categories of price coop-

erative behavior, price leader-follower behavior as well as competition are derived.

The empirical classification results show that non-competitive pricing behavior (defined

as both cooperative pricing as well as price leadership) is prevalent in the case of e5 and

diesel fuel. Using 95 percent credible intervals for our estimates as a basis for classification,

we find that 92 percent of stations engaged in non-competitive pricing of diesel fuel and

97 percent of stations in the case of e5 fuel. Other findings were that cooperative pricing

behavior is more prevalent than price leadership for diesel fuel, while the opposite is true

of e5 fuel, where we see more stations classified as involved in price leadership situations.

The study also analyzes characteristics such as distance between station pairs, brands
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of the two stations, magnitude of the direct, spillin and spillout effects estimates and price

markup magnitudes, based on the classification of stations into cooperation versus price

leadership categories.

One area for future exploration would be computational improvements for the HSAR

model. Although our MCMC approach applied to two stations was relatively fast, apply-

ing the method to the sample of 188 station pairs was time consuming. Extending the

estimation method to more general cases involving a larger sample such as the 14,000 sta-

tions operating in Germany would pose computational challenges. Another point is that

observation-level estimates for samples that involve a large number of observations pose

some interesting challenges for presentation of estimation results to readers. How to sum-

marize and present estimates for multiple parameter estimates for each observation when

the number of observations is large may require some interesting data visualization tools.

There has been a stream of gas station pricing literature that addresses the question

of asymmetric responses of retail gasoline prices to increases versus decreases in cost, (e.g.,

Verlinda (2008)). The HSAR model may have potential use in examining this type of issue,

since station-level responses of price to cost increases versus decreases could be estimated.
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Table 5: Summary effects estimates for cooperative and price leadership station pairs

Based on 99 percent credible intervals
Diesel sample of 188 station pairs

Direct effects estimates
mean median std. deviation

118 Cooperating stations 0.1122 0.1146 0.0177
32 Price leadership stations 0.0935 0.0965 0.0194

Spillin/spillout effects estimates
Spillin mean median std. deviation
118 Cooperating stations 0.0556 0.0536 0.0208
32 Price leadership stations 0.0326 0.0304 0.0175
Spillout mean median std. deviation
118 Cooperating stations 0.0630 0.0613 0.0209
32 Price leadership stations 0.0436 0.0434 0.0181

e5 sample of 188 station pairs
Direct effects estimates

mean median std. deviation
44 Cooperating stations 0.1244 0.1266 0.0171
139 Price leadership stations 0.1072 0.1104 0.0206

Spillin/spillout effects estimates
Spillin mean median std. deviation
44 Cooperating stations 0.0259 0.0228 0.0095
139 Price leadership stations 0.0074 0.0077 0.0100
Spillout mean median std. deviation
44 Cooperating stations 0.0704 0.0688 0.0166
139 Price leadership stations 0.0667 0.0675 0.0161

Based on 95 percent credible intervals
Diesel sample of 188 station pairs

Direct effects estimates
mean median std. deviation

150 Cooperating stations 0.1091 0.1120 0.0186
23 Price leadership stations 0.0895 0.0893 0.0197

Spillin/spillout effects estimates
Spillin mean median std. deviation
150 Cooperating stations 0.0515 0.0492 0.0213
23 Price leadership stations 0.0305 0.0248 0.0190
Spillout mean median std. deviation
150 Cooperating stations 0.0586 0.0555 0.0214
23 Price leadership stations 0.0342 0.0330 0.0185

e5 sample of 188 station pairs
Direct effects estimates

mean median std. deviation
79 Cooperating stations 0.1223 0.1222 0.0168
104 Price leadership stations 0.1034 0.1069 0.0213

Spillin/spillout effects estimates
Spillin mean median std. deviation
79 Cooperating stations 0.0228 0.0213 0.0089
104 Price leadership stations 0.0044 0.0040 0.0075
Spillout mean median std. deviation
79 Cooperating stations 0.0692 0.0694 0.0160
104 Price leadership stations 0.0656 0.0665 0.0174
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Table 6: Summary of brand pairings for cooperative and price leadership stations

Based on 99 percent credible intervals
Diesel sample of 188 station pairs

Two name brands Two independents One of each
118 Cooperating stations 0.1610† 0.4153 0.4237
32 Price leadership stations 0.0625 0.5313 0.4063

e5 fuel sample of 188 station pairs
Two name brands Two independents One of each

44 Cooperating stations 0.2273 0.3636 0.5000
139 Price leadership stations 0.1151 0.4748 0.4101

Based on 95 percent credible intervals
Diesel sample of 188 station pairs

Two name brands Two independents One of each
150 Cooperating stations 0.1400 0.4400 0.4200
23 Price leadership stations 0.1304 0.4348 0.4348

e5 fuel sample of 188 station pairs
Two name brands Two independents One of each

79 Cooperating stations 0.1772 0.4051 0.4177
104 Price leadership stations 0.0673 0.4519 0.4808

† indicates the proportion of cooperative or price leadership stations by fuel type
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Table 7: Duopoly station price markups relative to competition

Based on 99 percent credible intervals
Diesel sample of 188 station pairs

Mean Median std deviation
∂∆price/∂∆cost 118 cooperating stations 0.2308 0.2279 0.0359
∂∆price/∂∆cost 32 price leadership stations 0.1697 0.1752 0.0299
∂∆price/∂∆cost 188 competitive stations 0.0835 0.0854 0.0022
cooperative pricing markup 0.1473 0.1425
price leadership markup 0.0862 0.0898

e5 sample of 188 station pairs
Mean Median std deviation

∂∆price/∂∆cost 118 cooperating stations 0.2208 0.2251 0.0274
∂∆price/∂∆cost 32 price leadership stations 0.1813 0.1855 0.0337
∂∆price/∂∆cost 188 competitive stations 0.1059 0.1075 0.0013
cooperative pricing markup 0.1149 0.1176
price leadership markup 0.0754 0.0780

Based on 95 percent credible intervals
Diesel sample of 188 station pairs

Mean Median std deviation
∂∆price/∂∆cost 118 cooperating stations 0.2192 0.2175 0.0404
∂∆price/∂∆cost 32 price leadership stations 0.1542 0.1487 0.0288
∂∆price/∂∆cost 188 competitive stations 0.0835 0.0854 0.0022
cooperative pricing markup 0.1357 0.1321
price leadership markup 0.0707 0.0633

e5 sample of 188 station pairs
Mean Median std deviation

∂∆price/∂∆cost 118 cooperating stations 0.2142 0.2180 0.0270
∂∆price/∂∆cost 32 price leadership stations 0.1734 0.1756 0.0322
∂∆price/∂∆cost 188 competitive stations 0.1059 0.1075 0.0013
cooperative pricing markup 0.1083 0.1105
price leadership markup 0.0675 0.0681

35



 



 



 


