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Abstract

Summarizing a series of rainfall events for different duration levels by their annual maxima provides
valuable information. These statistics are e.g. the design base of urban drainage systems. Investigating
an entire set of duration levels, the dependence among them has to be taken into account. We propose
an approach where a set of generalized extreme value distributions and a D-vine copula are flexibly
parameterized by the set of duration levels of interest. A priori, it is not necessary to fix the duration
levels nor the number of duration levels. This joint model produces increasing values for both, longer
duration levels and larger return periods. In a sample application, we show that this model is flexible
enough to capture variations across the duration levels while reproducing the correlation structure of
the data. A joint probabilistic model allows to study a new set of design questions where conditional
probabilities or joint return periods are of interest. This is for instance the case when nested sub-
basins are studied. An urban area within a larger catchment will be sensitive to annual maxima of
shorter durations due to high intensities while the enclosing catchment is prone to annual maxima of
long durations due to huge volumes. A risk analysis of the entire catchment requires a joint study of
both and an approach where the duration levels’ dependence is taken into account.

1 Introduction

The modeling of rainfall maxima in terms of their intensity for different durations is widely used in
hydrological applications, often known as IDF-curves (intensity-duration-frequency curves). These charts
present return periods of the total amount of rainfall for a set of durations that are basically cumulative
distribution functions (Eagleson, 1970; Chow et al., 1988). The curves - or regionalized proxies - are
used to derive design storms that serve as input for many hydrological designs (e.g. dams, dikes, sewer
systems). Often, this modeling is done separately for each aggregation level and the results are balanced
to ensure consistency among the levels of duration. Obviously, the amount of rainfall that fell in the
preceding smaller duration level is a lower bound for all larger aggregation levels. Also, large amounts of
rainfall in short duration levels will more likely be increased by small steps opposed to small amounts in
the first level. This implies a strong relation between duration levels. In order to mimic this dependence,
we introduce a new vine copula based approach where duration levels are no longer treated as independent
random variables.

Common approaches, as the one by Willems (2000), identify a relationship between the aggregation
level and the parameter(s) of the duration level’s distribution. Koutsoyiannis et al. (1998) present and
discuss a mathematical framework for the relationship of IDF-curves. Grimaldi and Serinaldi (2006) use a
trivariate copula to capture the dependence between critical depth, peak and total depth of a hyetograph.
A recent approach by Bezak et al. (2016) treats duration and intensity as random variables and models
their joint bivariate distribution through copulas. All these approaches clearly introduce dependence
among the parameters, but the set of duration levels for a single year are still treated independently in
a probabilistic sense. The expected value of these distributions will in most cases be increasing with
the duration, but the probabilistic model is merely a set of univariate distributions parameterized by
duration.
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A commonly used distribution to model yearly, daily or hourly precipitation is the generalized ex-
treme value distribution (GEV). For the United states this is the most recommended distribution in the
precipitation atlas for almost all duration levels (Bonnin et al., 2004). Hanson and Vogel (2008) show
that the Pearson-III-distribution performs best when considering daily precipitation, whereas in Germany
the Gumbel-distribution, a special case of the GEV, is used to model 5-minute up to 7-day-precipitation
sums (DWA, 2012). In general, when considering block maxima such as annual maxima, the GEV is
an often used distribution function having theoretical validity due to the Fisher-Tippet-Theorem. The
presented approach in this manuscript uses the generalized extreme value distribution across all duration
levels.

The paper is organized as follows. The newly developed probabilistic model is motivated and explained
in Section 2. An application is presented in Section 3. The model and its applicability is discussed in
Section 4. Section 5 concludes the manuscript. An Appendix provides additional details.

Implementations of this approach can be found in the corresponding R-package hydroTools1 on
GitHub.

2 The probabilistic multivariate model

2.1 Prerequisites

The goal that motivates this research is to be able to identify a probabilistic model across a set of duration
levels. This set of duration levels shall not be fixed in advance (neither their actual durations, nor the
number of levels). Hence, a parametrization is sought that generates a multivariate distribution DD
based on a set of durations D := {d1, . . . , dn}:

(X1, . . . , Xn) ∼ DD
where Xi denotes the random variable of the annual maximum rainfall of duration di. In order to achieve
this, we need to understand the relationship between the duration di and the marginal distribution of
this duration level as well as the dependence among different duration levels di and dj for any i 6= j.
At the probabilistic core, we will apply the concept of copulas that allows to tackle univariate margins
and dependence structure in two steps. For the marginal design, we will jointly, but independent in
a probabilistic sense, estimate multiple generalized extreme value distributions under certain auxillary
conditions. The copula design will be based on a D-vine copula.

2.2 The marginal design

The task to fit distributions for different duration levels can be seen as seeking a family of distributions
(continuously) indexed by the duration level. By the inclusion of shorter duration levels in longer ones,
the surface of the joint cumulative distribution function (CDF) needs to be decreasing along the direction
of increasing durations. This allows for increasing annual maxima for both, longer duration levels and
larger return periods.

We define a distribution family as combination of generalized extreme value distributions (cGEV),
with the additional requirement that the parameters location µ and scale σ and the scale-shape ratio σ/ξ
are non-decreasing for increasing durations. These are sufficient but not necessary conditions to achieve
a decreasing CDF surface along d. The CDF for a duration d is given by

FcGEV(x; d) := exp

(
−
(

1 +
ξ(d)(x− µ(d))

σ(d)

)− 1
ξ(d)

)

for x > µ − σ/ξ if ξ > 0, where µ : (0,∞) → [0,∞), σ : (0,∞) → (0,∞) and σ/ξ : (0,∞) → [0,∞) are
non-decreasing functions for the location and scale parameter and the scale-shape ratio respectively. The
parameter function ξ can then easily be inferred from the scale and scale-shape ratio functions. The case
ξ ≡ 0 corresponds to a combination of Gumbel distributions where the scale-shape ratio function does
not apply. The formula for the density function fcGEV follows the analogous notation where constant
parameters are replaced by the same functions as above. Considering hydrological applications of extreme

1Available on GitHub: http://github.com/BenGraeler/hydroTools
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rainfall, a non-decreasing location parameter for increasing durations is a natural assumption. Addition-
ally, longer durations of rainfall also allow for a larger variability hence typically leading to an increasing
scale. A non-decreasing scale-shape ratio can be explained by a stronger change of the variance than the
tail index. Hence, the requirements on the parameter functions are more of a theoretical nature than a
limitation in applied hydrology. The monotonicity of the cGEV is discussed further in Appendix A.

The estimation can be based on a stepwise approach where for a set of duration levels di the GEV
distributions are individually optimized. Plotting these optimized parameters location µ̂i, scale σ̂i and
the scale-shape ratio σ̂i/ξ̂i against the duration levels di will help to identify the family of non-decreasing
link functions. A first fit of these link functions can be plugged into the cGEV. In a second iteration,
the parameters of the link functions might be optimized to find the best overall fit of cGEV using a joint
maximum likelihood approach. The cGEV generalizes the approaches where a linear regression is carried
out on the parameters (Willems, 2000), as the link functions may as well include linear or piecewise linear
relationships. Furthermore, the cGEV distribution also includes the Gumbel distribution that is used in
several approaches (e.g. DWA, 2012). In the following paragraphs on copulas, we assume that a marginal
distribution has already been fitted and the data has been transformed to [0, 1]n using the CDF or using
the marginal independent rank-order transformation..

2.3 Copulas

Originating from Sklar’s Theroem (Sklar , 1959), copulas are multivariate distributions defined on the
unit hypercube [0, 1]n that allow to decompose any continuous n-variate distribution H into its margins
F1, . . . , Fn and corresponding copula C by:

H(x1, . . . , xn) = C
(
F1(x1), . . . , Fn(xn)

)
.

Hence, copulas “couple” the univariate marginal distributions into a multivariate distribution. A thorough
introduction to copulas can be found in Nelsen (2007). Many parametric bivariate copula families are well
studied and also used in hydrological rainfall applications (among others, see: De Michele and Salvadori
(2003); Salvadori and De Michele (2004); Zhang and Singh (2007)). The Kendal’s tau correlation measure
plays an important role in the concept of copulas. As a rank based measure, it does not depend on the
margins and measures dependence already on the copula level. Many copula families facilitate a 1-1
relationship between their parameter and Kendall’s tau. This allows for a joint parameterization across
different copula families.

Switching from a bivariate to a multivariate setting, many copula families lack the necessary flexibility.
Using a multivariate copula family poses the restriction that all pairwise copulas belong to the same family.
Furthermore, some Archimedean copulas only allow for a single parameter in any dimension further
restricting their ability to adopt to the data. In addition to nested Archimedean copulas, vine copulas
(Aas et al., 2009; Bedford and Cooke, 2002; Hobæk Haff et al., 2010) are a very flexible extension that
decompose the multivariate copula into bivariate building blocks. These bivariate building blocks can then
take any available bivariate copula without further limitations. Unfortunately, this decomposition is in
general not unique in terms of its structure (trees of the vine, see Figure 1) and copula choices increasing
the search space of possible models. Dissmann et al. (2013) present a heuristic approach to identify
the decomposition structure of the multivariate distribution. They suggest to identify the maximum
spanning tree based on the absolute Kendall’s tau correlations. Vine copulas have only recently advanced
to hydrological rainfall modeling (Gyasi-Agyei , 2011; Vernieuwe et al., 2015).

2.4 The multivariate duration level model

In our use-case of vine copulas, we predefine the vine structure to D-vines (drawable vines), based on
the premise that the dependence of neighboring duration levels is the strongest (conceptually following
Dissmann et al. (2013)). For a D-vine, the first tree consist of n−1 copulas for the pairs (d1, d2), (d2, d3),
. . . , (dn−1, dn). Each conditioning iteration reduces the set of copulas by one, ending up with in general
1/2(n−1)(n) copulas for a complete vine copula of dimension n. Often, the strength of dependence reduces
on the higher trees motivating the idea of truncated vines (Brechmann et al., 2012) where independence
is assumed for all copulas beyond a certain tree. If such a truncation can be validated based on the
data, the number of copulas can considerably be reduced easing the estimation and evaluation of the vine
copula.
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Figure 1 shows the first two trees for a vine copula on 5 duration levels (d1 = 1, d2 = 3, d3 = 6,
d4 = 12 and d5 = 24 hours). The ellipses in the first tree indicate bivariate copulas indexed by pairs
of durations for the original data (transformed to [0, 1]), while the ellipses on the following trees use
conditioned data based on the previous tree. As an example, the copula C1,3|2(u1|2, u3|2) describes the
dependence between the conditional observations u1|2 and u3|2 where ui|j can be obtained through the
partial derivative ∂/∂uj of the copula Ci,j(ui, uj) from the previous tree. The density of the entire D-vine
copula is then the product of all bivariate copulas involved (Aas et al., 2009).

Figure 1: Exemplary D-vine showing the first two trees in the application of duration levels for e.g. d1 = 1,
d2 = 3, d3 = 6, d4 = 12 and d5 = 24 hours. The numbers indicate subscripts of the copulas based on the
duration levels, e.g.C1,3|2 = Cd1,d3|d2 .

Recalling our goal to define a model where a priori neither the number of duration levels nor the
durations are known, we need to find a parameterization of the bivariate copulas in the trees of the
vine that only depends on the involved duration levels. With such a copula parameterization at hand,
any combination of duration levels can be combined into a vine copula. In order to facilitate this, link
functions are required that relate the pairs of duration levels directly to a copula parameter or to a proxy
like Kendall’s tau. At least on the first tree of the vine copula, asymmetries are to be expected, as the
rank of the succeeding duration level might considerably increase, but only slightly decrease. Note that
the rank of the preceding duration level is not a sharp conceptual lower bound opposed to the observed
data of the preceding duration level, as the marginal distributions also increase with the duration level
(i.e. the same value receives smaller ranks for larger durations). Nevertheless, these asymmetries are
crucial in the design and need to be taken into account for instance by using copulas of the Tawn family
(Tawn, 1988). Hence, we assume for a set of duration levels D = {d1, . . . , dn} a parameterization of the
bivariate copulas of the vine such that

c(u1, . . . , un;D) =

n−1∏
i=1

ci,i+1

(
ui, ui+1; di, di+1

)
·
n−1∏
i=1

n−i∏
j=2

ci,i+j|i+1,...,i+j−1
(
ui|i+1,...,i+j−1, ui+j|i+1,...,i+j−1; di, . . . , di+j

)
where the subscripts of the copulas refer to the subscripts of the duration levels to simplify the notation
(e.g. ci,i+1 = cdi,di+1

) and recursively:

ui+j|i+1,...,i+j−1 =
∂

∂ui+1|i+2,...,i+j−1
Ci+1,i+j|i+2,...,i+j−1

(
ui+1|i+2,...,i+j−1, ui+j|i+2,...,i+j−1

)
ui|i+1,...,i+j−1 =

∂

∂ui+j−1|i+1,...,i+j−2
Ci,i+j−1|i+1,...,i+j−2

(
ui|i+1,...,i+j−2, ui+j−1|i+1,...,i+j−2

)
.

In general, the bivariate copulas will be of a form where the set of durations {di, . . . , di+j} are plugged into
a corresponding link function that returns the suitable copula parameters. The copula family might also
change for different combinations of durations as implemented for the bivariate spatial copulas (Gräler ,
2014), but motivated by the application in Section 3 we will here only consider the single family case.
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2.5 Estimation of the multivariate duration level model

As the relationship between durations and copula parameters will in general vary between different
stations in their parameterization and possibly their general shape, we propose a two stage approach
per tree of the vine. In the first stage, the copula parameters are estimated for several combinations
of duration levels. A screening of empirical scatter plots and comparison with theoretical copulas2

might help to identify the appropriate copula family. In addition, a set of likely suitable copula families
could be fitted to the same set of pairs of duration levels and the overall best performing family (e.g. in
terms of AIC) is selected. The parameter estimates for a copula family results in a (scattered) surface
of values for each parameter interpreting the first and second input of the copulas (the durations) as
coordinate axes (i.e. each pair of duration levels results in a parameter estimate). Now, a link function
has to be identified that is able to describe the relationship between pairs of duration levels and copula
parameter(s) (see Section 3 for an applied example). With these link functions, the copulas of the first
tree are fully parameterized and their theoretical Kendall’s tau value can be evaluated. This measure can
be employed in the second stage to optimize the link functions’ parameters jointly to achieve the overall
best approximation of the empirical Kendall’s tau values. Likewise, other measures like Spearman’s
rho or the likelihood could be used for the joint optimization. A computational advantage of using a
dependence measure originates from the fact that it can often be expressed in terms of the parameters
and an evaluation based on the entire data takes place only once and not in each optimization step as
for a likelihood based approach. Once a satisfying set of link functions and their parameters has been
identified, the initial observations can be conditioned based on the partial derivatives of the identified
copulas and passed to the second tree. In the second tree, the estimation starts again in the first stage
by identifying a copula family, suitable link functions and a joint optimization of their parameters in
the second stage. This procedure iterates up to a tree where no more relevant correlations are present
resulting in a potentially truncated vine copula. To summarize, the general estimation schema is as
follows:

1. calculation of annual maxima for a set of duration levels d1, . . . , dn

2. estimation of a link function for the marginal distribution

3. transformation of the data set to (0, 1)n

4. estimation of the link function for the copula in the first tree

5. conditioning the data to proceed with the next tree in the D-vine

6. estimation of the link function for the copula in the current tree

7. repeat steps 5 and 6 up to the desired truncation level

3 Application

Observational data used in this example are hourly precipitation data (mm) at the station De Bilt (WMO:
06260, 52◦ 6 N, 5◦ 11 E, 4 m a.s.l.) in The Netherlands. The data records are obtained from the Royal
Netherlands Meteorological Institute (KNMI) and span from 1906 to 2007. From this data set, annual
maxima are obtained for each duration level from 1 up to 24 hours (every hour).

The two stage estimation approach as introduced in Section 2.2 is applied to the above set of annual
maxima. The location and scale parameters follow (quite) nicely the functions µ(d) =

aµ
dbµ

and σ(d) = aσ
dbσ

for suitable parameters aµ, bµ, aσ and bσ respectively. However, the shape parameter is, as in many
applications, hard to identify. Hence, we base our fit on the scale-shape ratio function allowing to infer
the function of the actual shape parameter. Initially assuming a constant scale-shape ratio function
(the mean of the ratio of the independently estimated shape and scale parameters), the joint maximum
likelihood optimization is in favor of a slight increasing trend of the scale-shape ratio. See Figure 2 for
a graphical representation of the marginal link functions and Figure 3 for histograms with superimposed
density curves based on the link functions for 5 selected duration levels..

With the marginal distributions set-up, we focus on the copula parameterization in the following. To
minimize the effect of variations in the marginal fit, we apply a rank-order transformation to the data and

2An interactive tool can be found at www.copulatheque.org.
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Figure 2: Independently (dots) and modeled (red line) parameters of the cGEV for 1, 2, . . . , 24 hours of
duration following the two stage estimation approach outlined in Section 2.2.

Figure 3: Histograms of annual maximum precipitation with superimposed density curves for five selected
duration levels based on the jointly optimized parametrization of the cGEV.

divide by the number of years + 1 to achieve perfectly uniform distributed data on the open unit hypercube
(0, 1)n. As initially motived, asymmetries appear in the scatter plots due to the inclusion of smaller
duration levels in larger ones. All Archimedean copulas are symmetric about the main diagonal, so are
the elliptical copulas, i.e. the Gaussian and Student families. Tawn (1988) added additional parameters
to the Gumbel copula family to generate a flexible, i.e. asymmetric extreme value copula. Therefore, we
restrict the copula families to the Tawn family (see Appendix B for a brief presentation of the Tawn
copula family). The data frequently suggests the Tawn type 2 copula (based on the VineCopula package
(Schepsmeier et al., 2016), simply referred to as Tawn copula in the following). The set of parameters
reveals, as also evident from the scatter plots (not shown) and Figure 4, stronger dependence for pairs
of larger duration levels and weaker dependence if the separation of duration levels increases. Also, the
degree of asymmetry reduces when the strength of correlation increases as a matter of the definition of
the Tawn copula, but also supported by the scatter of the data.

Figure 4: Empirical and modeled surface of Kendall’s tau values for pairs of increasing duration levels as
used in the first tree of the vine.
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Figure 5: Parameter surfaces based on separate estimates (estimate) and optimized link functions (model)
for the first (left panel) and second (right panel) Tawn parameter. The parameter axis in the plots of the
first Tawn parameter is on log-scale to ease a visual comparison.

To identify a model that is capable of providing the parameters of the Tawn copula, we look at pairs
of duration levels with the same separating distance (referred to as “jumps”, e.g. for a jump of two: the
pairs for 1 and 3 hours, 2 and 4 hours, . . . ) and the corresponding parameter estimates. A first set of
link functions is fitted to these jumps in terms of the starting duration level and in the following their
parameters are modeled across the different jumps. With the fitted link functions for pairs of increasing
duration levels, a numerical optimization on the set of parameters is carried out where the theoretical
Kendall’s tau value of the Tawn copulas is optimized to fit the empirical Kendall’s tau values from the
data set, see Figure 4 for the surfaces of empirical and modeled Kendall’s tau values. Figure 5 presents
the parameter surfaces for the first (left panel) and second (right panel) Tawn parameter. The left plot
in each panel corresponds to the separate maximum likelihood estimates of the Tawn copula for the pairs
of duration levels and jumps, while the right plot in each panel shows the achieved parameter surface
based on the link functions. The selected link functions are of the form

tawn1(di, dj) :=

(
a1 +

a2
(dj − di)a3

)
· d
a4+

a5
(dj−di)

a6

i

tawn2(di, dj) := b1 +
b2

(dj − di)b3
+ b4 · (dj − di)b5

(
1− d

(dj−di)
b7

b6
i

)

with suitable parameters a1, . . . , a6 and b1, . . . , b7, where di < dj .
Now, with the fixed parametrization of the copulas of the first tree, we are in the position to generate

conditional observations for any combination of duration levels. For the second tree, we do not directly
model the copula’s parameter, but illustrate the alternative approach of modeling Kendall’s tau instead.
The copulas on the second tree include the left, center and right duration level of each triple of increasing
duration levels. We have to consider that e.g. the triple (1, 3, 6) induces a different relationship than
(6, 8, 11) even if both have the same jumps. Hence, we need to look at the spread of Kendall’s tau from
three perspectives. The empirical Kendall’s tau values suggest a reasonable pattern where the absolute
correlation is strongest for triples of duration levels where the outer duration levels are direct neighbors of
the conditioning duration level (see Figure 6). All correlations on the second tree are negative, indicating
that if for a triple of annual maxima corresponding to e.g. 1, 3 and 6 hours of rainfall duration the
observed rainfall for 1 hour is “small” given the observed annual maximum for 3 hours (yielding a small
value of u1|3) it is likely to see a “large” amount for the annual maximum for 6 hours given the amount
for 3 hours (indicated by a large value of u6|3, compare Figure 10 for an applied example of conditional
densities). The link functions receive their initial parameter estimates by a stepwise approach for each
conditioning duration level and are in the second stage jointly optimized to overall best approximate the
empirical Kendall’s tau values. The following link functions representing Kendall’s tau in the second tree
based on the triple of increasing durations (di, dc, dj) are of the form

ken(di, dc, dj) :=
c1
dc2c
· di +

(
c3 +

c4
dc5c

)
· dj
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for suitable parameters c1, . . . , c5.

Figure 6: Empirical Kendall’s tau values for a subset of the conditioned data pairs in the second tree.

Based on the above link function ken(di, dc, dj) we can evaluate the fit of a series of copulas (those
that have a 1-1 relationship between their parameter and Kendall’s tau) to the datasets for triples of
increasing duration levels in the second tree. The copula families in favor showed little variation, but
mainly for correlations close to zero, where all investigated families tend to the independence copula. The
270◦ rotated Joe copula turned out to be the overall best performing family for this dataset. Conditioning
the data again using the copula parameterization of the second tree and moving ahead to the third tree
did only show small correlations. Therefore, the vine is already truncated after the second tree assuming
independence for all larger conditioning sets. Thus, the vine and in conjunction with the cGEV the entire
probabilistic model is fully specified for any set of duration levels D.

All calculations have been done using R 3.3.1 (R Core Team, 2016). The generalized extreme
value distributions are based on the R-package evd (Stephenson, 2002). The copula functions origi-
nate from the packages copula (Kojadinovic et al., 2010; Yan et al., 2007), VineCopula (Schepsmeier
et al., 2016) and spcopula3. The script reproducing the presented results is contained in the demo
multiDurationLevelModel of the R-package hydroTools on GitHub.

3.1 Simulation based evaluation of the model

Using the fitted model from the above application, we can now simulate from the multivariate distribution.
Let us assume that the duration levels 1, 3, 6, 12 and 24 hours are of interest. Repeatedly (1000 times),
samples are taken of the same length as the data set (96 years). Inspecting the empirical CDFs of
the originally observed and simulated duration levels show only small deviations (see Figure 7 for one
exemplary sample). The major effort of this study lies in modeling the dependence structure of the
data set. Figure 8 allows to assess the alignment of the model’s correlation with the empirical correlation
(both using Kendall’s tau). Comparing the correlations of the simulated sets with the empirical ones from
the data set reveals that for each boxplot approximately 25 % of the correlations are larger or smaller
than the empirical ones. Hence, the empirical correlations lie within the central range of the simulated
correlations.

As the data consist of only increasing tuples of annual maxima for each year by construction, this is
not guaranteed by this model as the marginal distributions have overlapping domains (compare Figure 3).
Nevertheless, it is worth to compare the newly developed model with a simulation based on the cGEV
only. The samples drawn from the cGEV are independent per duration level. This also becomes evident
by their correlation matrix (not shown). Figure 9 shows the distribution of jumps between duration
levels for the independent cGEV and the joint cGEV and D-vine model alongside with the original data.
The cGEV based simulation typically produces less than 15 % valid tuples while the developed joined
vine copula and cGEV model typically achieves a rate of about 80 % valid tuples. Despite the undesired
backward jumps, the joint model nicely approximates the distribution of jumps in the original data while
the jumps of the unconditioned cGEV case are almost symmetric around 0 and have a considerably
different range.

3Available on R-forge: https://r-forge.r-project.org/projects/spcopula/
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Figure 7: Empirical CDFs of one simulation and the empirical annual maxima for a set of duration levels.
The simulated set has the same length (i.e. same number of years) as the empirical one. The legend also
quotes the p-value of the Kolmogorov-Smirnov test of the Null-Hypothesis that the two samples stem
from the same distribution.

Figure 8: Boxplots of Kendall’s tau correlations achieved during 1000 runs. Superimposed are the empir-
ical correlations of the data set (red squares) and the modeled correlations for the directly neighboring
duration levels (blue triangles). Note that only the correlations of the first tree in the vine are represented
in the correlation matrix (the first off-diagonal). The vertical gray lines separate the boxplots according
to the first, second, third and fourth off-diagonal.

Figure 9: Relative frequencies of jumps in the simulated annual maxima for the pure cGEV approach
(left) and the developed joined cGEV and D-vine copula model (center) and the observed data (right).

Now that we have a model describing the dependence of the duration levels, we can investigate the
conditioning effect of fixing the annual maximum precipitation for one duration level on another. This
is of interest in the scenario where annual maximum precipitation has to be assessed for a heterogeneous
catchment containing e.g. urban structures. The left panel of Figure 10 sketches the situation. The
urban area is affected the most by high intensity precipitation, hence the annual maximum of short
durations is of interest (say 1 hour). The entire catchment has a longer concentration time and the
annual maximum of long lasting precipitation is more important (say 12 hours). Hence, one would like
to calculate the 95-percentile of the 1 hour annual maximum given that the 12 hours duration level is as

9



well at its 95-percentile. To achieve this, we need the conditional densities of the 1 hour annual maxima
f(x1|X4 = x4) = fcGEV(x1; 1)c1,4(FcGEV(x1; 1), FcGEV(x4; 12)) for a given value of x4 (where X4 is the
random variable of duration level d4 corresponding to 12 hours, as in the previous examples). Note, that
this is still the annual maximum of 1 hour and that the extreme 1 hour rainfall might occur during a
different event. Nevertheless, it is the joint conditional threat of this heterogeneous catchment within
1 year time.

The effect on the conditional distribution for different conditioning scenarios is illustrated in the
right panel of Figure 10. It can be seen that the density curves take considerably different shapes
for different conditioning values. The conditional distributions differ by their location, variance and
skewness. These scenarios stress the importance of the dependence between duration levels. Noteworthy
is the weak bimodal shape of the curve f(x1|X4 = F−1cGEV(0.95; 12)) where a tendency for either typical
(unconditioned) or large values of X1 for large values of X4 can be deduced, going along with an increase
in variance. The vertical line segments at the bottom indicate the corresponding 95-percentile of the
different scenarios further underpinning the importance of the joint modeling. As previously mentioned,
the ranges of the marginal distribution overlap in this model resulting in positive probability for the
implausible case that the annual maximum rainfall of 12 hours is smaller than the one for 1 hour. The red
dashed line in Figure 10 is the 12 hours annual maximum (X4) conditional density given X1 = 32 mm,
but the conditional probability of the larger duration level X4 being smaller than 32 mm is positive:
F (X4 ≤ 32 mm|X1 = 32 mm) ≈ 0.06 > 0. However, the implausible probability mass is considerably
reduced compared to the independent treatment of the duration levels where: FcGEV(X4 ≤ 32 mm; 12) ≈
0.60. The center and bottom panels of Figure 10 also underline the asymmetry in the dependence. The
two scenarios of the 95-percentile can be seen as opponents where only the variables are interchanged.
Despite the interchange of variables, symmetric and i.e. elliptical copulas evaluate to the same density
altering the unconditioned density the same way in both scenarios (see Appendix C and Figure 12 for
a detailed illustration). Similar plots can be obtained for other combinations of duration levels. The
evaluation of the conditioned density also works for sets of duration levels, but their visualization is less
intuitive.

Figure 10: Sketch of a heterogeneous catchment (left) and densities of the annual maximum precipitation
for different conditioning scenarios (right). The density curves are shown for the unconditioned case
and conditioned under the 95-, 50- and 5-precentile. The corresponding conditioning 95-percentiles are
12 mm, 21 mm and 39 mm for 3 hours and 20 mm, 30 mm and 51 mm for 12 hours and 8 mm, 16 mm
and 32 mm for 1 hour. The vertical lines in each panel indicate the resulting 95-percentile of annual
maximum 1 hour and 12 hours rainfall respectively. Note that the y-axis uses different ranges to increase
the readability of the plot.
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4 Discussion

The model is fully specified by the set of duration levels of interest. However, as the estimation is
based on a limited range of duration levels, the extrapolation performance of the model beyond these
bounds remains subject to the individual quality of the fit of underlying link functions. However, the
link functions used in the presented application posses an asymptotic structure that is desirable in an
extrapolation scenario.

The sensitivity to outliers has not explicitly been addressed. However, as the estimation of the
dependence structure largely relies on Kendall’s tau, which is as rank based measure not affected by
outliers, the D-vine does not strongly react on outliers. The marginal link functions weaken to some
degree the effect of outliers on the margins. Nevertheless, a robust estimation of the marginal distributions
might be beneficial in some applications.

Many link functions show systematic deviations around the duration levels of 6 and 15 hours (also
the marginal cGEV). This could be due to seasonal effects as most short extreme events will originate
from summer events and longer extreme events typically occur during the winter period. Further studies
are needed to better understand this behavior. Furthermore, several link functions happen to be of the
form a + b

xc . Further data sets need to be investigated to discuss whether this is only a coincidence of
the studied data set in De Bilt or if any systematic pattern can be deduced.

The presented model has been designed under the premise that the duration levels of interest are
neither fixed in terms of their durations nor their number. If the set of duration levels is known a
priori, a static D-vine copula could also be used to model the dependence. Note that this does not
necessarily reduce the number of parameters in the model, but would allow to use standard tools that
do not require the elaborated steps of identifying and fitting link functions. A switch to a multivariate
Gaussian dependence structure would not allow for the asymmetric dependencies present in many scatter
plots of the first tree. Hence, the number of non-fully increasingly ordered tuples would likely increase.

With a joint probabilistic model at hand, it is now possible to answer questions based on the distribu-
tion of a duration level conditioned on the value of other duration levels (one or more). This enriches the
study of annual maximum precipitation for heterogeneous catchments where different duration levels are
of simultaneous interest. In the presented application, different conditional bivariate designs have been
illustrated, but this approach also allows to consider multivariate return periods for the joint distribution
of duration levels (compare Salvadori and De Michele (2010); Salvadori et al. (2013)). Furthermore,
the selection of an ensemble of critical amounts of rainfall for a given return period is possible. This
allows to route a set of annual maxima for different duration levels through a design. The presented
statistical model only considers the annual maximum precipitation discarding the event structure. An
event oriented formulation where shorter duration levels are part of longer ones and their dependence is
captured would yield a different model.

5 Conclusions

The introduced approach allows to flexibly parameterize a probabilistic model for a joint modeling of
several duration levels based on a D-vine and a set of GEV distributions. The dependence structure of
the empirical data set is successfully captured and reproduced during a series of simulations. The model
does not guarantee by definition that all tuples are increasing rainfall amounts with increasing duration.
Nevertheless, including the dependence considerably increases the amount of well ordered samples from
typically below 15 % in the independence case, the current standard, to typically 80 %. Using a joint
probabilistic model allows to study a new set of design questions where conditional probabilities or
joint return periods are of interest. A situation occurring for heterogeneous catchments where different
duration levels are of simultaneous interest. Further efforts have to be made to simplify the estimation
process and to invest a seasonality component.
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A Monotonicity of the cGEV for increasing duration levels and
larger return periods

For a fixed duration d, the quantile function of the cGEV

F−1(p) = µ(d)− σ(d)

ξ(d)

(
1− (− log(p))

−ξ(d)
)

is monotone in p by definition and with p = 1− 1/T also monotone for the return period T .
Now, let d1 < d2 be arbitrarily fixed duration levels. Defining return periods for T ≥ 2, we have

1 > p = 1− 1/T ≥ 0.5 and hence 0 < − log(p) < 1 and:

0 > 1−
(
− log(p)

)−ξ(d1) ≥ 1−
(
− log(p)

)−ξ(d2)
> −∞

0 < −
(

1−
(
− log(p)

)−ξ(d1)) ≤ −
(

1−
(
− log(p)

)−ξ(d2))
<∞. (1)

Based on the positive and non-decreasing scale-shape ratio we get

σ(d1)

ξ(d1)
≤ σ(d2)

ξ(d2)
. (2)

Multiplying separately left and right parts of (1) and (2) we get

0 < −
(

1− (− log(p))
−ξ(d1)

)
· σ(d1)

ξ(d1)
≤ −

(
1− (− log(p))

−ξ(d2)
)
· σ(d2)

ξ(d2)

and conclude that adding not more to a smaller µ(d1) than to a larger µ(d2) yields

µ(d1) +

(
−
(
1−

(
− log(p)

)−ξ(d1)) · σ(d1)

ξ(d1)

)
≤ µ(d2) +

(
−
(
1−

(
− log(p)

)−ξ(d2)) · σ(d2)

ξ(d2)

)
,

completing the proof.
In the Gumbel case where ξ ≡ 0 and the restriction on the scale-shape ratio vanishes, we have the

quantile function:

F−1(p) = µ− σ log(− log(p)).

As above, it is increasing in p by definition and we also show as above that 0 < − log(p) < 1 for T ≥ 2
with p = 1− 1/T and hence −∞ < log(− log(p)) < 0. Thus, for any d1 < d2 and non-decreasing σ we get
0 < −σ(d1) · log(− log(p)) ≤ −σ(d2) · log(− log(p)) < ∞. Concluding again that adding not more to a
smaller µ(d1) than to a larger µ(d2) yields

µ(d1) +
(
− σ(d1) · log

(
− log(p)

))
≤ µ(d2) +

(
− σ(d2) · log

(
− log(p)

))
,

completing the proof. Note that the conditions we give are sufficient for the inequalities to hold, but
not necessary. Empirically validating the inequalities for more general link functions might suffice in a
specific application.
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B The Tawn copula family

Tawn (1988) added additional parameters ψ1 and ψ2 to the Gumbel copula family to generate a flexible,
i.e. asymmetric extreme value copula. Its Pickands dependence function is given by

A(t) = (1− ψ2)(1− t) + (1− ψ1)t+
((
ψ1(1− t)

)θ
+ (ψ2t)

θ
) 1
θ

for t ∈ [0, 1], 0 ≤ ψ1, ψ2 ≤ 1 and θ ∈ [1,∞). The extreme value copula is then given by

C(u, v) = exp

(
log(uv)A

(
log(v)

log(uv)

))
.

The Gumbel copula and its Pickands dependence function occurs when ψ1 = ψ2 = 1. Note that any
extreme value copula can be defined as above for a suitable Pickands dependence function A, where
A : [0, 1] → [1/2, 1] is a convex function with A(0) = A(1) = 1 and max(t, 1 − t) ≤ A(t) ≤ 1 (see Joe
(1997) for further details). The Tawn copula (or Tawn Type 2) is a restriction to a two-parameter version
of the general three-parameter Tawn copula for ψ2 = 1. Figure 11 illustrates the density for four different
pairs of duration levels based on the parameterization of the presented application.

Figure 11: The density of the Tawn type 2 copula for four combinations of duration levels. The colors
follow a log-scale to ease visual comparison.
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C The asymmetry effect in the conditional densities

The asymmetry of the Tawn copula also has its impact on the conditional densities illustrated in Figure 10.
In order to delineate the impact of the symmetry and tail dependence, the Gumbel copula (symmetric
with tail dependence) and Gaussian copula (elliptically symmetric, no tail dependence) are selected
with the same strength of correlation (Kendall’s tau of ≈ 0.37) and the same tail dependence for the
Gumbel copula (tail index of ≈ 0.45) as the fitted Tawn copula for 1 hour and 12 hours. Figure 12
shows the unconditioned and conditioned densities using the three different copulas for a conditioning
95-percentile (the continuous black and dashed red lines are the same as in Figure 10). The distortion
of the unconditioned densities is the same for the scenario 1 hour—12 hours and 12 hours—1 hour for
the Gumbel and Gaussian copula as c(u, v) = c(v, u) holds for symmetric copulas. In contrast, the Tawn
copula distorts the unconditional densities considerably different. Furthermore, also the tail dependence
has an effect on the distortion as a relatively large quantile is considered. This can be seen in the shift
of location of the distributions. The Gumbel and Tawn copulas move the center of mass further to the
right than the Gaussian copula that has a tail index of zero by construction.

Figure 12: Comparison between the effect of symmetric and asymmetric copulas on the conditional
density. The unconditioned (black continuous lines) and conditioned using the Tawn copula (red dashed
lines) are identical with the unconditioned and 95-percentile scenarios in the center and bottom panel of
Figure 10. The additional curves use the same set-up in terms of conditioning, margins, Kendall’s tau
(Tawn, Gaussian and Gumbel copula: ≈ 0.37) and tail index (Tawn and Gumbel: ≈ 0.45).
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