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INTRODUCTION 

Collinearity is a phenomenon that occurs in linear statistical models. It 

cannot be described in simple terms as present or absent but rather in terms 

of degree and consequences. Consequences include on the one hand the issue 

of computational accuracy, and on the other hand, the statistically inherent 

instability of the estimators. The statistical and mathematical theory and 

background required to understand collinearity is presented in Chapter 1. 

Chapter 2 discusses collinearity per se and in Chapters 3 to 6 we draw from 

the literature to present various biased statistical estimation procedures 

and their properties. These procedures include principal components, ridge, 

generalized ridge, shrunken, fractional and latent root regression methods. 

In Chapter 7 some attempt is made to incorporate the errors- in- variables 

model in the discussion of collinearity, in as much as it also admits a 

perturbation framework. Chapter 8 consists of a summary of all the proposed 

estimators. In Chapter 9 the question of influence is discussed. Chapter 

10 presents the results of a simulation study. 

Some original comments on some estimation techniques are presented rn the 

appropriate chapters. 

An alphabetical listing of notation is presented in Appendix C for the 

convenience of the reader interested only 1n elements of the study. 

An extensive bibliography has been completed from a literature search on the 

MATHSCI database and from additional sources found by the author. 

In the published literature there is no study of the relative efficiencies 

of estimators as comprehensive as the study presented here. Lee (1986), in 

an unpublished doctoral thesis, apparently examined more biased estimators. 

This thesis borrows partly from the work of Chalton (1990) and explores the 

relative efficiencies of the estimators across different parameter-vector 

orientations, different common error variance sizes, and different 

collinearity severities within a simple and convenient collinearity 

framework. Some interesting and anomalous properties of estimators emerge. 



lX 

Sources for sections of the simulation and estimation programs are 

acknowledged in Chapter 10, but the main program and subroutines written for 

this study are listed in Appendix B. Annotations highlight key changes in 

routines. 

Avenues for further research are sketched 1n Chapters 4, 9 and 10. 
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Chapter 1 

THE LINEAR REGRESSION IODEL 

1.1 The lodel 

The linear regression model is given by 

y = X/3 + C ( 1.1) 

where Y 1s a nx1 observed response vector, 

c 1s a nx1 vector of uncorrelated random error variables with 

expectation E(c) = 0, and variance matrix Var(c) = V(c) = ~2I, 

/3 is a px1 vector of regression coefficients that must be estimated, 

and 

X is a nxp matrix of fixed regressors or independent variables, 

whose rank is p (we will assume that n>p). 

~e will not always assume that the X matrix has been standardized. If there 

is a constant present in the regression model we will assume that it is 

represented in the X matrix as a column of ones. If we want the X matrix to 

be scaled so that the product matrix X'X is in correlation form, that will 

be stated explicity. 

By centering we imply that the mean of each regressor column is subtracted 

from the relevant column. By standardizing X we mean that X has been 

scaled so that the length of each column of Xis unity (eg. Xi'Xi= 1, where 

Xi denotes the i- th column of X). ~hen the columns have been scaled 

(centered and standardized) the product matrix X'X is in correlation form. 

In correlation form each of the elements of X'X will lie between -1 and +1. 
For example let p = 2, then the correlation matrix of X'X is 

[ 
1 r

1
12J 

r1 2 

where r 1 2 is the observed coefficient of correlation between the variables 
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represented by the first two columns of X, and 

L(Xi 1 - x1) (Xi 2 - x2) 
r1 2 = ------------~ 

[L(Xi1 - x1 ) 2 ] t [L(Xi 2 - x2 )2] t 

L xi 1 xi 2 - nx1 X2 
= -----------~.l 

[(L XL - nxi)(L Xr2 - nx~)]2 

where xj is the mean of the j-th column, Xij is the i-th element of the 

j-th column and the summation is from i = l(l)n. 

Consequences of data centering for collinearity diagnosis are presented 1n 
Chapter 2. 

1.2 Ordinary Least Square estimation 

If fi is the ordinary least 

minimizing (Y - XP)'(Y - XP) 
square estimator 

over all P, then 

and the m1n1mum sum of squares of residuals is 

(OLSE) 

RSS = (EI E) = (Y - Xfi) I (Y - Xfi) = SSE (fi) 

Properties: 

1. E(fi) = P (unbiased) 

of P rn (1.1), 

(1.2.1) 

(1.2.2) 
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5. /3 is the best linear unbaised estimator (BLUE) of /3 

6. Let 11 = Euclidean distance from '/J to /3 then 

2 
(fi -/3) I (fi - /3) 11 = 

2 
E(L1) = u2tr(X'X)- 1 

E (fi 'fi) = /3'/3 + u2tr(X'X)- 1 

7. If E is distributed normally then 

(from A.1) 

8. If the eigenvalues of X'X are denoted by 

Amax = A1 ~ A2 ~- ......... -~ Ap = Amin > 0, then 

2 
E(L 1) = 1T

2 tr[(X'X)- 1] 

- u2 '£1/ Ai (from A.2) and -

2 2 

V (L1) = 2u4 '£ 1/ Ai 

9. If we assume that the random error terms Ei are Gaussian (normal) 

in distribution, the maximum likelihood estimators (MLE's) and the 

BLUE's coincide (Gauss-Markov Theorem, Searle (1971, p87)) 

1.3 Singular Value Decomposition 

The singular value decomposition (SVD) of a matrix is discussed in textbooks 

such as Stewart (1973, p318), Golub and Van Loan (1983, p16) and Lawson and 

Hanson (1974, Chapter 4). These discussions can be summarized as follows: 

Let X be an nxp matrix of rank k. Then there is an nxn orthogonal matrix U, 
an pxp orthogonal matrix V, and an nxp matrix ~ such that 
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U'XY = ti, X = U/iY' 

where ti:nxp 

D = Diag(JX1,JX2 ... ./Xk) 
a 

and JX1 > JX2 ~ .... JXk > 0 

1s called the i- th singular values of X, and Ai is the i- th 

characteristic value (eigenvalue) of X'X. The vector columns of U are left 

singular vectors of X and the columns of Y are right singular vectors of X. 

Unless the converse is stated explicitly, we will assume that X has full 

column rank, i.e. the rank of X is p. Observe that we may also write the 

SYD (also called the basic structure of X) as 

X = UtiY' (X:nxp, U:nxp, ti: pxp, Y:pxp) (1.3.1) 

ti = D 
a 

y = [v1 ... vp], Vi :px1 

u = [u1 ... up], Ui:nxl 

Y'Y = U'U = Ip 

Note that Y' Y = Ip but that UU' f In. Using the SYD of X the following 

equations will be useful in the subsequent chapters.: 

1. 

2. 

X = [u 1 ... up] Diag(JX1,JX2 ... JXk)[v1 ... vp]' 
p 

= ~ fT,U•V· I V 11 1 1 1 

i = 1 

X'X = y ti U'U ti Y' 
2 

= y ti Y' 
p 

= ~ A. V· V· I 
1 1 1 

i = 1 

(1.3.2) 

(1.3.3) 



3. 

4. 

p 

= ~ V·V· 1 /A· 1 1 1 

i = 1 

jJ = (X'X)- 1X'Y 

= V 1::.- 2v1 V !::. U'Y 
- 1 

= V !::. U 'Y 
p 

= ~v-u-'Y/IT. 1 1 V 11 1 

i = 1 

Let Ci = Ui 'Y/Xi then 
p 

/3 = ~ Vi Ci/Ai 
i = 1 

p 
5. V (/J) = (J2 ~ Vi Vi 1 /Ai (from 1. 3 . 4) 

i = 1 

The SYD of the augmented matrix [X Y] is: 

[X YJ = u X V' 
with u = [ii1 .. ,iip+i], Ui: nxl 

v = [v1,,.vp+1J, Vi:(p+l)xl 

X = Diag[w1 ,w2, .. ·""p+i] 

""1 > ""2 > ..... > ""p+ 1 

U'U = V'V = IP+ t 
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(1.3.4) 

(1.3.5) 

(1.3.6) 

(1.3. 7) 

(1.3.8) 

(1.3.9) 

The following notation will be used 1n discussing the augmented matrix: 

1. Let Vi ,j be the j-th component of the i-th right singular vector Vi. 
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2. 
_o 
Vi 1s the p-dimensional vector containing the first p components of the 

i-th right singular vector Vi of [X YJ of dimension p+l, thus 

(1.3.10) 

1.4 Distributions 

1.4.1 Univariate normal 

Vhen the random variable X has a normal (Gaussian) distribution with meanµ 

and variance u2 , we will write X N N(µ,u 2 ). The density function of X, for 

- CD < X < +m, i S 

f(x) = -
1
- exp [- t ( x- µ) 2 

/ u2 J 
u/Fi 

1.4.2 lultivariate normal 

Vhen the random variables in X 1 = [X 1 X2 ••• XnJ 

normal distribution with vector of means 

variance-covariance matrix V we write X N N(µ,V). 
Xis then 

(1.4.1) 

have a joint multi variate 

µ and positive-definite 

The density function of 

(1.4.2) 

Vhen E(Xi) = µ for all i then µ = µ1 and if the Xi's are mutually 

independent, all with the same variance then V = u2 I and we write 
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1.4.3 Central x2 

n 

~hen XN N(O,I) then u = has the central x2 -distribution with n 
i = 1 

degrees of freedom. The density function is 

n- 2 

f(u) = u---r- exp(-u/2) for u > 0 (1.4.3) 
n 

(2)2 f(n/2) 

1.4. 4 Central F 

Two independent variables each having x2-distributions form the basis of the 

F-distribution. Thus if 

u N x2 N x; 
U1/n1 

N F(n1,n2), the F-distribution and U2 then V = 1 n 
U2/n2 1 2 

with n1and Il2 degrees of freedom. The density function is 

r( 1( )) tn 1 tn 2 tn 1-l 
2 n 1 +n 2 n 1 n2 V 

f (v) = ----------

r( tn1) r(tn2) (n2+ n1v)t(n1+n2) 

for V ) 0 

(1.4.4) 

1.4.5 Central t 

The ratio of a standard normal variable to the root of an independent 

variable that has a x2-distribution 1s the basis of Student's 

t-distribution. Thus when X N N(0,1) and U is UN x;, independent of X, 

then 

1 

Z = X/(U/n) 2 
N tn, 
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the t-distribution with n degrees of freedom. Its density function is 

f(z) = 

1.4.6 Non-central x2 

r(t(n+l)) 

J;; r(tn) 

n 

for -CD < z < CD. (1.4.5) 

'When X N N (µ, I) and u = h Xr' the resulting distribution of u is the 
i = l 

non-central x2 with n degrees of freedom and non-centrality parameter 1, 

, = µ'µ/2 (1.4.6) 

Reference to the distribution is by means of the symbol x2 (n, 1). The 

density function of the non-central x2-distribution x2 (n,,) is 

CD ,k u!(n+2k-l)exp(-!u) 
f(u) = exp(- 1) h - - for u > 0 

k=O k! (2)!n+k r(tn+k) 
(1.4. 7) 

Some texts prefer to regard µ'µ as the non-centrality parameter with 

corresponding adjustments to the form of the density function. 

1.4.7 Non-central F 

If U1 and U2 are independent and 

then 

the non-central F-distribution with n1 and n2 degrees of freedom and 



non-centrality parameter 1· Its density function 1s 

f(v) = 
k=O k! 

for V ) 0 
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1n +k-1 v2 1 

Here too some texts prefer to regardµ'µ as the non-centrality parameter. 

1.4.8 Non-central t 

1 

If X N N(µ,1) and if UN x~, independently of X, then T = X/(U/n) 2 has the 
non-central t-distribution, t(n,µ), with n degrees of freedom with the non

centrality parameterµ. The density function is 

n _ 1µ2 00 k 
n2 e 2 

I 
r(Hn+k+1)) µk 22 tk 

f(t) = (1.4.8) 
(n+t2)Hn+1) 

k 
r(tn) k=O k!(n+t 2)2 

1.5 Variance Inflation Factors 

The variance inflation factors (VIF's) were first defined by 
Marquardt (1970) as the diagonal elements in the inverse of the correlation 

matrix of X1 X. Thus the i-th variance inflation factor (VIFi) is: 

- 1 
where (X 1 X)ii 

i-th column of 
centered. 

(1.5.1) 

- 1 
denotes the i-th diagonal elements of (X'X) and Xi is the 

X. Note that the columns of X are not necessarily scaled or 

Discussion of VIF's and their use 1n diagnosing collinearity is presented 1n 
Chapter 2. 
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1.6 Variable Diagnostics 

1.6.1 Analysis of variance (!NOVA) 

Suppose Y is modelled as a linear function of the regressors, with an 

intercept term. Then Ei (the residual term for the i-th observation) is 

f- = y. - y. 
l l l 

and E will be a nxl column vector of all then residual values. 

The deviation Yi Y (a quantity measuring the variation of the 

observations Yi and around their mean) can be decomposed as follows 

y. - y 
l 

' -
= y. - y + y. - y. 

l l l 

'-v--" '-v--" '--v--" 

I II III 

where I is the total deviation, II is the deviation of fitted OLS regression 

value around the overall mean and III is the deviation of the observed value 

from the regression line. The figure below (Neter and IJasserman (1974)) 

shows this decomposition for one of the observations. 

y 

y f-----~--'--'---'-------j 

T 
y 

X 
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The sums of these squared deviations satisfy the same additive relationship, 

due to the mixed terms of the expression having zero sum (see, for example, 

Neter and ~asserman (1974), for a proof). 

n n n 

(Yi - Y) 2 = t - 2 
(Yi - Y) + t 

i = 1 i = 1 i = 1 

or SSTO = SSR + SSE 

where SSTO is the total sum of squares (corrected for the mean) with n-1 

degrees of freedom (df), SSR is the regression sum of squares with p-1 

degrees of freedom (p-1 independent regressor variables) and SSE denotes the 

error sum of squares with n-p degrees of freedom (p parameters are fitted). 

In matrix notation and for any value of p the sums of squares are 

SSTO = Y'Y -
-2 

(1.6.1) nY 

SSR '/J'X'Y 
-2 

(1.6.2) = - nY 

SSE = Y'Y - /J'X'Y (1.6.3) 

A sum of squares divided by its degrees of freedom is called a mean square 

(MS). The breakdown of the total sum of squares and associated degrees of 

freedom are displayed in the form of an analysis of variance table (ANOVA 

table). 

ANOVA Table 

Source ss df MS 

Regression SSR = '/J'X 'Y 
-2 

nY p- 1 MSR = SSR/ (p- 1) 

Error SSE = Y'Y - '/J'X'Y n- p MSE = SSE/(n-p) 

Total SSTD 
-2 

= Y'Y - nY n- 1 

Sometimes the random variable SSE will also be specified as 

SSE (X 1 ,X 2 , .•. ,Xp), where the bracket denotes the subset of the independent 
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regressor variables that are included in the model. Vhere this notation is 

not explicitly used, the set of regressor variables in the model will be 

clear in the context. 

The use of the term MSE here (for the scalar random variable: mean square 

error) is not to be confused with the non-stochastic matrix MSE, a matrix of 

expectations corresponding to the (matrix) sum of the variance and bias 

matrices of a multivariate parameter estimator. 

The coefficient of multiple determination is denoted by R2 and 1s defined as 

R2 = SSR 

SSTO 

0 < R2 < 1 

= 1 - SSE 

SSTO 
(1.6.4) 

R2 measures the proportionate reduction rn the variation of Y achieved by 

the introduction of the entire set of X variables considered in the model. 

Sometimes for clarity R2 is denoted by R~~ , where 9 denotes the set of 
independent variables that are included in the model (i.e. for X:nxp 

including a column of ones to fit an intercept, the R2 of the full model is 

R~~ = R~12 ... p-1)· 

The coefficient of multiple correlation R 1s the positive square root of R2 

(1.6.5) 

In the case of simple regression (p=2), R is the absolute value of 

coefficient of correlation lrij I where i and j denote the dependent response 
variable Yanda single regressor variable X. For p ~ 2, the value of R is 

the (simple) correlation coefficient between the observed and estimated 

Y-values, and is consequently always positive. 



The coefficient of partial determination is defined as 

SSE({X¢})-SSE(Xi,{X¢}) 

SSE({X¢}) 
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(1.6.6) 

where¢ denotes the set of regressor X variables already in the model prior 

to fitting Xi: For example when p = 4 and we want to find 

¢ = 234 and {X¢} = X2 ,X 3 ,X 4 . Thus 

2 
Ry 1 • 2 3 4 = 

SSE(X 2 ,X 3 ,X 4 )-SSE(X 1 ,X 2 ,X 3 ,X 4 ) 

SSE(X 2 ,X 3 ,X 4 ) 

2 
Ry 1 • 2 3 4 then 

The coefficient of partial determination measures the marginal contribution 

of a regressor variable Xi, given that other specified regressors are 

already included in the model. 

1.6.2 Subset selection of regressor variables 

Although p regressor variables are available, not all of them may be 

necessary for an adequate fit of model to the data. After the functional 

form of each regressor variable is obtained (i.e. Xr, log(Xj), Xi Xj , and so 
on), we seek a 'best' subset of regressor variables. This 'best' subset is 

not necessarily unique but may be one of a unique set of 'best' subsets. 

To find a subset there are basically two strategies, all possible 

regressions and stepwise regression (which we take to include the special 

cases of forward selection and backward elimination.) 

1.6.2.1 All possible regressions 

In the all possible regressions search procedure, all possible regression 
equations are computed and selection of a 'best' equation is performed under 

some criterion (R2, Adjusted R 2 , MSE and Cp). If there are (p- 1) = k 

independent variables and one intercept term there will be 2k possible 
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equations. For example if p = 3 (constant, X1 ,X 2 ) the following 22 models 

are possible: 

E(Y) = P0 ; E(Y) = Po + P1X1 ; E(Y) = Po + P2X2; E(Y) = Po + P1X1 + P2X2; 
where the meaning and the values of the coefficients P0 , P1 , P2 is different 

in each model. 

(i) R2 Criterion 

The coefficient of multiple determination R2 defined in (1.6.4), is computed 

for each 2k equations. R
2 

will be a maximum when all p regressor variables 

are included in the equation. lJe therefore want to find a minimal subset 

for which R2 has stabilized close to its maximum (i.e. when including 

another variable in the model, the increase in R2 is very small). 

(ii) Adjusted R2 

Adding more independent variables to the model can only increase R2 and 

never reduce it. A modified measure that recognizes the number of 

independent variables is introduced. The adjusted coefficient of multiple 

determination, denoted Ri, is defined as: 

n-p SSTO 
1 - n- 1 ( 1 - R 2) 

n- p 

One then computes Ri for each equation and seeks a set ( or more than one 

set) of independent variables which maximizes Ri· 

(iii) ISE Criterion 

One may compute the MSE for each model equation and seek a set (or more than 

one set) of independent variables which minimizes MSE. The R 2 criterion 
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does not take into account the number of parameters in the model, whereas 

the MSE criterion does take that number into account (MSE = SSE/(n-p)). 

(iv) CP Criterion 

The CP criterion, proposed by Mallows (1964), is based on the 'total squared 

error'. Define the quantity rP 

n n 
A 

(vi-11d 2 + E Var(Yi)J/o-2 

i = 1 

where vi = v(X 1i ,X 2 i,· .. ) 1s the expected value from true equation for 

the conditional expectation of (Yi !Xii·· .Xpi), 

n 
E 

i = 1 

k 

7li = Po + E pjxij, is expected value from fitted equation 
j = 1 

vi-7li = bias at the i-th data point 
p = k+l when Po is present 

= k when Po is absent 

(vi-11d 2 = the sum of squared bias (SSBP) 

Now the residual sum of squares (denoted by SSEp), from a fitted equation 

involving the p estimated coefficients, has the expectation: 

Denote the i-th row of X by xi, thus 

X' = [x1 ,x2, ... ,xnJ 
n 

X'X = E x.x( 
1 1 

i = 1 

and 

(1.6. 7) 

(1.6.8) 

(1.6.9) 
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Var(Yd = variance of the fitted value y_ 
1 

= Var(x)i) 
2 

= (J xf(X'X)- 1xi (1.6.10) 

n II 

Var(Yi) 
2 

~ xf(X 1 X)- 1xi ~ = (J 

i = 1 i = 1 

II 
2 

{ ~ xf(X'X)- 1xJ = (J tr 
i = 1 

2 
{Ip} = (J tr 

2 
= (J p (1.6.11) 

thus rr = E(SSEP)/(! 2 - (n- p) + p. 

If (! 2 is estimated by a- 2 (after p parameters are fitted), an estimator of 

rp, denoted by cp, is: 

(1.6.12) 

~hen there is no bias in the regression equation 

E[Cp/vi=7/J = (n-p)(J 2 /(J2 
- (n - 2p) 

= p 

Thus, when the CP values for all possible regressions are plotted against p, 

those regressions with little bias will tend to cluster near the line 

CP = p, while those for equations with substantial bias will fall above this 

line. ~i th this criterion we identify the sets of independent variables 

that lead to smallest CP and we would pref er those sets that have little 

bias (i.e. those near the line). 
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All possible regressions require much computation (in some contexts this is 

a disadvantage, but for p large at-directed search can be performed). For 

a comprehensive discussion on all possible regression see Daniel and lfood 

(1980). 

1.6.2.2 Stepwise regression 

Some practitioners prefer stepwise regression because this technique 

requires less computation than all-possible subsets regression. This search 

method computes a sequence of regression equations. At each step an 

independent variable is added or deleted. The common criterion for adding 

(or deleting) some regressor variable examines the effect of that variable 

which produces the greatest reduct ion ( or smallest increase) in the error 

sums of squares, at each step. Under stepwise regression we can distinguish 

basically three procedures (i) forward selection, (ii) backward elimination 

procedure and (iii) forward selection with a view back. 

{i) Forward Selection Procedure 

In the forward selection procedure, the emphasis is on finding the best 
single predictor, then the best two predictors ( which include the best 

single predictor) then the best three predictors (which include the best two 

predictors, and in turn the best single predictor), and so forth. The 

procedure as outlined by Graybill (1976) is as follows: 

1. Compute all correlation coefficients (or Rii for 1 = 1,2, ... p) between Y 
2 2 2 

and X1 ,X 2 , ... ,Xp, that is compute ry 1 ,ry 2 , ••• ,ryp· Choose the largest, 
. . 2 

suppose 1t 1s ry 1 ; then X1 is the best single predictor of Y. 

2. Compute all squared multiple correlation coefficients of Y with all 

pairs of independent variables involving X1 , that is compute R~ 12 , R~ 13 , 

R~ 14 , ••• ,Ri 1 p, and select the largest. Suppose it is R~ 12 then X1 and X2 

are the best two predictors of Y which include the best single predictor X
1

• 
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3. Compute all multiple correlation coefficients ( or their squares) of Y 

with all sets of three variables that include (X 1 and X2 , that is compute 

R; 123 , R; 124 , ... ,R; 12 P and select the largest. 

At every step in the forward selection procedure we want to determine if the 

addition of one more variable, will 'appreciably' improve the estimation of 

Y. If we found that a new variable will improve the resulting estimator of 

Y we include it and continue, but otherwise the forward selection procedure 

is terminated because a 'best' subset has been found. Estimation is 

improved if the corresponding estimate of error variance is sufficiently 
less than the current estimate. 

Another way to formulate this strategy is as follows: Ve ask if regressors 

1,2, ... ,q,q+l yield a better estimate of Y than do regressors 1,2, ... ,q 

(where 1,2, ... ,q have been determined as above). Thus we examine 

Ho: P;12 ... q+1 = P;12 ... q 

which is true if and only if 

Ho : P;q+1·12 ... q = 0 

Compute the test statistic V, where 

V = 
( n- q- 2) R;q + i . i 2 ••• q 

1- R;q + 1 • 1 2 ••• q 

(1.6.13) 

(1.6.14) 

where R
2 

is the estimated sample estimate of the population value p2 . 

If H0 is true, Vis distributed as F(l,n-q-2). The hypotheses H
0 

is 

rejected (for a size a test) if and only if w the computed value of V 

satisfies w > F(a:1,n-q-2), the critical value of the F(l,n-q-2) 
distribution. So the forward selection procedure is terminated at the step 

where H0 is rejected. In some contexts a is chosen to be quite large, or 
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almost equivalently, the tabulated F-value criterion 1s replaced by a 

suitable constant (eg. Fin= 2.00 by default in BMDP) 

(ii) Backward Elimination Procedure. 

This search procedure is the opposite of forward selection. One starts with 

the full model and then the less important regressors are eliminated one at 

a time. The basic steps in the procedure are given in Draper and Smith 

(1981): 

1. A regression equation containing all variables 1s computed. 

2. The partial F- test value is calculated for every variable treated as 

though it were the last variable to enter the regression equation. 

3. The lowest partial F-test value, FL, is compared with a preselected 

significance level F0 • Then if FL< F0 we remove the variable XL from the 

equation, and recompute the regression equation without XL, then re- enter 

step 2 again. If FL> F0 , we adopt the regression equation. 

(iii) Forward Selection with a View Back 

This method works just like the forward selection with the difference that 

at each step one looks back at the independent variables already in the 

model, examines them and decides if one of them should be dropped. 

1.7 Case Diagnostics 

Outliers are observed values that do not fit the model. Influential cases 

are observations which can markedly effect the estimation process. Their 

influence arises from their relationships with the other observations. It 

is possible for a particular case to be an outlier and to be influential. 

1.7.1 Outliers 

Generally speaking since the true errors are not observable the analyst has 
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to rely on the estimated error terms. In some situations however the 

estimated error terms are substantially effected by the influential cases. 

It is therefore advisable to examine the estimated error terms along with 

corresponding measures of influence. 

1.7.2 Influence 

For OLS, the vector of ordinary residuals, t 1s given by 

f = y x~ 

= y x(x 1 x)- 1X1 Y 
= [I - H]Y (1.7.1) 

where H = X(X 1 x)- 1 X1 and Y is the vector of fitted values. 

The matrix H is called the Hat matrix, because it maps Y into Y = HY 

(Hoaglin and Velsh (1978)). The matrix His symmetric (H 1 = H), idempotent 
(HH = H), and a projection matrix ( into the column space of X). The 

diagonal elements of the Hat matrix, whose role as a diagnostic measure will 

be discussed in Chapter 9 are: 

h- = h-. = x. 1 (X 1 x)- 1x. (1.1.2) 
1 1 1 1 1 

where Xi I is the i- th row of X. The diagonal elements are known as the 

leverage values. 

Several transformations of the ordinary residuals have been proposed for use 

in diagnostic procedures (e.g. see Cook and Veisberg (1982, p17)). The most 

important are the standardized residuals and the studentized residuals. The 

standardized residual (also called the studentized residual (Cook and 

Veisberg (1982)) is defined as 
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ri = ---
a-~ y,.- 11 ii 

i=1,2, ... ,n (1.7.3) 

where a- is the residual mean square. It does not strictly follow a 

t-distribution because ti and ff are not independent. ~hen~ is estimated by 

ff(i), the estimated error variance when the i-th row of X and Y have been 

deleted, the result is a studentized residual 

f. 1 

ff(i)~ 
1 = 1,2, ... ,n (1.7.4) 

which is distributed as Student's t with n- p- 1 degrees of freed om. A 

simple formula for ff(i) (Belsley et al. (1980, p14)) uses 

( n- p- 1 ){ ff ( i)} 2 = ( n- p) ff 2 - (1.7.5) 
1- h .. 

1 1 

The measure DFFITS (Belsley et al. (1980, p15)), is the standardized change 
1n the fitted value of a case when it is deleted, is given for the i-th case 

by 

DFFITSi (1.7.6) 

Cook's (squared) distance (Cook (1977)) of an estimator p from the OLS p 1s 
defined as 

C = D2 = (P - P)'X'X(P - P)/(po-2 ) (1.7.7) 

The distance is regarded as large when D2 > F(1-a,p,n-p), where 

F(1-a,p,n-p) is the 1-a probability point of the central F-distribution with 

p and n-p degrees of freedom. It is widely known that D2 does not follow an 
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F-distribution, but 1s an effective measure of relative change 1n estimated 

coefficients. 

1.8 Bias and Jackknifing 

1.8.1 Biased estimation 

Least square estimators (LSE' s or OLSE' s) are the best linear unbiased 

estimators (BLUE' s) of the elements of the parameter vector (J. 

linear unbiased estimators the LSE's have the smallest variances. 

Amongst 

In the 

presence of collinearity one or more of these variances can be inflated to 

such an extent that the corresponding estimators become unacceptable. The 

'fly in the ointment' with the least squares criterion is its requirement 

of unbiasedness (Marquardt and Snee (1975)). A major reduction in variance 

can be obtained as a result of allowing a little bias. If one looks beyond 

the class of unbiased estimators, it is possible to find some biased 

estimators with smaller variances than the variances of the LSE's. Some of 

these biased estimators will perform better than LSE's in the presence of 

collinearity, in the sense of reduced mean square error (MSE). 

Variance and bias 1n an estimator Pi 

E(fiJ = /Ji 
LSE c:...._ _____ ___j__ _____ ....:::::::=-JLARGE VARIAN CE 

BIASED 

ESTIMATOR 
E(~J f /Ji 
SMALL VARIANCE 



MSE may be used to assess the performance of 

regression model ( 1.1) 

if jJ is an 

y = X /3 + E' 

estimator of /3, the MSE of 

MSE(iJ) = E[(iJ - /J)(iJ - /3)'] 

= V (ll) + bb I 

jJ 

where b = E(iJ) - f3 is the bias vector. 

is 

regression 

defined as 

The total mean squared error (TMSE) of jJ is defined as 

TMSE(iJ) = tr[MSE(iJ)J 

= ~ var(lli) +~hr 

1.8.2 Jackknifing 
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estimators. In the 

(1.8.1) 

(1.8.2) 

The jackknife technique was introduced by Quenouille (1956) and Tukey 

(1958). The jackknife is a general method for reducing the bias in an 
estimator and for obtaining a measure of the variance of the resulting 

estimator by sample reuse. 

I 

Let X = [x 1 •••• xnJ . The subscript - i with any matrix will mean that the 

i-th row has been deleted, i.e. with X_i we mean the X matrix with its i-th 

row deleted. In a vector Y the subscript i indicates the i- th element of 

the vector (i.e. Yi) but the subscript - i, indicates the subvector of Y 

remaining after the i-th element has been deleted. 
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Define 

E· = y. - xf (3 1 1 
(1.8.3) 

E = y - X(J 

= [ A A J / 
E 1' ••• 'En (1.8.4) 

h- = x((X 1 X)- 1x. 
1 1 1 

(1.8.5) 

The least square estimator obtained by deleting the i-th row (xi,Yi) of the 

data is: 

(3 _ i = (1.8.6) 

= [X'X - xix{]- 1 [X'Y - xi Yi] 

= [(X'X)- 1 +(X'X)- 1xi(I-xi(X'X)- 1xd- 1xi(X'X)- 1
] [X'Y-xiYJ 

= (3 - (X'X)- 1xi [Yi Yihi - x)J + hJJ (l-hd- 1 

= lJ - (X I X) - 1 xi [Yi x f,8] ( 1- hi ) - 1 

= (3 - (X'X)- 1xi[iJ(l-hJ- 1 (1.8.7) 

for i = 1,2, ... ,n. 

This equation illustrates the effect of an influential point (hi close to 1) 

on the coefficients. Under the assumption that Yi can be modelled 

simultaneously with Y_i, the scalar ii/(1-hi) has zero expectation but large 

variance ~2 /(1-hi), and an outlying xi in the row space of X_i will tend to 

have a large influence on the choice of estimates. However if in fact the 

extrapolation from Y_i = X_i(J + ci to suggest values for xi'/3 is not 

justified, using the full data set will lead to (3 values that are generally 

sufficiently different from !J_i as to be misleading, and in particular, 

biased (for (3 in the model for the reduced data set). 

In what follows, we assume that the same (3 is operative rn the full and 
reduced data sets. Define the pseudovalue for i = 1,2, ... ,n as 
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Pi = n/3 - (n-1),B_i (1.8.8) 

= ,8 + (n-1)(X'X)- 1xi[id/(1-hd 

then the jackknifed estimator is given by 

/3 J = n-1 h p. 
1 

= /3 + (n-1)n- 1(X'X)- 1 h xi i)(1-hd (1.8.9) 

E (,8 J) = /3 + (n-1)n- 1 (X'X)- 1 h xiE(ii)/(1-hi) 

= /3 (E( iJ = 0) (1.8.10) 

Since Var(,8) = u2 (X'X)- 1 and Var(i) = u2 [I- X(X'X)- 1X'], and because ,8 and 

E are uncorrelated, we have 

Var(,8.J) = u2 (X'X)- 1 + u2 ((n-1)n- 1) 2 (X'X)- 1 

x [ h xdI-xf(X'X)- 1xJxf/(1-hi) 2J(X'X)- 1 

(1.8.11) 

The jackknife distribution-free estimate of variance for the parameter 

estimator (,BJ) is defined as 

VJ= [n(n-1)J- 1h(Pi - ,8.J)(Pi - ,BJ)' 

= Var(,BJ) 

(1.8.12) 

This sample moment estimator (on the n pseudo-values) may be used to 

estimate both Var(,8.J) and Var(,8) (Hinkley (1977)). He also pointed out the 
following shortcomings of the method, namely 
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1. ,BJ is different from the original estimator (,8), is unbiased for P 
but has in general a larger variance than the LSE (Gauss Markov). 

2. VJ is in general, biased for estimating Var(,BJ) or Var(,8). 

These problems stem from the balanced nature of the ordinary jackknife, 

which neglects the unbalanced nature of the regression data. Hinkley (1977) 

proposed a weighted modification. The weighted pseudo-value 

Qi = ,8 + n(l-hi)(,8 - p_i) 

- P + n(l-hi )(,8 - ,8 - (X'X)- 1xdtJ (l-hd- 1
) 

= P + n((X'X)- 1xiti) (1.8.13) 

The weighted jackknife estimator (denoted by ,BJW) is 

n 

PJW = n-1 E t (1.8.14) 
i = 1 

= p 

and the variance estimator 

VJW = [n(n-p)J- 1E(Qi - ,BJW)(Qi PJw)' 

= [ n ( n- p) J - 1 E [,B + n ( ( X ' X) - 1 xi t d - ,BJ [,8 + n ( ( X ' X ) - 1 xi t d- ,BJ ' 

(1.8.15) 

VJW will be biased in unbalanced cases but is robust against error variance 

heterogeneity. (Lemma 2, Appendix of Hinkley (1977)) 

The above description of the jackknife only takes into account the deletion 

of one single row at a time. Therefore it is called the delete-one 

jackknife method. Vu ( 1986) proposed a class of weighted modifications 

allowing for the deletion of an arbitrary number of observations. 
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1.9 Vector and latrix Norms, and Decompositions 

1.9.1 Vector norms 

A vector norm (or simply a norm) on Rn is a function v:Rn~R that satisfies 

the following conditions (Stewart (1973)): 

1. 

2. 

3. 

X f Q :::} 

v(ax) = 

v(x+y) < 

v(x) > O, 

ialv(x), 

v(x) + v(y) 

(1.9.1) 

The conditions 1, 2, 3, are also termed definiteness, homogeneity, and 

triangle inequality conditions. 

Three norms on Rn that are frequently used rn analyzing matrix processes, 

are the 1-, 2-, and rn-norms. 

The 1-norm of a vector y, is defined as 

n 

IIYll1 = ~ I Yi I, (1.9.2) 
i = 1 

where Yi is the i-th element of the vector y:nx1. 

The 2-norm of a vector y, is defined as 

IIYll2 = FY (1.9.3) 

The 2-norm 1s sometimes called the Euclidean norm of a vector y. 
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The rn-norm of a vector y, is defined as 

11y1100 = max { I y i I : i = 1 ' 2 ' ... ' n} (1.9.4) 

and is sometimes called the maximum norm (max-norm) or the Chebyshev norm. 

The norms defined in (1.9.2), (1.9.3) and (1.9.4) are special cases of the 

Holder norms or vector p-norms defined by 

pj 
p 

IIYIIP = ~ I Yi Ip' 1 < p < rn (1.9.5) 
i = I 

( II YI loo is lim( IIYllp) as p-1rn) 

1.9.2 latrix norms 

A function v:Rmxn-1R is a matrix norm on Rmxn if 

1. A t O ::} v(A) > 0, A E Rmxn, 

2. v(aA) = lalv(A), A E Rmxn, a E R, (1.9.6) 

3. v(A+B) < v(A) + v(B), A,B E wnxn 

4. v(AB) < v(A)v(B). 

Condition ( 4) is known as the submul tiplicati ve or consistency condition. 

If a function statisfies (1)- (3) and not necessarily (4), it is called a 

generalized matrix norm. 

The Frobenius norm of a matrix A is defined as 

= j r, a?. 
i 'j 1 J 

(1.9.7) 
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The Frobenius norm can also be shown to satisfy 

(1.9.8) 

This norm (1.9.8) is sometimes called the Euclidean matrix norm, 12 norm, 

the Schur norm, or the Hilbert-Schmidt norm. 

A unitarily invariant matrix norm is a norm that satisfies 

11u' xv11 = IIXII (1.9.10) 

for all unitary matrices U and V. (Al though the symbols U and V are used 

in the SVD to indicate unique matrices, here we wish the identity to hold 

for all other conformable unitary matrices, as well as those U and V of the 

SYD). 

The matrix p-norm of a matrix is defined from vector p-norms as 

where p E (1,2,rn) 

e.g. 
IIAxll2 

sup 
xjO llxll2 

The maximum column- sum matrix norm 11 · II 1 

11 

IIAll 1 = max E I ai j I 1 < ' i = 1 

of A 

J < n 

The maximum row-sum matrix norm II· 11 00 of A lS 

11 

IIAlloo = max E I ai j I ' 
1 < 1 ~ n 

j = 1 

is defined as 

defined as 

(1.9.11) 

(1.9.12) 

(1.9.13) 

(1.9.14) 



The spectral norm \\ · \\ 2 of A is defined as 

\IA\\ 2 = max{ ,/J.: A is an eigenvalue of A' A} 

1.9.3 Decomposition 

1.9.3.1 SYD 

If the SVD of Xis given by (1.3.1) and 

then 

r(X) = r ~ p 

N(X) = span{vr+i,··· ,vp} 
R(X) = span{u 1 , ••• ,ur} 
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(1.9.15) 

(1.9.16) 

(1.9.17) 

(1.9.18) 

where r(X) is the rank of X, N(X) is the null space of X, and R(X) is the 

range of X. 

Then the Frobenius norm of X can be written as 

(1.9.19) 

and the matrix 2-norm of Xis 

( 1. 9. 20) 

Some authors call (1.9.20) the spectral norm and define it as 

\\A\\ 2 = max I\Ax\\ 2, for llxll = 1 

Stewart (1987), omits the subscript 2. Proofs of these properties can be 

found Golub and Van Loan (1983, Chapter 2) or Horn and Johnson (1987). 
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1.9.3.2 QR decomposition 

The following decomposition of a matrix is known as the QR decomposition: 

Let X: nxp and Y: nx1 be given and suppose that an orthogonal matrix Q: nxn 

exists and is computable, with the property that 

Q'X = R =[ R1:pxp l 
0: (n-p)xp 

is upper triangular. 

If Q 'Y = [ c:px1 ] 
d: (n-p)x1 

then IIX/3 - YII~ = IIQ'X/3 - Q'YII~ (from 1.9.10) 

= 
ll[~i]/3- [~JI!: 

= IIR1/3 - ell~ + lldll~ 

for any f3 ERP. 

(1.9.21) 

(1.9.22) 

(1.9.23) 

If r(X) = p (i.e. X has full rank), then the OLSE /3 may be obtained from 

the upper triangular system R1/3 = c, and the m1n1mum sum of squares 

satisfies IIXfi - YII ~ = lldll ~ · 

If Xis rank deficient (r(X) < p) then at least one diagonal entry in R is 

zero and the QR factorization does not necessarily produce an orthonormal 

basis for R(A). Therefore the QR factorization must be modified to produce 

an orthonormal basis for the X range. This modified algorithm is known as 
QR with Column Pivoting: 
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Let Il be a suitable (pxp) permutation matrix used to interchange the columns 

of X so that the independent columns are moved to initial column positions. 

Then 

xrr = QR where R = [ R 11 
~1 2 l r ( 1. 9. 24) 

nxp 
0 n- r 
r p- r 

where rank(X) = r < P, R11 is upper triangular and non-singular. Thus 

IIXfi - YII~ = ll(Q'XIl)(Il'/J) - Q'YII~ 

where II' /J 

= II [ ~11 ~12 J [ ~~ J - [ ~ J II: 

= [ !: l r 

n- r 

( 1. 9. 25) 

( 1. 9. 26) 

and Q'Y is defined rn (1.9.22). Thus, if IIXfi - YII~ is minimized then 

IT I /J r 

n- r 

(1.9.27) 

If Z2 is set to zero then we obtain the unique solution of smallest norm 

r 

n- r 

( 1. 9. 28) 

An algorithm for QR with column pivoting can be found on p165 of Golub and 

Van Loan (1983). Lawson and Hanson (1974) describe the above method on 

pp78-82 and refered to it as QR with column interchange strategy. 
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Golub and Van Loan (1983) show by examples that QR with column pivoting is 

not entirely reliable for detecting rank deficiency but that it works well 

in practice. 

1.10 Subset Selection using Singular Value Decomposition. 

In OLS fi is the mrn1mum norm solution, i.e. IIXJ3 - YI!~ will be a minimum 

when JJ is estimated by fi = 
p 
~ vi u i 'Y /./Xi (from 1. 3. 4) . In the case of rank 

i = 1 

deficiency J3 can be approximated by 

r 

fi; = ~ ViUi'Y/./Xi (1.10.1) 
i = 1 

where r is an estimate of the rank(X) = r, thus fi; minimizes IIX;fi - Yll 2 and 

r 

X; = ~ ./Xiuivi' (by using (1.3.2)) (1.10.2) 
i = 1 

(1.10.3) 

where U; =[u 1 , ••• ,u;J, V; =[v 1 , ••• ,v;] and!:.; =diag(~, ... ,/J; ). (X; is 
the matrix that is the closest to X that has rank r). Furthermore the 

residuals due to this method will be denoted by c;, and 

C = y - Xfi; r 

= y - U·U·'Y r r 

= (I - U·U·')Y (1.10.4) r r 

A subset selection procedure that is based on the SVD has been proposed by 

Golub, Klema and Stewart (1976). It is also described in Golub and Van Loan 
(1983, pp414-419). Their method proceeds as follows: 
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1. Compute the SVD of X ( 1. 3 .1) and use it to determine the rank of X. 

Denote this rank by r, r ~ p ~ n. 

2. Calculate a permutation matrix P such that the columns of the matrix 

X1 :nxr in XP = [X 1 X2 ] are 'sufficiently independent'. 

3. Predict Y with Xb where b = P[z' OJ' and z:rxl minimizes IIX 1 z - Yll~-
Denote the residuals due to this method by 

A y - Xb tz = 

= y - X1 z 

= y - X1 (X{X 1 )- 1X1Y 

= (I - B1B{)Y (1.10.5) 

The key step is 2, since 

lJe want some bounds on the smallest singular value ..j).i (X 1 ) of X1 • For 

clarity the singular values of any matrix, say A, will be written here as 

~- Golub and Van Loan (1983, pp416-418) state and prove the following 

theorems: 

Theorem 1.10 .1 

Let the SVD of X be g1 ven by ( 1. 3 .1) and define the matrix X1 : nxr, for 

r < rank(X), by 
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where Pis a pxp permutation matrix. If 

P'V = 
[ V. 11 V. "] 

r 

V21 V22 p- r 

(1.10.6) 

r p- r 

and v 11 is nonsingular, then 

(1.10.7) 

Thus the permutation P must be chosen 1n such away that V 11 is as well 

conditioned as possible. A solution to this problem would be QR with 

column-pivoting factorization of the rxp matrix [V{ 1 V21 ] where V is 

partitioned as follows: 

V = [ V 11 V 1 2] r (1.10.8) 

V21 V22 p- r 

r p- r 

Thus 

(1.10.9) 

where Q is orthogonal, p is an pxp permutation matrix and R11 is upper 

triangular. Then from (1.10.9) 

[V { 1 V 2 1] p = Q[R11 R12J 

Thus 
p 

1 

[V 11 l = 
[R~ 

1 l Q 
1 

V21 R21 

[V. 1 1 l = [R ~ 1 Q '] 
(from (1.10.6)) (1.10.10) 

V21 R' Q' 2 1 
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and 

w'i th column pi voting R11 will be well conditioned, which rn turn will 

produce a well conditioned V11 • 

To assess the above method of subset selection, compare the residuals from 

this subset procedure (iz, defined in (1.10.5)) with those residuals from 

the nearest rank-r LS (if, defined in (1.10.4)). Define V11 as the leading 

r-by-r submatrix of P1 V, then 

(1.10.11) 

The norm Iii; - tzll 2 can also be written as 

' r 

= IIX 1 Z - E udui 1 Y)ll 2 (from (1.10.1)) (1.10.12) 
i = 1 

This sheds light on how well X1Z can predict the stable component of Y, i.e. 
r n 

E (ui 1 Y). Any attempt to approximate E (ui 1 Y), wheres= r+l, can lead to 
i=l i=s 

a large norm solution. Moreover (1.10.11) says that if Ai+i << Ai then any 
reasonably independent subset of columns produces essentially the same-sized 
residual. On the other hand, if there is no well- defined gap in the 

singular values then the determination of r becomes difficult and the 

entire subset selection problem more complicated. 

These observations together with theorem 1.10.1 form the basis of an 

algorithm proposed by Golub, Klema and Stewart (1976): 
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Algorithm SX-OLS (SX-OLS comes from subset selection on X where the method 

of estimation is OLS). 

Given X t Rnxp, Y t Rn and a method for computing an integer :r that 

approximates rank X, then the following algorithm computes a permutation P 

and a vector z t Rr such that the first :r columns of XP are independent and 

such that IIXP[z' OJ' - YJl 2 is minimized. 

Compute the SYD of X (1.3.1) and use it to determine the rank of X. Denote 

this rank by :r, where :r ~ r(X) ~ p ~ n and partition Vas in (1.10.8). 

Step one: 

V = [ V 11 V 1 2] r 

Y21 Y22 p- r 

r p- r 

Use QR with column pivoting (as described in §1.9) to compute 

Step two: 

and set 

Step three: Determine z t Rr such that JJY - X1zll 2 = min. 

\fhen :r > p/2 it would be more economical to compute P by applying the QR 

with column pivoting algorithm to [V 22 V~ 2], because P'V is orthogonal, and 
.. - 1 .. - 1 

IIV 11 JJ 2 = IJV 22 ll 2 (for a proof see Golub and Van Loan (1983, Theorem 2.4.1). 

Again it should be noted that these methods are intended to be in the realm 

of numerical mathematics and do not appeal to any statistical properties per 

se. 
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1.11 Probability limit 

Tis the probability limit (plim) of the statistic tn, derived from a random 

sample of n observations, if, for any t > O, the probability of ltn-TI < t, 

approaches the limit probability 1 as n ~ rn. 
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Chapter 2 

COLLINEARITY 

One of the assumptions of the linear regression model (1.1), is that the 

fixed matrix X of independent variables is a full column-rank matrix. 

Violation of this assumption leads to problems referred to as collinearity. 

This phenomenon of collinearity and near-collinearity was first described by 

Ragnar Frisch (1934) and he warned that in ignoring this structure within 

the independent regressor variables, one runs the risk of determining a 

regression equation that is absurd. Frisch believed that 'a substantial 

part of the regression and correlation analyses which have been made on 

economic data in recent years is nonsense'. 

Some authors refer to collinearity and its analysis as multicollinearity 

(Gunst (1983)), conditioning (Belsley and Oldford (1986)), confluence 

analysis (Frisch (1934)), ill- conditioning (Belsley and Oldford (1986)), 
singularity (Stewart (1987)) and non-orthogonality (Farrar and Glauber 

( 1967)). Ye favour 'collinearity' as collinearity will always involve two 

or more vectors, and the prefix 'multi' is unnecessary (Kalman (1984)). To 

some degree all the foregoing terms can be regarded as synonymous. 

Collinearity can not be described 1n simple terms as being present or 

absent. Rather, what is important is the degree of collinearity and what 
effect this degree can have on the regression model. For the statistician, 

near- collineari ties inflate the variances of regression coefficients and 

magnify the effects of error in the regression response variable. For the 

numerical analyst, collinearities combine with rounding errors to introduce 

inaccuracies in computations. A great deal of time and effort have been 

devoted to issues related to collinearity (see attached bibliography) and 

still the subject has abounds with paradoxes, ambiguities and open 

questions. 

In this chapter some light is shed on this problem (although in the opinion 
of the writer collinearity is not so much a problem as an inherent part of 

the data set and model). Ye discuss definitions of collinearity in §2.1, 

ways of detecting it in §2.2, the effect of collinearity in §2.3, the 
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issue of centering in §2.4, and the theory of perturbation rn §2.5. A 

summary of approaches to collinearity is presented in §2.6. 

2.1 Definitions 

Several definitions of collinearity appear rn the literature, some more 

descriptive of symptoms than rigorous. 

Collinearity is often viewed as a situation 1n which two or more predictor 

variables are highly correlated. This statement is inadequate because 

correlation is a statistical property of random variables, and the regressor 

variables need not be stochastic, since they could represent preselected 
variable values rn a designed experiment. 

variable values the 'correlation' may be 

particular data set rn a particular time 

expected to occur in other data sets of the 

\Then there are no preselected 
merely a characteristic of a 

period, say, and might not be 

same type at other times. 

Another view is that collinearities are due to 'weak' or 'deficient' data 

(Farrar and Glauber (1967)). 'Deficient' implies an aberration in the data

collection process; however, collineari ties among predictor variables are 

sometimes an inherent property of the phenomenon under study, in which case 

'deficient' data would actually be a misnomer. 

In the foregoing statements, there are connotations which imply more about 

the predictor variables than simply the existence of a collinearity. A 

formal definition of collinearity should imply nothing more about the 

predictor variables than the existence of the collinearity. The following 

definition is due to Johnston (1963), Silvey (1969), Mason et al. (1975) and 

others, and is in terms of the linear dependence of a set of column vectors, 

Xj , of the matrix X. 
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Definition 2 .1.1 

Vectors X1 ,X 2 , ... ,Xp are linearly dependent if there exist non-zero 

constants c1 ,c 2 , ••• ,cp such that 

p 

~ c.x. = 0 
J J 

j- = 1 

(2.1.1) 

~hen the relationship 1n (2.1.1) is exact for a subset of the columns of X, 
exact collinearity exists. ~hen (2.1.1) is only approximately true, near

collinearity is said to exist. 

Gunst (1983) refined definition (2.1.1) as follows: 

Definition 2 .1. 2 

Let a multiple linear regression model be defined as in (1.1). If for some 

specified T/ ~ 0 there exists a vector c' = [ c1 c2 ••• cp], not all of whose 

elements are zero, such that 
p 

~ cj Xj = 0 with \\0\\ < T/ \\c\\ 
j = 1 

(2.1.2) 

then a collinearity is said to exist among the predictor variables 1n X. 

For definition (2.1.2) to have a practical meaning T/ must be chosen 

suitably small. No fixed value of T/ is suitable for all regression analyses 

since the predictor variables are not scale invariant and T/ can be expected 

to depend on both n and p (the selection of T/ would be discussed in 

§2.2.12). 

A very loose definition of collinearity 1n (1.1) is: 

Definition 2.1.3 

Collinearity exists among the predictor variables if the columns of X are 

not mutually orthogonal (the matrix Xis said to have orthogonal regressors 
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when it is such that X'X is diagonal.). The strength of the collinearity is 

then determined by some measure of how close the columns of predictor 

variables are to being linearly dependent. 

In definition 2 .1. 2 the strength of the collinearity can be gauged by the 

magnitude of IIOll/llcll · In addition, the loose notion of a collinearity being 
simply equivalent to the non-orthogonality of X (i.e. collinearity exists 

when the correlation matrix X'X is not diagonal) is replaced by equation 

(2.1.2). Clearly collinearity under (2.1.2) implies non-orthogonality, but 

not conversely. 

Smith and Campbell (1980) maintain that high correlations and other measures 

of collinearity such as in definitions 2.1.2 and 2.1.3 are inadequate since 

the columns of predictor variables in X can always be transformed so they 

are mutually orthogonal; i.e., there exists a non- singular matrix T such 

that A = XT and A' A = I. In doing so, they imply that model (1.1) is 

equivalent to the following model: 

Y = (XT)(T- 1p) + f (2.1.3) 
= Aa + E 

They claim that 'the parameters panda are uniquely related by P = Ta and 

their estimates should be also. It should make no diffference whether Pis 

estimated explicitly or implicitly from P = Aa.' 

Discussants of the Smith and Campbell paper point out that this type of 
reasoning ignores an important purpose of the regression analysis. One is 

usually interested in assessing the influence of the original predictor 

variables, not the transformed ones, on the response. Their arguments are 

summarized by Gunst (1983) as follows: 

(i) the transformed predictor variables are linear combinations of 

variables which are not unit- or scale-free, 

(ii) in a Bayesian or a sampling-theory framework it is usually easier to 
obtain prior information on the original model parameters than on arbitrary 

linear combinations of 'apples and oranges' (see Thisted (1980) section 2.3) 
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(iii) if one's interest is in specific parameters or parametric functions 

one must eventually transform back to the original predictor variables, and 

(iv) if the collinearity is severe enough to affect the computational 
accuracy of inversion of X it will also affect the computational accuracy of 

calculations to find and to invert T, in which case the A and a are not as 

well-observed as a superficial reading of (2.1.3) might imply. 

The assertion that the collinearity problem is equivalent to a problem of 

high variances on transformed predictor variables can lead to uncritical, 

'black box' mathematical manipulations which obscure the very purpose of a 

regression analysis: accurate and precise parameter estimation within a 
chosen and convenient model. Collinearity is an inherent aspect of the 

analysis and can not be transformed away. 

Belsley and Oldford (1986, p104) give the following definition of ill

conditioning: 

Suppose we have a system of continuous equations 

, = f(~) (2.1.4) 

where ,,~,and f(.) are vectors and/or matrices. Then (2.1.4) can describe 

an estimator, a stochastic model, or, in general, any system of interest 1n 

which elements , are assumed to be dependent upon elements ~- Suppose an 

additive perturbation 8~ in ~ results in a perturbation rn , equal to 

8, = f(~ + 8~) - f (~). A function g(8~) = f(~ + 8~) - f (~) may be defined 
which maps the elements of 81 of a given domain n to elements 81 in the 

corresponding range set A. That is, 

or 

* 
Let A consists of all those perturbations 8, which are considered, a 

priori, to be reasonable given the set n. Concern arises when, 
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* corresponding to some 8rp 1n n' there exists 81 in A which is not in A 
' 

i.e. 

small perturbations 1n 8rp result 1n perturbations 81 which are not 

'reasonably small' e.g. small changes 1n X give rise to large changes 1n 

(X'X)- 1X'Y. 
definitions. 

These considerations lead to the following terms and 

Conditioning analysis: The specification of the conditioning triple 

* K = {f,fi,A} followed by a determination of whether 1 = f(rp) is ill-

conditioned. 

* Ill-conditioning: Given Kand its implied A, if A~ A then 1 is said to be 

ill-conditioned with respect to rp (or fi). Equivalently, one can call the 

system f ill-conditioned. (The concept of a condition number, denoted by 

K(X), as a measure of ill- conditioning will be defined and discussed in 

§2.2.6.) 

The condition triple K completely specifies the conditioning analysis. 

Therefore clear and explicit specification of K is essential. The elements 

of K must be 'contextually or structurally interpretable', meaning that 

values assigned to the triplet must be interpretable through one's a priori 

knowledge of that situation (e.g. in economics it is usually a priori 

knowledge that allows one to assume some regressor variables may have an 

error margin of, say, one percent). The values assigned to the triple will 

depend on the kind of conditioning analysis. The authors distinguish 

between three kinds of conditioning for the linear model of (1.1): 

(i) Data conditioning: 

Let 1 and rp be defined by 

(2.1.5) 

(Here we use 1, Zrp for generality, 1n the case of OLS their equivalent would 

be E(Y) or Y and xp). 
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Consider perturbations 

(2.1.6) 

with domain set 

(2.1.7) 

and acceptable response set 

(2.1.8) 

That is, perturbations 8~ of fixed relative size m1 are required to result 

in perturbations 87 whose length is not less than m2 • (In the linear model 

context, these conditions imply that changes in p should give rise to 

changes in the data Y of E(Y), of some minimal size.) If this cannot be the 

case, then the data of Z are ill-conditioned with respect to fl (2.1.7). 

Thus, Z is ill-conditioned if 118~11/11~11 = m1 and ll81ll/ll1II < m2 which implies 

thus, 

(2.1.9) 

This inequality can be directly associated to the definition of collinearity 

given by Gunst in (2.1.2). From (2.1.2) the data set Z is ill-conditioned 
if 

II Bll/llcll < 1/ 

If we take 

(2.1.10) 
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and replace Zc = 0 by Z8c = 80 then we find the data set collinear according 
to Gunst's definition. 

(ii) Estimator conditioning 

In OLS the estimator to be examined is 

(2.1.11) 

In the notation of (2.1.4) 1 = {J, and f(~) = f(X,Y). lJe consider three 
types of perturbation under this conditioning: 

Firstly: If only Xis perturbed, the triplet of the condition analysis is: 

n = {8¥1::[8X,8YJ =ll8XII/IIXII ~ml, ll8Yll=O} (2.1.12) 

(2.1.13) 

and 8fi = g(8X) = (X + 8X)tY - XtY (2.1.14) 

Belsley and Oldford ( 1986, p111) suggest choices of O. 01 for m1 and m2 

approximately 20m 1 • If the range A of (2.1.14) based on the domain n of 
* (2.1.12) contains any element not in A , the OLS estimate is ill-conditioned 

with respect to n. Thus if small relative changes in the X matrix can 
produce large relative changes in the estimate, the estimate is said to be 
ill-conditioned. 

To determine if an OLS estimate is ill-conditioned we must calcualate 

sup II 8fill / !Ifill ~ m2 for 8X f n (2.1.15) 
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To evaluate (2.1.15) is difficult but Belsley and Oldford (1986) show that 
(2.1.15) is bounded from above by 

(2.1.16) 

where K(X) is the condition number defined in (2.2.5), and R is the 
uncentered multiple correlation coefficient defined in Chapter one. As a 

rough guide the quantity 2m 1K(X)r 1 is compared to m2 , and if it is much 

larger than m2, then fi is declared ill- conditioned. Note that K(X) is an 
important multiplicative factor: for example, 1 percent relative change in X 

produces approximately K(X) percent change in ll8fill/llPII-

Secondly 
is: 

If only Y is perturbed, the triplet of the condition analysis 

n = {8~=[8X,8YJ =ll8YII/IIYII < m1, ll8Xll=O} (2.1.17) 

(2.1.18) 

8fi = g(8Y) = Xt8Y (2.1.19) 

The relative bound is again the quantity 2m 1K(X)R- 1 • 

Thirdly: Instead of perturbing Y around its observed value as above we 
perturb it against its theoretical or expected value, xp, thus 
Y + 8Y = xp + E. The conditioning triplet would then be: 

n = {8Y:ll8YII/IIXPII ~ m1 } (2.1.20) 

* 
A = {8fi:ll8fill/llPII ~ m2} (2.1.21) 

and 8fi = Xt(Y + 8Y) - XtY = fi - p (2.1.22) 
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The relative bound for m2 is 2K(X)lltll/llX,8II S 2m 1K(X). 

Comment: 1. To distinguish this basis for a conditioning analysis from 

the others, it is called stochastically- based conditioning 

analysis. 

2. Since II 8/311 2 = (,B ,B) 1 (,B - ,B), in determining whether ,B is 

ill-conditioned one also determines whether the maximal 

squared error of the resulting OLSE is less than some number 

m2 II.Bii · 
3. m11 is chosen to be the m1n1mum 'signal-to-noise' ratio 

expected to be encountered in model (1.1). 

(iii) Criterion conditioning 

Parameters ,B are often estimated by minimizing some criterion function of 

the data and parameters. Let the criterion function be denoted by Q(X,Y,,B). 

In OLS, the criterion to be minimized is 

Q(X,Y,,B) = (Y - X,B)'(Y - X,B) (2.1.23) 

It is desirable that large changes {/J = '/3 - ,B from ,B should be 

detectable by the selected criterion function. The condition triplet is 

given by 

n = {8,B:118/311 = m1 > O} (2 .1. 24) 

* 
A = {8Q:ll8Qll/(infll8QII) S m2} (2.1.25) 

and 8Q = g(8,B) = 28'/3 1 (X 1 X)8,B (2.1.26) 

If 11/311 f O, then 118/311 rn (2.1.24) can be replaced by 118/311/11/311 = m1 • The 

criterion (2.1.23) is ill-conditioned with respect ton if K2 (X) is greater 

then m2. 
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* In (2.1.25) the worst possible effect is used in defining A , that is the 

worst effect denotes the boundary of acceptability. However, should 

' * -* perturbations 8fi inn produce 8Q's which are not in A , then there exist fi 

that differ substantially from p but which are relatively indistinguishable 

from P by criterion Q(.). If infll8QII = O, for 8P f n, then fi is said to be 

inestimable with respect to the criterion. The concept of inestimabili ty 

will be discussed further in §2.3 under the effects of collinearity. 

In conclusion we note how all these conditioning criteria are connected to 

the condition number. The upper bounds given in the above discussion will 

be clearer after reading §2.5 on perturbation theory. 

2.2 Detecting Collinearity 

The distinction between defining and detecting collinearity is very thin. 

Some authors use ways of detecting collinearity as an implicit method of 

defining collinearity. For example, (i) if some or one singular value of X 

is small, then X is collinear; (ii) if the determinant of X1 X approaches 

zero, then X is near- singular; (iii) large VIF's or large condition 

numbers are taken as indicators of collinearity. The main issue is that the 

user of OLS must be aware of what is happening in the space of the regressor 

variables. 

Many collinearity measures have been described and we discuss both 

historical and recent examples. 

2.2.1 Nature and sensitivity of estimates 

An unexpected sign in estimated coefficient of a model, or a low 

t- statistic, corresponding to a variable which for other than statistical 
reasons is viewed as an important regressor, or sensitivity of results to 

deletion of one or more rows or columns, will generally alert an informed 

reader to data or model inadequacy. These phenomena are sometimes cited as 

evidence of collinearity, or their occurrence is ascribed to collinearity. 



2-12 

However none of the phenomena are necessary for collinearity to exist, and 

they cannot therefore become definitive criteria for detecting 

collinearity, but rather should be grouped under its possible effects. 

2.2.2 Correlation matrix of scaled regressors 

Examining the correlation matrix, X1 X, of the scaled regressors, is a 

commonly employed procedure because XI X is a standard output of most 

regression packages. High values of the off-diagonal elements of X1 X, i.e. 

(X'X)ij, can be an indication of collinearity, between the two regressors Xi 

and Xj. This method can detect only pairwise collinearity and it is 

possible for three or more variates to be collinear while no two of the 

variates taken alone are highly correlated. Thus, the method may be 

helpful but not conclusive. 

2.2.3 Determinant of X'X 

Vhen the X matrix is standardized, 0 ~ det(X'X) ~ 1, and for X with some 

columns exactly collinear, X1 X is singular and det(X'X) = 0. On the other 

hand when det (X I X) = 1 the columns of X are mutually orthogonal. These 

facts lead to the notion that in all other cases some degree of 

collinearity exists and becomes most severe as the determinant approaches 
zero. 

Stewart (1987) disapproves of the use of the determinant to detect 

collinearities and describes its use as dependent upon the 

that det(X'X) bears a close relation to near collinearity'. 

'unhappy notion 

The determinant 

is excessively sensitive to scaling, for example, det(kX'X) = kpdet(X'X), 
A small determinant, may imply little or nothing about the invertibilty of a 

matrix. For example, the matrix kln, whose determinant is kn and can be 

made arbitrarily small, has a simple inverse [klnJ- 1 = k- 11n, fork f 0. 
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2.2.4 Departure from orthogonality 

Farrar and Glauber (1967) defined collinearity in terms of departures from 

orthogonality, because they claim that 'orthogonality lends itself easily 

to formulation as a statistical hypothesis'. The authors then present a 

three- stage test for the presence, location, and pattern of collinearity. 

The stages they describe (p104) are: 

1) Compute det(X'X), and test for the severity and presence of 

collinearity. The authors assume X'X is in correlation form and transform 

det(X'X) into an approximate Chi Square statistic (see their equation (3)). 

They claim that 'a meaningful scale is provided against which departure 

from orthogonality, and hence the gradient between singularity and 

orthogonality, can be calibrated.' 

2) In the second stage, the value of the statistic 

- l 
((X'X)ii - l)(n-p)/(p-1), (2.2.1) 

- l - l 
where (X'X)ii is the i-th diagonal element of (X'X) , 1s computed and if the 

underlying distribution of the i-th column elements is normal, the statistic 

has the F-distribution with p-1 and n-p degrees of freedom. (For a complete 

discussion of the second stage see p102) 

3) In the third stage, the authors define the coefficient of partial 

correlation (denoted by Rij .) between the i-th and j-th columns of X, while 

all other columns are held constant, as 

R-. = 
1 J • 

-1 -1 -1 -1 

(X'XLj ((X'XLi (X'X)jj) 2 (2.2.2) 

A transformation of Ri j • has a known t- distribution, and this property, 
according to Farrar and Glauber, permits one to assess the significance of 

the computed Rije· 
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The test proposed by Farrar and Glauber ( 1967) is rejected by several 

authors, e.g. Kumar (1975) and Belsley et al. (1980). The rejections are 

mostly based on the fact that Farrar and Glauber (1967) assume that the X 

matrix to be stochastic, and that the rows of the X matrix are independently 

distributed. 0 'Hagen and McCabe ( 1975) question the validity of 

'statistical' interpretation of a measure of collinearity, and Belsley 

et al. (1980) added that 'there are no distributional implications from the 

linear regression model for specific null hypotheses (such as 

orthogonality) on the nature of the data matrix X, against which tests can 

be made.' 

2.2.5 Smallest singular value 

The technique of examrnrng the smallest singular value is very popular 

amongst numerical analysts and complete discussions can be found in Lawson 

and Hanson (1974), Stewart (1973,1987) and Vilkinson (1965). Amongst 

statisticians this idea was suggested by Kendall (1957) and Silvey (1969). 

Basically one computes the SVD of X and examines the singular values, and 

collinearity is indicated by the presence of one or more 'small' singular 

values. Equivalently some authors use the eigenvalues of X1 X which are just 

the squares of the singular values of X. Ve note that some authors mean by 

'small' a singular value near zero, whereas others mean one or more singular 

values are 'small' in relation to others. 

Stewart (1987) expresses the smallest singular value of X rn terms of the 

Euclidean norm 11-11 as 

def 
inf (X) = mrn IIXvll, for llvll = 1 (2.2.3) 

Its square is the smallest eigenvalue of the crossproduct matrix X1 X. The 

justification is the following result due to Eckart and Young (1936), and 
generalized by Mirsky (1960): 

inf(X) is the spectral norm of the smallest matrix E such that 

X +Eis exactly collinear. (2.2.4) 
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Thus inf(X) measures the absolute distance of X from collinearity. The fact 

that inf (X) is an absolute measure makes it difficult to interpret in the 

absence of information about the size of X, or putting it differently, it is 

difficult to know what is meant by the term 'small' which clearly implies a 

basis of comparison. This question leads to our next measure of 

collinearity, the condition number. 

2.2.6 Condition number and condition index 

The condition number, K(X), of a matrix X is defined rn terms of the 

(matrix) spectral norm 11-11 as 

K(X) = IIXII IIXt II (2.2.5) 

where Xt is the pseudoinverse of X, i.e. 

(2.2.6) 

From the SYD, X = U~Y', the SYD of Xt 1s Y~tU', where ~t is the 

pseudoinverse of ~, specifically a diagonal matrix with non- zero entries 

taken as the reciprocals of nonzero diagonal elements of ~. Hence the 

singular values of Xt are the reciprocals of those of X, whence 

inf(X) = IIXtJl- 1 and it follows that 

= inf(X) 

IIXII 
(2.2.7) 

Thus K- 1 is just inf(X) scaled by the norm of X. In terms of the condition 

number, the Eckart-Young-Mirsky theorem (2.2.4) reads as follows: 

The smallest matrix E for which X +Eis collinear satisfies 

IIEII/IIXII = K- l (X) (2.2.8) 

K- 1 (X) gives a lower bound on the relative distance to collinearity. 
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The degree of ill-conditioning under the measure K(X) depends on how small 

the minimum singular value is relative to the maximum singular value. From 

(2. 2. 7) the condition number is always greater than one. Thus, using the 

definitions of a spectral norm, K(X) can be written as: 

K(X) = .;r-;/JT; ~ 1 (2.2.9) 

The lower bound of K (X) will be reached when all the columns of X are 

orthonormal. The condition number provides a measure of the sensitivity of 

the solution to the normal equations, to small changes in X or Y. Useful 

perturbation theory which has been cast in terms of the condition number, 

will be discussed in §2.5. 

The condition number is extended to provide a set of the condition indices, 

and the i-th condition index is defined as 

1 = 1, ... ,P (2.2.10) 

The maximum singular value ( .;r-;) is used as a 'yardstick' against which 

smallness can be measured. The largest condition index is the condition 

number and the indices can be ordered as 

Any 'large' condition indices can indicate the presence of dependencies. 

The term 'large' in connection with condition indexes can not be fixed at a 

definite number. Empirically Belsley et al. (1980) suggest that condition 

indices around 5 - 10 indicate weak dependencies that may be starting to 

affect the regression estimates. Condition indices of 30 to 100 indicate 

moderate to strong dependencies, and indices larger than 100 indicate 

serious collinearity problems. Detecting collinearity by condition indices 
alone is not enough. Some other insight is necessary to find which columns 
of X are involved in the collinearity. 
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Ye may note that the condition number has its defects: 

(i) it is too crude for statistical applications, as it uses matrix norms 

to distil a large amount of information into a single number and other 

distillations such as VIF' s may be better. Belsley ( 1987), claims the 

'full set of condition indices and variance-decomposition proportions (see 

§2.2.7) must be compared to other measures', and not the condition indices 
alone. 

(ii) The condition number has its own scaling problem which will be 

discussed in §2.4. 

To bring this numerical measure to bear on statistical questions as to what 

is the effect of the collinearity, we need methods such as the technique of 

Variance Decomposition due to Belsley et al. (1980). 

2.2.7 Regression coefficient variance decomposition 

Using the SYD, X = UtV', the variance-covariance matrix of fi is 

p 

Var(fi) = (!
2 ~ V · V · 

1 /A· 1 1 1 

i = 1 

and for the j-th component of P 

p 

= (!2 ~ v?./,\. 
1 J 1 (2.2.11) 

i = 1 

where vij is the j- th element of the i-th eigenvector. 

Note that (2. 2 .11) decomposes Var(fij) into a sum of components. Those 

components associated with near dependencies (small Ai), will be large 

relative to the other components. This fact suggests that an unusually high 

proportion of the variance associated with estimators of two or more 
coefficents (at least two columns of X are involved in the dependency), and 
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provides 

problems. 

variable 

evidence that the corresponding near dependency is causing 

Not all regression coefficients need be affected. If the j-th 

is not significantly involved 1n the near-singularity, its 

coefficient in the i-th eigenvector, vij, will be near zero and its 

regression coefficient will remain stable even in the presence of the 

collinearity. 

Define the i,j-th variance-decomposition proportion of the variance of the 

j-th regression coefficent associated with the i-th component as 

¢i j = v?. /).. 
1 J 1 

(2.2.12) 

and 
p 

¢TOTAL = ~ v?.j).. 
1 J 1 

(2.2.13) 
i = 1 

Then the variance-decomposition proportions are 

Setting up a summary table of 

variance-decomposition proportions will 

the following form: 

Associated Proportions 

Singular values Var(/31) Var(/32) 

/J.1 'Ir 1 1 'Ir 1 2 

/J.2 'Ir 2 1 'Ir 2 2 

/J.p 7rp2 

(2.2.14) 

the irij , patterns of high 

be clear. Such a table will have 

of 

Var(/Jp) 

irlp 

'Ir 2 p 
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A suggested diagnostic procedure for collinearity would then: 

1. identify high condition indices (say, greater than 30), associated 

with 

2. high variance-decomposition proportions (say, greater than 0.5) 

for two or more variances of estimated regression coefficients. 

Once the variates involved in each near-dependency have been identified by 

their high variance-decomposition proportions, the near- dependency its elf 

can be examined, e.g. by regressing one of the variates involved on the 

others. 

In the case of multiple near-singularities, the variance decomposition table 

may be dominated by the linear transformation with the smallest eigenvalue 

so that the effect of other near- singularities may not be apparent. To 

overcome this problem, Rawlings (1988) suggested that the variance 

contribution of the other linear transformations should then be found by 

rescaling each column of the table so that the proportions add to one after 

each removal of a dominating linear transformation. 

2.2.8 lixed condition index 

Another measure of collinearity suggested by Thisted ( 1980) involves the 

ratios of the squares of the eigenvalues and is defined as 

mci = (2.2.15) 
i = 1 

Values of mci near unity indicate high collinearity; values greater than 2.0 

indicate little or no collinearity. In this collinearity measure it is the 

relative size of the smallest eigenvalue to all the others, not its absolute 

size or its size relative to the largest eigenvalue, that is important. 
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2.2.9 Variance inflation factors 

VIF's were defined by Marquardt (1970) as the diagonal elements in the 
inverse of the correlation matrix of X'X. Thus the i-th variance inflation 

factor (VIFi) is: 

VIF. = 
1 

(X'X)if 

(XiXd-1 
) 1 (2.2.16) 

where (X'X)if denotes the i-th diagonal elements of (X'X)- 1 and Xi is the 
i-th column of X, not necessarily scaled (centered and standardized). ~hen 

Xis scaled (X'X is in correlation form) then the VIFi can be written as 

1 VIF- = --1 
1 - R? 

1 

(2.2.17) 

where Rf is the coefficient of determination from the regression of Xi on 

the other independent variables. If there are near-singularities involving 

Xi and the other independent variables, Rf ~ 1 and VIFi will be large. If 

Xi is orthogonal to the other independent variables, Rf ~ 0 and VIF i ~ 1. 

Indications of serious collinearity will be some VIFi > 10 (if one exists, 

there are likely be two or more VIF's > 10). 

Stewart (1987) demonstrated that the VIF's can be used to detect 

collinearity 1n the model (1.1) and called the square root of VIFi the i-th 

collinearity index, denoted by Ki: 

1 

Ki = (VIF J 2 

or (2.2.18) 

VIF. = K? 
1 1 
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Stewart also derived and proved the following properties of Ki: 

(1) If X has unit column scaling then 

and (2.2.19) 

(2) The smallest pertubation t5Xj in Xj that will make X exactly collinear 
satisfies 

(2.2.20) 

(For a proof see Golub, Hoffman and Stewart ( 1987)). This statement is 

simplified to the following rule of thumb: 'if K; 1 ~ 1ot then perturbations 

in the t- th digits of the components of Xj can make the problem collinear. 

Another way of saying the same thing is that one should be troubled about a 

model if the number of digits in Kj is not less than the number of accurate 

digits in the components of Xj' 

( 3) For j = 1, 2, ... , p and i ; j 

max(Ki) ~ J1+(Kf-1)/(p-1) 2 (2.2.21) 

Thus when there is one large coefficient there will be others. Therefore 

because collinearity is a 'group phenomenon' the naive use of the condition 

indices in selecting a variable to delete from an unsatisfactory model, is 

clearly incorrect. 

However the condition indices can be used to assess the ill effects of near

collinearity on regression coefficients. Define the importance of the j-th 
variable 

(2.2.22) 
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where a- is the usual estimator of rr. Choose levels of importance, 1,j , 

(between O and 1), above which the Xj would be considered important, e.g. 

if IMPj > 1,j reject the model. For example, a model which produce a IMPj of 

0. 5 is unsatisfactory, since Xj accounts for 507. of the response and is 

judged insignificant. 

Stewart (1987) also suggests the following regression diagnostics to assess 
the effects of errors in the variables: 

Let the errors in the j-th column of X have mean µj and variance rrj, and set 

ej = (µf + rrf) i /2, 
= (Tj 

Compute 

if there is no constant term, 

otherwise 

(2.2.23) 

If rj > 1/3, reject the model. The errors are so influential that the 

diagnostic procedure cannot be trusted. 

errors see pp75-77 of his paper. 

For more measures to judge the 

Schall and Dunne (1987b) generalize the VIF's so that they can be associated 

with more than one parameter, and more generally, with arbitrary sets of 

linear functions of p. This generalization, and the distinction of marginal 

and partial VIF' s result in a complete set of collinearity diagnostics. 

Thus, the generalized set of variance inflation factors can be used to 

perform the three main tasks of collinearity diagnostics: (i) they measure 

variance inflation in the parameter estimates (ii) they can be used as 

collinearity indices and (iii) they can detect the nature and the sources of 

collinearity. 



2.2.9.1 VIF as variance ratio 

Under model (1.1) the variance of ~i is given by 

V(~i) = u2 (X'X)ii 
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and to avoid confusion V(Pi) will be written as V(X) meaning variance of /3i 

under the full model ( 1.1). Context will allow us to dispense with the 

subscript. 

Clearly V(Pi) can also be written as 

(2.2.24) 

showing that the variance of the i-th regression coefficient is directly 

proportional the VIFi: 
accordingly. 

If VIFi is large the V(~i) will be inflated 

Consider the model 

where X(i) and /3(i) are obtained by dropping the i-th column 

i- th component from /3, and where the parameters /3 ( i) are 
known. Thus the left hand side of (2. 2. 25) is observable. 

the variance of /3i, denoted by V(Xi) is given by 

The i-th variance inflation factor can be written as the ratio 

VIF. = 
1 

(X'X)ii 

(XfXd-1 
= 

u2(X'X)i{ 

u2(XfXd-1 
= 

V(X) 

V(Xi) 

(2.2.25) 

from X and the 

assumed to be 

Under (2.2.25) 

(2.2.26) 

(2.2.27) 
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Thus, the VIF i can be described as the loss of information on /Ji due to 

having the covariates X(i) and the unknown parameters /J(i) in the model 
(1.1) as compared to the model (2.2.25). Expression of VIF's as variance 

ratios can be further factorized (Schall and Dunne (1987b), p4) as follows: 

Let X(i) be partitioned as 

(2.2.28) 

and denote the variance inflation (VIFi) due to the covariates X(i) as 

(2.2.29) 

Thus 

VIF. = VIFi ( [X 1 X2]) 1 

V ( [X 1 X2 Xd) 
= 

V(Xd 

V ( [X 1 XJ) V ( [X 1 X2 XJ) 
= 

V(Xi) V ( [X 1 XJ) 

= VIFi(X 1 ).VIFi(X 2IX 1 ) (2.2.30) 

VIFi(X2 IX 1 ) is a partial variance inflation factor (PVIF), where as 

VIFi(X 1 ) is a marginal variance inflation factor (MVIF). The factorization 

provides a refinement in the collinearity diagnostics. If (say) VIFi(X 1 ) is 
large but VIFi (X 2 IX 1 ) is small (close to one), then collinearity exists 

between X(i) and X1 , and that given X1 in the model, having X2 in the model 

does not further inflate the variance of Ji. 

The authors then generalize the above factorization with respect to single 

components to a factorization for parameter subsets. Let I c { 1, ... p} 
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denote the index set specifying the parameter subset ~I, and X be 

partitioned as X = [X(I) XI]. Then model (2.2.25) can be written as 

The generalized variance inflation factor (GVIF) VIFI is defined as 

VIF
1 

= 
I (X'X);f I 
I (X{ XI ) - 1 I 

(2.2.32) 

where (X'X);i denotes the submatrix of (X'X)- 1 formed by the elements which 

fall into the rows and columns indexed by I. 

2.2.9.2 Use of VIF's 

Firstly: Identify disconnected subsets of variables 

By disconnected subsets we mean that collinearity may exist within a subset 

but not between subsets. This identification is performed by partitioning 

of X = [X(I) XI], and the subsets X(I) and XI are said to be disconnected if 
the GVIFI is small. This procedure is repeated to find disconnected subsets 

of variables in both X(I) and XI. If s Sp disconnected subsets are found 

then the number c ~ s are subsets containing more than one variable is the 

'number of collinearities '. 

Secondly: Factorize within each of the c subsets 

Insight into the nature of the collinearities can be found by looking at the 

c subsets individually. Each of them is partitioned as described above. 

For example assume one disconnected collinear subset is [X 1 X2 Xi] then VIFi 

can be partitioned as in (2.2.30) as 

VIFi = VIFi(X 1 ).VIFi(X2 IX 1 ) 

= VIFi(X 2 ).VIFi(X 1 IX 2 ) 
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If VIFi(X 1 ) is large, then Xi and X1 are collinear; similarly, if VIFi(X 2 ) 

is large then Xi and X2 are collinear. If both MVIF's are small, then the 

PVIF's VIFi(X 2 IX 1 ) and VIFi(X 1 IX 2 ) must be large, and the collinearity 

involves Xi and at least one variable from both X1 and X2 • 

Computations of all the GVIF's can be obtained easily from the correlation 

matrix of each step in an all subsets regression problem. In the case 

where p is too large for all subsets regression a subset of all possible 

GVIF's can be obtained from stepwise regression procedure. 

It is recommended by several authors (Stewart ( 1987), Schall and Dunne 

( 1987b)) that the X matrix should be mean centered before calculating the 

VIF's (see also §2.4) 

2.2.10 Signal-to-noise tests 

Belsley (1982) suggested that the presence of harmful collinearity and other 

forms of weak data could be assessed through a test for signal-to-noise. In 

this test the size of the parameter variance (noise) is assessed relative to 

the magnitude of the parameter (signal). This test is then combined with 
other collinearity diagnostics (condition number, variance-decomposition) to 
provide a test for the presence of harmful collinearity and/or short data. 

The general test is constructed as follow: 

Assume model (1.1) and the following partitioning of the model 

where Xa:nxpa, fia=Pax1, Xb:nxpb, /\:pbx1 and Pa+Pb= p. Then the marginal 
distribution of the estimate of ,Bb is 
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where V(fiblX) 1s the variance-covariance matrix of fib conditional on X and 
is 

(J
2 (X'M X )- 1 

b a b (2.2.35) 

* Let {Jb be any Pb vector. Then the signal-to- noise of the OLSE fib relative 
* to {Jb is defined as 

(2.2.36) 

' 1 * 
Ve note that (2.2.36) reduces to T = {Jb/[V(/JblX)] 2

, when {Jb = 0, Pb= 1 and 
{Jb is simply the b-th element of {J. The inverse of Tis often called the 

coefficient of variation, but T itself is the non-centrality parameter of 

the non- central t- distribution. The term signal- to- noise ratio refers to 

the magnitude of T, but the authors use the same name for T2 • 

Belsley (1982) shows that 

a non- central F with Pb and n- p degrees of freedom and non-centrality 

parameter T2 • Hence, under H0 : T2 = Tl, we have 

A practical drawback of this test 1s that it requires knowledge of {Jb and 

V(fiblX) to stipulate directly a value for Tl. The authors propose a 
practical definition for an 'adequate level' for the signal to noise ratio 

that does not require {Jb and V(fiblX). This measure is an increasing 
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function of a single, selectable parameter 1 E [O, 1), and can be made 

stringent (1 chosen near unity) or relaxed (1 chosen small). 

The (1-a) critical F-values for the test of 

are tabulated rn Belsley (1982, appendix A), where 1 is chosen by the 

experimenter. 

The authors then set up a strategy to determine harmful collinearity and 

short data, using results from the sequence of (1) the collinearity 

diagnostics (condition indices and varance-decomposition) of Belsley et al. 

(1980) followed by (2) a test for adequate signal- to- noise for the '/Jb 

(usually the signals are calculated for individual '/Ji 's) 

possible outcomes of these tests are given below: 

C 11 · t 0 1near1 ,y presen 

Inadequacy of 

Signal- to- noise 

No 

Yes 

In situations 1 to 4 we may say: 

(1) everything seems acceptable 

No Yes 

1 2 

3 4 

t 

The four 

(2) collinearity is present, but has not resulted in inadequate signal-to

noise. This situation augurs well for the use of the model for prediction 
purposes, particularly, but not necessarily only, if the collinear relations 
continue into the prediction period. 
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(3) 'the length of Xb is short, e.g. short data', data problems exist, but 

collinearity is not the culprit. 

(4) structural estimation may be adversely affected, but prediction is not 

necessarily affected if the collinear relations extend into the prediction 

period. 

2.2.11 Prior information use 

Swamy et al. ( 1985) argue that any method of detecting collinearity which 

does not use prior information about fi may not be successful in diagnosing 

the presence of real collinearity. The measure of collinearity should take 

into account the dependence of P on X'X as well as the prior and sample 

information about fi as a primary characteristic. 

They considered two types of prior information. A non- Bayesian form may 

investigate Vfi lying on or within the ellipsoid (fi - fi)'V'~ 11V(fi - fi) = r 2 

with known V, fi, ~1 and r. To incorporate the non-Bayesian ellipsoid of 

prior information the method of constrained least squares is proposed. The 

constrained LSE of fi (denoted by Pc) subject to (fi - fi)'V'~ 11V(fi - fi) = r 2 

is 

whereµ is chosen such that (Pc fi)'V'~ 11V(Pc 
(1985), p406) for remarks onµ). 

(2.2.37) 

fi) = r 2 (see Swamy et al. 

Swamy et al. (1985) then propose a specific biased version of the estimator 

in (2.2.37) 

(2.2.38) 

where s 2 = (Y - XP)' (Y XP) / (n- p) and µ is the value of µ selected 
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according to an empirical rule of Thurman et al. (1984). Usually, µ 
determined by this rule will be a finite, positive quantity (see Swamy et 

al.(1985, p407)). (Although the authors do not state it explicity, they 

imply that in (2.2.38) the Pis 0). 

The modified coefficient of multiple determination 1s defined as 

R~ = (fi5 'X'Xfi5 + 2fi5 'X'i 5 )/(Y'Y) (2.2.39) 

where E
5 

= Y - Xfi
5

• The 'truncated model' is 

Y = x(h)fi(h) + fh (2.2.40) 
in which the h- th independent variable is not included but the other p-1 

variables are included. Then the biased estimates of the truncated model 
are 

(2.2.41) 

where X(h)is obtained by deleting the h-th column from X, and (Y'~ 11Y)_h,-h 

is obtained by deleting the h-th row and the h-th column from (Y'~ 11Y). The 

corresponding coefficient of determination is obtained from 

(2.2.42) 

The modified incremental contribution of the h-th variable is then 

Based on this increment their measure of collinearity ( denoted by rn) is 
defined as 

m = (2.2.43) 
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The authors give a lengthy discussion of the bounds of rn (see p410-411) and 

we only give the computationally simpler bounds for rn here, namely 

(2.2.44) 

(2. 2 .45) 

The value of mis interpreted as follows: 

(1) If rn ~ 0 then collinearity is absent. 

(2) If X'X is non-diagonal 1ml is closer to the value of mL or mu than to 
zero and then serious collinearity exists. 

A Bayesian view may assume ~fi distributed a priori with mean ~~ and 

covariance matrix ~~~ 1 , where~ is a known rectangular matrix with full row 

rank. Here ~and~ may be unknown. ~hen the Bayesian prior distribution 

of ~fi is available the authors derive the posterior mean of fi as 

(2.2.46) 

where Efi and cov(fi) are respectively the prior mean and the prior covariance 

matrix of fi. For a derivation of (2.2.46) see Thurman et al. (1984). 

Kashyap et al. (1984) give an operational version of (2.2.46) which is 

nearly minimax. 

2.2.12 Detection methods and lason's definition 

In §2.1, Mason's definition of collinearity is 

p 

~ cjXj = 0 with IIBII < 'f/ llcll 
j = 1 

(2.1.2) 
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In this whole section we will assume X is scaled so that X'X is in 

correlation form. Then the above definition (2.1.2) is related to the 

measures of detection. 

Correlation coefficients: Let rij denote the correlation coefficient 

between Xi and Xj , as Ir i j I -1 1 the vectors Xi and Xj approach linear 
dependence: 

Xi - sign(rij )Xj = 0 with 11011 
1 

= /2 (1 - lrij 1)2 (2.2.47) 

From definition (2.1.2), if lrij I ~ 1 - TJ 2 then a pairwise collinearity 

exists between Xi and Xj . The choice of T/ will depend on the goals of the 

research project. 

Variance inflation factors: Consider the definition of VIFi 

1 VIF. = ---
1 

1 - R? 
1 

(2.2.17) 

where RI is the coefficient of determination from the regression of Xi on 

the other independent variables. Denote by X(i) the X matrix with the i-th 

column deleted and let bi = (X(i)'X(i))- 1X(i)'Xi be the OLS regression 
coefficient when Xi is regressed on the remaining p-1 columns of X (i.e. on 

X(i)). The corresponding 'residual vector' is then 

with 11011 
1 

= (1 - RI )2 (2.2.48) 

1 1 1 

Thus if (1 - Rf) 2 ( = (VIFi)- 2 ) < T/ (1 + bi'bi) 2 , equation (2.2.48) defines 
a collinearity among the predictor variable. 

The smallest singular values: From (1.3.2) the SVD of X 1s 
p 

X = ~ /T·U·V· / V 11 1 1 1 

i = I 
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so that 

J = 1,2, ... ,p. (2.2.49) 

and 
p 

E X-v-. 
1 J 1 

i = 1 

where vj i is the i-th component of the j- th singular vector vj . If ,/J.j is 

suitably small, equation (2.2.49) defines a collinearity since 
p 

E Xivj i = 0 with 11011 = ,/J.j (2.2.50) 
i = 1 

satisfies definition (2 .1. 2) when ,/J.j s T/. The authors suggested a cutoff 

value for T/ is about 0.3 ( i.e. \ s rt 2 = 0.1). 

The condition number: If a condition number of 30 is selected as a cutoff 

value for collinearity, then T/ = ,/J.1 /30 is the appropriate cutoff for ,/J.P. 

Belsley and Oldford' s results in the section on conditioning analysis, 

§2.1, can be related to Mason's approach. 

2.3 Collinearity in Practice 

In practice collinearity becomes harmful when estimation or hypothesis 

testing is influenced more by the relationship between the regressor 

variables than by the relationship between the response and the regressor 

variables. Such an influence can result in poor parameter estimates and 

restrictions on the applicability and generality of the model in use. 

2.3.1 Sources and origins 

Collinearity or near- singularity may arise rn several ways (for detailed 

discussions see Mason, Gunst and Vebster (1975) and Rawlings (1988): 

1. An over-defined model is one in which there are more regressor 

variables than observations. This type of model arises frequently rn 

medical research where many elements of information are recorded on 

each individual in a study. 
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2. An in-built mathematical constraint rn variables that forces them to 

add to a constant will generate a collinearity. Generating new 

variables as transformation of other variables can produce a 

collinearity among the set of variables involved e.g. ratios or powers 

of variables frequently may be nearly collinear with the original 

variables. 

3. Component variables of a system may show near linear dependencies 

because of biological or physical constraints of the system (e.g. 

various measures of size of an organism will show dependencies). Such 

correlation structures are properties of the system and can be expected 

to be present in all observations obtained from the system. Gunst 

(1983) refered to this type of collinearity as 'population- inherent 

collinearities' 

4. Inadequate sampling occurs when the experimenter unknowingly samples 

only from a subspace of the space of the regressor variables. 

Collinearities due to sampling deficiencies are a property of the 

particular data set which has been collected and would not be expected 

to occur in data sets arising from alternative sampling. 

5. Poor experimental design may give rise to collinearities. If possible 

the levels of the experimental factors are generally chosen in such a 

way so that the different treatment factors are statistically 
orthogonal to each other. 

6. Outliers can induce artificial collinearites among the predictor 

variables, and will be discussed in Chapter 8. 

Identifying the origin of collinearity is not always possible but it is 

important to illustrate likely sources in each instance. 

2.3.2 Effects of collinearity 

The impact of collinearity on least squares methodology is very serious if 

primary interest is in the regression coefficients or if the purpose is to 

identify 'important' variables in the estimation process. The solution is 

very unstable, i.e. small changes (random noise or rounding effects) in the 

Y or X, can cause drastic changes in the estimates of the regression 

coefficients (e.g. change in sign), and the variances of the regression 
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coefficients for the regressor variables involved 1n the near-singularity, 

become very large. 

In discussing effects of collinearities, the notation of Chapter 1 will be 

used; for convenience we repeat the following: 

The variance covariance matrix of the OLS estimator is given by 

p 

V (/J) = (!2 E Vi Vi / /). i • 

i = 1 

Because the bias is zero the 

p 

MSE(fi) = (!2 E V·V·'/>.· 1 1 1 

i = 1 

and the TMSE (which is the same as E(Li) 

p 

TMSE(fi) = (!2 E 1/>.i > (!2 />.p 

i = 1 

1n sect ion 1. 2) 

2.3.2.1 Geometric interpretation of collinearity 

is then 

(2.3.1) 

(2.3.2) 

(2.3.3) 

The impact of collinearity can be illustrated geometrically. The figure on 

p2-37 and the interpretation below are from Rawlings (1988, p163). 

The plane is the X-space and the heavy dot, with the shaded area around it, 

represents E(Y). The shaded area represents the distribution of projections 

Y of Y, onto the X-space which one might obtain from repeated samplings of 

the dependent variable. Panels (a) and (b) represent the case where X1 and 

X2 are orthogonal. Panels (c) and (d) represent the case where X1 and X2 

are nearly collinear: the angle between the vectors is small. The position 

of X2 relative to E(Y) remains the same in all cases; the position of X1 

has been shifted to create the collinearity. 



<al / 

I ~ I 
l 3:= .:9 / 

\ 
, - I 
. ~ I 
, -1 / 

~''/ 
I 

I 
I 

I 

/ 

'-----------------~ 

(c) / 
I 3: = -.79 

I 
I 

I 
I 
I 
I 

X: I 
I 

I 

I 

I 

, 

ib); 

I 
I 
I 
I 
I 
I 

I 
I 

I 
I 

i 
I 

I 

1d) / 

X, 

\ 3: = :5 

1 _ ~ - :6 / \ ' _ _. }': /..,, - ;· 

'~Y/ 

2.3.2.2. Collinearity of two regressor variables 

Assume X'X is 1n correlation form, then 
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I 

I 

I 
/ 

(2.3.4) 

where r 12 is the sample correlation coefficient between X1 and X2 . ~hen the 

correlation between X1 and X2 increases (rf 2 ~ 1) and applying L'Hospital's 

rule 

and (2.3.5) 

A strong pairwise linear relationship between X1 and X2 results in very 

large variances and covariances for the estimators of the regression 
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coefficients. Sas try ( 1970) was the first to show these limits. His 

equation (7) is missing a square on the denominator term, (1-ri 2 ) and thus 

the limit he derived in his equation (8) is incorrect. 

For the two regressor variables the estimator of the regression coefficients 

are 

= [ 1/(1-ri 2 )X{Y - r 12 /(1-ri 2 )X2Y l 
-r 12 /(1-ri 2 )X{Y + 1/(1-ri 2 )X 2Y 

= [(X{Y -r 12 X2Y)/(1-ri 2 )] 

(- r 1 2 X { Y + X2 Y) / ( 1- ri 2 ) 

(2.3.6) 

Mason et al. (1975) (by using the results in Sastry (1970)) show that as 
r 12 --+ 1, and assuming that X~Y and X2Y becomes identical (the equality is 

justified since if X1 and X2 have perfect correlation between them, they 

would each have the same correlation with Y). If r 12 --+ -1, the correlation 

between X1 and Y and between X2 and Y would be identical but opposite rn 

sign, fi1 --+ X{Y/2 and fi2 --+ -X{Y/2 The limit operation forces fi 1 and fi 2 to 

become equal but opposite in sign regardless of the true parameter values fi 1 

and fi2 • 

The t-ratio for the partial regression coefficient of the first prediction 

limit for this model (given the second predictor) is 

t2 = 
ri Y (1- r 1 2) 2 ( n- 3) 

1+2riyr 12 -2riy-ri 2 

where r iy is the sample correlation coefficient between X1 and Y, r 2Y is 
the sample correlation coefficient between X2 and Y, and we let r 1Y = r 2y, 

when r 12 approaches 1. The limit of the t-ratio for jr 1 YI f O is (Crocker 
(1971)): 
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lim t2 lim 
Ti Y (1- r 1 2) 2 ( n- 3) 

= 
r 1 2--11 r 12--11 (1-r 12 )(1+r 12-2riy) 

lim 
riy(1-r 12 )(n-3) 

= 
r 1 2--11 (1+r12-2riy) 

0 0 = = 
2(1-riy) 

2.3.2.3 Inflation of variance 

In the presence of near collinearity AP --1 0 so that the var(fi) is inflated 

and TMSE(fi) --1 rn. From (2.2.24) the individual variance of the i-th element 

of fi is 

(!2 
---VIF-

1 
for 1 = 1,2, ... p (2.3.7) 

Thus the variance of the estimator of the i-th regression coefficient is 

directly proportional to VIFi 's. If VIFi is large (indicating collinearity) 

then the variance will be inflated as well. In the case of a near 

orthogonal design VIF ~ 1, and there is no effect on the variance. 

Inflation of the variance will also mean that the null hypothesis H
0 

:/3i =0 

will be more likely to be accepted. 

inference see Gunst (1983). 

For a detail discussion on parametric 

2.3.2.4 Unexpected coefficient values and signs 

Collinearities can result in /3i to 'have the wrong sign' (Farrar and Glauber 

(1967)), and magnitudes of values that disagree with well-established theory 

of previous empirical studies. The notion 'wrong sign' can only be well

defined in a Bayesian framework where the 'correct' sign can be assumed to 

be known from a prior distribution. Mullet (1976) pointed out that the 
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'wrong sign' need not be the result of collinearity. Other possible 

explanations for an incorrect sign are: (i) limited range of regressor 

variable values, (ii) model misspecification, and (iii) computational 

error. To these we may add (iv) outliers in the response variable and (v) 

influential cases. 

lie illustrate the effect of collinearity by considering the OLSE which, 

from (1.3.5), can be written as 

p 

p = ~ Villi 'Y//Ii 
i = 1 

p 

= ~ V·C·/A· 1 1 1 
= U· 'Y rr. 

1 'V"1 (2.3.8) 
i = 1 

Assume 1n the SVD of X that the eigenvalues are ordered, e.g. 

Suppose that AP is much smaller than Ap- t ( implying a single very strong 

collinearity), so much smaller that the summation in (2.3.8) is completely 

dominated by it, e.g. 

Then we may infer 

(2.3.9) 

Gunst and Mason (1980) claim two characteristics of expression (2.3.9) when 

a strong collinearity occurs in X and vpj f 0: 

(i) the estimates tend to be large in magnitude due to the multiplier ,\~ 1 , 

unless ,\~ 1 is complemented by a small value of cP or vpj 



2-40 

(ii) the signs of the estimates tend to be determined more by the 

collinearity associated with vP than by relationship of the predictor 

variables with the response: i.e. if c1 > O, the sign of Pj is the same as 

that of vpj; if c1 < O, the sign of Pj is opposite that of vpj 

The second of these claims may be something of an overstatement, because the 

SYD admits (-ui, -vd in place of (ui, vi), and the relationship of the 

predicted values and the predictor variables with the response is certainly 

implicit in ci = ui 'Y, for each value of i, even for i = p. It may be 

better to say that the inherent impression associated with AP being as small 

as suggested, implies that the notion of the sign of the regression 

coefficients is also imprecise, in that small stochastic variation in Y may 

result in substantial changes in coefficient estimates, including some 

sufficiently large as to give rise to apparent sign changes. 

2.3.2.5 Unstable regression coefficients 

In the presence of collinearity a small perturbation in X or Y can result in 

a relatively unstable regression coefficient Pi. In §2.2, we have given 

some insight into situations when perturbation 1n X will cause harmful 

collinearity and further results on perturbation will be given in §2.5 

2.3.2.6 Linear combinations of regression variables 

Poor precision rn the estimation of individual parameters does not imply 

that the estimated model is a poor predictor. Although some individual 

parameters may be estimated poorly, the Y value may be predicted adequately 

as the whole vector of Pi 's is used. 'Jhen collinearity persists into the 

prediction area the collinearity is not harmful. Use of the model outside 

the defined field (extrapolation) will result in poor prediction. 
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2.4. Centering and Standardization of the I matrix 

In the literature several conflicting views appear on the question of 
whether data in the X-matrix should be mean-centered before collinearity is 

assessed. Belsley (1984) contrasts with authors like Stewart (1987), Schall 

and Dunne (1987b), Gunst (1983), Marquardt (1980) and Marquardt and Snee 

(1975) who advocate mean centering. There is less argument on the question 

on whether X should be standardized although the question of 'how the 

standardizing must be done could be vague'. Stewart (1987) pointed out that 

any combination of three elements could be standardized: the matrix X, the 
vector fi (its elements should be close together), or the matrix E (defined 

in (2.2.4). 

The standardizing of X is accomplished by dividing the elements of each 

column vector by the square root of the sum of squares of the elements, so 

that the length of each vector, (the root sum of squares of each column) is 

unity. Standardizing ensures that the measurement of the X variables is 

uniform (e.g. some columns of the regress or variables may be measured in 

inches while others could be measured in centimeters) and in fact unit free. 

Marquardt and Snee (1975) recommended that in some contexts estimates from 
standardized variates could provide readier parameter interpretability. 

Standardizing is essential before eigenanalysis is used for purposes of 

detecting collinearity, to prevent the eigenanalysis from being dominated by 

one or two of the independent variables. Independent variables in their 

original uni ts of measure would contribute unequally to the total sum of 

squares and, hence, to the eigenvalues. 

In §2. 2. 5 we pointed out that the condition number has its own scaling 

problem. Stewart (1987) shows that if we partition 

X = [X(p) Xp], (2.4.1) 
where X(p) is all the columns of X except the p-th column, and write 
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~hen a approaches zero then 

and 

where Xt is the p-th row of Xt. The rest of the matrix becomes so small in 
p 

comparison to the last row that the norm is only a function of the last row. 

It follows then that 

(2.4.2) 

Thus by scaling down any column of X, the condition number can be made 

arbitrary large and cause 'artificial ill-conditioning'. Therefore it is 

recommended that before computing the condition number, the columns should 

be standardized to have unit column length (Belsley et al. (1980, appendix 

3B and §3.3)) 

Centering makes all independent variables orthogonal to the intercept column 

and hence removes any collinearity that involves the intercept (see the 

discussion later in this section on collinearity involving the intercept 

term). 'Nonessential collinearity' (Marquardt and Snee (1975)) is thus 
removed. Centering is recommended in order to eliminate collinearities 

which are due to the origins of the predictor variables and it can often 

provide computational benefits when small storage or low precision prevail. 

The effect of centering on VIF's is discussed by Schall and Dunne (1987b). 
Let X from a model that includes a constant term be partitioned 

X = [1 X(i) Xi ] , as in (2.2.28), and /J = [/30 /J(i) /Jd I where {3 0 is the 
intercept term. Then similarly to (2.2.30) 

(2.4.3) 

The partial variance inflation factor VIFi(X(i)l1) 1s the variance inflation 

factor for the parameter /Ji which would have been obtained from the mean 
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2.5 Perturbation 

The numerical data that constitute X and Y have only a limited number of 

accurate digits and after those digits the data are completely uncertain and 

hence arbitrary. 

data produces 

Situations should be avoided where a 'small' change in the 

'large' changes in the solution. Results relating to 

perturbation of the pseudoinverse (Xt = (X I X) - 1 X 1 ) or the solution of the 

OLS problem (P) have been given by a number of authors. For treatments of 

this perturbation problem or special cases of the problem, see Stewart 

(1977 and 1973), Lawson and Hanson (1974), and "Vedin (1969, 1973). The 

theory is so well described in textbooks (e.g. Lawson and Hanson (1974)) 

that only a few results will be given here. 

2.5.1 Perturbation bounds 

The notation for this section is as follows: 

Perturbations 1n X, Y and P will be denoted by 8X, 8Y, and 8P 
respectively. (In previous sections we sometimes use the notation E for 

8X, (adopted from Stewart (1987)). The condition number will as previously 

be denoted by K (X), i will be the residual vector. Let p = XtY and 

b = XtY, where Xis the perturbed regression matrix X = X + E or X + 8X. 

An important inequality, used in §2 .1 to derive upper bounds for the 

different conditioning analysis, is from Golub and Van Loan (1983, 6.1-10, 
p141): 

(2.5.1) 

where 11 = max(ll8YII/IIYll,ll8XII/IIXII < [K(X)J- 1
), and R is the uncentered 

multiple correlation coefficient of Y regressed on X. Both X and X + 8X are 

assumed to be of full rank. "Ve note that the condition number plays a vital 

role in the inequality. A bound for (2.1.15) was established by choosing 
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v = ll8XII/IIXII = m1 • In Chapter 9 of Lawson and Hanson (1974) (2.5.1) is 
generalized to different ranks of X (e.g rank(X) = k = p < n, 

n = p = k = rank(X), p > n = k =rank(X)). 

A second inequality is due to Stewart (1987, equation 3.4) 

llb- fill < K(X)~ + [K(X) ]2~ II ill A + 0( IIEll2) 
IIPII - 11x11 11x11 IIXII IIPII 

(2.5.2) 

The derivation of (2.5.2) can be achieved by using equation (3.24) of 
Stewart (1977) and then applying the triangular and submultiplicative 

inequalities for matrix norms (appearing in §1.9). 

A bound like (2.5.2) is unnecessarily pessimistic, due to the repeated 

applications of the triangular and submultiplicative inequalities, and the 

fact that each application represents another backing off from sharpness. 

Yhereas numerical analysts are not concerned about the bound (2.5.2) because 

their errors originate from rounding on a digital computer and can be made 

very small by using different routines (for a discussion of various routines 

to calculate P, see Lawson and Hanson (1974)), the statistician on the other 
hand must deal with measurement errors in recording data, and here the lack 
of sharpness hurts. 

2.5.2 Computational accuracy 

There exists concern about the numerical accuracy of common computer 

programs calculating OLS solutions. One of the first to study this 

phenomenon was Longley (1967). He found that different regression programs 
resulted in very different solutions, including differences in sign and 

first significant digit. More recently this phenomenon was studied by 

several authors including Beaton, Rubin and Barone (1976), Lesage and Simon 
(1988), Simon and Lesage (1988), and comprehensively by Randall and Rayner 

(1987). 
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In their study Beaton, Rubin and Barone (1976) took the Longley data set and 

added small perturbations to it, before running it on various different 

regression programs. The results exhibited unstable regression coefficients 

which could have been as a result of the errors in the input data its elf 

(the data was analyzed by different investigators) or problems with the 

model (collinearity). They suggested that if one chooses a regression 

program it should be one that uses the Gram- Schmidt or Givens method. If 

possible matrix inversion should be avoided. The disadvantage with Gram

Schmidt is it is too expensive for a general program as it requires a pass 
over the data for each independent variable. 

In their study on numerical accuracy Randall and Rayner ( 1987) rate the 

Cholesky algorithm (described in Chapter 7 of Graybill (1976)) as the best 
method of performing the least square calculations. It has the following 

desirable properties: it is compact, whether in recording calculator 

results or in computer storage requirements, is computationally economical, 

and is computationally stable. The basis of this method is the 

factorization of 

X'X = LL' 

where L is a unique positive lower triangular matrix of order p. Randall 

and Rayner (1987) also show how the Cholesky algorithm is related to the QR 

factorisation. They concentrate their study on the Cholesky rather than the 

QR as 'its efficiency on the score of economy of computing operation; 

Chambers (1977) ranks the Cholesky ahead of any QR method in this respect.' 

A measure of the accuracy of a calculated coefficient b, is Vampler's (1970) 

'count of the number of correct significant digits' rn b, and termed the 

Vampler accuracy (VA) of b. Let b denote the value of the coefficient as 

computed free from round-off errors, then 

(i) VA = log 10 (lb-bl/lbl), if I b- fi I * 0 and 
b * o, 

(ii) VA = log 1 0 ( I b- fi I) , if I b- fi I * 0 
and b = o, 

(iii) VA = the approximate number of decimal digits (d) with 

which the machine computes, if b- b = 0. 
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By studying different data sets and implementing the Cholesky method Randall 

and Rayner (1987) found: 

1. Standardizing X ( scaling the columns to unity), has no effect on 

accuracy. They report 'scaling per se can have no appreciable effect on 

accuracy with the Cho le sky method', and can be associated with serious 

losses of accuracy (see their discussion on pp21-27). 

2. Provided double precision is used, the Cholesky method will satisfy all 

normal requirements of accuracy without the need for centering (unless 

centering is appropriate for other reasons), even in cases of extreme 

ill- conditioning. (The average gain in accuracy due to centering may be 

between 2-3 digits) 

3. If at all possible double precision arithmetic should be used at all 
times. 

4. The accuracy of the Cholesky method can be improved further by the 

double Cholesky (discussed on their pp36-42). 

Lesage and Simon (1988) find that QR decomposition provides greater 

accuracy than the Cholesky decomposition for the Vampler benchmark data set. 

Furthermore in their data set standardizing of X does not have a substantial 

impact on accuracy, and they show that although centering does improve the 

accuracy of Cholesky, this improvement is not due to centering itself. 

Rather the improvement occurs because Cholesky with centering is a hybrid 

algorithm mixing Cholesky with the more accurate QR decomposition. In 

summary, they do not recommend standardizing (it appears to cause a slight 

decline in accuracy), but support that centering appears useful for the 

Cholesky algorithm, whereas in the QR algorithm, centering is irrelevant. 

Simon and Lesage (1988) study the impact of ill- conditioning on numerical 
accuracy arising from two types of collinearity: (i) a collinear relation 

involving the intercept column and each of the independent variables. The 
'slope' columns become simultaneously and individually collinear with the 
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intercept and with each other, (ii) a near linear relationship exists among 

each of the independent variables but does not involve the intercept term. 

They investigated the numerical accuracy of different regression software 

packages by using an artificial data set called 'the modified Vampler 

Benchmark (the original Vampler benchmark was described by Vampler (1980), 

modified by Lesage and Simon (1988) and again modified in this study to take 

into account collinearity involving the intercept.) 

The Modified Vampler benchmark data matrix X ( nx( n- 1)) and dependent 

variable vector Y (nx1) are shown in expression (2.5.3) 

1 1+1 1 +1 ... 1+1 (n-1) + (n-2)1 + E 

1 1+1: 1 1 ~ n- 2 j 1 + E 

X - 1 1 1+1: ... 1 y n- 2 1 + E (2.5.3) - = : 
1 1 1 •. · 1+E (n- 2)1 + E 

1 1 1 ... 1 (n-1) + (n-2)1 - E 

where the parameter labelled 1 controls the severity of ill-conditioning of 

the first type and E controls the severity of the second type. 1 and E 

control the severity of both types independently. As the parameter E is 

decreased towards zero, the collinearities among all of the last (n-2) 

columns increases. If 1 increases the last (n- 2) columns of the matrix X 

become more nearly collinear with the intercept column. 

Their results can be summarized as follows: Both types of collinearity can 

adversely affect the numerical accuracy of regression estimator calculation. 

Integer-valued data were found to react quite differently from non-integer 

data during the computational process of centering, and the computational 

benefits associated with centering were found to be much greater for 

integer-valued data than for non- integer data. Centering the data matrix 

mitigates but does not prevent accuracy problems. Accuracy problems are not 
confined to the intercept estimate, but extend to all coefficients. The 

numerical accuracy of the regression algorithm coefficient estimates are 
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measured in the manner of ~ampler (1980) as: 

(2.5.4) 

where ~j are the true value and Pj the estimated value. 

If one looks critically at this study there are various important 

limitations: the ~ampler benchmark data matrix X, has approximately rank 1, 

thus very severe collinearity exists, almost the worst case possible. For 

the artificial data in (2.5.3) the fitted Y values and the residuals are 

(n-1) + (n-2)1 f 

1 + ~ n- 2 ~ 1 + E - 1 

y 1 + n- 2 1 + E A - 1 (2.5.5) = f = 
1 + ~ n- 2~ 1 + f - 1 
1 + n- 2 1 (n-2)-t: 

which indicate that case 1 in influential, case n is an outlier and the 

errors in Y are highly correlated. 

Furthermore the standard errors of the regression coefficients are very high 

( calculated for various values of 1 and E to be between 78 to 7936, with 

the possibility of even larger values). If one is working with such high 

values of SE's of estimators, one may wonder what is the point of centering 

at all, and of reporting the accuracy of the estimators. 

2.6 Detecting and handling collinearity 

The first step in successfully coping with collinearity is an understanding 

of the nature and effects of collinearities and an ability to determine when 

they occur 1n a data set (Gunst (1983)). 

In §2.2 various ways of detecting collinearities have been discussed. It is 

of utmost importance that collinearity should be detected. Any method can 

be used, but it may even be advisable to use several of them. If one were 
to use for instance VIF's, it is also good practise to look at other methods 



(e.g condition number, condition indices, variance-decomposition, 

eigenvalues), to get a multi- faceted insight into the problem. 

important here is the identification of collinearity and 
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and small 

'What is 

not which 
particular method one uses to detect it. The user may have to calculate 

some of the measures as most regression computer programs are not designed 
to warn automatically of the presence of near-collinearities. 

Once collinearity is identified no easy remedy is at hand. Any remedy will 

depend on the objective of the model fitting exercise. If the objective of 

the study is prediction, collinearity will cause no harmful effects if the 

collinearity proceeds into the prediction area and no serious extrapolation 

is made within or outside the row-space of X. 'When primary interest is in 

estimation of the regression coefficients, other alternatives should be 

considered. One is augmentation of the data in the directions of the 

collinearities, e.g. obtain new data or additional data such that the 

row-space is expanded to remove the near-singularity. Unfortunately this is 

frequently impractical or impossible. 

Subset selection of variables to remove the collinearity should be applied 

with great care, as this approach may result in removing some of the 

important regression variables. Hoerl et al. (1986) recommend against 

subset selection as a general strategy to combat collinearity. In the face 

of severe collinearity one of the best alternatives is to use those biased 

estimators that are not so severely effected by collinearity. An array of 

biased estimators will be described elsewhere in this dissertation. 

Choosing one of them will depend on the circumstances of the problem, and 

estimates may perform differently in different situations. 

2.7 Summary 

In this chapter we defined collinearity. Ye discussed ways of detecting 
collinearity and the effect of collinearity on regression estimates. The 
issue of centering and the concepts of perturbation were also introduced. 

Finally a summary of approaches to collinearity was presented. 
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Chapter 3 

PRINCIPAL CDIPDNENTS REGRESSION IODEL 

In this chapter we discuss Principal Components Regression (PCR). Ve 

present in §3.1 a general overview of PCR, in §3.2 the estimator, 1n §3.3 

some properties of PCR estimators, in §3. 4 methods of elimination of PC's 

and in §3.5 comments and critique of PCR. 

3.1 Introduction 

Let X'X be in correlation form and consider model (1.1), and the SVD of X 
(1.3): 

Then Y = X(J + f and X = UH'. 

Y = XVV'(J + f where (VV' = Ip) 

Let Z = XV, 6 = V'(J then 

Y = Z6 + f (3.1.1) 

Z = [z 1 z2 ••• zp] is the nxp matrix of principal components. Zi is 

the i-th principal component. 

Z'Z = V'X'XV 
2 

= V'V/:J. V'V (from ( 1. 3 . 3) ) 

= !:i.2 (3.1.2) 

Using (3.1.1) the LS estimator of 6 is: 

A - 1 
6 = (Z'Z) Z'Y 

- 2 
= !:i. Z'Y (from ( 3. 1. 2)) 

-2 
= !:i. V1 X1 Y 

- 2 A 

= !:i. V1 X1 X (J (X'Y = X'X fJ) 



= tJ.-2y,ytJ.2V)J 

= V' /J 

(from 1. 3 . 3) 
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(3.1.3) 

A principal components estimator of /J is obtained by deleting one or more 

of the principal components (zj) and corresponding parameter (8j) and then 
making a transformation back into the original parameter space. 

Equivalently one constructs new parameters ( 8i) and chooses a subset of 

them. No variables in X are removed, but some PC's are dropped as if the 

corresponding 8i were zero. The final model equation is as complex as the 

one formed using LS (a criticism of PC regression by lietherill (1986)). 
This approach may seem feasible rather than meaningful, but in the presence 

of collinearity it may remove collinearities and is claimed to give an 

insight into the original objective, namely coefficient estimation. 

Let Z = [Z 1 : Z2 ] where Z2 contains the PC's zi that must be retained and 

Z2 the zj to be deleted. Let us assume that r PC's are deleted; Z2 will 

then contain r columns and Z1 p-r columns. Then (3.1.1) may be rewritten 

as 

Y = [Z 1 Z2] [!:] + E 

=Z 1 61 +Z 2 82 +1: 

(the PC's to be retained and V = [V 1 V2]) 

Then to remove the zj 's (all those contained in Z2 , which is orthogonal to 

Z1 ) one sets 62 = 0, which implies that Z2 82 = 0. Hence we obtain the 

principal component estimators (PCE) of 61 : 

(unbiased for 81 ) 
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In (3.1.1) we use a transformation to reparameterize the model: 

8 = V'(J 

[::] = [~;] (J 

PC regression can be viewed as the use of a restricted least squares 

estimator (Hill et al. (1977) and Johnson et al. (1973)). The restrictions 

arise from the assumption that 82 = O, which implies that V~(J = 0 • 

Three advantages of seeing the PCE' s as equivalent to Restricted Least 

Squares (RLS) (in which the restrictions are applied to the noisy 

collinearities), are claimed by Hill et al. (1977) namely: 

(i) Data reduction techniques generally impose restrictions upon the 

associated parameter space. 

(ii) Explicit recognition of the restrictions permits an evaluation of their 

theoretical implications. 

(iii) RLS formulation 1s a convenient vehicle for the statistical 

investimation of the partitioning of Z. 

~e comment 1n §3.5 on these claims. 

3.2 The PC estimator 

p 
Let (Jpc denote the PCE of (J. Using (1.3.5) with E Vici/Ai set to Oby 

i=p- r+1 

the r restrictions V2 '(J = O, the PCE (Ppc) of (J can be written as 

p-r 
= E ViCi/Ai 

i = 1 

(3.2.1) 
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3.3 Properties of Ppc 

Some of the properties of PCR discussed in the introduction are restated 

here for a convenient comparison with ridge regression (Chapter 4). 

1. Relationship to OLSE 

/3pc = /3 -

= jJ -

p 
E ViCi/)q 

i=p- r+ 1 

V2V2'iJ 

2. Expectation 

E(iJpc) = [Ip - V2V2'] /3 
= 1,1{3 

Thus the bias vector is 

3. Variance 

b = 1,1{3 - /3 
= (1,1- I)/3 

= -V2V2'/3 

V(iJpc) = V(1,!iJ) 

= 1,1 V(iJ) 1,/ (1,/' = 1,1) 

= u2
1,/ (X'X)- 1

1,/ (from §1.2) 
-2 

= u2 V 1 V 1 ' (V ti V') V 1 V 1' 
-2 

= u2V1V1'(V1/i 1 V~ + V2/i- 2V2)V 1V~ 
- 2 

= u2[V 1ti 1 V1'] (V1 and V2 are orthogonal) 
p- r 

= u2 E v-v- '/A-. 1 1 1 
1=1 

(3.3.1) 

(3.3.2) 

(3.3.3) 

(3.3.4) 
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where (3.3.5) 

4. MSE (Ppc) = E [ (Ppc- ,B)(Ppc- ,8) '] 

= Var(Ppc) + bb' 
p- r 

= u2 ~ vivf/Ai + V2V2,8,8'V 2V2 (3.3.6) 
i = 1 

(from (3.3.4) and (3.3.3)) 

5. TMSE(Ppc) = tr(~V(P)~ + [I - ~J,8,8' [I - ~]) 

=tr(~'~ u2(X'X)- 1 ) + tr(,8'(-V2V2')(-V2V2'),8) 
- 2 

= u2 tr ([V 1A1 V1 '] + ,8'(V2V2'),8 

p-r 
= u2 ~ 1/Ai + ,8'(V 2V2'),8 (from A.2) (3.3.7) 

i = 1 

3.4 Eliminating PC's 

To address the collinearity problem a logical choice might be to include in 
Z2 those components corresponding to 'small' eigenvalues of X' X (Massy 

( 1965)). Inclusion will ensure that the variance of Ppc will be small. 
Simultaneously the bias of PCE will increase so that the MSE and TMSE can be 

large and predictions of the response poor. Components with small 

eigenvalues may be highly correlated with the dependent variable. 

Massy (1965) therefore recommended that the selection rule should be one of 

balancing the preservation of the sample variation in X'X against the 

correlation of the PC's with the response. 

The choice of which PC's to eliminate will depend on the purpose of the 

regression. ~e will distinguish between two purposes. The linear 

regression model may be estimated to test some theoretical or structural 

hypothesis ( §3. 4 .1), or its sole use may be that of a prediction equation 

(§3.4.2). 
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3.4.1 Theoretical or Structural Norms 

PCE's are RLS estimators and can be expressed in terms of structural norms 
and tests of implicit or explicit restrictions. The term norm here is not 

exactly the same as the term norm defined in §1.9 although that idea 

contributes to this section: most of the test statistics defined in this 

section involve eigenvalues and traces and the test statistics are ratios of 

norms. Four plausible tests are (Hill et al. (1977)): 

3.4.1.1 Classical F Test 

To exclude r PC's the following restriction matrix (R) is appropriate: 

R = [ 0 : Ir] 
rxp rxp-r 

To evaluate the hypothesis that R8 = 0 (setting Z282 = 0), the F statistic 
can be used. Under the null hypothesis the statistic Vis: 

[ 
(n-p+r)o-2 _ (n-p)o-2 l [ l y = R n-p 

(n-p)o-2 r 
(3.4.1) 

where a-~ is the maximum likelihood estimator (MLE) of u2 in the restricted 

model, and o-2 is the MLE of u2 in the full model. Now V has a central 

F-distribution with rand n-p degrees of freedom, when R8 = O, and when 

R8 f Owe have 

V "' F(r ,n- p; 1) 

where 
- 1 - 1 

'Y = (R8}' [R(Z'ZJ R'] R8 (3.4.2) 2u 

[ 0 Ir] [ ~ 1 0 ] [ 0 ] 
- 1 

8 I {from {3.1.2)} 2 0 ~2 Ir 82 
= and (3.3.5) 

2u2 
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f 8~ Ai 
= i=p-r+l 

20-2 

To evaluate the hypothesis that R8 = 0 is to test that 7 = 0. 

H
0 

will be accepted (7 ~ 0) when: 

(i) 0"2 is very large. 

(ii) 
2 

8-),. is small for every 1 
1 1 

(iii) a combination of (i) and (ii) applies 

2 
In (ii) when ),i is small but 8i is large enough, the F test will tend to 
reject the hypothesis. 

3.4.1.2 Strong ISE criterion 

~e say PCE is better in the strong MSE sense if 

MSE(Ppc) < MSE(P) 

i.e. MSE(h'Ppc) < MSE(h'P) (for every hf O, h:pxl) 

This inequality holds if and only if for 7 1n (3.4.2) we have 

Under the null hypothesis that PCE is better than LSE in the strong MSE 

sense 

V - F ( r, n- p; 7) , "' < 1 
I - 2 

This norm is less stringent than the classical F test (7 = 0). 
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3.4.1.3 First weak ISE criterion 

A weaker criterion than the above is to say PCE is better than the OLSE 

if 

tr(MSE(fipc)) < tr(MSE(,8)) 

or TMSE(,BPC) ~ TMSE(,8) 

where 
p- r 

tr(MSE(fipc) = ( /l2 E 1/Ai + (fi'(V2V2')fi)) (f rorn ( 3. 3. 5)) 
i = 1 

p-r p 
8~ = /l2 E 1/ Ai + E 

i = 1 i=p- r+ 1 

p 

tr(MSE(,8)) = /l2 E 1/Ai 
i = 1 

and 

tr(MSE(fipc)) tr(MSE('/J)) 
p 

8~ 
p 

= E u2 E 1 /Ai 
i=p- r+ 1 i=p- r+ 1 

p 2 
- u2)/Ai = E (8iAi (3.4.3) 

i=p- r+ 1 

In this case V N F(r,n-p;1) where the non-centrality parameter 1 is given by 

-1 -1 -1 
1 ~ tctL tr[(X'X) R' [R(X'X) R'] R(X'X)- 1] (3.4.4) 

and dL is the largest eigenvalue of the expression under the trace operator. 

This test was proposed by Vallace (1972) and refined by Yancey, Judge and 
Bock (1973). 
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For Ppc to be 'better' than LSE ( 3 .4. 3) must be negative. Ve note that 

(3.4.3) would be very sensitive to collinearity, due to the division by Ai: 

the smaller any A. the greater the potential advantage of PCE over OLSE 
l 

under this criterion. 

3.4.1.4 Confidence interval norm 

A norm proposed by Cheng and Iglarch (1976) generates a highly specialized 

test, and will only be reported here: 

Assume (Ji is of primary interest ((Ji is any element of (J, (Ppc) i is the 

corresponding element of (JPC). If 

then JPC is judged superior to P. The value of 'f/ is determined by the 
investigator ( 'f/ is the measure of how 'close' the investigator wants the 

estimated (J to its true value (see Hill et al. (1977) eq. 13)). 

3.4.2 Predictive norms 

\Then the purpose of the regression is one of forecasting, a norm involving Y 

(Y = XP) is implied. The total mean square error of prediction is (Allen 

(1974) eq. 6): 

TMSE(Yr) = E(Y Yrf (Y - Yr) 
n n 

A 2 
= n0"2 + ~ v (Yi) + ~ [E(Y i - Yi)] 

i =1 i = I 

= n0"2 + E{(Y -X(J)'(Y -X(J)} 

= ncr 2 + TMSE(Y) (3.4.5) 
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Thus (3.4.5) depends upon the unknown population parameters /J and (!
2 • 

Allen (1974) suggested using fJ and o-2. The disadvantage of this approach 

is that this measure can not discriminate among various prospective 

estimators. Two predictive norms that do not have this disadvantage are 

discussed in §3.4.2.1 and §3.4.2.2. 

3.4.2.1 Veak predictive ISE criterion 

Consider two alternative estimators, xJPC and X/J, of Y. The PCE is a better 

estimator if 

The F test can again be applied using Vas in (3.3.1). 

than Y if for I as in (3.4.2) we have 

1 < ~ 

V - F ( r , p- r ; 1) 

Y will be better PC 

Note that the degrees of freedom change from n-p to p- r. Critical values 

for this test are in Goodnight and ~allace (1972). 

3.4.2.2 Squared bias of prediction 

The term 
' 2 Yi)] is the total squared bias of the predictions, 

i=1 
and appears in (3.4.5). It is also called the squared bias of prediction. 

If a norm based on this criterion is considered then it is possible to 

construct a multiple comparison test for all general hypotheses for the 

model in ( 1.1). This norm does not involve (!
2 and it only considers the 

squared bias. This procedure and other references to it can be found in 

Hill et al.(1977). 
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3.5 Comments and critique 

Some of the above criteria are quite overwhelming. One simple way to 

eliminate PC's is to use restricted least squares. For more details on the 

theory and tests of hypotheses involving such restrictions, any textbook on 

linear models can be consulted. (eg. Searle (1971)). 

Rawlings (1988) states that a good working rule is to eliminate those PC's 

that satisfy two conditions: 

(i) they cause serious variance inflation because of small eigenvalues 

(ii) the corresponding estimated regression coefficients (fipc)i are not 

significantly different from zero. 

Lott (1973) described the Strong MSE criterion (§3.4.1.2) and shows in a 

Monte Carlo study that under this criterion PCE performed better than OLSE. 

For more examples on the PC method see Hill et al. ( 1977), Vetherill ( 1986) 

and Jolliffe (1972,1973,1982). In Jolliffe (1982) four examples are given 

to demonstrate that it is not always the PC's with small eigenvalues that 

are eliminated. 

The justification that a MSE criterion can underpin the PCR approach is 

technically correct, but is only adequate when the actual V 2 '/J parameter 

values are sufficiently small. Specifically we require 

p-r 

MSE (/Jpc) = (J2 ~ ViVi'/).i + V2 V2 '/J/J'V2 V2' 
i = 1 

< var (fi) 

p- r p 

Var (/J) = (J 2 ~ ViVi'/).i + (J
2 ~ ViVi'/).i 

i = 1 
p- r + 1 

and the data may not admit belief that V2 '/J is 1n fact small enough. These 

comments underpin suggestions of Rawlings (1988) previously mentioned. 
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PC Regression initially amounts to choosing that part of the parameter space 

spanned by V2'fi, about which one has virtually no intrinsic information in 
• - 1 - 1 

the data since Var(V 2'fi) = diag(,\p-r+ 1, .... ,Ap) is very large. One then 
claims to have perfect information that V2'fi = V2'fi = 0 in the sense that PC 

Var(V 2 'JPC) = 0. This additional perfect information does not affect that 
part of the parameter space spanned by V1'fi, which is intrinsically 

independent of any information whatsoever on V2'fi. In consequence looking at 

V11 JPC will tell us nothing different from what is already known from V1'fi. 
Any alleged advantages 1n estimation from PCR must result from the 

apparently reduced variances of estimators of AXfi where 

since it follows directly from (3.3.5) that 

Var(AXfi) = Var(B1V1 'fi) + Var(B2V2'fi) 

= Var(B1V1 'fire) + Var(B2V2'fi) 

> Var(B1V1'firc) + Var(B2V2'firc) 

Nonetheless such advantages are artificial, and if the restrictions are not 

justifiable a priori, it makes more sense to simply isolate the region in 

the parameter space about which further information data could be usefully 

applied. Equivalently: it should suffice to specify that V2 'fi is not well 

approximated by the Xfi of the model. 

The point is that a restriction such as V2fi = V2fi imposed on the model will 

admit V'firc = V'fi and will reduce the variance of the estimator from 
r p-r 

rJ
2 ~ 1/Ai to rJ

2 ~ 1/Ai without introducing bias. Such an approach is no 
i=l i=l 

more artificial than the ordinary PC restriction V 2fi = 0. It is also 
rank-reducing in whatever sense PC estimation is rank reducing. 



3-13 

3.6 Summary 

In this chapter we presented a general overview of PCR. \Te defined the 

estimator and its properties. \Te discussed methods of eliminating PC's and 
gave some critique of PCR. 
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Chapter 4 

RIDGE REGRESSION 

4.1 Introduction 

Ridge regression (RR) was first proposed by Hoerl and Kennard (1970a and 

1970b). Ridge is an estimation procedure for the model ( 1.1) based on 

adding a small positive constant to the diagonal elements of X'X (which we 

assume in this section will be in correlation form). Instead of inverting 

X'X which is ill-conditioned 1n the presense of collinearity, one inverts 

X'X + kl, where k is chosen in such a way that the estimators of p become 
stable. 

4.2 The RR estimator 

The ridge estimator is defined as the solution to 

(X'X + kl)- 1J = X'Y, k > 0 
R 

4.3 Properties of Pa 

1. Relationship to OLSE 

l3a = '\/X'Y where 

= '\/X'XP 

= z fi where z 

Note 1. If k=O, then '/\ = p. 

" = (X'X+klr 1 

= 'Ii X'X = I - k'li 

= "I 

= z, 

2. If k --1 CD 

' 
then z approaches o, and PR--+ 0. 

(4.2.1) 

(4.3.1) 



2. Expectation 

E(PR) = E(VX'XP) 

= VX'X E(P) 
= VX'X /3 
= z /3 
= /3 - kV/3 

Thus, PR is biased for /3 and we denote the bias of PR by b = -kV/3 

3 Variance 

V(r\) = V(VX'XP) 

= VX'XV(P)X'XV 

= o- 2 VX'XV 

= o- 2 Z(X'Xr 
1
Z' 

4. The mean squared error (MSE) of PR satisfies 

MSE (PR) = E [ (PR - /J)(fiR - /3) I J 

= V(fiR) + bb' 

(4.3.2) 

(4.3.3) 

= o- 2Z(X'X)-
1
Z' + k2Vf3/3'V' (from (4.3.2) and (4.3.3)) 

(4.3.4) 

5. The total mean squared error (TMSE) of PR satisfies. 

TMSE(fiR) = tr(MSE(fiR)) 

= tr(V(fiR)) + /J'(Z - I)'(Z - I)/3 

4-2 
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Also let 

thus 
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,
1 

(k) = tr[V(fiR)] 

= u2 tr[Z'Z(X'X)- 1
] 

= u2tr[Va 2 (a 2 +kr)- 1V1 V(a 2 +kr)- 1a2v,va- 2v1 J (from (1.3.1)) 

= u2tr[a 2 (a 2 +kr)- 2 ] 

= u2 ~ Ai(Ai+ k)-2 
i 

1 (k) = (J'(Z - I)'(Z - I)(J 
2 

2 
= k fJ''w"wfJ 

2 
= u2 ~ Ai(Ai+ k)- 2 + k (3 1 "fl 1 "fl(3 (4.3.5) 

i 

Comments: 
(i) 

(ii) 

(iii) 
(iv) 

1 (k) is the total variance of the ridge estimators. 
1 

1 (k) will be considered as the measure of total squared bias that 
2 

is introduced when fiR is used rather than fi 
1 (k) is a continuous monotonically decreasing function of k. 

1 

1 (k) is a continuous monotonically increasing function of k, as can 
2 

be easily seen from 

= k2(J'V(a 2 + kl)- 2V'(J 

= k2
~ 8r/(Ai+k) 2 for 8=V'(J 

(v) The squared bias 1 (k) approaches (3 1 (3 as an upper limit, as can be 
2 

easily seen from 

, 2(k) = k2
~ 8r/(Ai+k) 2 

= ~ 8U (Ai /k + 1) 2 
, thus 
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k--lCJJ 

= /3' /3 
(vi) Hoerl and Kennard (1970b) show that there always exists a value of 

k such that TMSE(,BR) < TMSE(fi). But this value of k is in general 
bounded by functions of the unknown parameter values /3i (i.e 

(k < u2 /8!ax)). An optimal choice of k = pu2/f3'/3 is operationalized 
and discussed in §4.6.3. 

(vii) The so-called Admissibility Condition of Mayer and Villke (1973) 
states: A class of estimators E will be called (mean square) 
admissible if for every problem there is an estimator e in E such 

that G(e) < G(P) = tr(V(fi)) (where the symbol G of Mayer and Villke 
is the TMSE in our terms). 

6. The residual sum of squares for the ridge estimator is 

SSE(fiR) = (Y - XPR)'(Y - X,BR) 

= Y'Y - Y'X,8 - J 1 X1 Y + t 'X'XP R R R R 
= y I y - ,8 IX/ y - [Y / X - ,8 XIX] ,8 

R R R 

= y I y - /3 IX/ y - [,8 Iv- 1 - ,8 X IX] ,8 
R R R R 

= Y'Y - PR'X'Y - PR' [v- 1 - X'XJfiR 

= Y'Y - PR'X'Y - k/3R'/3R 

> SSE(,8) (4.3.6) 

7. The squared length of PR is less than the squared length of ,8 for all 
k > 0 (Hoerl and Kennard (1970a, equation 2.8). 

Proof 
A A 

/3 1 /3 = /3 1 Z1 Z/3 R R (from (4.3.1)) 

= ,8'V~ 2V'V(~ 2 + kI)- 1V'V(~ 2 + kI)- 1V'V~ 2V'fi 
(from (4.3.1) and (1.3.1)) 

= 4,~4(~2 + kr)-2,8 

< ,8 1 ,8 fork> 0, 

(4.3.7) 
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8. Marquardt (1970) and Allen (1974) stated that the ridge estimator is 

formally equivalent to an LSE for the extended data that is obtained when 

the actual data are supplemented by a fictitious set of data points taken 

from an orthogonal experiment Hk (Hk is orthogonal up to a scale factor 

/i.). The response is taken to be zero for each of these data points. 

Let the augmented model be 

(4.3.8) 

* If X 1s the augmented matrix, we obtain 

* * * fi = (X 'X )- 1x 'Y 

since Hk is orthogonal up to a scale factor, i.e. Hk 'Hk = kip. It can be 

seen that the OLSE of the augmented matrix is equivalent to a ridge 

estimator. ~e claim that the notion of pseudo-observations at zero for the 

response variable implicity suggests shrinkage on the usual estimates of~ 

(towards zero). 

4.4 Estimation of the ridge parameter k 

One way of choosing k involves the use of the 'ridge trace'. The ridge 

trace is formed by plotting JR against k, ask varies through the interval 

[0,1]. Marquardt (1970) stated that values of k typically are 10- 4 < k < 1. 

A value of k is chosen at the point where the estimates of all ~i have 

stabilized. If the estimates of some of the regression coefficients do not 

stabilize, the corresponding variables could be good candidates for deleting 

(dropping) from the regression equation. 
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w'etherill et al. (1986) suggested that the VIF can also be used by choosing 

k such that the largest VIF' s lie between one and ten. This criterion is 

Marquardt's (1970) rule of thumb. 

Usually there is a range of values of k which give equivalent results from a 

practical point of view. One problem of selecting an estimate of k (viewed 

as a parameter), via the ridge trace, is that the estimator of k (as a 

function of y) is technically a random variable. This fact complicates the 

theory of confidence limits and hypothesis tests, due to introduction of 

bias and dependence. Because of the introduced bias, the MSE and the TMSE 

of JR are dependent upon the true unknown coefficient vector fi (Marquardt 

and Snee (1975)). In §4.6.2 the fact that k is dependent on the data is 
investigated further. 

For more comments on the use of the ridge trace and the choice of k, the 

reader is referred to Hoerl and Kennard (1970b, p65), Galpin (1978, p38-58) 

and section §4.6.3 of this chapter. Examples in the articles to which 

references have been made, illustrate the effect of varying k. The ridge 

regression procedure is summarized in recipe form by Rawlings (1988, p340). 

An alternative method to the ridge trace for estimating k is also discussed 
by Rawlings. 

4.5. General comments 

4.5.1 Bayesian view 

The ridge estimator can also be derived using Bayesian theory. From a 

Bayesian viewpoint a prior distribution is defined for the parameters (fi,~2) 
and this 'prior knowledge' is then incorporated with the model (1.1) to find 

the conditional and posterior distributions for the data. (For a general 

discussion on Bayes estimation in the linear model see Lindley and Smith 

(1972)). 
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In the linear regression model (1.1) if we assume that 

(i) f N N(O,u 2I) 

and we further assume a priori knowledge on fi: 

(ii) fi N N(a,Z) (a,Z are known) 

then the posterior distribution of fi given Y, i.e. of the conditional random 

variable (filY), can be found using Bayes Theorem (Hsiang (1976)): 

(4.5.1) 

If a= 0 and Z = (u2 /k)I then the posterior mean of fi becomes 

the ridge estimator and with posterior variance u2~. Thus a ridge estimator 

can be considered as the posterior mean based on a normal prior parameter 

distribution with mean O and variance matrix (u 2 /k)I. Observe that this 

variance matrix implies a connection between the scale of the residuals 

(through u2) and the degree of the collinearity (through k). This posterior 

mean estimator is equivalent to the LSE after augmenting the data Y = Xfi + E 

1 

with the statistically independent pseudo- observations a = k 2 fi + E *, which 
1 

incorporates the belief that k2 fi = a - E*. In effect the estimator J is 
1 

shrunk towards the value k2 a. The Bayesian argument does not depend on X 

being in a scaled form. 

4.5.2 Critique of ridge regression 

Smith and Campbell (1980) present the following objections to the use of 
ridge estimators 
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1. The standardising and scaling of the X'X matrix to correlation 

form, is generally presented before the assumption of a unique 

parameter k. 

2. The prior information that is implicit in ridge regression is 

inadequately justified because of the assumptions that 

(i) parameters have zero means (a= 0) 

(ii) parameters have zero covariances 

(iii) parameters have identical variances 

'Ridge regression's weakness is the use of a loose representation 

of a priori beliefs and the relevance at times of ad hoc pseudo

information'. 

3. Ridge users may obtain estimates that have preassigned values. 

'If one blithely manipulates the data with no regard for the 

appropriateness of the implicit ridge prior distributions, the 

ridge estimates may literally be anything.' 

4.6 Generalized Ridge Regression Estimators 

In this section the generalized ridge regression estimator (GRRE) using a 

diagonal matrix Kin place of kI is discussed and we distinguish between the 

non-stochastic and the stochastic ridge parameter. ~e discuss in §4.6.1 the 

GRRE when K is non-stochastic and in §4.6.2 the GRRE when K is estimated and 

therefore stochastic. In the latter case the choice of K usually depends on 

the data and this complicates the sampling distributions of GRRE 

4.6.1 K non-stochastic 

4.6.1.1 The GRR estimator 

By using the model (3.1.1) to obtain the PC reparameterization we have, 

Y = Z8 + f. Hoerl and Kennard (1970b) defined the general ridge regression 



estimator (GRRE) of o as 

(4.6.1) 

4.6.1.2 Properties of OK 

1. Relationship to OLSE 

By manipulation, the GRRE of o (denoted by 8K) can also be written as: 

OK= [~ 2 + KJ- 1~
2 8 (from (3.1.2) and (3.1.3)) 

= [I+ ~- 2KJ- 1 8 

= [I - [ ~ 2 + K] - 1 K] 8 ( 4. 6. 2) 

and the GRRE of fi = Vo is 
A A 

fiK = VoGR 

= V[I - [~ 2 + KJ- 1K]8 

= V[I - [~ 2 + KJ- 1K]V',8 

~hen K = kl the GRRE of fi is the ordinary ridge estimator (,BR). 

2. Expectation 

E(8K) = [I - [~ 2 + KJ- 1K]E(8) 

= [I - [ ~ 2 + K] - 1 K] o 

Thus the bias of 8K is 

(4.6.3) 

(4.6.4) 

(4.6.5) 

4- g 



3. Variance 

Var(8K) = Var([A 2 + KJ- 1A28) 

= [A 2 + KJ- 1A2Var(8)A 2[A 2 + KJ- 1 

= u2[A2 + KJ-1A2A-2A2[A2 + KJ-1 

= u2 [ A 2 + K] - i A 2 [ A 2 + K] - i 

4. Then by using (4.6.6) and (4.6.5) the MSE of 8K is: 

MSE(8K) = E(8K - 8)(8K - 8) 1 

= Var(8K) + bb' 

= u2[A 2 + KJ- 2A2 + [A 2 + KJ- 1K88'K[A 2 + KJ- 1 

5. The total mean square error (TMSE) of 8K is 

p 

= h { u2 ( ,\. + k. ) -2 ,\. + [,\. + k. J -2 k? o?} 
1 1 1 1 1 11 

i = 1 

4.6.2 I stochastic 

4.6.2.1 The GRR estimator 

In the case of Ka stochastic variable, the GRRE of 8 1s 

8K = [A 2 + KJ- 1 A2 8 

= [I - [ A 2 + KJ -1 KJ 8 

4-10 

(4.6.6) 

(4.6.7) 

(4.6.8) 

(4.6.9) 
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using (4.6.2), where K is an estimator of K, i.e K = diag[k 1 , ••• ,kp] 

Then the i-th element of 8-
K 

is 

[8KL 
,\ i 

8i (4.6.10) = 
,\ . + k-1 1 

which shows that [8K] i 1s a shrinkage estimator of 8i where the shrinkage 

factor ( ai) is: 

,\ . 
a. 1 

= 1 
,\ . + k-1 1 

(4.6.11) 

Minimizing (4.6.6) term-by-term to find an optimum value for ki yields 

kdopt) = (i = 1,2, ... ,P) (4.6.12) 

Hoerl and Kennard (1970b) then estimate ki by using the LS estimates of u2 

and 8i , thus 

k. = 
1 

Inserting these values into (4.6.11) gives 
,\ . 

1 

-\. + o-2 Ii~ 
1 1 

F-1 

= 
F-+ 1 1 

(4.6.13) 

where F-1 

hypothesis 
= Ai 8rf rr 2

, which is the same as the F- ratio for testing the 

H0 : 8i = 0. Highly significant values of parameters estimates 

8i will be scarcely shrunk at all, but relatively low values of the 

estimates 8i will be shrunken substantially. 
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4.6.2.2 Properties of [6i]i 

Let Tr = Ai8r/ u2 (i.e. a non-centrality parameter of the F-distributions 
associated with 8i) and v = (n - p), then the first and second moments of 

A 

[8K]i are given by (Dwivedi, Srivastava and Hall (1980)): 
2 . 

CD CD V _ l a ( Td2)J 
E([8K·]i) = 8iexp(-Tr/2) E E (~~) X ~~ 

a=O j=O V f(J.+1) 

x r(a+(v/2))f(j+(v+3)/2)f(j+(5/2)) 
r(v/2)f(a+j+(v+5)/2)f(j+(3/2)) 

CD 

= Diexp(-Tf/2) E 
CD 1 a 
E (a+1) x (~v ~-~) 

V 
a=O j =O 

(4.6.14) 

X 

(Tf/2)j-l 

r (j + 1) 
x r(a+(v/2))f(j+(v+3)/2)f(j+(7/2)) 

r(v/2)f(a+j+(v+7)/2)f(j+(1/2)) 

(4.6.15) 

Using (4.6.14) and (4.6.15) the total squared bias and total mean square 

error of [8K]i can be computed. These authors then define the relative bias 

(RB) and relative mean square error (RMSE) of [8K]i as: 

(4.6.16) 

(4.6.17) 

which are functions of v and Ti only. The efficiency of the LSE of 8i 



relative to this ridge estimator is 

~i = (MSE([bK]i)/Var[b]i) x 100 

= 100 rr RMSE([bK]i) 
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(4.6.18) 

By selecting different values for rr (between 0.02 and 50) and v (between 1 

and 100) the authors concluded: 

1. The rl.dge est1·mator ([LJ ) 1·s b1·ased rn a direction opposite to the UK i 

sign of the coefficient (i.e. shrunk toward zero). 

2. The RB is a decreasing function of rr and and increasing function of v 

(the degrees of freedom for error). 

3. RMSE decreases as rr increases. 

4. Changes ln RMSE are more rapid for small values of rr and V. 

5. The ridge estimator is more efficient than the LSE as long as r; < 2. 

(\Te suggest that to operationalise this criterion one estimates rr by 

substitution of the sample estimators. Further research is planned to 

investigate behaviour of estimators chosen on this basis.) 

4.6.3 Choice of kin K = kl 

Hoerl, Kennard and Baldwin (1975) give an algorithm for the selection of k 

(in ordinary ridge estimation). They distinguish between two cases: First 

if X'X = I then a minimum TMSE is obtained if 

the general form (as discussed rn §4.6.1 and 
k = p~ 2 /fi'fi. Secondly, 1n 

§4.6.2), a minimum MSE is 

obtained when ki = ~2 /8f as in (4.6.12). These individual ki are combined 

to form a single value fork. Large values of bi will blow up the ordinary 

mean of ki, therefore they (HKB) suggested the harmonic mean (kh) of the 
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ki 's. The two methods give the same value of k since 

1 
p 

1/(kh) = ~ (1/ki) p 
i = 1 

1 
p 

= ~ ( oU (J2) 
p i=l 

= (1/p(J2) 81 8 

= ( 1 / p (!
2 ) f3 I vv / f3 

kh = p(J2/f3'{3 

and kh = pu2; fJ'iJ (4.6.19) 

Substituting k from (4.6.19) 1n the TMSE (4.6.8) give the estimated minimum 

TMSE as 

p u2 ,\d 8' 8) 2+(pu2) 2 bf 
= ~ 

i=1 (8'8,\i + pu2 ) 2 

By using simulation on three data sets they show that the algorithm 

(discussed in the previous paragraph for selecting k) has the following 

properties (plll): 

1. The use of the ridge estimator with biasing parameter kh = p;2/fi'fi has a 

probability greater than 0.5 of producing estimates with a smaller MSE than 

that of OLSE. 

2. The probability of a smaller TMSE (than that of LSE) using kh increases 
asp (the number of independent variables) increases. 
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3. The probability of a smaller TMSE using kh increases as X'X becomes less 

well-conditioned. 

4. The probability of a smaller TMSE usrng kh increases as the noise 

(measured by ~2 ) increases. 

They concluded that every ridge trace should have the point corresponding to 

k = kh computed explicitly. 

4.7 Jackknifed Ridge Estimator 

One disadvantage of the ridge estimator is that it may have a serious bias. 

To reduce this bias Singh, Chaubey and Dwivedi (1986) use the jackknife 

procedure (as described in §1.8.2 for OLSE) on the generalized ridge 

estimator to construct a jackknifed ridge estimator (JRE). Some authors 

(e.g. Nomura ( 1988)) call this JRE the almost unbiased generalized ridge 

regression (AUGRR) estimator. This estimator is similar in form to the 

ridge estimator and has the same asymptotic properties. For the moment K is 

fixed (non-stochastic). 

4.7.1 The JR estimator 

Let y_i and Z~i denote respectively the vector Y with its i-th coordinate 

deleted and the matrix Z' with its i-th column deleted, and let (8K)-i be 

given by (4.6.1) with Z' and Y replaced by Z~i and Y_i respectively. 

Clearly Z_i is the matrix Z with its i-th row deleted. 

(4.7.1) 

Note that Z'Z = [Z' . z. ] [ Z . ] - 1 1 - 1 
zt 

1 

= [Z' . Z . +z. z t] -1 -1 1 1 (4.7.2) 
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and Z'Y = 

(4.7.3) 

Define A = Z' Z + K, h- rn the OLS 
1 

estimation) and ui = Yi - zf 8K (corresponding to the OLS ii). Then (4.7.1) 
can be be written as 

(8K)-i = [Z'Z - zizi' + KJ- 1 [Z'Y - ziyJ 

= [A- zizi'J- 1 [Z'Y- ziyJ 

= [A- 1 + A- 1zdl- z/A- 1zd- 1 z/A- 1J[Z'Y - ziyJ 

= A- 1z1 Y - A- 1ziyi + A- 1zi (1-wd- 1z/ A- 1 [Z'Y - ZiYd 

= (8K) - A- 1zdl-wi)- 1 [ydl-wJ - z/A- 1 [Z'Y - ziyJJ 
(from (4.6.1)) 

= (8K) A- 1zdl-wd- 1 [yi- yiwi - z/A- 1 Z'Y + wiyi] 

= (8K) A- 1zdl-wd- 1 [yi - z/(8K)J 

In the same manner as (1.8.8) the pseudovalues are defined as 

and the jackknife ridge estimator (JRE) is 

n 
= 6 + n-1 A-1 :E ZiUi 

K n . (1-wd 
1 = 1 

(4.7.4) 

(4.7.5) 

(4.7.6) 

Singh, Chaubey and Dwivedi (1986) reject these pseudo-values (Pi), as they 
are defined symmetrically with respect to the observations, while the 
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regression models are often unbalanced with the lack of balance reflecting 
through the 'squared distance' w i. Further, since the variance of the 

d'ff (:i; (:i;) ) _ A-1 ZiUi 
1 erences uK - uK -i - (l-wJ is an increasing function of wi, they 

define the pseudo-values in the manner of (1.8.13) as 

t = 8K + n(1-wd(8K - (8K)-i) 

Then the weighted jackknife estimator (denoted by 8JW) is 
A 1 
8 = -~Q-JW n 1 

(using (4.7.4) 

= 8 + A - 1 ~z i ( y i - z i 8 K) 
K 

= 8 + A - 1 [~z. y. - ~z. z f 8 J 
K 1 1 1 1 K 

= 8 + A - 1 [Z 'Y - z,ztKJ 
K 

A 

= 8 + A- 1 [A8K - z,ztKJ ( 8K = A- 1 Z'Y) 
K 

= 8K + A- 1 Kb (A= z,z + K) 
K 

(4.7.7) 

(4.7.8) 

\Then k = k1 = . . . = kP the AUGRR estimator is called the almost unbiased 
ordinary ridge regression (AUORR) estimator ( see ( 4. 7. 21) for an estimate 
of k). 

4.7.2 Properties of 6JW (non-stochastic K) 

1. Relationship to OLSE 

The weighted JRE can also be written as 

8 J w = [I + A - 1 K] [I - A - 1 K] 8 (from ( 4. 6. 2)) 

= [I - [ A - 1 K]2] 8 (4.7.9) 

and the i-th element of 8JW is: 

(4.7.10) 



2. Expectation 

E(8JW) = [I - [A-1KJ2]8 

Bias(8JW) = - [A- 1K]28 

and the bias of the i-th element is: 

[ 
k~ ] 

Bias[(8Jw)d = -
1 

8i 
pi +kJ2 
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(4.7.11) 

(4.7.12) 

Note that the JRE (8JW) has smaller bias than that of the GRRE, where bias 

of the i-th element [(8K)L is -

3. Variance 

Var([(8JW)] = [I - [A- 1KJ2]Var(8)[I - [A- 1KJ2] 

= [I - [A- 1K]2Ju 2 ~- 2 [I - [A- 1K]2]) 
and the variance of the i-th component is: 

(4.7.13) 

(4.7.14) 

4. By using (4.7.14) and (4.2.12) the MSE of the components of 8JW is 

(4.7.15) 
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5. The total mean square error (TMSE) of 8JW is obtained from (4.7.15) and 
the definition of TMSE (1.8.2): 

(4.7.16) 

4.7.3 Additional comments on (6JW) (non-stochastic K) 

In comparing component-wise the JRE (or AUGRR estimator) with the GRRE and 
the OLSE in terms of the MSE, the following theorems were developed by 
Nomura (1988). The comparison of the various estimators will be discussed 
further in Chapter 8. 

From (4.6.7) and (4.6.15) we have 

MSE( 8d = 

MSE[(8KLJ = 

MSE[(8Jw)d = 

Theorem 4.7.3.1 

i = 1, ... ,P 

1. MSE[(8Jw)i] > MSE[(8K)i] for O < ki < Kli, 

2. MSE[(8JwLJ < MSE[(8KLJ for Kli < ki < rn, 

where Kli = [3CT 2 
- )ibf + {(3CT2 + )ibI) 2 + 4CT 2 AibD 1 /2]/4bf > 0. 

Proof is given in Nomura (1988, p732). 

Theorem 4.7.3.2 

1. If )ibf - CT 2 ~ O, then 

MSE[(8Jw)J < MSE[(8)J for O < ki < rn, 
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2. If A-8? - u2 < O, then there exists a strictly positive constant 
1 1 

K2i = [2u2 Ai + (2u4 Ai 2 + 2u2 Af8f) 1l 2J/(Ai0I-U2 > 0 such that 

MSE[(8Jw)i] < MSE[(8)i] for O < ki < K2i and 

MSE[(8JwLJ > MSE[(8LJ for K2i < ki < ro. 

Proof is given in Nomura (1988, p733) 

Furthermore, differentiating the MSE[(8Jw)i] with respect to ki yields: 

dMSE [ ( 8 J wL] 

dk. 
1 

=--------- (4.7.17) 

thus the optimal value of ki for which MSE[(8Jw)i] is a minimum 1s: 

u2 + 
1
u4 +u2 A-8? yl 1 1 

kd opt) = -----
o? 

1 

If A·D? - u2 > 0 then 
1 1 

(4.7.18) 

(4.7.19) 

~e observe that this is a condition that depends on the data source not the 
data and is therefore not operationable. 

In the case of AU ORR defined below ( 4. 7. 8) , a single value of k can be 

formed by combining all the ki through the harmonic mean (compare this with 
§4.6.3). Thus 

p 

kh = pu 2
/( ~ [or/{l+)l+Ai (or/u2

)}]) (4.7.20) 
i = 1 
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4.7.4 Additional comments on (6JW) (stochastic K) 

In equation ( 4. 7. 20) an estimate of kh can be obtained from estimating 8 

and u by their LSE's 
p 

kh = pu2
/( ~ [8I/{1+/1+Ai(8I/u2 )}J) (4.7.21) 

i = 1 

where u2 = (Y - Z8)'(Y - Z8)/(n-p). 

Nomura (1988) performed a simulation study on six estimators namely: 

1. OLSE 

2. AUORR estimator using the operational kh of (4.7.21) 
3. Ordinary RR estimator using the Hoerl, Kennard and Baldwin 

ridge parameter (4.6.19) 

4. AUORR estimator using the operational kh of (4.6.19) 

5. Ordinary RR estimator using the k as suggested by Lawless 

p A 2 

and ~ang (1976) kLW = pu2 / ~ Aibi 
i = 1 

6. AUORR estimator using the kLw· 

For a description of the simulation, the data and the results see pp735-742 

of his article. He reported the following findings for different 

estimators referenced 1 to 6 as above. 

(1) The absolute value of the bias for 2 and 4 is smaller than that 

of 3 and 5. This result coincides with (4.7.13) for k 

non-stochastic. 
(2) The estimators 2 and 4 are more efficient in terms of the MSE and 

predictive MSE (defined as the E(b - 8)'X'X(8 - 8)) than 3 and 4 

when the signal to noise ratio is relatively large, and more 

efficient than 1 (OLSE) when the signal to noise ratio is 

relatively small. 

(3) The estimator 2 performs very well against 4. 
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~e note that these findings are applicable to the data set and models used 
by Nomura and are thus only suggestive of what one might expect. 

The AUGRR discussed so far was due to Singh, Chaubey and Dwivedi (1986) and 
was not operationable. Ohtani (1986) considered the operational AUGRR 
estimator based on the idea of Kadiyala (1984). Following Kadiyala (1984) 
the almost unbiased generalized ridge estimator (non-operationable) for the 

i-th element of 8 is: 

(4.7.22) 

In the above expression if ki and [8K] i are replaced by ki and [8K] i we 
obtain the following operational AUGRR estimator: 

[80L = (1 + kdOi + ki))[8;)i 

= ((Ai+2ki)/(Ai+ki)) [Ai8i/(Ai+ki)] (from (4.6.10)) 

(A· 8?+2a-2 )A· 8~ 1 1 1 1 

(from (4.6.13)) (4.7.23) = ------

Let rr = Aibr/~2 and V = n - P, then the first and second moments of [8o]i 
are 

m g + 1 g 
X ~ [2 (rr) r(g+(v+3)/2)/(2g+1)! 

g=O 

x J [(t+2(1-t)/v)/(t+(1-t)/v) 2
] 

0 

g+3/2 v/2-1 
X t (1-t) dt (4.7.24) 
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CD g+l g-1 
X ~ [2 (rr) f(g+(v+3)/2)/(2g)!J 

g=O 

1 
2 4 

x J [(t+2(1-t)/v) /(t+(1-t)/v) J 
0 

g+5/2 v/2-1 
X t (1-t) dt (4.7.25) 

' 2 
Then the relative bias (RB) and relative mean square error (RMSE) of [80]i 
as defined in (4.6.16) and (4.6.17) are 

(4.7.26) 

(4.7.27) 

which are functions of rr and v only. Ohtani (1986) then defined the 

relative efficiencies of the AUGRR estimator and the GRRE to the OLSE as: 

(4.7.28) 

(4.7.29) 

In (4.6.18) efficiency of OLSE to GRRE was defined as the inverse of 

(4.7.29) and presented as a percentage. 

By selecting different values for rr (between 0.25 and 0.40) and v (between 
10 and 60) the author concluded: 

1. The reduction in bias is greater for AUGRR estimator than for GRRE but 
the relative efficiency of the AUGRR estimator is less than the GRRE. 
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2. The AUGRR estimator is more efficient than the OLSE as long as the value 

of T? < 1.5 (For GRRE the corresponding value was 2). 

Ohtani (1986) concluded that the AUGRR estimatior is rather inferior to the 

GRRE. 

4.8 Summary 

In this chapter we introduced ridge, generalized ridge and the jackknifed 

ridge estimators. The estimators were defined, and their properties 

discussed. Methods of estimating k of K were introduced. 
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Chapter 5 

FRACTIONAL PRINCIPALS IN ESTIIATION 

In this chapter the principle of fractional estimation using the augmented 

matrix and in terms of shrinkage estimators, will be discussed. 

5.1 Shrunk.en Estimators 

5.1.1 The SH estimator 

Mayer and ~illke (1973) discuss the use of several shrunken (SH) estimators 
of the form: 

(5.1.1) 

where O ~ d ~ 1 is a deterministically (fixed) or stochastically defined 

constant. By using (1.3.6) this estimator can be written as 

p 

JSH = d ~ vici/Ai (5.1.2) 
i = 1 

Thus the effect of d/Ai is to reduce the magnitude of the estimates. 

5.1.2 Properties (d fixed) 

1. Relationship to OLSE 

From the definition it is clear that 

(5.1.1) 
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2. Expectation 

E [J3SH] = d{J (5.1.3) 

= fJ - (1-d)(J 

Thus the estimator is biased, and the bias is 

b = - (1-d)(J (5.1.4) 

3. Variance 

Var(bSH) = d2Var(J3) 

= d2 u2 (X 1x)- 1 (5.1.5) 
p 

= u2d2 ~ v-v~/,\. (5.1.6) 1 1 1 

i = 1 

4. MSE[J38 H] = Var(J38 H) + bb 1 

= u2d2(x1x)-1 + (1-d)2(J(JI (5.1.7) 

5. TMSE [J38 H] = tr(Var(J38 H) + bb 1) 
p 

= u2d2 ~ 1/,\i + (1-d) 2tr((J(J1) 
i = 1 

p 

= u2d2 ~ 1/ \ + (1-d)2(Jl(J (5.1.8) 
i = 1 

The SHE with O ~ d ~ 1 and d non-stochastic guarantees smaller variances 
than OLS for the parameter estimators. The bias, however could offset the 
reduction in variances. Furthermore the SHE is (total mean square) 
admissible (see comment 7 in the ridge section), as proved by Mayer and 
\lillke (1973): 



TMSE[P
8

HJ < tr[Var(P)] if and only if 

d > P'P - tr(Var(P)) 
P'P + tr(Var(P)) 
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(5.1.9) 

Since the RHS in (5.1.9) is less than 1, there does exist a number d < 1 

such that TMSE[P
8

HJ < tr[Var(P)]. In fact if we minimize (5.1.8) with 
respect to d we get: 

thus 

p 

ff
2d ~ 1/Ai + dfi'P = P'P 

i = 1 

P'P 
d =-----

P'P + tr(Var(P)) 
(5.1.10) 

The din (5.1.10) minimize (5.1.8), and the minimum TMSE of the SHE is 

min{TMSE[P8H]} = d2 tr(Var(P) + (1-2d+d 2 )P'P 

= d2 (P'P + tr(Var(P)) + P'P - 2dfi'P 

(P'P) 2 (P'P) 2 

= + P' p - 2------
P' P + tr(Var(P)) P'P + tr(Var(P)) 

P'P(tr(Var(P)) 
=------

P'P + tr(Var(P)) 
(5.1.11) 
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5.1.3 Properties (d stochastic) 

The only known SHE of the form given rn (5.1.1) with d stochastic, and 

possessing any optimal properties, is the estimator due to James and 

Stein (1961). 

Providing p ~ 3 and X'X = I the SHE is given by (5.1.1) with 

d = max{0,(1-cv/fi'fi)} 

where O < c < 2(p-2)/(v+2) and vis the degrees of freedom for the residual 

sums of squares in OLS. The drawback of this SHE is the requirement that 

p z 3 and X' X = I. Particularly the latter requirement eliminates most 

practical regression problems and completely eliminates the possible 

presence of collinearity. 

Sclove (1968) modified the James-Stein estimator by suggesting shrinkage of 

just a subset of the components of fi. If the shrinkage is applied to those 

p- r ( where r is the rank of X) components with smallest eigenvalues, his 

estimator (denoted be fi
88

H) may be written as, 

0 ] /J 
dip-r 

(5.1.12) 

for O < d < 1. Note that ford= 0 this estimator reduces to the PCE. 

5.2 Fractional Principal Component (FPC) regression 

In this section we firstly show that most of the biased estimators so far 

discussed, can be considered as FPC estimators. Then we obtain two new 

biased estimators due to Lee and Birch (1988). 



5.2.1 FPC estimators 

Consider the model defined 1n (3.1.1): 

with 

and 

Y = Z8 + E 

Z'Z = !i 2 (from (3 .1. 2)) 

8 = (Z'Z)- 1Z'Y 

= V '(3 

(from ( 3. 1. 3)) 

(5.2.1) 

(5.2.2) 

(5.2.3) 
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Then a typical member of the class of FPC regression estimators is defined 

as: 

(5.2.4) 

where F = Diag(f 1 ,f 2 , ••• ,fp) and O < fj < 1, J = 1, ... ,p. In addition the 

FPC estimator of pis 

PFPC = V8FPC = VF8 = VFV'P (5.2.5) 

The diagonal matrix F is termed the fraction matrix and the diagonal 

elements, f j , are called the fractions. (This FPC estimator is one of a 

special class of linear transforms of 8 introduced by Mayer and Villke 

(1973)). 

5.2.2 Relationship to other estimators 

1. Least squares: 

8FPC = 8 with F = l. 



2. Ridge 

The ridge estimator of 8 is 

8R = (A 2 + kr)- 1A2 8 (from (4.3.2) 

= F8 

3. Generalized ridge 

The i-th element of the generalized ridge estimator 1s 

- 1 • 
= ,\.(,\.+k-) 8-

1 1 1 1 

4. Principal components 
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The PCE applies 1 to the first p-r components (those components retained in 

the estimator) and O to the rest ( those components that the estimator 

deletes). 

5. Shrinkage 

The concept of the FPC estimator is closely related to that of SHE's 

( 5 .1.1). Both estimators shrink the length of the LSE vector of the 

parameters toward the origin. For SHE the fractions are constant (f i = d 

for all i) but FPC takes the individual PC's and shrinks each of them. Thus 

some PC's receive greater emphasis in estimating 8 than others. 

5.2.3 Properties of FPC estimators 

1. Expectation 

E(8FPC) = F8 
= 8 - [I-F]o (5.2.6) 



Thus, the bias is 

b = - [I- F] 8 

2. Variance 

Var(8FPC) = FVar(8)F 

= 1T 2 F~ - 2F 
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(5.2.7) 

(5.2.8) 

(5.2.9) 

Thus FPCE is an improvement over OLS 1n terms of MSE if 

MSE(8)-MSE(8FPC) = 1T
2
~-

2 (I-F 2
) - (I-F)88 1 (I-F) = S (say), is a positive 

semi-definite matrix. Swill be positive semi-definite if y'Sy ~ 0 for any 

vector y:nxl. Thus, where (I-F 2 )- is the generalized inverse of (I-F 2 ), we 

have 

Consequently, the necessary and sufficient condition for S to be positive 

semi-definite is 

(5.2.10) 

Thus the positive semi-definitenes of S will depend on the vector 8, the 

degree of collinearity(~), and IT, 

p p 

= (T2 ~ fr/..\ i + ~ ( 1- f i ) 2 of (5.2.11) 
i=l i=l 
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Ve note that: 

(i) If fi~ O, then the i-th diagonal element of Var(8FPC) ~ 0 and the 

(bias) 2 ~ 8r. 
(ii) If fi~ 1, then the i-th diagonal element of Var(8FPC) ~ [Var(8)Ji 

and the (bias) 2 ~ O. 

5.2.4 Optimal values for fractions 

One set of optimal values of the fractions is obtained by minimizing 

TMSE(8FPC) with respect to the fj 's. Thus 

dTMSE(8FPC) 

df. 
J 

= 2u2f./A. - 28- (1-f-) 
J J J J 

Let the j-th optimal value be denoted by ff, thus 

f 9 = 8? A. ( u2 + 8? A. ) - 1 
J J J J J 

and the min TMSE will be 

min{TMSE(8FPC)} 

p 

= ~ (u2 /Ad [8]Ad (u2 +8]Aj )- 1 

i = 1 
p 

= ~ (u2 /Adff 
i = 1 

p 

= ~ ( u2 
/ \ )[ 1- ( 1- f n J 

i = 1 
p 

= TMSE ( 8) - ~ ( u2 I Ad ( 1- f n 
i = 1 

(5.2.12) 

(5.2.13) 

(5.2.14) 
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p 

The second term in the above equation (i.e. ~ (u2 /Ai)(1-fr)) is the maximum 
i = 1 

reduction in TMSE when the optimal FPC is used instead of OLS. This 

quantity will always be positive and will increase as the degree of 

collinearity increases (because of the term Ai 1 ). 

The theoretically optimal fraction matrix cannot be used in practice since 

the ff, defined in (5.2.12), contain the unknown parameters 8j and u! 
Therefore Lee and Birch (1988) suggested two new biased estimators both 

using the optimal FPC but with different approaches in estimating ff. 

5.2.5 Optimal FPC estimators 

In §4.6.1 (generalized ridge) it was shown that an optimal value for ki is 

obtained when Hoerl and Kennard (1970) estimated ki by 

estimating u2 and 8f as their OLS estimates. They used an iterative method 

to obtain a new value for k- = &- 2 /8 2 and continued until the estimate 
i K 

stabilised. The same method is applied to form the iterative (optimal) FPC 

estimator (abbreviated as FPCI). For the FPCI estimator the iterative 

scheme of the optimal fraction is: 

t=0,1,2, ... (5.2.15) 

where t denotes the iteration number, s2 is the OLS estimate of u2 and 

[8K(t)]. is the generalized ridge estimate of 8j at the t-th iteration with 
J 

[8K(O)J. = 8. The iteration continues until there is stability achieved in 
J j 

the length of the generalized ridge estimator ([8K(t)J. ). 
J 

In the presence of collinearity the starting values of OLS may be severely 

perturbed and therefore it may be more beneficial to use a biased estimator 

as initial value. If one considers a PCE as the initial value, then the 
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iterative scheme (5.2.15) can be used to compute the fractions, where the 

starting value for [8K(O)J. 
J 

would be [8 J and s2 is replaced with 
PC j 

s 2 (t) = (Y-Za(t))'(Y-Za(t))/(n-p). Here a(t) is the estimate of 8 at the 

t-th iteration, a(O) = 8pc· Fractions obtained in this way will be denoted 

by f_ PC(t+l). 
J ' 

The final resulting estimator, denoted by 8FPCI, with the limiting fraction 

matrix F PCI , is 

(5.2.16) 

* * * where FPCI = Diag(f 1,PC' ... ,\,Pc), and fj ,PC = limt [fj ,PC(t+l)J, for 
j = 1, ... ,p. The FPCI estimator is thus formed from the combined concepts 

of the PC estimator and the iterative generalized ridge estimator. It is 

interesting to note that as early as Marquardt (1970), the possibility is 

suggested of a combined estimator i.e. 8c = (Z 1 'Z 1 + kI)- 1 Z{Y where k is 

chosen to deflate the effects of the remaining near- zero eigenvalues left 

over in zl. 

The second biased estimator due to Lee and Birch (1988) is based on the 

iterative ridge estimator concept. In this scheme the fraction in (5.2.15) 

becomes 

f_ R(t+l) = 
J ' 

,\. 
J t = 0 1 2 

A A ' ' ' ' O O O 

\ +s 2 I [8R (t) 'OR (t)/p] 
(5.2.17) 

where 8R(t) 1s the ridge estimate of 8 at the t-th iteration with 8R(O) = 8. 
Just as in the FPCI estimator, the authors replaced the OLSE by the PCE 

(8R(O) = 8PC) and the s2 by s2 (t), and denoted the fractions by f_ PCV(t+l). 
J ' 

The resulting estimator, denoted by 8FPCV' is defined as: 

(5.2.18) 
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* * * where FPCV = Diag(f1,PCv'···,fp,PCV), and fj,PCV = limt[fj,PCV(t+1)], for 
j = 1, ... ,p. 

The authors have observed that a 1-step version of both (5.2.15) and 

(5.2.17) exhibited already improved estimation properties over other biased 

estimators in the data sets they studied. More comments on these estimators 

and their performances against other estimators will appear in Chapter 8 and 
Chapter 10. 

5.3 Summary 

In this chapter we introduced the shrinkage estimators as well as various 

fractional principal component regression estimators. The estimators were 

defined, and their properties given and discussed. 
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Chapter 6 

LATENT ROOT REGRESSION ESTIIATION 

Latent root regression (LRR)is similar to PC regression with the difference 

that it operates on the augmented matrix of explanatory variables and 

response in correlation form rather than the matrix of regressors alone. 

The method was originally proposed by lJebster et al. (1974) and by Hawkins 

(1973). 

6.1 The LRR estimator 

* Define the centered and standardized vector Y (nxl) as 

* Y = (Y - y1)/sy (6.1.1) 

n n 

(6.1.2) 
i = 1 i = 1 

( Instead of just saying Y is centered and standardized we introduce this 

notation as it is useful in developing the estimator). 

Assume that X is centered and standardized and form the augmented matrix 

* * * [X Y ] , so that [X Y J' [X Y J will be in correlation form. Then by using 

the SVD of an augmented matrix (1.3.8), 

* K V' [X y J = u 

with ij = [ii1 ... iip+i], Ui : nxl 

v = [v1···"P+iJ, vi:(p+l)xl 

K = di ag [ ul I , ul 2 , ••• ulp + i] 

ul1~ul2~· .... ~ulp+l 

ij / ij = V'V = Ip+1 
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and the following notation defined in Chapter 1: 

1. Let Vi ,j be the j- th component of the i- th right singular vector Vi. 

2. 
_o 
Vi is the p-dimensional vector containing the first p components of the 

* i-th right singular vector Vi of [X Y J of dimension p+l, thus 

[ - 0 I - J / Vi= Vi Vi,p+l • 

Then by using the definition of an eigenvalue, one can write 

If /iJ· 2 ::::: 0 
1 (indicating a collinearity) then 

* 0 (O:nxl) [X Y ][v/ - J / N 0 or Vi p + 1 N 

' 
_o * Xv- + y V· N 0 

1 1 p + 1 N 

' 
* 

(6.1.3) 

If vi p+t (the weight of Y) is not trivially close to zero, the response 
' * variable (Y) is involved 1n the collinearity. The key difference between 

detecting collinearities in X'X and those in the augmented correlation 

* * matrix is that Y can affect the collineari ties rn [X Y J' [X Y J , and any 

such collinearity has predictive value since (6.1.3) implies 

( from ( 6 . 1. 1) ) 

(6.1.4) 

(6.1.5) 

Definition 6.1: \Then /iJi ::::: 0 and (vi p+t) ::::: 0 the multicollinearity is 
' referred to as a non-predictive collinearity, i.e., a collinearity among the 
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predictor variables that is of little value rn predicting the response 

variable. 

Gunst and Mason (1980) suggest values of ~i ~ 0.1 and (vi p+i) < 0.1 should 
' be investigated for non-predictive collinearities) 

Providing all (vi p+i) f O, one can define p+1 prediction equations like 
' (6.1.5) (one for each eigenvector). Let the i-th prediction equation be 

denoted by Yi, thus, for i = 1,2, ... ,p+1 

(6.1.6) 

Linear combinations of the predictors in (6.1.6) will be used to obtain 

estimates of the parameters of the model. Consider the following arbitrary 

linear combination of the predictors: 

p+l 

Y = E ai(vi p+1)Yi. 
. ' 
1 = 1 

A value for ai will be obtained 1n (6.1.15). Imposing the restriction 

p+l 

E ai (vi P + 1) = 1 
i = 1 ' 

yields y = 

p + 1 

= y1 - syX E 
i = I 

The residual sum of squares using this predictor 1s 

(6.1.7) 

(6.1.8) 



p + 1 
0 

p + 1 
_o 

(Y - Y)1 (Y - Y) = (Y-y1 + syX E aivi)'(Y-y1 + syX E a-v-) 1 1 

i = I i = I 

* 
p + 1 

0 * 
p+1 

0 
= s~ [ (Y + X E ai v J '(Y + X E a-v-) 1 1 

i = I i = I 

p + 1 p+1 
2 * _o, * 0 

1 J /} = sy { [X Y J [ E ai vi 1] 1
}' { [X Y ] [ E ai vi ' 

i = I 

p+1 p+1 p+ 1 
0 0 

and [ E ai vi ' 1 J / = [ E a-v-' E a- (v- p+1)J / (from 
1 1 1 1 

i = I i = I i = I ' 

p + 1 

= [ E ai v /]' (from 1.3.10) 
i = I 

= [a'V'J' 

= va 

where a' = [a 1 , ••• ,ap+iJ. Thus the RSS is 

(Y - Y)'(Y - Y) = s~{[X v*Jva}' [X v*Jva 

- * * -
= s~a'V' [X Y ]' [X Y ]Va 

= s~a 1 K2a (from (1.3.8)) 
p + 1 

= s 2 E a? w? y 1 1 

i = I 

i = I 

(6.1.7)) 

(6.1.9) 

(6.1.10) 

(6.1.11) 
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To find the value of a for which this residual sum of squares will be a 

minimum, one has to minimize f(a) where 

p + 1 p + 1 

f ( a) = s 2 E a? w? y 1 1 

i = I 

2u 0 ( E ai (vi P + 1 ) - 1) 
i = I ' 



and 2u
0 

is a Lagrangian multiplier. Now, for J = 1, ... ,p+l 

so 

and from the restriction in (6.1.7) 
p + 1 

uo ~ (vj p+1) 2 /(s;wf) 
j = 1 ' 

Substituting this value in (6.1.13) for j = 1, ... ,p+l gives 
p + 1 

aj = [1/{ ~ (vj p+ 1) 2 /(s;wJ)}](vj p+ 1)/(s;w~) 
. I ' ' J J = 

p + 1 

= ( v j P + 1) w/ { ~ ( v j P + t) 2 / wJ} -I 

' j = I ' 

Then if we put this value 1n (6.1.8): 

y = yl 
p+l p+l 0 

syX ~ (vi p+ 1)wi 2
{ ~ (v- p+ 1) 2 /w]}- 1vi 

. ' . ' 1=1 J =1 

(6.1.12) 

(6.1.13) 

(6.1.14) 

(6.1.15) 

p + 1 

X ~ fiv~ (6.1.16) = yl + 

i = I 
where 

p+l 
fi = -sy(vi p+l)w;: 2

{ ~ (vj p+1) 2 /wJ}- 1 

' j = I ' 

Suppose that there ares non-predictive near-singularities, i.e. 

and VP+l-s p+l 
' 

Vp+l-1 p+l 
' 

= Vp+l p+l 

' 
~ o. 

(6.1.17) 
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Then y = y1 + X 
p+l-s _o 

~ f. V· 
1 1 

i = 1 

Then the latent root estimator (/jLR of fl) is 
p + 1 - s _o 

flLR = ~ fivi 
i = 1 

and fi is as defined in (6.1.17) for 1 = 1 , 2 , ... , p+ 1- s 

Some authors (i.e. Gunst and Mason (1980) define /iLR = 

p+l 
0 

~ f.v. 
1 1 

i = 1 
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( 6 .1.18) 

(6.1.19) 

where fi = 0 

if u\ ~ 0 and vp+t p+1 ~ O; otherwise fi will have the value defined in 
' (6.1.17). 

vl = [v1···"p+1-sJ, Y2 = [vp+2-s ·" ·"p+1J' then by defining the vector 

f = [f / f '] / A B ' 
and fA = [f 1,f2' • • .fp+l-SJ I' fB = [fp+2-S • • .fp+lJ I' LRR can be 

viewed as the use of a restricted least squares estimator where the 

restriction is V2f
8 

= 0 

\Then s = 0 we have /iLR = fl, since both minimize SSE without imposing any 
restriction on the estimators and the RSS will be given by ( 6 .1.11) and 

(6.1.15) as 
p + 1 

RSS = S2 ~ a2it/? 
y J J 

j = 1 

( 6 .1. 20) 



\Thens f O then 

RSS 

Comment: 

= s2 
y 

= s~{ 

p+t-s 

t afu.1f 
J J 

j = 1 

p+t-s p+t 

6- 7 

(6.1.21) 

1. t (vj p+ 1 ) 2 /wf ~ t (vj p+ 1 ) 2 /wf so that RSS rn (6.1.21) will be 
. ' . ' J=1 J=l 

larger than RSS in (6.1.20) (the full model). 

2. If one is removing non-predictive near-singularities (6.1.21) will be 

approximately equivalent to (6.1.20) as the s non-predictive collinearities 
p+1 

that have been removed contribute very little to t (vj p+ 1 ) 2/wf. Thus the 
j = 1 ' 

estimated u2 using (6.1.20) and (6.1.21) will be reasonably close. \Then the 

number of non-predictive collinearities (s) increases, u2 for the full model 

will be larger then that of (6.1.21) as the degrees of freedom for the 

latter will be n-p-l+s (pooling the error associated with the s non
predictive collinearities with the error sums of squares of the restricted 

model (6.1.21)). 

6.2 Properties and Problems 

1. Expectation 
p + 1 

0 
p + 1 _o 

E(,BLR) = E[ t f.y. t f.v. J where t = (p+l- s)+l 
1 1 1 1 

i = 1 i = t 

p + 1 0 

= (J - E[ t fivd (6.2.1) 
i = t 
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2. The LRRE has no known MSE function and so can not be directly compared 

with other estimators. Gunst et al. (1976) report that in many cases the 

LRRE behaves similarly to the PCE so that 

(6.2.2) 

Thus LRRE yields a biased estimator, but one which apparently greatly 

reduces the TMSE of the estimator. The theoretical conditions necessary for 

(6.2.2) to hold are unknown at the present time. 

3. No criterion of the smallness of the eigenvalues and last element of 

the corresponding eigenvector that admits deletion, is as yet adequately 

defined. The decision will depend on the number of independent variables, 

the sample size (n) and the degree of ill-conditioning. lJebster et al. 

(1974) suggested in their example (n = 12 and six regressors) that suitably 

small would mean wr < 0.05 and vi p+i < 0.10. 
' 

4. Though lJebster et al. (1974) suggested that accuracy of computer 

algorithms for determining eigenvectors and eigenvalues under various 

degrees of ill-conditioning should be investigated, this may not be a 

relevant problem today. 

Note that LRRE is in some sense simply a computational device like TLS with 

a justification but no complete statistical development. 

6.3. Elimination of independent variables 

lJebster et al. (1974) as well as Gunst et al. (1976) discussed and compared 

OLS and LRRE on their performances in eliminating independent variables via 

the stepwise technique. Both authors pref erred the backward elimination 

procedure (see Chapter 1) and lJebster et al. (1974) proposed an F- statistic 
for LRR similar to the OLS F- statistic. They also suggested that perhaps 
several regressor variables could be deleted at the first stage of LRR. 
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Thus 1n a backward elimination procedure, they applied the following 

variable selection rule: 

OLS: Determine the minimum F-value for each of the p variables in the 

model (1.1); if the minimum F < 1, delete that particular regressor 

from the predictor. 

LRR: Determine each of the F-values for the p variables in the model 

(6.1.18); for each F < 1, delete the corresponding regressor from 

the predictor. 

The advantage of LRR over OLS is that by using LRR one firstly eliminates 

the non-predictive collinearities (unmasks them) while in OLS they remain 

masked. The true influences of the independent variables on the dependent 

variable are more clearly represented. In many cases several independent 

variables may be eliminated at the first stage when the computations are the 
easiest. 

6.4 Summary 

In this chapter we introduced latent root regression estimation. ~e 

discussed the estimator, its properties, related problems and methods of 
eliminating independent variables. 
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Chapter 7 

TOTAL LEAST SQUARES 

Total least squares (TLS) is a method of fitting that is appropriate when 

there are errors in both the observation vector Y (nxl) and in the 

independent variable matrix X (nxp). Errors in X-variables models contrast 

with the classical regression model where the data matrix Xis assumed to be 

error free. 

7.1 Introduction 

The problem of parameter estimation when all the variables involve error, 

has a long history. For an overview of the historical development see Van 

Ruffel and Vandewalle (1985). Recently the linear errors-in-variables (all 

observations are coming from some unknown true values plus measurement 

errors) has been treated by the method of total least squares (TLS) based on 

the singular value decomposition (SVD) as proposed by Golub and Van Loan 

(1980) and further developed by Van Ruffel, Vandewalle and Staar (1984). 

In §7. 2 the TLS technique is discussed, the use of TLS in the errors- in

variables model in §7.3 and subset selection based on TLS for prediction, 1n 

§7.4. The comparison of TLS estimator with the estimators discussed rn 

Chapters 3 to 6 as well as the OLSE will be discussed in Chapter 8. 

7.2 TLS Technique 

7.2.1 Assumptions and notation 

1. The Total Least Square Estimate (TLSE) of P will be denoted by fiTLs· 

2. The SVD of the augmented matrix [X YJ is given 1n (1.3.8): 

[X Y] = uKV' 
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with u = [ii1···iip+1J, Ui : nx1 

v = [v1···vp+1J, Vi: (p+1)x1 

U'U = V'V = Ip+ t 

X = diag[t,'i ,w2, ... ,wp+iJ 

/J 1 > /J2 > ..... > /JP+ 1 (7.2.1) - -

For simplicity, assume w1 > w2 > ..... > wp+t· 

3. Vi ,j is the J th component of the 1 th right singular vector Vi the 

i-th column of V 

4. 
_o 
Vi is the p-dimensional vector containing the first p components of the 

i-th right singular vector Vi of [X YJ, so we have 

(7.2.2) 

5. [X YJ is the LS approximation of [X YJ with Y the orthogonal projection 

of Y onto the column space R(X) of X. [X YJ is the TLS approximation of 

[X Y]. 

6. The following theorem is due to Van Huffel and Vandewalle (1987) and is 

useful in the generalization of TLS: 

If 1 < j ~ p+1 then 

(a) vj P + t = 0 :::} y .LUj and y .LU. 
' 

J 
(7.2.3) 

(when 
0 

OJ) vj P + 1 = o, then uj wj vj I = wj [uj vj 
' 

(b) The eigenvalues of X'X interlace with those of [X YJ' [X Y] as follows: 

(from A.3) 
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and if we assume that the singular values of X are disjoint. Then 

vj P + l = 0 :} "'~ = \, uj = ±Ui' and V· = [±vi '0] ' 
J J 

' {j- 1,j}' (7.2.4) with 1 E 1~i~p, 

vj P + l = 0 :} y .LU. (7.2.5) 
' 

J 

7. The correction vector E = Y - Y is the OLS approximation error and the 

correction matrix [~X ~YJ = [X - X, Y - YJ the TLS approximation error. 

8. By manipulation the pseudo-equation Y = Xfi can be written as (Golub and 

Van Loan (1980)): 

Xfi - Y = 0 

[X Y] [_ f] = 0 

[X Y] [fi' - 1] ' = 0 ( 7. 2. 6) 

9. The following result of Eckart and Young (1936) is used in the 

development of the TLS technique: 

Let r(X) = k < p ~ n and let X be an approximation to X that satisfies 

r(X) < k 

IIX - XII = inf ll(X - X)II 
r(X)~k 

(7.2.7) 

(7.2.8) 

where II· II is a uni tarily invariant matrix norm as defined rn ( 1. 9 .10). 

Set 



then by using the SVD (1.3.1), X can be written as 

where 

X = UD V' 
a 

D = Diag[./X1,./X2, ... .;xk,o, ... O] 
a 
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(7.2.9) 

In the case of the Frobenius norm, Eckart and Young (1936) showed that the X 

of (7.2.9) satisfies (7.2.7) and (7.2.8). For a generalization of the 

Eckart and Young approximation see Golub, Hoffman and Stewart (1987). 

7.2.2 Geometric view of TLS 

The figures below are from Van Ruffel and Vandewalle (1985): 

(a) The LS solution is obtained by projecting Y orthogonally onto R(X) and 

solving X(J = Y. 

(b) The TLS solution is obtained by approximating the columns Xi of X and Y 

by xi and y until y is in the space R(X) generated by the columns xi and 

solving X(J = Y. 



7- 5 

7.2.3 Definition 

Given an over-determined set of n linear equations X~ =Yin p unknowns, the 

total least-squares (TLS) solution is the minimum-norm solution PTLS of the 

set of n linear equations 

where X and Y are determined such that 

YE R(X) 

IIAX AYIIF = II [X YJ [X YJ IIF 1s minimal 

(7.2.10) 

(7.2.11) 

(7.2.12) 

Using the Eckart-Young principle, equations (7.2.11) and (7.2.12) will be 

satisfied by making Wp+l in (7.2.1) zero. 

The TLS approximation of K defined in (7.2.1) can then itself be 

approximated by 

and [X YJ = uKv / 

The lower rank approximation for (7.2.6) is then 

[X YJ [P;LS - 1] ' = 0 ( 7. 2 .13) 

The TLS solution is obtained by scaling the last column vp+l of V so that 

its last component vp+t p+t = -1. It is easy to verify that 
' 
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by showing 

= u&[o,0, ... ,0,-1/vp+l p+1J' 
' 

(the columns of V are orthogonal) 

= 0:nxl (&[o,0, ... ,0,-1/vp+i p+iJ'=O)) 
' 

If we transpose (7.2.14) and multiply each side by [X YJ' [X YJ, we obtain 

[X ' X X ' YJ [ /J ] = Y'X Y'Y -1TLS 
(by using (7.2.1)) 

--2 
= n [o,0, ... ,0,-1/vp+i p+iJ' 

' 
= v[o,o, ... ,o,-1r~+ 1/vp+i ,p+1J' 

= - w~+ 1 v p + 1 / v p + 1 p + 1 
' 

X'X/JTLS - X'Y = 2 
WP+l /J;LS 

X'XPTLS-w~+1PTLS = X'Y 

/ 2 A 

[X X- WP+ 1 I] /JTLS = X'Y 
- 1 

/JTLS = [X'X-w2 I] X'Y P+l (7.2.15) 

Using the SVD (1.3.1) of X this estimator can be written as 

(7.2.16) 
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where u(Y is a scalar. 
J 

Equation (7.2.16) is applicable when wP > wp+t and 

vp+t p+t f 0. If vp+t p+t = O, (7.2.14) become infinite and Golub and Van 
' ' Loan's (1980) algorithm for TLS fails to compute a finite TLS solution. 

Consequently such problems can not be solved with TLS. However Van Huff el 

and Vandewalle (1987) claimed that the TLS approximation [X YJ can still be 

determined by making the next smallest singular value in (7.2.1) zero. 

Note that the authors definition of non-predictive collinearities is: 

vj 'p+t (j = k, ... ,p+1) are exactly zero and wj is suitably small; rn 

contrast to the definition 6.1 (below (6.1.5) of the Chapter 6) where 

V j , p + 1 (j = k, ... , p+ 1) :::! 0. 

7.2.4 Generalized definition 

In generalizing of TLS to cases where wp+ 1 coincides with other singular 

values wk- 1 > wk = wP - wP + 1 , and some or all of the 

vj p+t (j = k, ... ,p+1) are zero, Van Ruffel and Vandewalle (1987) give two 
' definitions (their equations 2.8 and 2.9): 

Definition one: If wp+t coincides with other singular values 

wk-t >wk= ... wP = wp+t' then [P;LS -1]' is a linear combination of the 

corresponding right singular vectors vlt ... vp + 1 such that the solution PTLS 
has minimum norm. 

If not all components vj ,p+t (j = k, ... ,p+1) are zero the solution 1s 

/JTLS 
p + 1 0 

= E Q· v
J J 

j = k 

with Qj = (7.2.17) 
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Vhen k = p+1, (7.2.17) reduces to 

~TLS with Qp+t = 
-2 
Vp+l p+l 

' 

Vhen r([X Y]) = p+1-r (r singular values are near zero) we will assume 

wp+t-r > Wp+t-r+t - ... Wp+t-l = Wp+l' and k = (p+1) - (r-1) = p+2-r. 

If, however, all r collinearities which appear 1n [X YJ are nonpredictive, 

then TLS approximates [X YJ with [X YJ by making the next larger singular 

value wp+t-r zero. Then by using equation (7.2.3) to (7.2 5) the TLS 
estimator is given by 

Definition two: If r > O, vj 'P+l (j = p+2-r, ... ,p+1) are exactly zero 

(hence by using (7.2.3) to (7.2.5) we know that Y is orthogonal to iij) and 

with Wp-r ) Wp+l-r, we have: 

p- r - 1 

~ (,\j - w~+l-r) ~(ufY)vj 
j = 1 

with r the number of r non-predictive collinearities. 

(7.2.18) 

From a computational point of view definition 6.1 would be more practical, 

and in applying (7.2.18) the vj ,p+t (j = p+2-r, ... ,p+1) are exactly zero 
only when known a priori or assumed and set to 0. 

7.2.5 Properties of TLS estimator 

For simplicity we work with (7.2.18): 

j = 1 

p- r - 1 

= ~ (,\j - w~+t -r) cj vj, where cj = ~(uf Y) 
j = 1 



7-9 

The following properties are reported by Van Huffel and Vandewalle 

(1985, p15): 

where t = p-r+1 

MSE(JTLS) 

p- r - 1 

= {3 + wi+l-r L (,\j - wi+1-r) (vf fi)vj 
j = 1 

p- r - 2 

= u2 L ,\ (,\j - w~+l -r) vj vj' 
j = I 

p-r 

= u2 L A· (A· J J 
j = 1 

p 

- L (vf fi)vj 
j = t 

(7.2.19) 

(7.2.20) 

(7.2.21) 

The above properties ((7.2.19), (7.2.20) and (7.2.21)) were given without a 

proof. Van Huff el (pers. comm, 1990) confirms that her proofs assume the 

following: 

(i) is fixed and thus the expectation of the TLSE is the same 

as that of the RRE with k = -w~+t-r· 

the 

p -1 

(ii) Furthermore L (,\j - w~+i-r) VAj(ufY)vj = 0, where t = p+1-r, on 
j = t 

grounds that TLS and PC estimation delete the same collinearities. 

Statisticians may reject the expectation of the TLSE (7.2.19) and what 

follows firstly as is not a constant but a function of Y, and 

therefore random. Furthermore the quantity 

is actually infinite (division by 0). 

p 

L 
j = t 

Van Ruffel (pers. comm, 1990) comments 'my main motivation for the 

expressions ((7.2.19), (7.2.20) and (7.2.21)) is to give the reader the 
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feeling that TLS is not appropriate for estimation of parameters in models 

with error-free predictor variables. TLS is not devised as a biased 

regression estimator like RR (although close similarities between the 

expressions of both estimators exist) but is only appropriate for parameter 

estimation in models with errors in all variables.' 

lJe may further observe that from a computational point of view if X'X is 

ill-conditioned [X' X - w2 J -1 will be worse-conditioned. TLS is therefore p + 1 

an alternative estimation procedure to handle the errors-in-variables 

phenomenon rather than collinearity. As a device it approximates X with X 
generally of lower rank and imposes restrictions (7.2.10) in place of the 

normal equations. If there are rn fact no errors in the variables then 

(7.2.15) implies that PTLS would be biased and have a larger variance than 

the OLSE ~. 

7.3 Use of TLS 1n the errors-in-variables model 

7.3.1 The lodel 

The general errors-in-variables model is (Van Ruffel and Vandewalle (1985)): 

where 

Yo = XoPo + E 

X = Xo + Xe (7.3.1) 
y = Yo + Ye 

P0 :px1 is the unobservable vector of parameters to be estimated 

X: nxp is the observed matrix on the p independent variables 
Y: nxl is the observed response vector 

Y0 ,X 0 contain the true but unobservable variables, and 

Xe and Ye are their measurement or observation errors (unobserved). 
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In addition to the errors 1n the variables (Xe,Ye) there is an error vector 
E in the equation. In the classical or pure error-in-variables model E = 0. 

It is assumed that the error variances of [Xe] ij and [Ye] i and their 

covariances E( [Xe] ij , [Ye] i) are known while (3 0 and the variance 

equation, are unknown. 

Define the nx(p+1) error matrix as 

I 

of the 

(7.3.2) 

Denote the i-th row of he by [heJi and partition Xe by its rows and denote 
I 

each row by a subscript. Thus Xe= [(Xe)i,(Xe) 2 , •• ,(Xe)nJ' and (XeL is a 
I I 

1xp row vector. This implies that [heL = [(XeL [(Ye)i+Ed], where 

(Ye)i+Ei is the i-th element of the sum of Ye and E. Assume the following 

(i) he and X are stochastically independent random matrices 

(ii) row vectors of he are stochastically independent and identically 
distributed 

Define the covariance matrix of the error variables as 

I 

~h = E[ [heL [heL ] (: (p+1)x(p+1) matrix) 
e 

(7.3.3) 

= E[ (Xe)i(Xe)i' (XeL[(Ye)i+Ed ] 
[(YeL+Ed(XeL' [(YeL+Ed [(Ye)i+fd 

Denote 
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and E[(Ye)f] = u~ (1x1) and from the assumptions: 
e 

(7.3.4) 

The term uy x depends on the error variables only and is assumed to be 
e e 

known, and [~~ Jn+1 n+1 depends on u2 (unknown). 
~ 

e ' 

The model (7.3.1) can be manipulated to give 

Yo = Xo/Jo + f 

y - Ye = (X - Xe)/Jo + f 

y = X/Jo Xe/Jo + f + Ye 

= X/Jo + 0 (7.3.5) 

where B = (Ye + t:) - Xe/Jo 
= - ~ e [/Jo - 1 J ' (from 7.3.2) (7.3.6) 

This is not a simple regression situation: Xe is a random matrix and it 1s 

correlated with the error term O in contrast to the regression situation 

defined in (1.1). 

7.3.2 Estimation by Least Squares 

The OLS estimation of /J 0 (denoted by P0 ) 1n (7.3.5) will yield an 

inconsistent estimator for /J 0 : 

/Jo = (X'X)- 1 X'Y 

= /Jo + (X'X)- 1 X'O 

= /Jo + ( (X'X) /n)- 1 (X' 0/n) (7.3.7) 
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Schneeweiss (1976) shows that the following probability limits (plim) 
(defined in §1.11) exist and we will denote them by: 

plim(n- 1 Xo 'Xo) = M Xo 

plim(n- 1 ~e 1 ~e) = Mt. 
e 

plim(n- 1 Xo '~e) = 0 

plim(n- 1 X'X) = M Xo + E = M Xe X 

plim(n- 1 X'O) = [Ex rJY x ][,80 -1]' 
e e e 

Then the plim of Po is: 

plim(P0 ) = ,80 + plim{((X'X)/n)- 1 (X'O/n)} 

= ,80 + Mi 1 [Ex ,80 - rJY x J (from (7.3.8)) 
e e e 

Also the OLS estimator of rJ~ is inconsistent: 

(n-p)u~ = Y'(I - X(X'X)- 1X')Y 

= O'(I - X(X'X)- 1X')O 

Then the plim of u~ is: 

plim(uJ) = rJ~ plim(n(n-p)- 1 (0'X/n)(X'X/n)- 1 (X'O]/n)) 

(7.3.8) 

(7.3.9) 

(7.3.10) 
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From (7.3.9) and (7.3.10) it is clear that fi 0 is asymptotically biased and 

a-~ will always be asymptotically underestimated. \Then Ex and rry x are 
e e e 

known, this bias can be removed by the corrected least square (CLS) 
estimator (Schneeweiss (1976) equation 3.1), defined as: 

Then 

and hence 

Thus a 
1-'CLS 

(iCLS = (7.3.11) 

( X ' X / n - Ex ) - 1 
( X ' Y / n - rr Y x - ( X ' X / n - Ex ) (J O ) e e e e 

= (X'X/n - Ex )- 1 (X'X(i 0 /n+X'0/n-rry x -X'X/J0 /n + Ex (3 0 ) 
e e e e 

(from (7.3.5)) 

= ( X I X / n - Ex ) - 1 
( X ' ( - h e [fi O - 1] 1 

) / n + Ex fJ O - rr y x ) 
e e e e 

(from (7.3.6)) 

= (X'X/n - Ex )- 1 (-X'he[fi0 -1]'/n + [Ex rry x ][(30 -1]') 
e e e e 

rry X] + [EX rry x ]) [fio -l] ') 
e e e e e 

(from ( 7 . 3 . 8) ) 
= 0 

is a consistent estimator of (3 0 (i.e. is asymptotically 

unbiased). A consistent estimator of rr~ is 
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where 0 = y - XfiCLS 

= Xfi0 + 0 - XfiCLS (by using (7.3.5)) 

= X(fio - ficLS) + 0 
From 

o- 2 = 01 0/n CLS 

= [(fio - ficLS) 'X' + 0'] [X(fio - ficLS) + BJ /n 

= [(fio-ficLs)'X'X(fio-ficLS)+20'X(fio-ficLS)+O'~/n 

we have 

plim(o-~LS) = u~ (from (7.3.8)) 

= fio~x fio - 2uy X fio + (u; + U~) 
e e e e 

(7.3.12) 

Hence, 

The CLS estimate of (u; + u2 ) is: 
Ye 

(7.3.13) 

and Schneeweiss ( 1976) shows that this estimator is consistent. He also 
shows that 

estimates (u;) consistently under the assumptions that E(Ye) = E(1:) = O, 

An alternative formula for (7.3.13) is 

( 0-2 + a- 2 ) = Y'Y/n - (Y'X/n - u' )?.i 
E Ye CLS Y X /JCLS e e 

(7.3.14) 
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~hen E, Ye, Xe and X0 are normally distributed, with the rows of ~e and X0 

are identically and independently distributed and under the assumptions 

already stated, then all these estimators are maximum likelihood 

estimators. (Johnston (1963)). 

7.3.3 Estimation by Total Least Squares 

The TLS estimator of fi, defined in (7.2.15), is: 

and the CLS estimator of fi, defined 1n (7.3.11), is: 

Hence, TLS and CLS will yield the same consistent estimator if 

(i) u = O, (zero correlation between the measurement errors), and 
YeXe 

(ii) Ex = u;Ip, and w~+ 1 /n is a consistent estimator of u;, i.e. all 
e 

error variables (Xe)i are stochastically independent and have equal variance 

u; , consistently estimated by w~+ 1 /n. 

Van Huffel and Vandewalle (1985, Theorem 4.3-1) prove that is 

consistently estimated by w~+ 1 /n if (u; + u~) = u;. They use (7.3.14) 
e 

to show that (u~ + u~) can be consistently estimated by 
e 

(7.3.15) 

Their theorem also holds in case of s non-predictive collineari ties. The 

variance of the equation error u; is always unknown, so a consistent 
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estimator is only possible is u~ = 0. Hence, TLS estimates consistently the 

parameters of a pure errors-in-variables model with known covariance matrix 

of the error variables. This condition implies that (7.3.4) will be known 
totally (all error variables are stochastically independent with equal 

variance u~): 

(7.3.16) 

Since Ex is known it is always possible to obtain independence and 
e 

constancy of variance by transforming the data. This means that TLS always 

yields a consistent estimate of the parameters of a classical errors- in

variables model provided the appropriate scaling of the data has been 

performed. 

Furthermore, Ex must only be known, up to a factor of proportionality. 
e 

The assumption of known error variance means that if the data is not scaled 

exactly or if the equation error is not zero, the TLS estimate may not be 

consistent (E(u~) f w~+ 1 /n). Ketellapper (1983) investigated the impact of 
the violation of this assumption and found that TLS is then also preferable 
to OLS, except when the error variance is highly overestimated. 

For a discussion of the asymptotic properties of TLS in the error-in

variable models see Van Ruffel and Vandewalle (1985) and Schneeweiss (1976). 

7.4 Subset Selection based on TLS for Prediction 

In §1.10 subset selection via QR factorization with column pivoting was 

discussed, and this technique can be extended to TLS. Van Ruffel and 
Vandewalle (1985) distinguish between three methods: 

1. Algorithm SX-TLS (subset selection on X where the method of estimation 
1s TLS) 
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This method is a variant of SX- OLS ( § 1.10). The third step of Algorithm 

SX- OLS was to compute a OLS solution for the subset equation X1 Z = Y. If 

some of the variables are perturbed then a higher accuracy of the solution Z 

and the predicted response Y can be obtained by using TLS. Thus Algorithm 

SX-TLS is the same as SX-OLS except that the third step is replaced by: 

2. Algorithm SXY-TLS (subset selection on [X YJ where the method of 

estimation is TLS) 

Given X:nxp, Y:nx1 and a method of computing an integer r that approximates 
the rank of [X YJ, the following algorithm computes a permutation Panda 

vector z:rx1 such that the first r columns X1 of XP are independent and such 

that ll[X 1Je Yell: is minimized and Y £ R(X 1 ). 

First step: Compute the SVD of [X YJ (1.3.8) and determiner< rank[X YJ, 

partition V 

v = 
[ ~ II ~ "] r (7.4.1) 

V21 V22 p- r 

vty v2y 1 
r p- r+1 

Second step: use QR with column p1vrng to compute 

A A 

r p- r 

Third step: determine the TLS solution z:rxl of X1Z = Y. R11 1s non

singular and IIV1tli 2 = [[R1i]ll2· 
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The SXY-TLS algorihtm tends to maximize the r-th singular value of [X 1 YJ. 

Indeed from (1.10.7) we have 

(7.4.2) 

The extra information provided by the variable Y in this algorithm might 

r 

make the stable components of Y predicted by SXY-TLS, i.e. ~ iii 'Y, superior 
i = 1 

r 

to the stable components predicted by SX-LS ~ ui 'Y, when errors are 
i = 1 

introduced into all variables of the model under consideration. 

3. Algorithm SXY- VTLS ( subset selection on [X YJ where the method of 
estimation is TLS, with a variant) 

It follows step one and two of SXY-TLS and then instead of computing step 

three, z is obtained directly from step two as 

(Here the authors assumed that the (n-r+l) smallest singular values of [X YJ 

are non-zero only due to perturbations.) 

7.5 Summary 

In this chapter TLS was introduced. The estimator was defined and its 

properties and use of for errors-in-variables models were discussed, along 

with subset selection based on TLS. It was observed that TLS is not an 

appropriate tool for dealing with collinearity. 
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Chapter 8 

COIP!RISON OF ESTil!TORS 

In the previous chapters regression estimation techniques (OLS, PC, RR, GRR, 

LRR, FPC, SHE and TLS) have been defined, their properties discussed and 

some comparisons or remarks have been made. In this chapter we represent 

some of these remarks and properties in a unified manner in order to compare 

estimators and give some general direction on finding 'best' estimators. 

The estimators can be divided into two groups: The first group includes all 

those that operate on the regressor matrix X, namely OLS, PC, RR, GRR (and 
its variations), SH and FPC (and its variations): the second group consist 

of those that operate on the augmented matrix [X YJ, namely LRR and TLS. 

8.1 Basic Comparisons 

In this section we present tabular summaries of the expectation and expected 

square error properties of the estimators. The tables 8 .1 and 8. 2 are 

separated largely for convenience of presentation, as the properties to 

which they ref er are essentially interrelated. Table 8. 3 presents some 

choices (mostly those used in Chapter 10) of k, K, and d. 
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Table 8.1 Expectation properties of estimators and references 

Type Chapter Definition Bias Variance 
p p 

OLS 1 /J=I":vicd>..i, 0 (J 2 I"; V · V · 1 j). · 
1 1 1 

i = 1 i = 1 
p 

3 6 = (Z'Z)- 1 Z'Y 0 (J2 I": 1/>..i 
i = 1 

= V '/3 
p-r p- r 

PC 3 /jPC =1":v-c-/>..-
1 1 1 ' 

-V2V2'/3 (J 2 I"; V · V · 
1 j). · 

1 1 1 

i = 1 i = 1 

p 

RR 4.2 /J = I": R (>..-+k)- 1 c-v-
1 1 1 

-k(X'X+kI)- 1/J (J 2V[fi 2+kIJ- 2fi 2V' 
i = 1 

GRR 4.6 6 = 
K 

(fi2 + K)- 1 fi 28 - ( fi 2 + K)- 1Kb (J2(fi2+K)-2fi2 

AUORR 4.7 8JW = [I - [kA - 1 J2] 6 - [kA - 1 J2 b (J 2 [I- [kA - 1 J2 J2 fi - 2 

where A= Z'Z + K 

(>... 8? +2o-2)).. 5? 
AUGRR 4.7 [6oL-

1 1 1 1 

(4.7.24) (4.7.25) see and 
(>..i bf +a-2) 2 

p p 

SH 5 /3SH = d I": vici/>..i -(1-d)/3 (J2d2 I": y.yf/).. 
1 1 1 

i = 1 i = 1 

FPC 5 0
FPc = Fb - [I- F] b (J 2Ffi - 2F 

5 f3FPC = VFV'/3 -[I-VFV']/3 (J 2VFfi- 2FV' 

p+l-s 
_o p + 1 

LRR 6 /JLR = I": f i Vi -E[ I": fiv~] • 
i = 1 i = t 

/JTLS= f 
- 1 

TLS 7 (>..j-w~+ 1 ) cjvj • • 
j = 1 
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Table 8.2 lean square errors of estimators 

Type MSE TMSE 

OLS 

PC 

RR 

GRR 

p 

(!
2 I; V · V · 

1 /A· 1 1 1 

i = 1 

p-r 

(!2 I: vivi '/,\i + V2V2'PP'V2V2' 
i = 1 

AUGRR see (4.7.24) and (4.7.25) 

p 

SH (J 2d2 I; Vi Vi I j,\i +(1-d) 2fifi' 
i = 1 

TLS unknown 

p- r 

(!
2 E 1/,\i + P'V2V2'fi 

i = 1 

p (J2,\.+k28? 
I: 1 1 

i=l pi + k) 2 

p (!2,\.+k?o? 
I: 1 1 1 

i = 1 pi + kd 2 

p 

(J 2d2 E 1/,\i + (1-d) 2P'fi 
i = 1 

p p 

(!2 I: ff/,\i+ I: (1-fi)28f 
i=l i=l 

unknown 
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Table 8.3 Choices of k, K, and d 

type estimated value use for suggested by 

k (HK) RRE Hoerl, Kennard and Baldwin 

k (L\f) 
p "2 

p'o-2/~Ai5i RRE Lawless and \Tang 
i = 1 

K (HKB) Hoerl, Kennard and Baldwin 

K (T) Troskie (1990) 

k 
p 

p'o- 2
/( ~ [bI/{1+)1+Ai(bI/'o-2

)} AUDRR Nomura 
i = 1 

d fi'fi/{tr([var(fi)] + fi'fi} SHE * 

* an estimated value that minimizes the TLSE of the SHE (5.1.10) 
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8.2 Judgement of estimators 

8.2.1 Unbiasedness 

In the class of unbiased estimators, the OLSE is the best linear estimator 

(BLUE) in the sense of minimum variance. In the presense of collinearity, 

the variance of OLSE can be inf lated ( due to small ,\ i 's) so that other 

biased estimators will be more suitable under a changed criterion, e.g. 

mimimum mean square error. If the collinearity between some of the 

regressors is however consistently continued in the prediction area, the 

effect of this collinearity on predictions will be less serious. If ~2 is 

sufficiently small, /3 can be estimated by OLS with good accuracy even if 

strong collinearities exist in X. Thus the choice of whether or not to use 

the OLSE should be based on the magnitudes of the ,\i and unknown ~2 • 

8.2.2. ISE criteria 

Consider two competing estimators b1 and b2 • If the matrix difference 

is positive semi-definite (psd), then b1 is to be preferred to b2 • Swill 

be psd if w'Sw ~ 0 for any non-zero vector w:nx1. The TMSE equivalent is 

that b1 is prefered to b2 whenever 

TMSE(w'b 2 ) ~ TMSE(w'b 1 ), for every vector w (8.2.2) 

This MSE criterion is the so called 'strong MSE criterion', and a weaker 

criterion for b1 to be preferred to b2 is that 

Looking at these criteria it is worthwhile to point out: 

(i) TMSE(bi) is the Euclidian distance between bi and /J. One therefore 
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seeks an estimator that minimizes this norm. 

(ii) The criteria (8.2.1) to (8.2.3) were defined in PC estimation as ways 

to determine which PC's to eliminate. 

(iii) Although only some criteria are explicity stated here, there is a 

whole range available. For instance, all those criteria applied in PC to 

eliminate PC's can be generalized. A detailed discussion of criteria 

appears in Vinod and Ullah (1981, Chapter 2). 

(iv) Some authors perform comparisons based on the relative efficiency (RE) 

of each estimator to OLSE (i.e. see section 4.7 where this RE concept was 

used to compare the various GRRE' s). There appears to be no statistical 

analysis of these efficiency ratios, literally only comparisons of the 
values ( i.e. 2 < 3, or 2.9 is slightly better than 3, and so on) 

( v) Empirical comparisons of estimators reveals that no one estimator is 

clearly superior to the others. The conditions for superiority depend on 

the degree of collinearity, the orientation of 8, and the value of <J
2 • 

These factors should always be considered when choosing an estimator. 

Al though some rough guidelines can be given, the 'best' estimator of any 

problem will be unique to that particular problem and no 'recipe' is 

available. 

(vi) Simulation studies have been performed to compare the different 

estimators under various degrees of collinearity, changing <J 2 values, and 

different orientations of the 8's. Some of these results have been reported 

in the appropriate foregoing chapters, and a study of some FPC estimators 

will be reported in the next section. 

8.3 Comparison of FPC estimators 

In Chapter 5 it was shown that most estimators (OLS, RR, GRR, PC) can be 

considered as FPC estimators. All the FPC estimators give an improvement 
over OLS in terms of the MSE criteria if 
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(5.2.10) 

Thus the improvement over OLS will depend on the vector 6, the degree of 

collinearity(~), and u2
• 

In (5.2.12) the optimal values for the fractions were obtained as 

f 9 = 6?).. ( u2 + 6?).. ) - 1 
J J J J J 

and the min TMSE will be 
p 

min{TMSE(8FPC)} = TMSE(8) - ~ (u2 /).i)(1-ff) (from (5.2.14)) 
i = 1 

By using this optimal value two new estimators (FPCI and FPCV) were defined 

in (5.2.16) and (5.2.18). 

To evaluate different FPC estimators under a variety of conditions Lee and 

Birch (1988) set up the following artificial data sets: 

p = 4: n = 20; eigenvalues : 2.96072, 1.02801, 0.0112, and 0.00012; 
condition number= 157.07762. 

Two orientations of 6 were considered: 

I: 6 = [385.112 91.9509 333.138 -198.061] 

II: 6 = [-51.4399 -86.844 -28.844 542.225] 

Two values of u were chosen as 5 and 10. 

They then compared OLS, RR (where k is obtained by an iterative method 

starting with OLS), GRR (K is obtained by an iterative method as in (5.2.15) 

starting with OLS), two PC estimators (called PC(l) and PC(2) to denote the 

number of deleted eigenvalues and vectors) and the two new estimators (FPCI 

and FPCV with iteration initial value PC(l)), by means of a Monte Carlo 
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study with the number of repetitions set at 50. The performances of the 

estimators across the four combinations and the 50 repetitions was 

summarized by computing the standardized empirical mean square error defined 

as 

4 

SEMSE(b) = 1: 
j = 1 

50 (bji- /3j)2 
1; 

i = 1 500? LS 
J ' 

(8.3.1) 

where b-. is the J"-th element of b, an estimator of /3, rn the i-th Monte J 1 

Carlo repetition and ff~ LS is the theoretical variance of b. S' j =1, ... ,4. 
J ' J 'L 

Lee (1986) shows that the SEMSE(P) is independent of both the orientation of 

the parameter vector and the value of ff; but does depend on the structure 

of the regressor variables. The use of the SEMSE(b) facilitates comparisons 

of estimators both within a given combination and across the combinations. 

The results of this Monte Carlo study are displayed in Table II of Lee and 

Birch (1988), where the evaluations are based on the relative efficiency of 

each estimator compared to p. 
summarized as follows: 

Their results and suggestions can be 

1. Vhile PC(1) is far superior to LS in terms of SEMSE, just the opposite 

is true for PC(2) estimator. This suggests that the user of PC regression 

should exercise caution in determining which principal components should be 

deleted. This finding is analogous to the test and ideas described in 

Chapter 3. It is interesting that the authors find for orientation II and 

ff= 5, a PCE with only the third component deleted more efficient than LS, 

PC(1) and PC(2). They do not however give any explanation as to why this 

phenomenon occurred and it may constitute another reason why one should 

always be on the alert, when deleting PC's. 

2. The relative behaviour of the RR, GRR, FPCI and FPCV estimators is 

dependent upon the orientation of the parameter vector. The success of the 
FPCI and FPCV depends on the proper choice of the PC estimator used as the 

initial values. Once this choice is made the authors suggest that either 

FPCI or FPCV could be computed, and for their simulation each gives 
practically the same results. 
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3. As u2 increases, the relative efficiency of estimators increased with 

respect to OLS. 

4. The FPCV estimator is always more efficient than the RR estimator, but 

not always more efficient than the GRR estimator. The FPCI estimator is not 

always more efficient than the RR and GRR estimator. 

5. In conclusion: among the biased estimators, no single estimator 

dominates the others, in terms of TMSE, across all conditions. 

8.4 Summary 

In this chapter the various estimators were summarized. Judgement and 

comparisons of estimators were discussed and the idea of a class of FPC 

estimators was introduced. 
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Chapter 9 

INFLUENCE AND COLLINEARITY 

In this chapter the influence of observations as well as variables on the 

collinearity of the model is investigated. \le introduce in §9 .1 the 

concept of influential points, ways of determining collinearity-influential 

points in §9.2, influential variables in §9.3 and in §9.4 the concept of 

influence in ridge regression estimators and weighted least squares. In 

this chapter we will assumme that X in (1.1) is a full column rank matrix. 

9.1 Influential points 

Traditionally, collinearity has been associated with the columns and the 

column space of X. However, as already pointed out in Chapter 2, the 

collinearity structure of the data can be strongly affected by a few 

observations (Belsley, et al. (1980), Mason and Gunst (1985), Draper and 

John (1981)). The term influential is used to describe an observation whose 

inclusion 1n a data set substantially changes regression coefficent 

estimates, predicted responses, or the results of inferential procedures 

(Mason and Gunst (1985)). Not all outliers are necessarily collinearity

influence points and vice versa. 

A formal definition for a collinearity-influential point or case 1s given by 

Valker (1989): 

Let xi' be the i-th row of the X matrix and let 1/k and 11d- i) be the 

k-th condition indices computed with and without xi', respectively. 

The i-th point (xi 1
) is a collinearity- influential point if, for a 

predetermined value 8, 

l11k - 1/k(-i)I > 811k fork= 2,3, ... ,p (9.1.1) 

This definition focusses upon the potential of the case to influence the 

estimation and inference procedures. But the actual influence depends on 

the Y- value observed for that case. Influential points in the sense of 
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Valker can be classified into two broad categories: those that mask 

collinearity and those that induce collinearity, illustrated in the 

following figures from Valker (1989) 

. . : .. 

Masking collinearity 

( 7/k « 7/k ( - i)) 

. : .. 

Inducing collinearity 

(11k » 1/k (- i)) 

9.2 Detecting collinearity-influential points 

The first step in finding collinearity- influential points is to detect 

outliers. Various methods of detecting outliers are available in the 
literature. Common methods include graphical representation of the 

residuals and standardized residuals versus the individual fitted Y and 

observed X variables, and normal probability plots ( see for instance Cook 

and Veisberg (1982) and Daniel and Vood (1980)). High leverage, as defined 

below, is also an indication that a point is potentially influential. Once 

a observation is potentially influential it is necessary to see what actual 

influence it has on the estimator and inference. Various measures of this 

influence will be discussed. 

9.2.1 Leverage 

From §1.7 the Hat matrix is 
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It maps Y into Y 

Y = HY 

and the diagonal elements of Hare known as the leverage values: 

h .. =x-'(X'X)- 1x. 
1 1 1 1 

(1.7.2) 

The following properties of hii are pertinent here: 

(i) h .. = h?. + E h?. 
1 1 1 1 

j -Ji 1 J (from H idempotent) (9.2.1) 

(ii) 0 < h-. 
1 1 < 1 (His a projection matrix) (9.2.2) 

n 

(iii) E h?. = p 
1 1 

(X 1s full column rank) (9.2.3) 
i = 1 

Vhen hi i is large, the i- th case is called a high- leverage point. Hoaglin 

and Velsh (1978) suggested that a point has high leverage if hi i > 2p/n. 

Mason and Gunst (1985) use hii > 2(p+1)/n. The influence of the response 

value Yi on the fitted value Yi is reflected in the corresponding leverage. 

For the two extreme cases, (hii = 0 or 1) we have: 

If h-. = o, then E h?. = 0 (from (9.2.1)) and thus h-. = 0 and 1 1 1 J 1 J Lf.i 
y. = o. Thus Yi must be fixed at zero by design - it is not effected by any 1 

Yi. 

If h-. = 1, then E h?. = 0 (from (9.2.1)) and thus h-. = 0 and 1 1 1 J 1 J 
j -Ji 

y. = y i' implying that 
A 

= 0. The model fits the data value exactly. E-1 1 



9-4 

9.2.2 Outlier sum of squares 

Once outliers or influential observations are detected model ( 1.1) can be 

partitioned as 

(9.2.4) 

where by some rearrangement of rows the k observations that are influential 

or outlying are contained in [Yb Xb]. Thus Ya and Ea are (n-k)xl vectors, 

Yb and 1:b are kxl vectors, Xa is a (n-k)xp matrix and Xb is a kxp matrix. 

The residuals i = [I-HJY under this model can also be partitioned as 

(9.2.5) 

Deleting the suspected outliers gives a model with E[YaJ = XaP· Draper and 

John (1981) suggested the following alternative model: 

where a is a kxl vector of additional parameters. The estimates of panda 
under this model are: 

Ya= Xafi, thus fi = (X~Xa)- 1 X~Ya 

Yb= Xbfi + a 

Thus, by using (9.2.5) 

a = Yb - Xbfi 

= [I-Xb(X 1 X)- 1X£J- 1 [ib+Xb(X 1 X)- 1X~YaJ - Xb(X~Xa)- 1X~Ya 

(9.2.7) 

= [I-Xb(X 1 X)- 1 X£] - i [ib+Xb(X 1 X)- 1 X~Ya- [I-Xb(X 1 X)- 1 X£] Xb(X~Xa)- 1 X~YaJ 



and 

X (X'X)- 1X'Y - [I-X (X'X)- 1X']X (X'X )- 1X'Y b a a b b b a a a a 

= Xb(X'X)- 1X~Ya-Xb(X~Xa)- 1X~Ya+Xb(X'X)- 1XbXb(X~Xa)- 1X~Ya 

= Xb(X'X)- 1 [I- (X'X)(X~Xa)- 1+XbXb(X~Xa)- 1JX~Ya 

= Xb(X'X)- 1 [I-{(X~Xa+XbXb)-XbXb}(X~Xa)- 1 ]X~Ya 

= Xb(X'X)- 1 [O]X~Ya 

= 0 

we have 

a= [I-Xb(X'X)- 1XbJ- 1 [ib+O] 

= [I-Xb(X'X)- 1XbJ- 1 ib 
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(9.2.8) 

The adjusted observations Yb with expectations Xb/J can be estimated by 

Yb - a, then model (9.2.4) becomes 

(9.2.9) 

thus, 

Yb - a= Yb - [I-Xb(X'X)- 1 XbJ- 1 ib (from 9.2.8) 

= [I-Xb(X'X)- 1XbJ- 1Xb(X'X)- 1X~Ya (from 9.2.5) 

ob= (Yb-a) - xb'/3 

= [I-Xb(X'X)- 1 Xb] - i Xb(X'X)- 1 X~Ya - Xb(X'X)- 1 X~Ya 

- xb (XIX) - l xb [I- xb (XIX) - l Xb] - l xb (XIX) - l x~ ya 

= [I-[I-Xb(X'X)- 1 X£]-Xb(X'X)- 1X£] [I-Xb(X'X)- 1 X£J- 1Xb(X'X)- 1X~Ya 

= 0 (9.2.10) 



Ba = Ya - xa~ 

= Ya - X8 (X'X)- 1X~Ya-X 8 (X'X)- 1X£[I-Xb(X'X)- 1X£J- 1Xb(X'X)- 1X~Ya 

= [I- X
8

(X'X)- 1X~-X
8

(X'X)- 1X£[I-Xb(X'X)- 1X£]- 1Xb(X'Xf 1X~JYa 
(9.2.11) 
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The extra sum of squares due to fitting a in model (9.2.6), as compared with 

model (9.2.4) is 

(9.2.12) 

Gentleman and ~ilk (1975), called Qk the outlier sum of squares associated 

with the observations Yb. Then the F-statistic, associated with the 

hypothesis H0 : a= 0 is: 

i£[I-Xb(X'X)- 1X£J- 1 ib n-p-k 
F = ·--

E I E- Eb [I- X b (X I X) - l X £] - l Eb k 

Qk n- p- k 
= ·-- (9.2.13) 

RSS-Qk k 

9.2.3 Andrews-Pregibon statistic 

Andrews and Pregibon (1978) consider the following two augmented matrices: 

* X1 = [X Y] (from model (1.1)) 

* X2 = [X D Y] (from model (9.2.6)) 

where Dis the matrix with which the X matrix was augmented 1n (9.2.6) 

D = [t] 
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The Andrews-Pregibon (AP) statistic is then defined as: 

(9.2.14) 

where ij.. denote the k subscripts that estimate Yb ( the outliers). For 

example AP~ 4 means the Andrews-Pregibon statistic for 2 suspected outliers 

cases 3 and 4. Then from the result of Draper and John (1981, p25) we have 

(9.2.15) 

where RSS is the residual sums of squares from the full model (1.1). Then 

(9.2.14) can be written as the dimensionless quantity 

(9.2.16) 

k 
and Andrews and Pregibon (1978) regard the quantity (1-APij .. ) 'as the 

* proportion of the volume generated by X1 attributable to the k observation 

(
.. )' k k lJ... . Hence an interpretation of APij .. is that small values of APij .. 

are associated with influential observations. 

The AP statistic in (9.2.16) consists of two factors: 

(i) I (I-Xb(X'X)- 1Xtl only involves the regressor variables, and 

Xb(Xx)- 1Xt, is the leverage of Hoaglin and Velsh (1978). Fork= 1 

the leverage will be and thus 

Small values of 

correspond to large hii, revealing high-leverage points. This 
factor reflects potential influence of the cases. 
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(ii) (1 - Qk/RSS) = (RSS - Qk)/RSS is a decreasing function of the 

F- statistic of (9. 2 .13). Small values of (RSS - Qk) /RSS indicate 
high influence (large sum of squares for outliers). This factor 

reflects actual influence of the observed responses on the fitting. 

9.2.4 Cook's statistic 

In (1.7.7) Cook's distance was defined as 

c = n2 = (P - P)'X'X(P - P)/pu2 (1.7.7) 

To determine the degree of influence the i-th data point has on the 

estimate, P will be replaced by P-i, where P-i is the least square 
estimate of p with the i-th point deleted. Thus for i = 1,2, ... ,n 

(9.2.17) 

Computed values of Ci can be compared to the F(p,n-p) distribution. For 

example if Ci equals the O. 50 value of the corresponding F- distribution, 

then deletion of the i-th case moves the estimate of P to the edge of a 507. 

confidence ellipsoid relative to p. Cook (1977) suggests that for an 

uncomplicated analysis one would like each p_ i to stay well within a 107. 

confidence region. The comparison of Ci to an Fis only used for converting 

Ci to a familiar scale, and Ci is not distributed as F (Cook and ~eisberg 

(1982)). 

The statistic Ci can be simplified as follows: 

(from (1.8.7)) 

(9.2.18) 
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thus 

Ci= xf(X 1 X)- 1xi(id1-hiJ- 1
)

2 /p&- 2 

1 

= p- 1 [ii/{&-(1-hii)2}]2 [hid(1-hiJ] 

= p- 1 rr [hid ( 1- hii) J (9.2.19) 

1 

Here ri = ii/{&-(1-hii) 2 } is the standardized residual as defined in (1.7.3) 

and it is a measure of the degree to which the i-th observation can be 

considered as an outlier from the assumed model. lie note that ri is a 

monotonic function of Q1 (9.2.12). The ratio hii/(1-hiJ measures the 

relative sensitivity of the estimate fl, to potential outlying values, so 

that large values of this ratio indicate the associated point has heavy 

weight in the determination of jJ. 

The (squared) distance Ci can be extended to contexts in which more than 

one case is an outlier (k > 1, in the outlier model ( 9. 2. 6)). Thus '/3 in 

(1.7.7) is computed from model (9.2.9): 

thus 

'/3 = (x1x)-1x1y 

= (X 1x)- 1 [X~ X£J [Y~ (Yb- a) 1
] 

1 

= (X 1 X)- 1 [X~Ya + X£Yb - X£a] 

= (X 1 X) - 1 [X 1Y - X£a] 

= jJ -(x 1 x)- 1X£a (9.2.20) 

(9.2.21) 
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The distance Ci is now indicated by Cij .• , where the subscripts lJ,, denote 

the cases contained in [Yb Xb], thus 

= 

= [
a' a ] - - 1 

Qk 
(from (9.2.12) (9.2.22) 

9.2.5 DFFITS 

The change of fit on forecasting when an observation 1s deleted, is defined 

(Helsley et al. (1980)) as 

DFFITi = Yi - [Y(- i)L 

(9.2.23) 

where [Y(- i)J i is the i-th element of [Y(- i)J, and [Y(-i)J is the estimated 

Y obtained by using P-i. For scaling purposes (9.2.23) is divided by 
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1 

u(i){hii} 2 , where u(i) is the estimated error variance when the i-th row of 
X and Y have been deleted (see (1.7.5)). The measure DFFITS (Belsley et al. 

(1980, p15)) is the standardized change in the fitted value of a case when 

it is deleted, and is given for the i-th case by 

DFFITSi = [~]t 
1- h- . 

1 1 

(;. 
1 

u(i)~ 
(1.7.6) 

The authors warned against the misuse of deleting high-influence data points 

solely to effect a desired change in a particular estimated coefficient, or 

t-value. Once a high-influence point is identified it should only be 

deleted if shown to be in error, or if it has the effect of inducing 

collinearity, which, can be an undesirable property of the model. 

The authors suggested a size- adjusted cut- off value for DFFITSi as 2Mn, 
taking into account the sample size (n) as well as the number of variables 
in the model. If the DFFITSi are divided into distinct groups and if a 

noticable gap appears, caution should be exercised in deleting observations. 

The statistic DFFITS can be extended to include more than one data point. 

If the data points to be deleted are indicated by I, where I c {1,2, ... ,n} 
then 

(9.2.24) 

where ~-
1 

is the OLS estimator with the {I} rows deleted and X_ 
1 

1s the X 
matrix with the {I} rows deleted. 
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9.2.6 Variance inflation factor 

Schall and Dunne (1987b) suggested the following statistic for the detection 

of collinearity-influential points: 

VIF ~j 
1 

(9.2.25) 
VIF-1 

where VIF~j denotes the i-th variance inflation factor obtained after 
1 

deletion of the j- th observation from model ( 1.1). \Then Ri j ~ 1 for all i 

and j, there are no collinearity influential points; if Rij « 1, xj is a 

point that induces collinearity; and if Rij >> 1, xj hides (masks) 

collinearity. 

A straightforward generalization of (9.2.25) can be defined as 

(9.2.26) 

where I c {1, ... ,p}, Jc {1, ... ,n} and VIF~J is the variance inflation 

factor of the set of I variables and J is the subset of data points that are 

deleted before calculating it. 

The augmented model (9.2.6), where Ik reduces to uj, is 

(9.2.27) 

Since here uj is the j-th unit vector in the space Rn (not the j-th column 
-j 

of U in the SVD of X), VIF i can be obtained as the partial variance 

inflation factor VIFi(X_i luj ): 
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VIF ~ j 
1 

R-. = lJ VIF. 
1 

VIF- (X ·Ill·) 1 - 1 J 

= 
VIF. (X . ) 

1 - 1 

VIF. ( [X . uj]) 1 - 1 
(9.2.28) = 

VIF- (X. )·VIF- (u-) 
1 - 1 1 J 

Let ei denote the residual vector of Xi when this variable is regressed on 

x_i' thus 

e-'e. = X-'[I - X -(X'-X -)- 1X'-]X-1 1 1 -1 -1 -1 -1 1 (9.2.29) 

and, similarly let eij denote the residual vector of Xi when the chosen 

regressors are [X_i uj], thus 

Note that the first 

{[X uj]'[X uj]} 1~ = 

X . I { I - [X . u . J [X / . X . 1 -1 J -1 -1 

U· 'X . J - 1 

X'. U· 
- 1 J 

U· 
1

U· 
J J 

diagonal element of { [X uj] ' [X uj ]}- 1 

[ X1 'X1 X- 'X . x. I U· r 1 - 1 1 J 

X'. X- X'. X . X'. U· - 1 1 - 1 - 1 - 1 J 

U· 'X. U· 'X . U· 
1

U· 11 J 1 J - 1 J J 

(9.2.30) 

is 

= {X. IX. - [X. / X . X. / u. J [X / . X . 
1 1 1 -1 1 J -1 -1 

U· IX . J - 1 

X I • u. i -1 [X / . X · ] } - 1 -1 J -1 1 

u- 'u. u- 'X-
J J J 1 

= {X. IX. - X. I [X . u. J [X / . X . 
1 1 1 -1 J -1 -1 

U· 'X . J - 1 

X'. U· 
- 1 J 

U· 
1
U· 

J J 



= {X. ' [I - [X . u. ] [X' . X . 1 -1 J -1 -1 

U· IX . 
J - 1 

X'. U· 
- 1 J 

U· 
1

U· 
J J 

The first diagonal element of [X'XJ- 1 , is 

[X' X] i t 

= {X-'X. - X-'X -(X'-X -)- 1X'-X-}- 1 
1 1 1 -1 -1 -1 -1 1 

and the first diagonal element of {[Xi uj]' [Xi ujJ}- 1 is 

Then 

= [X . / X . X . -i -I 1 1 1 J 

xij 1 11 

= 1 / ( X / Xi x L ) [_ ~ .. 
1 J 

= 1/(X-'X. - x?.) 
1 1 1 J 

VIF. (X . u. ) = 
1 - 1 J 

V(Xi X_i uj) 

V(Xd 
- 1 

{[X ud' [X udLi 
= 

(X/Xd -1 

9-14 

(9.2.31) 

(9.2.32) 

(9.2.33) 
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= {(eij)'(eij)}-1/(X/XJ-1 (from (9.2.31)) 

= (X/XJ/{(eij )'(e;:j )} (9.2.34) 

V(X. X ·) 1 - 1 

VIF-(X ·) = 1 - 1 

V(XJ 

(X'X)if 
= 

(Xi 'XJ-1 

= { ei 'eJ- t /(Xi' XJ - t (from (9.2.32)) 

= (X/Xd/{e/eJ (9.2.35) 

and 

VIF i ( uj ) 
V(Xi uj) 

= 
V(XJ 

{ [Xi uj ] ' [Xi 
- 1 

uj J L 1 
= 

(Xi 'XJ-1 

= (Xi 'XJ/(Xi 'Xi x?.) (from (9.2.33)) (9.2.36) 
1 J 

where xij are the j-th element of Xi. Then by inserting (9.2.34), (9.2.35) 

and (9.2.36), into (9.2.28), Rij can be written as 

R-. = 
1 J 

= 

VIFd [X_i uj]) 

VIF. (X ·)·VIF. (u.) 
1 - 1 1 J 

(X/Xd 

(e;:j)'(e;:j) 



= 

= 

e. 'e-
1 1 

X-'X.-x?. 
1 1 1 J 

X. 'X. 
1 1 

e-'e. X-'X. - x?. 
1 1 1 1 lJ 

e . ' e . - e? . / ( 1- [P . ] . . ) X · ' X · 
1 1 lJ -1 JJ 1 1 

1 2 
= R-. R-. 

1 J 1 J 
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(9.2.37) 

where [P_Jjj = X_dX~iX_J- 1X~i is the projection matrix onto the column 

space of the variables X_ i, and eij is the j- th elements of ei. Schall and 
1 

Dunne (1987b) claim that the quantity (Rij - 1)/(n-p) follows an F(1,n-p; 1) 

distribution under the assumption that the xij, J = 1, ... ,n are independent 

and identically distributed normal variates. The F-distribution is central 
2 

(1=0) when X_i includes an intercept. The quantity (Rij - 1)/(n-1) follows 

an F(1,n-1; 1)-distribution which in general is non-central when Xi is not 

centered. Thus the two factors in (9.2.37) can be calibrated against these 

distributions. A similar factorization of the multiple case (9. 2. 26) is 

possible. 

9.2.7 Condition index 

The condition indices of a matrix are one of the measures proposed in 

Chapter 2 to detect collinearity. It is important to determine whether an 

index is high because of collinearity- inducing points or low because of 

collinearty masking points. The effect on the condition indices when a 

single row is deleted were studied by \falker ( 1989) and Hadi ( 1988), and 

based on this knowledge Hadi (1988) proposed two measures to detect 

influential points, one of which was also proposed by Valker (1989). 
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9.2.7.1. Row deletion and condition indices 

Let the condition indices of the matrix X_i be denoted by 

1/j(-i) (9.2.38) 

where the subscript j denotes the j- th condition index and (- i) is an 

indicator of the deleted row. If one wants to assess the influence of the 

i-th row, the condition indices of X_i can be computed and compared to the 

condition indices of the full matrix. One drawback of this approach is that 

it requires the computation of the eigenvalues of (n+l) matrices each of 

order kxk. Hadi (1988) derives an approximation to 1/j (- i) without actually 

computing the eigenvalues of X~iX-i, i = 1,2, ... ,n. His development 

consist of two special cases ( case one and two) and then the generalized 

case (case 3). 

Case one: A theorem due to Kempthorne (1985), when Xis an nx2 matrix, is 

summarized by (Hadi (1988), p146): 

Theorem one: If Xis nx2 and the columns of X are normalized to have length 

1, then the square of the condition index of X_i is 

where 

s. = 
1 

1 

1 + (1-4/Sd 2 

and the i-th row of Xis partitioned as 

(9.2.39) 

(9.2.40) 
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and 

n 

~ = ~ Xi1Xi2 

i = 1 

(9.2.41) 

Second case: The second special case, due to Dorsett (1982), involves the 

i- th row of X lying in the direction of the j- th eigenvector, and is 

summarized by (Hadi (1988), p147): 

Theorem two: Let vi,v2 , ••• ,vP be the set of orthonormal eigenvectors 

associated with the eigenvalues ,\ 1 ~,\ 2 ~ ••• ~,\P of X1 X. If xi = avj, then 

the (possibly unordered) eigenvalues of X~iX-i are 

(9.2.42) 

Thus when xi lies on the direction of the j-th eigenvector, the deletion of 

xi will deflate the j-th eigenvalue. If the conditions of Theorem 2 hold, 

the following three conclusions can be made: 

A 

(i) If j = 1, then [1Jp(-i)]2 = max(,\ 1-a2
,,\ 2 )/,\p, and the deletion of 

xi will decrease the condition index, 

(ii) If j = p, then [1Jp(-i)] 2 = ,\ 1 /(,\p - a2
), and the deletion of xi 

will increase the condition index, and 

(iii) If 1 < J < P, then [1Jp(-i)] 2 = ,\ 1 /min(,\P; ,\j-a2
), and the deletion 

of X· 1 
will have no effect on the condition index as long as 

,\. - ,\ p > a 2 
J 

similar theorem is also given by Valker (1989) as Corollary 1 on 
p1681, but apparently has a slight error. The author assumed that 

max(,\ t - a 2 ' ,\ 2 ) = (,\ t - a 2 ) • 
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Third case: Suppose there are no restrictions on X: for example, the 

restrictions of theorem one and two are lifted, X may or may not contain a 

constant column, or may or may not be normalized or standardized. 

Let v1,v 2 , ••• ,vp be the set of orthonormal eigenvectors associated with the 

eigenvalues A1~A 2 ~ ••• ~AP of X'X. Let 1ii~1i 2 ~ ••• ~1ip be the eigenvalues of 
X~

1
-X_

1 
.• Define z .. = x~v- and 

1 J 1 J 
p 

Ci = ~ (zij/Aj)2 

then 
j = 1 

(i) if J = 1 

A2 - 2A1Zfi + 2 / 
1 zi 1 xi xi 

1 i 1 C: 

Ai - 2 zi 1 
(9.2.43) 

(ii) if 1 < J < p 

1ij C: A· - zf. 
J 1 J (9. 2 .44) 

(iii) if j = p 

1i p C: min(Aj ,Ap) (9. 2 .45) 

where 

Aj C: min(Aj - zL), for J * p 
and 

AP 
Ap(l-hii) [Ap(l-hii)+zfp] 

C: 

Ap(l-hii) 2+2zfp(l-hii)+zfpApCi 

(iv) the condition index of X_i can be approximated by 

(9.2.46) 
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The results in (i) and (iii) are proven in Hadi (1988, Theorem five). In 

simulation studies the author finds that the approximations of the condition 

number in (iv) are close to the actual computed condition indixes. If the 

condition of theorem two holds, then (iv) holds exactly. Although the 

author could not prove (ii) theoretically, he uses an empirical 

investigation to suggest it is a good approximation. 

9.2.7.2 Collinearity-influential points 

To assess the influence of the i-th row on the condition index of X, Hadi 

(1988) suggested the following two measures: 

Define 

b- = 1 

[1Jp(-i)J - [1Jp] 

[1Jp] 
1 = 1,2, ... ,n (9.2.47) 

where [1Jp(-i)J 1s defined in (9.2.46) and 1/p is the ordinary condition 

index, defined in Chapter 2. Thus ( is an approximation to the relative 

distance between the condition index of X_ i and X. If 6i » 1 then the 

i-th case is a row/point that masks collinearity, and if 6i << 1 then the 

i-th case is a point that induces collinearity. 

Although Hadi does not suggest it, it is possible that the approximation of 

all the collinearity indices could be derived from the result in (9.2.44), 

and (9.2.46) be generalized from the p-th index to all the collinearity 

indices. Once 6i is identified as unequal to one, and the other 

collinearity indices examined and their 6i 's computed, and say 63 5 (3- rd 

case deleted, 5- th condition index) is relatively large, is the x3 5 point 

the outlier, or can one say anything about the 5- th variable? The above 

questions could be a field for further investigation. 

The second measure proposed by Hadi (1988) to diagnose collinearity
influential points involves diagonal elements of the Hat matrix expressed a 

little differently. The Z matrix, whose elements are zij = x{vj can be 
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expressed as Z = XV (this is the same Z as defined 1n Chapter 3). Thus the 

Hat matrix can be expressed as 

H = x(x 1 x)- 1x1 

= zv 1 (VD 2V1
)-

1vz (by using the SVD of X1 X) 

= zn- 2 z 
= ,rw 1 (9.2.48) 

where l{ = zn- 1 

' 
then h-. 

1 1 
can be expressed as 

p p 

h-. = E z?.j).. = E w?. (9.2.49) 1 1 1 J J lJ 
j = 1 j = I 

The diagnostic measures bi and hi i are supplemented by plots to give the 

analyst a comprehensive picture of the eigenstructure of the data. 

Collinearty-influential points can easily be seen on a graphical display of 

bi, such as stem and leaf displays. Pairwise scatterplots of the columns of 

Z, or l{ can be drawn, the quantities wL are referred to as the leverage 

components (LC), and the scatterplots of l{ as the LC plots. 

Walker (1989) proposed a diagnostic very similar to Hadi's second diagnostic 

(hii, (9.2.49)). By using the SVD of X, Walker (1989) expressed the Hat 

matrix as 

H = x(x 1 x)- 1x1 

= UDV 1 (VD 2 V1
)-

1vnu 1 

= UU1 (9.2.50) 

which is the same as (9.2.48), as W = zn- 1 = xvn- 1 = UDV 1 vn- 1 = U. The 

diagonal element of Has 

p 

h-. = E u?. 
1 1 lJ (9.2.51) 

j = I 
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Velleman and Ypeelar (1980), call the uij 's the orthogonal leverage 

components. Diagnostics proposed by \Talker (1989) to detect collinearity 

influential points, involve the set of squared elements of the matrix U 

1 = 1, ... ,n, j = 1, ... ,p (9.2.52) 

\Talker (1989) suggests a cut-off value for high leverage is taken as p/n. 

Once 'high' uL 's, say uij , are identified, he fits the model again with 

the k-th case deleted and compares the condition indices. 

9.3 Influential Variables 

Extending the notion of collinearity- influential points, Schall and Dunne 

(1987a) also define collinearity-influential variables. 

Consider the following augmented model: 

Y = [X A] [f] + E (9.3.1) 

where A:nxk is an arbitrary set of variables not necessarily dummy 

variables. Typically, A would consist of multiplicative interaction terms 

of the variables already in the model, or extra polynomial regression terms 

instead of the p already fitted, or the covariates in ANACOVA. 

The decision whether to include the variables A is usually based on the 

F- statistic associated with the variables. Even if this F- test indicates 

non-significance, A should be included if it has an effect on the estimation 

of the parameters already in the model. Thus, when deciding whether a 

particular variable should be included 1n the model, Schall and Dunne 

(1987a) advocate the additional use of Cook's distance 

(/3 - '/3) 1 XI X (/3 - '/3) n - p 

p 
(9.3.2) 
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where fi is the OLSE of model (1.1) and pis the LSE of fi in the augmented 
model (9.3.1). If the statistic (9.3.2) indicates high influence of the 

variables A, it should be included in the model even if the F-test indicates 
non- significance. The variance of the estimates will increase, but large 
bias, due to the high influence of the variables, will be removed. 

A second influence measure proposed by them is based on the AP- statistic, 
let 

* X 1 = [X Y] 

* * * I X2 = [X A Y] with A = A(A'A)- 2 

then the AP-statistic is defined as: 

(9.3.3) 

Alternative and computational forms of (9.3.2) and (9.3.3) involve 
factorization as in (9.2.16) and (9.2.22), yielding 

APA= (RSS - ssA)/RSS)· IA(I-X(X'x)- 1X')AI/IA'AI 

(9.3.4) 

and 

CA = SSA [A' A' AA _ 
1
] n- p 

RSS SSA p 
(9.3.5) 

where SSA is the extra sum of squares due to fitting A after X. SSA is 

similar to the Qk defined in (9.2.12), SSA= i'A{A'[I - X(X'X)- 1 X']A}- 1 A'i, 

and is the LSE of under the model (9.3.1), 

The first factor in (9.3.5) is a monotonic function of the F-statistic, as 
in (9.2.13), and is thus a measure of the statistical significance of the 
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variables. The first factor of (9.3.4) is a decreasing function of the 

F-statistic. The second factors of (9.3.4) and (9.3.5) are measures of the 

potential influence of the variables A. 

Vhen k = 1 (A:nxl) the second factor of (9.3.5) simplifies to 

[
J 'A' AA _ 

1
] = 

SSA 

EI A {A' [I- X (X I X) - 1 X'] A} - 1 A' A {A' [I- X (X I X) - 1 X'] A} - 1 A' E 

E'A{A'[I - X(X'X)- 1X']A}- 1A'E 

= A' A/ {A' [I - X ( X 'X) - 1 X ']A} - 1 (9.3.6) 

- 1 

The authors define the quantity (1 - {A' [I - X(X'X)- 1X']A}/A'A) as the 

leverage of the variable A, extending the notion of the leverage of an 
observation described in §1.7. 

The VIF associated with the variable A 1n the model (9.3.1) is given by 

= 

If A: nxl, then 

V [ A X] 

V [A] 

[
A' A A' xi- 1 

X'A X'X 11 

[A' A J 
VIF (X) = -----

A A 1 [I- X (X I X) - l X 1 ] A 
(9.3.7) 

Note that the second factor of (9.3.4) and (9.3.5), and the leverage, are 
monotonic functions of the variance inflation factor. Thus, they are also 

monotonic functions of the collinearity index associated with the variable 

A. Cook's distance and the AP- statistic therefore contain collinearity 
measures. 
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The measure of the influence of the variable A on the variance inflation 

factor is given by 

VIF dX-i I A) 
R = i , (A) VIF- (X -) 1 - 1 

V [Xi X . 
- 1 A] V[Xd V[Xd 

= 
V [Xi A] V [X] V [Xi] 

VIF i [X_ i A] 
(9.3.8) = 

VIF i [X _ d VIF i [A] 

The retention of variables with high influence seems to contradict a common 

method of handling collinearity in a regression model, namely dropping 

variables from the model. The statistics (9.3.4) and (9.3.5) take into 

account the bias of dropping a variable as well as the influence it would 

have on the estimates. In the extreme case when A is orthogonal to X its 

'dropping' will have no influence in the estimates. However when A is 

exactly or nearly collinear to some of the variables, its effect is 

confounded with a linear combination of the variables. Because collinearity 

is a group phenomenon (Stewart ( 1987)) it is dangerous to drop variables 

from the model. Using influence statistics, offers at least in some cases a 

method to 'regularize' a collinear design (Stewart ( 1987)). It should be 

empasised that the statistic (9.3.2) is a diagnostic and not a variable 
selection criterion. 

To summarize the following guidelines of Schall and Dunne (1987a) are useful 

1n applying Cook's distance for variables: 

Statistic (9.3.2) has two roles: Firstly it should be used as a new type of 

collinearity diagnostic: it indicates not only the potential for harmful 

effects of collinearity, but is also quantifies the actual influence of a 

variable. By using the decomposition of (9.3.5) the computation of (9.3.2) 
requires no extra computations when F-tests and VIF's are computed. 
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Secondly the statistic (9.3.2) can also be used for model-checking purposes. 

A small value of (9.3.2) is reassuring and in the case of a large value, 

corrective action of some sort must be considered, like mixed regression 

techniques (Belsley et al. (1980, Chapter 4)). 

9.4 Further Remarks on Influence 

Ve finally present research fields that were not covered 1n §9.1 to §9.3. 

9.4.1 Veighted Least Squares 

An influential observation can be set artificially to zero by using weighted 

least squares. In weighted least squares the modified normal equation is 

X'VX'/J = X'VY (9.4.1) 

where V = Diag[l,, ... ,1,wi,1, ... 1]. Then the i-th observation can be 

'deleted' or 'downweighted' by making wi arbitrary small. For reference to 

these techniques see Belsley et al. (1980), Cook and Veisberg (1982) and 

Cook (1986). 

9.4.2 Influence measures 1n Ridge Regression 

The notion of an influential observation in OLSE is extended to RRE by 

authors including Valker and Birch (1988), Lichtenstein and Velleman (1983) 

and Chalton (1990). Valker and Birch (1988) show that when RRE is used, the 

influence of each case changes is a function of the shrinkage parameter k. 
This change is mainly because of the behaviour of the residual as a function 
of the k value: 

ER = y Xf\ 

= Y X(X'X + kI)- 1X'Xfi (from 4.3.1) (9.4.1) 

where ER is the residual vector when the estimation is with the RRE. 
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Therefore when using RRE one could not rely on the influence measures 

obtained for OLSE (k = 0). The authors suggested that 'once the value of k 

is determined (by any method), influence measures should be computed for 

that k'. They then defined influence measures to use with RRE, by extending 

hii, DFFITS and Cook's distance to include RRE. 

The concept of subset selection in OLSE is extended to biased estimators by 

Hoerl et al. (1986). Their results indicate that there is potential in 

using biased estimation to select subsets. They recommend that when 
applying RR, suspected superfluous variables may be deleted. However they 

warn that insignificance in an LS model does not necessarily imply that a 

variable is superfluous, particularly with collinear data. 

9.5 Summary 

This chapter introduced the concept of influential points and variables. 

Methods of determining collinearity-influential points were defined and the 

concept of influence in ridge regression was introduced. 
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Chapter 10 

SIIUL!TION STUDY 

10.1 Introduction 

The purpose of this simulation study is to compare the performances of 13 

different biased estimators, as well as OLSE on the simulated data discussed 

in §10.2. In §10.3 we discuss the program, giving a summary of the 
performance efficiencies of different estimators and tabulated results in 
§10.4, and some comments on the results in §10.5. 

10.2 Data 

The simulation study of this thesis follows that of McDonald and Galarneau 

(1975) and Vichern and Churchill (1978). The data sets were obtained from 

Chalton (1990) who generated them for a simulation study in his Ph.D thesis. 

Chalton (1990), considers a five parameter model, with a sample size of 30 
and the predictor variables generated from the following relationship: 

For J = 1,2,3 and 1 = 1,2, ... ,30 
1 x .. = (1 ai)2 z .. + a1Zi6 lJ lJ (10.2.1) 

For J = 4,5 and 1 = 1, 2, ... , 30 
1 x .. = (1 - a~)2 z .. + a2Zi6 1 J 1 J (10.2.2) 

where 

(i) Zij are independent N(0,1) variates generated by the SAS-function 

RANN OR. The seeds were not recorded by Chalton ( 1990), as the 

RANNOR function derives these from the time clock of the computer. 
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(ii) The parameters a 1 and a2 determine the degree of collinearity 

between the predictor variables: Ui lS the theoretical 

correlation between any pair of the variables X1 , X2 and X3 , a1a2 

is the theoretical correlation between the variables X1 , X2 , X3 

and X4 or X5 , and a~ is the theoretical correlation between X4 and 

X5. 

Five different combinations of ai and a~ were considered, and two choices 

(orientations) of /J, suggested by Newhouse and Oman ( 1971), namely the 

eigenvectors corresponding to the largest and smallest eigenvalues, denoted 

by /JL and /Js· For these 10 combinations three different values of u where 

considered, namely 0.01, 1.0 and 5.0. 

Chalton (1990) generated the Y-vector as sets of 30 data points from the 

model (10.2.3) for each of the (10x3=30) combinations of orientations, af 
and a~ values, and variance values. 

For 1 = 1, 2, ... , 30 

(10.2.3) 

where the Xi j are unstandardized, f] 0 is zero, and the t\ are independent 

N(O,u2) variates. For the simulation study in this chapter, /J0=10 because 

we added 10 to the Y's generated by the author. For each combination of X, 

/J and u, 100 replications of the (30x1) E-vector were generated 

The eigenvalues and condition numbers corresponding to the five different 

combinations of ai and a~ are shown in Table 10.1. and the coefficients of 

/JL and /JS are shown in Table 10.2. 
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10.3 Estimation Programs 

The program to obtain the different estimates is given rn appendix B. It 

was written in Fortran 5 and ran on a PC. Double precision was used 

throughout although we have found in trial runs that it did not make much of 

a difference. The X matrix was first standardized before any calculations 

were performed, then the SVD was computed. After any particular 

standardized estimate was obtained we transformed back to unstandardized 

parameter estimates before calculating the particular statistic of interest, 

as discussed later. 

The SVD and the OLSE' s were computed by using the subroutine SVDCMP and 

SVBKSB of Press et al. (1985). To obtain all the biased estimates, SVBKSB 

was modified for each particular estimation procedure. 

One set of data (for one response vector Y) was run for comparative purposes 

by Dr. D. Chalton on an IBM4381 using SAS. The results for 12 of the 14 

estimators were basically the same as those obtained with Fortran (agreeing 

to 6 and even 8 digits in estimating the 4 leading decimal digits of the 

P's. For the two estimators FGRPC1 and FGRPC2 (to be explained below), we 

found that the estimates differ from the third and sometimes the second 

digit. 

To avoid dividing by zero in these last two estimation procedures (FGRPC1 

and FGRPC2) the ki 's were flagged as soon as the delta's ( 8' s) became 

smaller than 10- 1 0 and rn the subroutine that calculates the estimators, 

the delta's was then set equal to zero. 

The criterion of observed TMSE was used as a basis for comparing estimators, 

and the comparisons were effected by means of ratios. 

The program in appendix B was tailored to find the summary statistics given 

in §10.4 and in the final runs only these statistics are printed. For 

those users wanting the estimates the obvious print lines should be added 
and the program should be modified to suit their needs. 
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10.4 Simulation Results 

The definitions of the 14 estimators used are found 1n previous Chapters, 

especially the summary tables in Chapter 8. In Table 10.3 various 

abbreviations are explained. The FPC estimators require further 

clarification. In Chapter 5 the fractions for the FPCI and FPCV estimators 

(5.2.15) and (5.2.17) were described as iterative estimators. Because Lee 

and Birch (1988) observed that a 1-step version of both (5.2.15) and 

(5.2.17) exhibited already improved estimation properties over other biased 

estimators we considered only the following non-iterative FPC estimators: 

FGRPC1: one step version of FPCI estimator, in (5.2.15) the [b'K(t)Jf is 

replaced by [b'Pc]j, where the vector 8 consists of the 8's of the PC1 

estimator, and where s 2 is the estimate of IT; usrng the PC1 estimator. 

Basically then FGRPC1 1s the GRRE, where ki is estimated with the S's and s2 

of the PC1 estimators instead of the OLSE's as used by Hoerl, Kennard and 
Baldwin. 

FGRPC2: the same as FGRPC1, but instead of using known PC1 estimates, we 

used the known PC2 estimates. 

FRPC1 and FRPC2: similar to the ridge estimation procedure, but instead of 

using Hoerl, Kennard and Baldwin's k, we now estimate k and s2 using the PC1 

and PC2 estimators. These procedures are one step versions of (5.2.17). 

The performance of each estimator over the thirty combinations and the 100 

repetitions was summarized by computing 

5 1 0 0 

E E (Pj i - /Jj ) 2 (10.4.1) 
j =1 i=l 

where Pj i is the j-th element of P, the estimate of /3 in the i-th 
repetition. The results of this simulation study are given in Tables 10.4, 

10.5, and 10.6 for IT= 0.01, 1.0 and 5.0 respectively. The evaluations are 
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based on the relative efficiency of each estimator compared to jJ. Thus the 

tabulated relative efficiency values are 

5 100 5 100 

E E (fij i - /Jj ) 2 
/ E E (,Bj i - /Jj ) 2 (10.4.2) 

j=l i=l j=l i=l 

where ,8 is one of the estimators given in Table 10.3. Entries marked with a 

**, are very small values (~ 0.0007). 
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Table 10.1: Eigenvalues and condition numbers of X'X (Xis standardized). 

Correlations eigenvalues of X'X: Ai 
ai:a~ (without fi0) 

.99:.99 (4.920,0.026,0.021,0.013,0.011) 

.99:.10 (3.157,1.128,0.668,0.031,0.016) 

.90:.90 (4.215,0.430,0.154,0.126,0.075) 

.90:.10 (2.755,1.215,0.173,0.168,0.148) 

.70:.30 (2.283,1.049,0.871,0.496,0.301) 

Table 10.2: P used in generating Y 

Correlations 
a2. a2 

1 ' 2 fi I Eigenvectors of X'X 

.99:. 99 fi I 

L 
[ 0.4474 0.4473 0.4481 

fi I s [ 0.2846 0.4760 - 0. 8302 

.99: .10 fi' L 
[ 0.5534 0.5542 0.5510 

fi I s [-0.7755 0.1675 0.6084 

.90: .90 fi I 

L 
[ 0.4125 0.4547 0.4649 

fi I s [ 0.1821 - 0. 3973 0.5673 

.90: .10 fi I 

L 
[ 0.5634 0.5489 0.5644 

fi' s [-0.0162 0.6908 -0.7051 

. 70: .30 fi I 

L 
[ 0.5177 0. 5611 0.5226 

fi I s [- 0. 6600 0.7049 0.0099 

condition number 

A1/As 

0.4470 

0.0548 

0 .1705 

0.0190 

0.4383 

0.3037 

0.2354 

0.0655 

0.0286 

0.1956 

435 

201 

56 

19 

8 

0 .4463] 

0.0163] 

0. 2323] 

-0.0094] 

0. 4636] 

-0.6284] 

0.0862] 

0.1451] 

0. 3785] 

-0.1708] 
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Table 10.3 Estimators and abbreviations 

OLS Ordinary least squares estimator 

RHK Ridge regression, k is estimated via Hoerl, Kennard and Baldwin 

RLY Ridge regression, k is estimated via Lawless and Yang 

GRHK Generalized ridge regression, K is estimated via Hoerl, Kennard 

and Baldwin 

GRCAS Generalized ridge regression, K is estimated via Troskie 

AUGRR almost unbiased generalized ridge regression 

AUORR almost unbiased operational ridge regression 
PC1 principal component regression, delete the smallest singular value 

PC2 principal component regression, delete the two smallest singular 

values 

FGRPC1 one step version of FPCI estimator, where the OLSE is replaced by 

the PC1 estimator. 

FGRPC2 one step version of FPCI estimator, where the OLSE is replaced by 

the PC2 estimator. 

FRPC1 one step version of FPCV estimator, where the OLSE is replaced by 

the PC1 estimator. 
FRPC2 one step version of FPCV estimator, where the OLSE is replaced by 

the PC2 estimator. 

SHE shrinkage estimator 
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Table 10.4 Relative efficiencies of biased estimators to OLSE (u = 0.01) 

Combinations of correlations and orientations of the (J's 

a2. a2 
1 • 2 99:99 99:10 90:90 90:10 70:30 

(J (JL (JS (JL (JS (JL (JS (JL (JS (JL (JS 

OLS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

RHK 1. 00 0.99 1.00 0.99 1. 00 1.00 1.00 1. 00 1. 00 1.00 

RL\I 1.00 0.07 1.00 0.05 1.00 0.94 1.00 0.99 1.00 1.00 

GRHK 1.35 1.33 1.37 1.03 1.05 0.99 0.84 0.93 0.97 0.96 

GRCAS 1.32 1. 25 1.33 1.05 1.04 1. 01 0.89 0.97 0.97 1.00 

AUGRR 1.11 1.14 1.10 1.00 1.04 0.98 0.93 0.95 1.00 0.96 

AUORR 1. 33 0.93 1.38 0.89 1.00 0.99 1. 01 1.00 1.00 1.00 

PCl 0.78 ** 2.49 ** 0.03 ** 0.24 ** 0.04 ** 
PC2 0.91 ** 1.56 ** 0.03 ** 0.05 ** 0.01 ** 
FGRPCl 0.96 ** 2.41 ** 0.03 ** 0.24 ** 0.04 ** 
FGRPC2 1.01 ** 1.56 ** 0.03 ** 0.05 ** 0.01 ** 
FRPCl 1.00 ** 1.00 ** 1.00 ** 1.00 ** 1.00 ** 
FRPC2 1.00 ** 1.00 ** 1.00 ** 1.00 ** 1.00 ** 
SHE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 10.5 Relative efficiencies of biased estimators to OLSE (u = 1.0) 

Combinations of correlations and orientations of the P's 
a2.a2 

1 · 2 99:99 99:10 90:90 90:10 70:30 
p PL Ps PL Ps PL Ps PL Ps PL Ps 

OLS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
RHK 3.43 2.88 4.52 3.08 2.49 1.45 2.13 1.14 1.47 0.86 

RL'J 6.45 7.65 10.82 5.20 1.88 1.30 1. 73 0.91 1.28 0.65 
GRHK 2.23 1.98 2.16 1. 76 2.03 1.39 2.12 1.26 1.94 1.33 
GRCAS 1. 75 1.65 1. 72 1.54 1.66 1. 35 1. 70 1.25 1.61 1. 25 
AUGRR 1. 39 1. 32 1. 36 1. 23 1. 31 1.12 1.34 1.08 1.30 1.16 
AUORR 4.26 3.21 6.31 3.61 3.75 1.47 3.22 1.13 1.98 0.76 
PC1 1.59 1.41 2.90 1. 79 1. 79 0.67 1. 78 0.47 1.48 0.24 
PC2 2.85 2.24 49.55 4.67 2.95 0.83 5.15 0.57 2.32 0.25 
FGRPC1 3.58 2.73 6.05 2.67 3.83 0.85 3.61 0.55 2.76 0.26 
FGRPC2 6.66 3.86 93.90 4.90 6.08 0.96 9.34 0.61 3.95 0.27 
FRPC1 5.05 4.21 10.36 4.26 3.46 1.24 2.55 0.79 1.57 0.37 
FRPC2 9.07 5.53 40.05 5.07 4.15 1.18 3.15 0.68 1.64 0.33 
SHE 2.52 2.48 2.02 2.01 1.60 1.56 1.41 1.23 1.20 1.04 
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Table 10.6 Relative efficiencies of biased estimators to OLSE (u = 5.0) 

Combinations of correlations and orientations of the P's 

a2-a2 
1 • 2 99:99 99:10 90:90 90:10 70:30 

p PL Ps PL Ps PL Ps PL Ps PL Ps 

OLS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

RHK 3.40 3.81 4.49 5.59 3.64 3.66 3.35 3.57 2.59 2.43 

RL\f 360.75 162.19 79.16 61.83 12.68 14.59 6.61 7.16 2.99 3.05 
GRHK 1. 98 2.09 1. 97 2.12 2.14 2.20 1.98 2.21 1.83 1.84 
GRCAS 1.64 1. 70 1.64 1. 71 1. 71 1. 74 1.64 1. 76 1.57 1.58 
AUGRR 1. 31 1.32 1. 29 1. 31 1. 35 1. 36 1.30 1.38 1.25 1.28 
AUORR 4.14 4.56 5.95 7.40 4.21 4.09 3.91 3.94 2.95 2.62 
PCl 1.65 1. 58 2.45 3.13 1. 77 1.66 1.64 1.65 1.45 1.18 
PC2 3.41 3.19 50.07 35.37 3.32 3.30 5.18 3.75 2.50 1.97 
FGRPCl 3.41 3.38 4.47 6.40 3.83 3.56 3.12 3.34 2.59 2.00 
FGRPC2 7.46 7.39 85.81 56.71 7.18 6.91 9.03 6.24 4.28 3.10 
FRPCl 6.05 6.48 9.93 14.43 6.50 6.13 5.02 5.37 3.57 3.02 
FRPC2 14.81 16.22 128.40 75.83 12.37 10.80 12.17 8.86 5.33 4.36 
SHE 2.70 2.99 2.39 2.65 2.87 2.99 2.57 2.94 2.40 2.48 
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10.5 Discussion of the results 

Features of Tables 10.4 - 10.6 are: 

1. From Table 10.4 we note that the OLSE performs satisfactorily when the 

collinearity is modest (< 56). As the collinearity increases a slight 

improvement over OLS was obtained by GRHK, GRCAS, AUG RR and AU ORR 

( except for the second orientation of (J). The PC1, PC2, FGRPC1, 

FGRPC2, FRPC1 and FRPC2 perform disastrously for the 2-nd orientation 

of the (J's (the (J's corresponding to the smallest eigenvalue of X1 X). 
Only for the 99:10 combination did PC1, PC2, FGRPC1, FGRPC2, FRPC1 and 

FRPC2 perform clearly better than the OLS. 
2. As (J increases the relative efficiency of estimators increased with 

respect to the OLSE except for combinations 90:90, 90:10 and 70:30, 

under orientation 2, in Table 10.5, where we again picked up the 

disastrous pattern of Table 10.4. 

3. l.1e observed the same pattern that Lee and Birch (1988) noted: The 

efficiencies of FPC estimators are proportional to the efficiencies of 

the PC1 and PC2 estimates. Furthermore when (J ~ 1. 0 the fractional 

generalized ridge estimators (FGRPC1 and FGRPC2) outperformed the 

generalized ridge estimators. The fractional ridge estimators (FRPC1 

and FRPC2) were also better relative to OLSE than the RHK estimators 

but for the RLl.1 estimators a 'see-saw' situation is noted. 

4. l.1hen (J = 5 some of the biased estimators ( e.g. RLl.1 and FRPC2) appears 

to be exceptionally good. Further investigation with respect to the 

different orientations and combinations may explain this phenomenon. 

5. The AUORR estimator generally performs better than RHK for (J = 1.0 and 

5. 0. Contradicting Nomura ( 1988) we found that AU ORR is not better 

than RLl.1 for (J = 1. l.1hen (J = 5 RLl.1 outperforms AUORR relative to OLS. 

RLl.1 was always better (except for 3 orientations) than RHK relative to 

OLS. 

6. l.1e found that the AUGRR was always inferior to the GRRE (both GRHK and 

GRCAS). This phenomenon was also found by Ohtani (1986). 
7. The shrinkage estimators were always similar to or relatively better 

than OLSE, but rather inferior to other biased estimators. 
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8. In conclusion then: among the biased estimators, no single estimator 

appears to dominate the others, 1n terms of TMSE, across all 

conditions. 

10.6 Recommendations and further research 

According to Belsley et al. (1980) the above collinearity indices (.J,f35, 

,/201, ... , ../8), are generally weak with perhaps one being moderate. For 

further research we recommend that at least one higher collinearity index 

(say near 100) should be included. Though the results obtained in this 

simulation suggest the biased estimators are more efficient than OLS, we 

seek to compare such estimators under a variety of combinations. 

The extremely small values in Table 10.4 and 10.5 should be explored as well 

as the extremely high values in Table 10. 6. Furthermore fixing the 1: i 

vector across various (J's, the sampling distributions of /Ji for each (J, 

sampling distributions of 
5 

~ (/J. - /3·) 2 for each (J and the estimated 
J J 

j = 1 

covariance of /Ji should be investigated. 

In this simulation study we do not report {3 0 , as {3 0 is simply estimated as 

the mean of the Y vector in the case of the biased estimators, following a 

practice used elsewhere in the literature. 

10.7 Summary 

This chapter consisted of a simulation study and its general findings. The 

data, the program and the results were given and discussed, and areas for 

further research were described. Generally it appears that no biased class 

of estimators consistently outperforms other classes on the criterion of 

relative eff icency. Specific conditions seem to be associated with the 

optimality of specific estimators, but it is not yet possible to define 

those conditions. 
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Appendix A 

USEFUL FORIULAE AND DERIVATIONS 

A.l If x N N(µ,V) then for A symmetric and conformable 

E(x'Ax) = tr(AV) + µ'Aµ 

V(x'Ax) = 2tr(AV) 2 + 4µ'AVAµ 

(Searle (1971, ppSS-57)) 

A.2 Let A be an nxn matrix with eigenvalues A1 ,A 2 , ••• An, then 

tr(A) = E Ai. 

If A is symmetric and Ai > 0 Vi 

(Graybill (1969, pp223-225)) 

A.3 Let A be an nxn symmetric matrix with eigenvalues 

A-1 

Let k be an integer, 1 < k < n. Let B be the (n-1) x (n-1) symmetric 

matrix obtained by deleting the k-th row and column from A. Then the 

ordered eigenvalues Pi of B interlace with those of A as follows: 

(Lawson and Hanson (1974, p24) and the proof can be found 1n Vilkinson 

(1965, pp99-109)). 
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A.4 Let A = [a 1 ••• ap] be a column partitioning of A:mxp, and denote the 

i-th singular value of A by ui (A). If Ar = [a 1 ••• arJ then for 
r = 1, ... ,p-1 

Equivalently, adding a column to a matrix increases the largest 

singular value and diminishes the smallest (Golub and Van Loan (1983, 

p286). 
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Appendix B 

PROGR!I 

The program code is given rn this appendix. Some of the comments and 

documentation were added using T3 to relate the programming to the 

development of the theory in Chapters 1 to 10. The program-code is printed 

in bold and the comments unbold. Various abbreviations for the estimators 

were summarized in Table 10.3 of Chapter 10. It is suggested that §10.3 

should be read with this program. 

*************************************************************************** 
* 

* 

IA.IN PROGR!I 

* !II OF THIS PROGR!I 

* 

* This program computes the 14 estimators for the simulation study of 

* Chapter 10. The estimation of the TISE for 5 regression coefficients 
* 

* 

* 
* 

* 

* 

* 

is computed for each estimator and summed over 100 replicate samples. 

DESCRIPTION OF THE VARIABLES 

lost variable names are self-explanatory. Comments are added after 

the declaration statements, vhere necessary or useful. 

* 

* 

* 

* 

* 

* 
* 

* 

* 

* 

* 

* 

* 
*************************************************************************** 

C Declaration of variables 

parameter (maxr=30,maxc=7) physical row/column dimension 
character*14 FNAIE input data file 

character*14 OUTFN! output data file 

double precision XSI1(30,105) simulated data matrix 
double precision X(maxr,maxc) unstd X, without a column of ones 
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double precision TEIPX(maxr,maxc) 
double precision STDX(maxr,maxc) 
double precision Y(maxr) Y-vector 

unstd X, with a column of ones 
std X matrix (correlation form) 

double precision U(maxr,maxc), Y(maxc), V(maxc,maxc) 
double precision UU(maxr,maxc), UY(maxc), UV(maxc,maxc) 

SVD std X 
SVD unstd X 

double precision TY(maxc) Ai 's, smallest set equal to O for PC 

double precision DELTA(maxc) 8 

double precision B(maxc) std p 
double precision BU(maxc) unstd P 
double precision AVE(maxc) vector - means of columns of X 
double precision SS(maxc) vector - sums of squares of columns of X 

double precision C(maxr) vector send to SVDSORT 
double precision BB(maxc) Vector send to SVDSORT 
double precision RES(maxr) 

double precision KPC1(maxc),KPC2(maxc) K, via PC1/PC2 

double precision KHK(maxc) K via HKB 

double precision KC!S(maxc) K via Troskie 

double precision sse, ssepc1, ssepc2 ~ via OLS/PC1/PC2 
double precision TEIPB(maxc) 

double precision faclw k via Lawless and Vang 

double precision fachk k via Hoerl, Kennard and Baldwin 

double precision hkpc2, hkpc1 k via PC2/PC1 

double precision nomura 
double precision sinf 

k via Nomura 
flag, marking infinity 

double precision meany mean of Y 
double precision F Fused in Troskie's method 

double precision shrink shrinkage factor 
double precision sum 

double precision stemp P'P 
double precision tmse trace of variance of OLSE 
double precision tbeta(maxc) p 



double precision sols{max:c), sauorr(max:c) 

double precision srhk{max:c), srlw{max:c) 

double precision sgrhk(max:c), sgrcas(max:c) 

double precision saugrr(max:c), ssh{max:c) 

double precision spc1{max:c), spc2{max:c) 

double precision sfgrp1{max:c), sfgrp2{max:c) 

double precision sfrpc1{max:c), sfrpc2{max:c) 

double precision tols, trhk 

double precision rlw, tgrhk 

double precision tgrcas, taugrr 

1 0 0 _ 

~ (/3ij-/h) 2 

j = 1 

for i = 1, ... ,5 

double precision tpc1, tpc2 

double precision tfgrp1, tfgrp2 

double precision tfrpc1, tfrpc2 

double precision tauorr, tssh 

5 1 0 0 _ 

~ ~ (/3ij-/3i) 2 

i = 1 j = 1 

real tsigma u = 0.1 or 1.0 or 5.0 

integer N,P,I,l,1,R1,C1,R2,C2,R,rep 

C Read in file names 

write{*,*) 'Enter filename as name.dat, 1-14 characters' 

read {*,85) FNAIE 

85 format (!14) 

write(*,*) 'Enter output filename as name.out, 1-14 characters' 

read (*,85) OUTFNA 

C Set logical dimension of matrix, and define value near infinity 

C Note: change here for new data sets, or change program to read 1n 
C these dimensions. 

N = 30 

p = 6 

sinf = 1. Od-10 

B-3 



C Open files, output file exist, change here if either is a new file 

open (15, file=FNAIE, status='OLD') 
open (16, file=OUTFNA, status='OLD') 

C Read true sigma and betas, and write to output file 

write(16,85) OUTFNA 
read (15,*) tsigma 
write(16,*) 'This are the results of ' FNAIE 
write(16,*) 'sigma=', tsigma 
read(15,*) (tbeta(i),i = 2,6) 
write(16,*) 'True betas' 
write(16,*) (tbeta(i),i = 2,6) 
tbeta(1) = dble(10.0) 

C Set trace sums for the 14 estimators equal to zero 

do 10 i = 1,p 
sols(i) = dble(O.O) 
srhk(i) = dble(O.O) 
srlw(i) = dble(O.O) 
sgrhk(i) = dble(O.O) 
sgrcas(i) = dble(O.O) 
saugrr(i) = dble(O.O) 
sauorr(i} = dble(O.O} 
spc1(i} = dble(O.O) 
spc2(i) = dble(O.O) 
sfgrp1(i) = dble(O.O) 
sfgrp2(i) = dble(O.O) 
sfrpc1(i) = dble(O.O) 
sfrpc2(i) = dble(O.O) 
ssh(i} = dble(O.O} 

10 continue 
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C Read in simulated data matrix 

do 90 i = 1,N 
read(15,*) (XSil(i,l), 1 = 1,105) 

90 continue 

C Add a column of ones to the TEIPX matrix and copy the other columns to I 

do 92 i = 1,N 
TEIPX(i,1) = dble(1.0) 
do 91 j = 2,P 

TEIPX(i,j) = XSil(i,(100 + j -1)) 
X(i,j-1) = TEIPX(i,j) 

91 continue 
92 continue 

c lake a copy of TEIPX into UU 

CALL COPY (TEIPX, UU, maxr, maxc, N, P) 

c Compute the SYD, unsorted 

CALL SVDCIP(UU, N, P, maxr, maxc, UV, UV) 
write(16,*) 'SVDCIP COIPUTED UNSTANDARDIZED IATRIX' 

C Sort the SYD 

CALL SVDSORT(UU, UV, UV, N, P, maxr, maxc, C, BB) 

C Standardize the matrix, and get back STDX 

IP= P 
p = p - 1 

CALL STAND(X, maxr, maxc, N, P, STDX, AVE, SS) 



C 

C 

C 

Copy STDI into U 

CALL COPY(STDI, U, max:r, max:c, N, P) 

Decompose matrix U 

CALL SVDCIP(U, N, P, max:r, max:c, V, V) 

Sort the SYD 

CALL SVDSORT(U, V, V, N, P, max:r, max:c, C, BB) 
write(16,*) ' singular values of std I' 
write (16,*) (Y(j), j=1,P) 

C Split the Y and I part in ISII 
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C SYD is computed, pick up all the Y's (100 Y-vectors), and calculate the 
C corresponding estimators, and efficiency totals 

do 500 rep= 1,100 
meany = dble(O.O) 

do 94 i = 1,N 
* calculate the mean of Y 

Y(i) = ISil(i,rep) + dble(10.0) 
meany = meany + Y(i) 

94 continue 
meany = meany/dble(N) 

C Compute the OLS estimator, using the SYD of the unstandardized I matrix 

CALL SVBISB(UU, UV, UV, N, IP, max:r, max:c, Y, B) 
do 100 i = 1,IP 

sols(i) = sols(i) + (B(i) - tbeta(i))**2 
100 continue 



C Compute the estimate of sigma (DLS), unstandardized I 

CALL SIGIA(TEIPX, max.r, max.c, N, IP, Y, B, RES, sse) 

C Compute shrinkage estimator from unstandardized data using the din 
C equation (5.1.10) 

tmse = DBLE(O.O) 
stemp = DBLE(O.O) 

do 110 i = 2,IP 
stemp = stemp + B(i)**2 
tmse = tmse + DBLE(1)/(UV(i)**2) 

110 continue 
shrink= stemp/((sse * tmse) + stemp) 
do 125 i = 1,IP 

ssh(i) = ssh(i) + ((B(i) * shrink) - tbeta(i))**2 
125 continue 

C Compute the OLS estimator - from standardized I matrix 

CALL SVBKSB(U, V, V, N, P, max.r, max.c, Y, B) 

C Compute the DELTA'S - OLS 

CALL VTBETA(V, max.c, B, P, DELTA) 

C Compute the I and k values for RRE, GRRE, and the others 

nomura = DBLE(O.O) 
do 200 i=1,p 

Klll(i) = sse/(delta(i)**2) 
F = ((w(i)**2) * (DE1TA(i)**2))/sse 
KCAS(i) = (w(i)**2)/(DBLE(1) + F) 
sum= DSQRT(DBLE(1) + ((V(I)**2)*(DELTA(I)**2))/sse) 
nomura = nomura + (DELTA(I)**2)/(DBLE(1) + sum) 
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200 continue 
nomura = DBLE(P) * sse/nomura 

C Compute the Hoerl, Kennard and Baldwin and the Lawless and Vang constant 

fachk = DBLE(O.O) 
faclw = DBLE(O.O) 
do 220 i = 1,P 

fachk = fachk + B(i) ** 2 
faclw = faclw + (DELTA(i)**2) * (V(i)**2) 

220 continue 
fachk = (DBLE(P) * sse)/fachk 
faclw = (DBLE(P) * sse)/faclw 

C Compute the PC estimators, by setting the smallest singular value equal 
C to O for PC1 

do 250 1 = 1,4 

TY(i) = Y(i) 
250 continue 

TY(S) = DBLE(O.O) * set smallest singular value to zero 

C Compute PC1 estimator 

CALL SVBKSB(U, TY, V, N, P, maxr, maxc, Y, B) 

C Compute the estimate of sigma via PC1 

CALL SIGIA(STDX, maxr, maxc, N, P, Y, B, RES, ssepc1) 

ssepc1 = DBLE(n-p) * ssepc1 - DBLE(N) * (meany**2) correct for Y 
ssepc1 = ssepc1/(DBLE(N-P-1)) 



C Compute the ridge constant, k, using PC1 estimator 

hkpc1 = DBLE(O.O) 
do 260 i = 1,P 

hkpc1 = hkpc1 + B(i)**2 
260 continue 

hkpc1 = DBLE(p) * ssepc1/hkpc1 

C Unstandardize the PCE's and compute efficiency 

CALL BETA(SS, AVE, B, BU, maxc, P, meany) 
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do 262 i = 1,(P+1) here Po-fi was also computed, but not used 
spc1(i) = spc1(i) + (BU(i) - tbeta(i))**2 

262 continue 

C Compute the deltas (V'b) to obtain the constants for fractional 
- -

C rank estimators 8 = V'fipc 

CALL VTBETA(V, maxc, B, P, DELTA) 

C Compute vector K, using PC1 estimator 

do 280 i = 1,P 

if ((DELTA(i)**2).ge.sinf) then 

KPC1(i) = ssepc1/(DELTA(i)**2) 
else 

KPC1(i) = DBLE(9999.9) 
endif 

280 continue 

C Set the second smallest eigenvalue equal to zero 

TV(4) = DBLE(O.O) 



C Compute the PC2 estimator 

CALL SVBISB(U, TV, V, N, P, maxr, maxc, Y, B) 

C Compute the estimate of sigma using PC2 estimator 

CALL SIGIA(STDI, maxr, maxc, N, P, Y, B, RES, ssepc2) 
ssepc2 = DBLE(N-P)*ssepc2 - DBLE(N) * (meany**2) 
ssepc2 = ssepc2/(DBLE(N-P-1)) 

C Compute k, using PC2 

hkpc2 = DBLE(O.O) 
do 290 i = 1,P 

hkpc2 = hkpc2 + B(i)**2 
290 continue 

hkpc2 = DBLE(P) * ssepc2/hkpc2 

C Compute the V'b for PC2 

CALL VTBETA(V, maxc, B, P, DELTA) 

C Compute the vector I using PC2 

do 330 i = 1,P 
if ((DELTA(i)**2).ge.sinf) then 

IPC2(i) = ssepc2/(DELTA(i)**2) 
else 
IPC2(i) = DBLE(9999.9) 

endif 
330 continue 
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C Unstandardize the PCE's and compute efficiency 

CALL BETA(SS, AVE, B, BU, maxc, P, meany) 
do 335 i = 1,(P+l) 

spc2(i) = spc2(i) + (BU(i) - tbeta(i))**2 
335 continue 
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C Compute the ridge estimators - using k of Hoerl, Kennard and Baldwin 

CALL RIDGE(U, Y, V, N, P, maxr, maxc, Y, B, fachk) 

C Unstandardize the RHIB estimators and compute efficiency 

CALL BETA(SS,AVE,B,BU,IAXC,P,meany) 
do 345 i = 1,(P+l) 

srhk(i) = srhk(i) + (BU(i) - tbeta(i))**2 
345 continue 

C Compute the ridge estimators - using k of Lawless and Yang 

CALL RIDGE(U, Y, V, N, P, maxr, maxc, Y, B, faclw) 

C Unstandardize the ridge estimators and compute efficiency 

CALL BETA(SS, AVE, B, BU, maxc, P, meany) 
do 355 i = 1,(P+l) 

srlw(i) = srlw(i) + (BU(i) - tbeta(i))**2 
355 continue 

C Compute the GRRE via Hoerl, Kennard and Baldwin 

CALL GRRE(U, Y, V, N, P, maxr, maxc, Y, B, lhk) 



C Unstandardize GRRE and compute efficiency 

CALL BETA(SS, AVE, B, BU,maxc, P, meany) 
do 365 i = 1,(P+t) 

sgrhk(i) = sgrhk(i) + (BU(i) - tbeta(i))**2 
365 continue 

C Compute the GRRE via Troskie 

CALL GRRE(U, Y, V, N, P, maxr, maxc, Y, B, leas) 

C Unstandardize GRRE and compute efficiency 

CALL BETA(SS, AVE, B, BU, maxc, P, meany) 
do 375 i = 1,(P+1) 

sgrcas(i) = sgrcas(i) + (BU(i) - tbeta(i))**2 
375 continue 

C Compute the AUORR estimator, via nomura 

CALL AUORR(U, V, V, N, P, maxr, maxc, Y, B, nomura) 

C Unstandardize AUORR and compute efficiency 

CALL BETA(SS, AVE, B, BU, maxc, P, meany) 
do 385 i = 1,(P+t) 

sauorr(i) = sauorr(i) + (BU(i) - tbeta(i))**2 
385 continue 
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C Compute the AUGRR estimator where estimate of I is via Hoerl, Kennard and 
C Baldwin 

CALL AUGRR(U, Y, V, N, P, maxr, maxc, Y, B, Khk) 



C Unstandardize AUGRR and compute efficiency 

CALL BETA(SS, AVE, B, BU, maxc, P, meany) 

do 395 i = 1,(P+1) 

saugrr(i) = saugrr(i) + (BU(i) - tbeta(i))**2 
395 continue 

C Compute FPC estimator, using GRR, where I is estimated by PC1 

CALL GRRE(U, Y, V, N, P, maxr, maxc, Y, B, lpc1) 

C Unstandardize the FPCI estimator, and compute efficiency 

CALL BETA(SS, AVE, B, BU, maxc, P, meany) 
do 400 i = 1,(P+1) 

sfgrp1(i) = sfgrp1(i) + (BU(i) - tbeta(i))**2 
400 continue 

C Compute the FPC estimator, using GRR, where I is estimated by PC2 

CALL GRRE(U, Y, V, N, P, maxr, maxc, Y, B, lpc2) 

C Unstandardize the FPCI estimator, and compute efficiency 

CALL BETA(SS, AVE, B, BU, maxc, P, meany) 

do 410 i = 1,(P+1) 

sfgrp2(i) = sfgrp2(i) + (BU(i) - tbeta(i))**2 
410 continue 

C Compute the FPC estimator, using RR, where k is estimated using PC1 

CALL RIDGE(U, Y, V, N, P, maxr, maxc, Y, B, hkpc1) 
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C Unstandardize the FPCV estimator, and compute efficiency 

CALL BETA(SS, AVE, B, BU, maxc, P, meany) 
do 420 i = 1,(P+1) 

sfrpc1(i) = sfrpc1(i) + (BU(i) - tbeta(i))**2 
420 continue 

C Compute the FPC estimator, using RR, where k is estimated using PC2 

CALL RIDGE(U, V, V, N, P, maxr, maxc, Y, B, hkpc2) 

C Unstandardize the FPCV estimator, and compute efficiency 

CALL BETA(SS, AVE, B, BU, maxc, P, meany) 
do 430 i = 1,(P+1) 

sfrpc2(i) = sfrpc2(i) + (BU(i) - tbeta(i))**2 
430 continue 
500 continue 

C Set sum of traces (over 5 regression coefficients) for the relevant 
C estimators equal to zero 

tols = DBLE(O.O) 
trhk = DBLE(O.O) 
trlw = DBLE(O.O) 
tgrhk = DBLE(O.O) 
tgrcas = DBLE(O.O) 
taugrr = DBLE(O.O) 
tauorr = DBLE(O.O) 
tpc1 = DBLE(O.O) 
tpc2 = DBLE(O.O) 
tfgrp1 = DBLE(O.O) 
tfgrp2 = DBLE(O.O) 
tfrpc1 = DBLE(O.O) 
tfrpc2 = DBLE(O.O) 
tssh = DBLE(O.O) 
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C Compute the efficiency totals for the different biased estimators 

do 550 j = 2,6 

tols = tols + sols(j) 

trhk = trhk + srhk(j) 
trlv = trlv + srlv(j) 
tgrhk = tgrhk + sgrhk(j) 

tgrcas = tgrcas + sgrcas(j) 
taugrr = taugrr + saugrr(j) 

tauorr = tauorr + sauorr(j) 

tpc1 = tpc1 + spc1(j) 

tpc2 = tpc2 + spc2(j) 

tfgrp1 = tfgrp1 + sfgrp1{j) 
tfgrp2 = tfgrp2 + sfgrp2{j) 
tfrpc1 = tfrpc1 + sfrpc1{j) 
tfrpc2 = tfrpc2 + sfrpc2(j) 

tssh = tssh + ssh(j) 
550 continue 
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C Vrite the efficiency and the relative efficiency ratio to output file 

vrite{16,555) tols, tols/tols 
555 format (' OLS', T10, 2F15.8) 

vrite(16,565) trhk, tols/trhk 
565 format(' RHI', T10, 2F15.8) 

vrite(16,575) trlv, tols/trlv 

575 format{' RLV', T10, 2F15.8) 

vrite{16,585) tgrhk, tols/tgrhk 

585 format {'GRHI', T10, 2F15.8) 

vrite{16,595) tgrcas, tols/tgrcas 

595 format {'GRCAS', T10, 2F15.8) 

vrite(16,605) taugrr, tols/taugrr 
605 format ('AUGRR', T10, 2F15.8) 

vrite(16,615) tauorr, tols/tauorr 
615 format ('AUORR', T10, 2F15.8) 

vrite{16,625) tpc1, tols/tpc1 



625 format ('PC1',T10, 2F15.8) 

write(16,635) tpc2, tols/tpc2 

635 format ('PC2', T10, 2F15.8) 

write(16,645) tfgrp1, tols/tfgrp1 

645 format ('FGRPC1', T10, 2F15.8) 

write(16,655) tfgrp2, tols/tfgrp2 
655 format ('FGRPC2', T10, 2F15.8) 

write(16,665) tfrpc1, tols/tfrpc1 
665 format ('FRPC1', T10, 2F15.8) 

write(16,675) tfrpc2, tols/tfrpc2 
675 format ('FRPC2', T10, 2F15.8) 

write(16,685) tssh, tols/tssh 

685 format ('SHE', T10, 2F15.8) 

close (16) 
CLOSE (15) 
END * End of main program * 
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SUBROUTINE AUGRR (U, V, V, rows, col, max:r, max:c, Y, BETA, K) 

C This subroutine computes the AUGRR estimator and is the same as SVBKSB 
C except for a change in the root part. The comments under SVBKSB are also 
C relevant here. The vector I is input value. 

11 

parameter (nmax: = 100) 
double precision U(max:r,max:c), V(max:c), V(max:c,max:c) 
double precision Y(max:r), BETA(max:c) 
double precision TIP(nmax:), S 
double precision K(max:c) 
integer rows, col 

do 12 j = 1,col 
S = DBLE(O.O) 
if (V(j).NE.DBLE(O.)) then 

do 11 i = 1,rows 
S = S + U(i,j) * Y(i) 

continue * note change to SVBKSB is done here* 

S = S * (V(j)*(DBLE(1.0)+K(j)/(V(j)**2+K(j)))/(V(j)**2+K(j))) 
endif 
TIP(j) = S 

12 continue 
do 14 J = 1,col 

S = DBLE(0.0) 
do 13 jj = 1,col 

S = S + V(j,jj) * TIP(jj) 
13 continue 

BETA(j) = S 
14 continue 

return 
end 
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SUBROUTINE !UORR (U, Y, V, rows, col, maxr, maxc, Y, BET!, re) 

C This subroutine computes the !UORR estimator and is the same as SVBKSB 
C except for a change in the root parts (in SVBKSB we change the Spart). 
C The comments under SVBKSB are also relevant here. The ridge constant 
C is denoted by re. 

11 

parameter (nmax = 100) 
double precision U(maxr, maxc), Y(maxc), V(maxc,maxc) 
double precision Y(maxr), BET!(maxc) 
double precision TIP(nmax), S 
double precision re 
integer rows, col 

do 12 j = 1,col 
S = DBLE(O.O) 
if (Y(j).NE.dble(O.O)) then 

do 11 i = 1,rows 

S = S + U(i,j) * Y(i) 
continue 

*changes to SVBKSB are done here* 

S = S *(DBLE(1.0) - rc**2/((Y(j)**2 + rc)**2))/Y(j) 
endif 

TIP(j) = S 
12 continue 

do 14 j = 1,col 
S = DBLE(O.O) 
do 13 jj = 1,col 

S = S + V(j,jj) * TIP(jj) 
13 continue 

BETA(j) = S 

14 continue 
return 
end 



SUBROUTINE BET! (S, !VE, B, BU, maxc, row, meany) 

C Aim: Unstandardize the betas 
C Input to this subroutine: 
C S - vector containing the sum of squares of columns of I 
C !VE - vector containing the means of columns of I, 
C meany - mean of Y 
C B - vector containing the standardized betas 
C maxc - physical dimensions of S, !VE, B, BU 
C row - logical dimension of S, !VE, B, BU 
C Return to main program BU - vector, of unstandardized betas 

double precision S(maxc), !VE(maxc), B(maxc), BU(maxc) 
double precision meany 
integer row 

BU(1) = DBLE(O.O) 
do 100 i = 1,row 

BU(i+1) = B(i) * DBLE(1)/(DSQRT(S(I))) 
BU(1) = BU(1) + BU(i+1) * !VE(I) 

100 continue 
BU(1) = meany - BU(1) 
return 
end 
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SUBROUTINE COPY (A, B, maxr, maxc, rA, cA) 

C Copies A(rA,cA) into Band loses previous B 

double precision A(maxr,maxc) 
double precision B(maxr,maxc) 
integer r!,c! 

do 100 i = 1,rA 
do 20 j = 1,c! 

B(i,j) = !(i,j) 
20 continue 
100 continue 

return 
end 
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SUBROUTINE GRRE(U, V, V, rows, col, maxr, maxc, Y, BETA, K) 

C This subroutine computes the generalized ridge regression estimator and 
C is the same as SVBKSB except for adding ki to the diagonal elements of 
C V when we divide. The comments under SVBKSB are also relevant here. K 
C is the ridge vector. If (k(i).ge.1x10**10), then DELTA (V'B) is set to 0 

11 

parameter (nmax = 100) 
double precision U(maxr,maxc), V(maxc), V(maxc,maxc) 
double precision Y(maxr), BETA(maxc) 
double precision TIP(nmax), S, K(maxc) 
integer rows, col 
do 12 j = 1,col 

S = DBLE(O.O) 

If (V(j).NE.DBLE(O.O)) then 
do 11 i=1,rows 

S = S + U(i,j) * Y(i) 
continue 
S = S * (V(j)/(V(j)**2 + K(j))) *changes made here* 

endif 

TIP(j) = S 
12 continue 

do 13 j = 1,col 

if (K(j).eq.DBLE(9999.9)) then 
TIP(j) = DBLE(O.O) 

endif 
13 continue 

do 15 J = 1,col 
S = DBLE(O.O) 
do 14 jj = 1,col 

S = S + V(j,jj) * TIP(jj) 
14 continue 

BETA(j) = S 
15 continue 

return 
end 
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SUBROUTINE RIDGE(U, Y, V, ROYS, COL, IA.IR, IAXC, Y, BETA, re) 

C This subroutine computes the ridge estimator and is the same as SVBKSB 
C except for adding k to the diagonal elements of Y when we divide. 
C The comments under SVBKSB are also relevant here. The ridge constant 
C is denoted by re. 

11 

parameter (nmax = 100) 

double precision U(maxr,maxc), Y(maxc), V(maxc,maxc) 
double precision Y(maxr), BETA(maxc) 
double precision TIP(nmax), S, re 
integer rows, col 

do 12 j = 1,col 
S = DBLE(O.O) 
if (Y(j).NE.DBLE(O.)) then 

do 11 i = 1,rows 
S = S + U(i,j) * Y(i) 

continue 

S = S * (Y(j)/(Y(j)**2 + re)) *changes made here* 
endif 
TIP(j) = S 

12 continue 
do 14 j = 1,col 

S = DBLE(O.O) 
do 13 jj = 1,col 

S = S + V(j,jj) * TIP(jj) 
13 continue 

BETA(j) = S 
14 continue 

return 
end 
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SUBROUTINE SIGIA (IAT, maxr, maxc, N, P, Y, B, RES, sse) 

C This subroutine computes an estimate of sigma square, sse. 
C IAT is the I matrix, Y is the Y vector, and Bis the vector of 
C regression coefficients. The physical dimensions are maxr and maxc and 
C the logical dimensions are N and P. 

double precision IAT(maxr,maxc), Y(maxr) 
double precision RES(maxr), sse 
double precision B(maxc), temp 
integer N,P,i,j 

sse = DBLE(O.O) 
do 100 i = 1,N 

temp= DBLE(O.O) 
do 15 j = 1,P 

temp= temp+ IAT(i,j) * B(j) 
15 continue 

RES(I) = Y(I) - temp 
sse = sse + (RES(I)**2) 

100 continue 

sse = sse/DBLE(N-P) 
return 
end 
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SUBROUTINE STAND (I!T, maxr, maxc, N, P, STDX, !VE, SS) 

C This subroutine standardizes l!T (physical dimensions maxr, maxc: 

C logical dimensions N and P) by subtracting the mean from each column and 

C then divides the column by its standard deviation. 

C Note the matrix l!T should not contain a column of ones 

double precision l!T(maxr,maxc), !VE(maxc) 

double precision SS(maxc), STDX(maxr,maxc) 

double precision temp 

integer N, P, j, 1 

do 6000 j = 1, P 

!VE(j) = DBLE(O.O) 
do 605 i = 1,N 

!VE(j) = !VE(j) + l!T(i,j) 
605 continue 

!VE(j) = !VE(j)/DBLE(N) 
6000 continue 

610 

do 6010 j = 1,P 

temp= DBLE(O.O) 

do 610 i = 1,N 

temp= temp+ (l!T(i,j) - !VE(j))**2 
continue 

SS(j) = temp 
6010 continue 

do 7000 i = 1,N 

do 6900 j = 1,P 

STDX(i,j) = (l!T(i,j) - !VE(j))/DSQRT(SS(j)) 
6900 continue 

7000 continue 

return 

end 



SUBROUTINE SVBISB (U, V, V, I, N, IP, NP, B, I) 

C The computation of the estimators is based on this subroutine. The 
C program-code is from Press et al. (1985). The only change made to 
C SVBISB was a switch to double precision. 
C 
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C AIi of SVBISB: Solves AX= B for a vector I, where A is specified by 
C the arrays U, V, Vas returned by SVDCIP. I and N are the logical 
C dimensions of A. IP and NP are the physical dimensions of A. Bis the 
C input right-hand side. I is the output solution vector. No input 
C quantities are destroyed, so the routine may be called sequentially with 
C different B's 

11 

parameter (nmac = 100) Maximum anticipated value of N 
double precision U(IP,NP), V(NP), V(NP,NP) 
double precision B(IP), X(NP), TIP(nmax), S 
do 12 j = 1,N Calculate U'B 

S = DBLE(O.) 

if (V(j).NE.DBLE(O.)) then Nonzero result only if ~jjO 

do 11 i = 1,1 

S = S + U(i,j) * B(i) 
continue 

S = S/V(j) di vision by ~j , changes made here for other 
methods 

endif 
TIP(j) = S 

12 continue 

do 14 j = 1,N Matrix multiply by V 
S = DBLE(O.) 
do 13 jj = 1,N 

13 continue 
X(j) = S 

14 continue 
return 
end 

S = S + V(j,jj) * TIP(jj) 
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SUBROUTINE SVDCIP (!, I, N, IP, NP, V, V) 

C This routine computes the SYD of the matrix!. The program-code is form 
C Press et al. (1985) and is not given here. The only change made to 
C SVDCIP was a switch to double precision. Remember to make a copy 
C of! before calling SVDCIP as U replaces! on output. Furthermore 
C the matrix Vis output as V and not the transpose of V. 



B-27 

SUBROUTINE SVDSORT(U, V, V, N, I, NP, IP, C, BB) 

C This subroutine sorts the SVD from high to low and is borrowed from 
C Troskie (1990). 

110 

120 

130 

140 

150 

160 

double precision U(NP,IP), V(IP), V(IP,IP) 
double precision C(NP), BB(IP) 
do 90 k = 1, I- 1 

do 100 j = 1,1-K 

if (V(j).LT.V(j+1)) then 
HOLD= V(j) 

endif 

do 110 1 = 1,N 

C(l) = U(l,j) 
continue 
do 120 1 = 1,1 

BB(l) = V(l,j) 
continue 
V(j) = V(j+1) 
do 130 1 = 1,N 

U(l,j) = U(l,j+1) 
continue 
do 140 1 = 1,1 

V(l,j) = V(l,j+l) 
continue 
V(j+1) = HOLD 
do 150 1 = 1,N 

U(l,j+1) = C(l) 
continue 
do 160 1 = 1,1 

V(l,j+1) = BB(l) 
continue 

100 continue 
90 continue 

return 
end 
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SUBROUTINE VTBETA(V, maxc, B, P, DELTA) 

C This subroutine computes the delta's, V'B, Here V, Bare input matrices 
C and the DELTAS are returned. laxc is the physical dimensions, and P the 
C logical dimensions of the matrices. 

double precision V(maxc,maxc), B(maxc), DELTA(maxc) 
double precision sum 
integer maxc, P 

do 180 i = 1,P 

sum= DBLE(O.O) 
do 175 j = 1,P 

sum= sum+ V(j,i) * B(j) 
175 continue 

DELTA(i) = sum 
180 continue 

return 
end 
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Appendix C 

NOTATION 

This dissertation is written in such a way that as the material develops, 

the relevant notation is described. Description in context is intended to 

obviate any confusion. However this summary of notation is also supplied 

for those readers interested only in particular chapters. The first part of 

the notation under A, represents some matrix operations on the matrix A. 

A:nxp - matrix of order nxp 

a - scalar or column-vector 

A' transpose of A 

a. i-th element of a when a is a vector 1 

Ai i-th column of A when A 1s a matrix, 

aij i-th row and j-th column element of the matrix A 

[A]ij i-th row and j-th column element of the matrix A 

A- (Moore-Penrose) generalized inverse of A 

A- 1 inverse of A 

I a I absolute value of a 

IAI determinant of A 

Ai (A'A) i-th eigenvalue of A'A 

llall vector norm of a 
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llall 2 Euclidean norm ( or vector 2- norm) of a vector a 

IIAII - matrix norm of A 

IIAIIF - Frobenius norm of a matrix A 

IIAIIP - matrix p-norm of A 

N(A) null space of A 

tr [ A J trace of A 

r(A) rank of A 

R(A) range of A 

a' = [a 1 , ••• ,ap+iJ, where ai is defined 1n Chapter 6 

a(t) estimate of 8 at the t-th iteration 

accj numerical accuracy of the j-th regression coefficient 

AP - Andrews-Pregibon 

k 
AP.. Andrews-Pregibon statistic fork suspected outliers, cases 1,J,··· 

1 J 

APA - Andrews-Pregibon statistic for variables A 

ANACOVA - analysis of covariance 

ANOVA analysis of variance 

AUGRRE - almost unbiased generalized ridge regression estimator 



AUORRE almost unbiased operational ridge regression estimator 

fi:pxl - vector of regression coefficients that must be estimated 

* 
fib:pbxl - any Pb vector 

fii i-th element of fi 

fi
1 

sub-vector of fi, where I c {1, ... ,p}, indicates the index set 

specifying the subset 

fio intercept term 

fi - any estimator of fi, usually biased 

fi LSE of fi 1n the augmented model 

fi - OLSE of fi 

8fi - perturbation vector of fi 

Pa - OLSE of fia 

/Jb - OLSE of fib 

Pc constrained LSE of fi 
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/3 unique solution of smallest norm basic 

/3, - corrected least square estimator CLS 

/3-i OLSE of f3 with the i-th case (i-th row) deleted 

fi_
1 

OLSE of f3 with the rows indexed by I deleted, I c {1,2, ... ,n} 

/3(i) subset of f3 that corresponds to the X(i) part of X 

/3FPC - fractional principal component estimator of f3 

PG - posterior mean of f3 

/3J jackknife estimator of f3 

f3Jw - weighted jackknife estimator of f3 

PK generalized ridge regression estimator of f3 

/3LR - latent root estimator of f3 

Pre - principal component estimator of f3 

/3R ridge regression estimator of f3 

fisH - shrunken estimator of f3 

/355 H - Sclove's modified shrunken estimator of f3 

fiTLS total least square estimator of f3 
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fi; estimate of fi, obtained when X; is used instead of X 

0
5 

biased estimator of fi 

(0
5

)_h - biased estimator of the truncated model 

(filY) fi given Y, Bayesian posterior random variable 

b - bias vector 

b1 , b2 two competing estimators 

b - estimator of fi 1n Chapter 8 

bj i j-th element of b, in the i-th Monte Carlo repetition 

b j-th element of the OLSE 
j , LS 

b OLSE for fi, where the X matrix is perturbed (X = X + oX) 

b - value of a coefficient as computed free from round-off errors 

bi OLSE when Xi 1s regressed on the remaining columns of X 

B - X (X'X )- 1 / 2 
1 - 1 1 1 

BLUE - best linear unbaised estimator 

Ci = Ui'Yv'Xi element 1n describing the estimators of fi 

c number of collinearities 



p 

ci = E (zij/\)2 
j = 1 

C - Cook's squared distance 

Ci Cook's squared distance after i-th case deleted 

Cij .. - Cook's squared distance when cases i,j, ... are deleted 

C - Cook's squared distance when variables A are deleted 
A 

CLS - corrected least squares 

Cov(•,•) covariance between two random variables 

d - deterministically (fixed) or stochasically defined constant 

A:nxp - diagonal matrix of the singular values of X 

Ae:nx(p+1) error matrix, 1n the errors-in-variables model 

[A J i-th row of the error matrix e i 

A;:nxr - diagonal matrix of the singular values of X; 

df degrees of freedom 

Diag(•) diagonal matrix of elements of a vector argument 

diag(•) vector of diagonal elements of a matrix argument 
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D2 Cook's squared distance 

the non-zero singular values of X 

D diagonal matrix consisting of the singular values of X 
a 

K - diagonal matrix of the singular values of the augmented matrix [X YJ 

8 = V'/J 

Di i-th element of 8 

Dmax - largest element of 8 

8 - OLSE of 8 

DJ jackknife ridge estimator of 8 

8JW - weighted jackknife ridge estimator of 8 

[8Jw]i i-th element of 8JW 

8K GRRE 8, K is non-stochastic 

8- GRRE of 8, K is stochastic 
K 

[80]i i-th element of operational AUGRRE 



= 8-1 

GRRE of 8i at t-th iteration 

8R - ridge estimator of 8 

8R(t) ridge estimate of 8 at t-th iteration 

8FPC - fractional principal component estimator of 8 

bFPCI = F PCI b 

OFPCV = FPCVO 

a. 
1 

shrinkage factor 

D• - perturbation in• 
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DFFITi change of fit on forecasting after i-th observation is deleted 

DFFITSi standardized change in fitted value of i-th case after deletion 

E - Mayer and ~illke's class of estimators 

E:nxl - nxl vector of uncorrelated random error variables 



E scalar controlling collinearity 1n modified ~ampler data set 

i:nx1 nx1 residual vector 

E· residual term for i-th observation 
1 

E_i: (n-1)x1 vector of residuals estimator after i-th case deleted 

C r 

' 
E -

R 

E(.) 

e. 
J 

e. 
1 

-j 
e. 

1 

e .. 
1 J 

residuals due to fitting X; 

residual vector under RRE 

residuals due to using fis 

residuals due to us1·ng ((J, ) s - h 

expectation of the scalar, vector or matrix argument 

error 1n the j-th column of X 

residual vector of Xi when regressed on X_i 

residual vector of Xi when the regressors are [X_i uj] 

j-th element of ei 
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k 

~i = fio + ~ fijXij expected value from fitted equation 
j = 1 

~i = ../J:;_/JA; i-th condition index 

~k(-i) k-th condition index computed without the i-th case 

~i efficiency of the LSE of 8i relative to the ridge estimator 

exp - exponent 

f(x) density function of random variable X 

f(X) density function of random vector X 

f(•) function of a random variable, vector or a matrix 

F(a:1,n-q-2) 

non-central F-distribution with n1 and n2 df and 

non-centrality parameter 1 

tabulated 100a percentile F-value for 1 and n-q-2 df 

F 
1 

- lowest partial F- test value 

F0 preselected critical value 
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Fin - constant value chosen as criterion for inclusion of a variable 

F. = ~. b~ I (!2 
1 1 1 

fraction matrix 
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* * FPCV = Diag(f1'PCV'" .. ,fP'PCV) 

fj fractions (j-th diagonal element of F) 

ff j-th optimal fraction 

f (t+l) fraction at t-th iteration 1n FPCI, using GRRE 
· GR 
J ' 

f. PC(t+l) fraction at t-th iteration of FPCE, using PCE 
J ' 

f. R(t+l) fraction at t-th iteration of FPCV, using RR 
J ' 

f. PCV(t+l) fraction at t-th iteration of FPCV, using PCE 
J ' 

* 
f = lim [f. PC(t+l)] j,PC t J, 

* 
f. PCV(t+l) = lim f. PCV(t+l) 

J ' t J ' 

FPC - fractional principal component 

FPCI iterative fractional principal component estimator, via the GRR 

method 

FPCV iterative fractional principal component estimator, via the RR 

method 

G(•) - Mayer and ~illkes's term for TMSE 

1 - non-centrality parameter 

1 - scalar controlling collinearity rn (2.5.3) 

total variance of the ridge estimator 
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12 (k) = /J'(Z - I)'(Z - I)/3 total squared bias of ridge estimator 

'ij j-th eigenvalue of X~iX-i 

f(•) gamma function 

n n 
A 

( l\ - 71 i ) 2 + }-; Var ( Y J J / u 
2 

- Mallows' r P 

i = 1 

GRRE - generalized ridge regression estimator 

GVIF generalized variance inflation factor 

GVIFi i-th generalized variance inflation factor 

H:nxn - Hat matrix 

H0 null hypothesis 

h
1
. = h-. = xf(X'X)- 1x. 

1 1 1 1 leverage values 

I - identity matrix 

IP - (pxp) identity matrix 

IMPj importance of the j-th variable 

lj level of importance 

inf(X) 
def 

= min IIXvll, for 111111 = 1 

inf(X) spectral norm of the smallest matrix E such that X +Eis exactly 
collinear 

JRE - jackknifed ridge estimator 
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k = p-1 number of independent variables, excluding the column of one's 

k - ridge constant 

k - number of influential or outlier observations 

K:pxp - diagonal matrix with ridge values ki on the diagonal 

ki (opt) optimum value for ki 

kh - harmonic mean of ki 

kh - estimator of harmonic mean of ki 

K - estimator of K 

ki i-th element of K 

k1w - Lawless and ~ang estimate of k 

* K = {F,fl,A} condition triple 

K(X) = ,.;r-;;,,;r-; - condition number of X (also indicated by ~p) 

boundary values of ki 

Ki i-th collinearity index 

L - unique positive lower triangular matrix of order p 

11 Euclidean distance from p top 

Ai i-th eigenvalue of X'X 



Amax max eigenvalue of X'X 

Amin - min eigenvalue of X'X 

J LSE of A 

A - range set 

* A range set 

LC - leverage components 

LRR - latent root regression 

LRRE - latent root regression estimator 

LSE - least square estimator 

m - Swamy's measure of collinearity 

m - lower bound of m 
L 

mu - upper bound of m 

mci ratio of the squares of eigenvalues 
i = 1 
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M6 = plim(n-l~e'~e) 
e 

MDFFIT - statistic DFFITS extended to deletion of more than one data point 

MLE - maximum likelihood estimator 

MS - mean square 

MSE - mean square error random variable in ANOVA 

MSE - matrix mean square error (expectation) 

MSR - mean square of regression 

µ expectation of random variable X 

µ - expectation of random vector X 

µ - estimate ofµ 

MVIF - marginal variance inflation factor 

n - scalar, usually the number of rows of Y or X 

univariate normal distribution 

multivariate normal distribution with independence and 

homoscedasticity 

expected value from true equation for the 

conditional expectation of (Yi IXii·· .Xpi) 

v = (n - p) df for residual sum of squares 
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0 - vector or matrix whose elements are zero 

OLSE - ordinary least square estimator 

wi i-th singular value of [X YJ 

fl domain 

1 column vector of ones 

P projection matrix 

[P_i] projection matrix onto column space of variables 1n X_i 

p - number of independent variables 

Pa number of independent variables 1n the subset Xa 

= v?. /,\. 
1 J 1 

i,j-th variance-decomposition proportion of variance of 

j-th regression coefficient associated with i-th component 

variance decomposition proportions 

'If - pi 

Il:pxp permutation matrix 

Pi pseudo-value 

PC principal component 

PC(i) principal component estimator, with 1 components deleted 

PCE principal component estimator 
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PCR - principal component regression 

plim - probability limit 

PMSE predicted mean square error 

Pr(•) probability 

psd positive semi-definite 

PVIF partial variance inflation factor 

Q:nxn orthogonal-matrix in QR-decomposition of X 

Qk extra sum of squares 

Qi weighted pseudo-value 

Q(X,Y,/3) criterion function to be minimized 

p2 population value estimated by R2 

R:nxp upper triangular matrix 1n QR-decomposition of X 

R1 pxp non-zero part of upper triangular matrix of QR-decomposition 

restriction matrix 

RP real p-dimensional space 

Rij statistic for detection of collinearity-influential points 

R
1

J generalization of Rij 

R measure of influence of variable A on variance inflation factor 
i , (A) 



R - coefficient of multiple correlation 

R2 coefficient of multiple determination 

R~~ - coefficient of multiple determination where~ is set of 

independent variables included in model 

R~i .~ - coefficient of partial determination where~ denotes set of 

regressor X variables already in model prior to fitting Xi 

Rij • coefficient of partial correlation between i-th and j-th 

columns of X, while all other columns are held constant 

R~ adjusted coefficient of multiple determination 

Rf coefficient of determination from regression of Xi on other 

independent variables 

R; modified coefficient of multiple determination 
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(R~)-h modified coefficient of multiple determination after deletion of 

the h-th column 

R(X) column space (range-space) of X 

r - estimate of r(X) = r 

r number of restrictions 

ri standardized residual 

r 12 observed coefficient of correlation between the variables 

represented by the first two columns of X 
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r-. coefficient of correlation between i-th and j-th variables 
1 J 

r(X) rank of X 

RB - relative bias 

RE - relative efficiency 

RLS - restricted least squares 

RMSE - relative mean square error 

RR - ridge regression 

RRE - ridge regression estimator 

RSS - residual sum of squares 

s - number of disconnected subsets 

s number of non-predictive near-singularities 

S - positive semi-definite matrix 

Si scalar quantity 

u2 population variance scalar 

u2 theoretical variance of b 
j , LS j , LS 

u~ :1x1 = E[(Ye)r] 
e 
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IT~ : 1x1 = E [ 1: r] 

IT~= plim(n- 1µ'µ) 

ff~
18 

consistent estimator of u~ 

consistent least square estimator of (IT~ +IT~) 
e 

1T 2 scalar used 1n errors-in-variables model 
'O 

ff 2 estimate of 1T 2 

ff(i) estimated error variance when the i-th row of X and Y have been 

deleted 

~ 6 covariance matrix of error variables of the errors-in-variables 
e 

model 

s2 OLS estimate of SSE 

s 2 Swamy's estimate of 1T 2 

s 2 sample variance of Y y 

SEMSE standardized empirical mean square error 

SH shrunken 

SHE - shrunken estimator 
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SS - sum of squares 

SSA - extra sum of squares due to fitting A after X 

SSBP - sum of squared bias 

SSE - error sum of squares or residual sums of squares 

SSE of all independent regressor variables (( ... )) 

included in model 

SSR - regression sum of squares 

SSTO total sum of squares (usually corrected for mean) 

SX-OLS subset selection on X where method of estimation 1s OLS 

SX-TLS - subset selection on X where method of esitmation is TLS 

SXY-TLS - subset selection on [X YJ where method of estimation is TLS 

SXY-VTLS - subset selection on [X YJ where method of estimation is 

TLS, with a variant 

SVD - singular value decomposition of a matrix . 

signal-to-noise ratio 

7f non-centrality parameter of F-distribution associated with 8i 

Ti - value of 7
2 under null hypothesis 
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7- 1 coefficient of variation 

O:nx1 residual vector for alternative model 

0 - sum of product terms for two columns of X 

TLS - total least squares 

TLSE - total least squares estimator 

TMSE - total mean square error 

TMSE(Yr) total mean square error of prediction 

tr[•] trace of a matrix argument 

tn - central t-distribution with n degrees of freedom 

t 2 t-ratio 

u - statistic 

u
0 

a Lagrangian multiplier 

U:nxp - left singular vectors of X 

U;: nxr - left singular vectors of X; 

Ui:nx1 i-th left singular vector of X 



uij j-th element of i-th left singular vector of X, or so-called 

leverage components 

(§4.7.1) 

uj j-th unit vector 1n the space Rn 

U:nx(p+1) left singular vectors of [X YJ 

iii:nx1 i-th left singular vector of [X YJ 

VJ distribution-free estimate of variance for jackknife estimator 

VJW - distribution-free estimate of variance for weighted jackknife 

estimator 

V - variance-covariance matrix, usually V = u2I 

V:pxp - right singular vectors of X 

V; right singular vectors of X; 

vi :px1 i-th right singular vector of X 

vij j-th element of the i-th eigenvector 

V:(p+1)x(p+1) right singular vectors of [X YJ 

Vi :(p+1)x1 i-th right singular vector of [X YJ 

Vi,j j-th component of i-th right singular vector Vi 
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0 
vi:pxl vector containing the first p components of i-th right 

singular vector Vi of [X YJ 

Var ( . ) , V ( . ) variance matrix 

v(,\IX) variance-covariance matrix of ~b conditional on X 

VJ - random variable, vector or a matrix 

VIF variance inflation factor 

VIFA(X) VIF associated with variable A 1n model (9.3.1) 

i-th variance inflation factor 
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partial variance inflation factor of Xi in X(i) = [X 1 X2] 

variance inflation factor of fii obtained from mean 

centered data 

VIFi(X 1 ) marginal variance inflation factor 

VIF
1 

generalized variance inflation factor 

VIF~j i-th variance inflation factor with j-th observation deleted 

VIF; J generalized variance inflation factor with cases indexed by J 

deleted 

V = Diag[l, ... ,1,wi,1, ... ,1] matrix used 1n weighted LSE 

VA - Vampler accuracy of b 
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(~'~ 11~)-h,-h - submatrix of (~'~ 11~) after deleting h-th row and column 

central x2- distribution with n df 

non-central x2- distribution with n df and non-centrality 

parameter 1 

X:nxp - matrix of fixed regressors or explanatory variables. 

X:nxp - observed matrix of p explanatory variables 

X0 :nxp - true but unobservable variables 

Xe:nxp - measurement or observation errors (unobserved) 

(Xe)i :1xp - i-th row of Xe 

X:nxp - perturbed X matrix, X = X + E or X + bX 

pseudo-inverse or generalized inverse of X 

X; rank r matrix approximation of X 

Xi:nx1 i-th column of X 

xj mean of j-th column 

Xij i-th element of j-th column 

X(i) X-matrix with i-th column deleted 

X
1 

sub-matrix of X containing columns indexed by I 



- 1 - 1 
(X 1 X)ii i-th diagonal elements of (X 1 X) 

(X 1 X)
11 

sub-matrix of X formed by columns and rows indexed by I 

xi 1 
: 1xp - i- th row of X 

X . X matrix with i-th row deleted 
- 1 

{X¢} set of regressor variables already 1n model 

X approximation to X that satisfies rank(X) < k = rank(X) 

[X YJ :nx(p+1) augmented matrix 

[X YJ LS approximation of [X YJ with orthogonal projection Y of 

Y onto the column space R(X) of X 

[X YJ TLS approximation of [X YJ 

[Ax A YJ = [X - x , Y - YJ TLS approximation error 

Y:nx1 - vector of observed response 

Yi i-th element of Y 

[Y(-i)J estimated Y obtained by using P-i 

[Y(-i)L i-th element of [Y(-i)J 

Y or y - mean of Y 

* Y :nx1 - standardized Y values, corrected for mean, and scaled 

C-26 



C- 27 

Y:nx1 fitted vector of Y 

Yi i-th value of fitted responses 

Y_i sub-vector of Y after deletion of i-th element 

Y0 :nx1 true but unobservable variables 

Ye:nx1 - measurement or observation errors (unobserved) 

Z:nxp matrix of principal components (Z = XV) 

11•11 norm of a matrix argument 



BIB-1 

ABDELMALEK N.N.(1974): On the solution of the linear least squares problem 

and pseudo-inverses. Computing, 13, 215-228. 

ABOLONTSEV Y. I. AND KILDISHEV G. S. ( 1984): Statistical adequacy of 

regression models and the problem of collinearity. 

Hatematiceskie Hetody, 20, no. 6, 1078-1083. 

Ekonomika i 

AFIFI A.A. AND ELASHOFF R.M. (1966): Missing observations in multivariate 

statistics, I. Review of the Literature. Journal of the American 

Statistical Association, 61, 595-604. 

AFRIAT S.N.(1957): Orthogonal and 

characteristics of pairs of vector spaces. 

53, 800-816. 

oblique projectors and the 

Proc. Cambridge Phi los. Soc., 

AHAMAD B.(1967): An analysis of crimes by the method of principal component 

analysis. Applied Statistics, 16, 17-35. 

AIGNER D. J. ( 1974): MSE dominance of least- squares with error- of-

observation. Journal of Econometrics, 2, 365-372. 

AITKIN M.A.(1969): Miscellanea - Some tests for correlation matrices. 

Biometrika 56, 443. 

AKAIKE H.(1973): Information theory and the extension of the maximum 

likelihood principle. 

(B.N. Petrov and F. 

Budapest. 

In 2nd International Symposium on Information Theory. 

Csaki, Eds.), pp. 267-281. Akailseoniai-Kindo, 

AKAIKE H.(1974): A new look at the statistical model identification. IEEE 

Transactions on Automatic Control, AC-19, 723. 

AKDENIZ F. AND OZTURK F.(1981): The effects of multicollinearity - a 
geometric view. Communications de la Faculte des Sciences de l 7 l!niversite 

d 7Ankara Serie A, 30, no. 3, 17-26 (1982). 



BIB- 2 

ALLDREDGE J.R. AND GILB N.S.(1976): Ridge regression: An annotated 

bibliography. International Statistical Review, Vol. 44, 355-360. 

ALLEN D. M. ( 1971): Mean square error of prediction as a criterion for 

selecting variables. Technometrics, Vol. 13, 469-475. 

ALLEN D.M.(1971): The prediction sum of squares as a criterion for 

selecting predictor variables. Univ. of Ky., Dept. of Statistics, 

Technical Report 23. 

ALLEN D.M.(1972): Baised prediction using multiple linear regression. 

Univ. of Ky., Dept of Statistics, Technical Report 36. 

ALLEN D.M.(1974): The relationship between 

augmentation and a method for prediction. 

February 1974, 125-127. 

variable selection and data 

Technometrics, 16, no. 1, 

ALLEN D.M. AND CADY F.B.(1982): Analyzing Experimental Data by Regression. 

Lifetime Learning Publications, Belmont, California, 1982. 

AMEMIYA T. ( 1980): Selection of regressors. International Economic Review, 

21, 331-354. 

ANDERSON R.L. AND BANCROFT T.A.(1952): St a t i s t i ca l Th e o ry in Res e arch . 
McGraw-Hill, New York. 

ANDERSON T.V.(1958): An introduction to multivariate statistical analysis. 

John Viley & Sons, New York. 

ANDERSON T. V. (1984): Estimating linear statistical relationships. Annals 

of Statistics, 12, 1-45. 

ANDREVS D.F.(1974): A robust method for multiple linear regression. 
Technometrics, 16, 523-531. 



BIB- 3 

ANDRE\IS D.F. AND PREGIBON D. (1978): Finding the outliers that matter. 

Journal of the Royal Statistical Society, Series B, 40, No. 1, 85-93. 

ANSCOMBE F.J.(1973): Graphs in statistical analysis. The American 

Statistician, 27, 17-21. 

ANSCOMBE F.J. AND TUKEY J.\1.(1963): 

residuals. Technometrics, 14, 141-160. 

The examination and analysis of 

ARCHETTI F. AND CUGIANI M.(1980): Numerical techniques for stochastic 

systems. Papers based on lectures presented at the Conference held at 

Gargnano, September 1979. Edited by Francesco Archetti and Marco Cugiani. 

ARKIN V.I., SHIRAEV A. AND \IETS R.(1984): Stochastic optimization. 

Proceedings of the international conference held in Kiev, September 1984. 

ASKIN R.G. (1982): Multicollinearity in regression: Review and examples. 

Journal of Forecasting, 1, 281-292. 

ASKIN R.G. AND MONTGOMERY D.C.(1980): Augmented robust estimators. 

Technometrics, 22, 333-341. 

ATKINSON A.C. (1981): Two graphical displays for outlying and influential 

observations in regression. Biometrika, 68, no. 1, 13-20. 

AVULA X.J.R., KALMAN R.E., LIAPIS A.I. AND RODIN E.Y.(1984): Mathematical 

modelling rn science and technology. Proceedings of the fourth 

international conference on mathematical modelling held in Zurich, August 

15-17, 1983. Edited by Xavier J. R. Avula, Rudolf E. Kalman, Anthanasios I. 
Liapis and Ervin Y. Rodin. 

AYDELOTTE \1.0. (1966): Quantification rn history. Amer. Hist. llev., 71, 
814-833. 



BIB-4 

BALAKRISHNAN A. V. ( 1963): An operator theoretic formulation of a class of 

control problems and a steepest descent method of solution. SIAN Journal on 

Control, 1, 109-127. 

BANERJEE K.S. AND CARR R.N. (1971): A Comment on ridge regression: Biased 

estimation for non-orthogonal problems. Technometrics, 13, 895-898. 

BARANCHIK A. J. ( 1970): A Family of minimax estimators of the mean of a 

multivariate normal distribution. Annals of Xathematical Statistics, 41, 

2, 642-645. 

BARNETT V.D.(1970): Fitting straight lines - the 

relationship with replicated observations. Applied 

135-144. 

linear functional 

Statistics, 19, 

BARNETT V.D. AND LE\IIS T.(1978): Outliers in Statistical Data. John \Tiley 

& Sons, New York. 

BARNARD G.A.(1963): The logic of least squares. Journal of the Royal 

Statistical Society, Series B, 25, 124-127. 

BASKERVILLE J.C. AND TOOGOOD J .H. (1982): Guided regression modeling for 

prediction and exploration of structure with many explanatory variables. 

Technometrics, 24, 9-17. 

BEALE E.M.L., KENDALL M.G. AND MANN D.\1.(1967): The discarding of variables 

in multivariate analysis. Biometrika, 54, 357-366. 

BEATON A.E. RUBIN D.B. AND BARONE J.L.(1976): The acceptability of 

regression solutions: Another look at computational accuracy. Research 

Bullitin 72-44, Princeton, N.J.: Educational Testing Service, 1972. 

BEATON A.E. RUBIN D.B. AND BARONE J.L.(1976): The acceptability of 

regression solutions: Another look at computational accuracy. Journal of 

the American Statistical Association, 71, 158-168. 



BIB-5 

BECKMAN R.J., NACHTSHEIM, C.J. AND COOK R.D.(1987): Diagnostics for 

mixed-model analysis of variance. Technometrics, 29, no. 4, 413-426. 

BECKMAN R.J. AND TRUSSELL H.J.(1974): The distribution of an arbitrary 

studentized residual and the effects of updating in multiple regression. 

Journal of the American Statistical Association, 69, 199-201. 

BEHNKEN D.~. AND DRAPER N.R.(1972): Residuals and their variance patterns. 

Technometrics, 14, 102-111. 

BELSLEY D.A.(1969): Industry Production Behavior: The Order-Stock 

Distinction. Amsterdam: North-Holland Publishing Co, 1969. 

BELSLEY D.A. (1980): The statistical problem associated with collinearity 
and a test for its presence. Technical report no. 6, Center for 
Computational Research in Economics and Management Science, MIT, Cambridge, 

MA. 

BELSLEY D.A.(1981): Forecasting and collinearity. Technical report no. 27, 

Center for Computational Research in Economics and Management Science, MIT, 

Cambridge, MA. 

BELSLEY D.A. (1982): Assessing the presence of harmful collinearity and 

other forms of weak data through a test for signal-to-noise. Journal of 

Econometrics, 20, 211-253. 

BELSLEY D.A.(1983): Centering, the constant, first-differencing and 

diagnosing collinearity. Technical Report No. 33, Center for Computational 

Research in Economics and Management Science, Massachusetts Institute of 

Technology, Cambridge, 1983. 

BELSLEY D.A.(1983): Conditioning in models with logs. Technical Report No. 

36. Center for Computational Research in Economics and Management Science, 
MIT, Cambridge, Mass. 



BIB- 6 

BELSLEY D.A.(1983): Elements in assessing the conditioning of estimators of 
nonlinear models. Preprints. IFAC/IFORS Conference on Modeling, 

Vashington, D.C., June. 

BELSLEY D.A.(1984): Collinearity and forecasting. Journal of Forecasting, 

Vol. 3, 183-196. 

BELSLEY D.A. (1984): Demeaning conditioning diagnostics through centering, 
and Reply. The American Statistician, 38, 73-77 and 90-93. 

BELSLEY D.A.(1984): Eigenvector weaknesses and other topics 1n 
conditioning. Technometrics, 26, 297-299. 

BELSLEY D.A.(1986): Centering, the constant, 
assessing collinearity, in: D.A. Belsley and 
Reliability (MIT Press. Cambridge, MA, 1986). 

first-differencing, and 
E. Kuh (Eds.), Model 

BELSLEY D. A. ( 1987): Vell- conditioned collinearity indices ( comment on a 
paper by G.V. Stewart). Statistical Science, 2, 86-91. 

BELSLEY D.A., KUH E. AND VELSCH R.E.(1980): Regression diagnostics: 

identifying influential data and sources of collinearity. John Viley and 
Sons, New York. 

BELSLEY D.A., KUH E. AND VELSCH R.E. (1989): Review of "Regression 
diagnostics: Identifying influential data and sources of collinearity". 
Journal of Applied Econometrics, 4, 97-99 

BELSLEY D. A. AND OLD FORD R. V. ( 1986): The 
conditioning and its role in statistical analysis. 
and data analysis, 4, 103-120. 

general problem of ill 
Computational Statistics 

BELSLEY D.A. AND liELSCH R.E. (1988): Comment on "Combining Robust and 
Traditional Least Squares Methods" by M.A. Janson. Journal of Business and 
Economic Statistics, 6, 442-447. 



BIB- 7 

BENDEL R.B. (1986): The effect of centering on the condition number of 
polynomial regression models. Proceedings of the SAS llsers Croup 

International Conference. SAS Institute, Cary, NC. 

BEN-ISRAEL A.(1966): On error bounds for generalized inverses. SIAM 

Journal on Numererical Analysis, 3, 585-592. 

BEN-ISRAEL A. AND GREVILLE T.N.E.(1974): Generalized Inverses: Theory and 

Applications. John ~iley, New York. 

BEREANU B., GRIGORESCU, S., IOSIFESCU, M. AND POSTELNICU, T.(1981): 
Proceedings of the Sixth Conference on Probability Theory. Held in Brasov, 

September 10 - 15, 1979. Edi tura Academiei Republic ii Socialiste Romania, 

Bucharest. 

BERGER J. (1982): Selecting a minimax estimator of a multivariate normal 

mean. Annals Statist, 10, 81-92. 

BERGER J.0.(1985): Statistical Decision Theory and Bayesian Analysis, 2nd 

ed. Springer-Verslag, New York. 

BERK K.N.(1977): Tolerance and condition 1n regression computations. 

Journal of the American Statistical Association, 72, 863-866. 

BERK K.N.(1978): Gauss-Jordan v. Choleski, in Comput. Science and Statist: 

11-th Annual Symposiom on the Interface. Inst. of Statist., N. Carolina 

State Univ., 321-324. 

BERKSON J. ( 1950): Are there two regressions? Journal of the American 

Statistical Association, 45, 164-180. 

BINKLEY J.K.(1982): The effect of variable correlation on the efficiency of 
seemingly unrelated regression in a two- equation model. 

American Statistical Association, 77, no. 380, 890-895. 
Jou ma l of the 



BIB-8 

BINKLEY J .K. AND NELSON C.H. (1988): A note on the efficiency of seemingly 

unrelated regression. The American Statistician, 42, 137-139. 

BJORCK A. (1967): Solving linear least squares problems by Gram-Schmidt 
orthogonalization. BIT 7, 1-21. 

BJORCK A.(1967): Iterative refinement of linear least squares solutions I. 
BIT 7, 257-278. 

BJORCK A.(1978): Comment on the iterative refinement of least-squares 

solutions. Journal of the American Statistical Association, 73, no. 361, 
161-166. 

BJORK A. AND GOLUB G.H. (1973): Numerical methods for computing angles 

between linear subspaces. Mathematics of Computations, 27, 579-594. 

BLAFIELD E.(1983): Multicollinearity in equation systems. Acta Univ. 

Tamper. Ser. A, 153, 1-11. 

BLAYLOCK N. V. ( 1987): Pitman nearness comparison of regress ion estimators. 

Masters thesis at the University of Texas at San Antonio, TX. 

BOARDMAN T.J.(1981): The future of statistical computing on desktop 

computers. American Statistician, 36, 49-58. 

BOOTH G.V., BOX G.E.P., MULLER M.E. AND PETERSON T.I.(1959): 

Generalized Regression Methods, Non-linear Estimation. 
February 1959, International Business Machines Corp., Mimeo. 

Forecasting by 

(Princeton- IBM), 

BOULLION T.L. AND ODELL P.L.(1971): Generalized Inverse Matrices. John 
Viley & Sons, New York. 



BIB-9 

BOX G.E.P.(1979): Robustness in the strategy of scientific model building. 
In Robustness in Statistics, eds. R.L. Launer and G.N. Yilkinson. New York: 
Academic Press, 201-236. 

BOX G.E.P. AND DRAPER N.R.(1975): Robust design. 
34 7- 352. 

BOX G.E.P., HUNTER Y.G. AND HUNTER J.S.(1978): 
experimenters. New York: Yiley-Interscience. 

Biometrika, 62, 

Statistics for 

BOX G.E.P. AND MULLER M.E.(1958): A Note on the generation of random normal 
deviates. Annals of Mathematical Statistics, 29, 610-611. 

BOX G.E.P. AND TIAO G.C.(1973): Bayesian Inference in Statistical Analysis. 

John Yiley & Sons, New York. 

BOX M.J. AND DRAPER N.R.(1971): Factorial designs, the IX'XI criterion, and 
some related matters. Technometrics, 13, 731-742. 

BRADLEY R.A. AND SRIVASTAVA S.S.(1979): Correlation 1n polynomial 
regression. The American Statistician, 33, 11-14. 

BRANHAM R.L.Jr(1987): Are orthogonal transformations worthwhile for least 

squares problems? ACM SIGNUM Newsleteer 22, January, 14-18. 

BRITT H.I AND LUECKE R.H.(1973): The estimation of parameters 1n Nonlinear, 
Implicit Models. Technometrics 15, 233-247. 

BROECKX F.C.M.(1983): Bayesian estimation of parameters in a linear 
regression model with normally distrubuted prior information. Time series 

analysis: theory and practice, 4. North-Holland, Amsterdam-New York. 

BROOK R.J. AND FLETCHER R.H. (1981): Optimal significance levels of prior 
tests in the presence of multicollinearity. Communications in Statistics, 

Part A - Theory and Nethods, 10, no. 14, 1401-1413. 



BIB- 10 

BROOK R.J. AND MOORE T.(1980): On the expected length of the Least Squares 

Coefficient Vector. Journal of Econometrics, 12, 245-246. 

BROVN P.J.(1977): Centering and scaling in ridge regression. 

Technometrics, 19, 35-36. 

BROVN R.L., DURBIN J. AND EVANS J.M.(1975): Techniques for testing the 

constancy of regression relationships over time. Journal of the lloyal 

Statistical Society, B37, 149-163. 

BROVN V.G. AND BEATTIE B.R.(1975): Improving estimates of economic 

parameters by 

applications. 
use of ridge regressiion with production function 

American Journal of Agricultural Economics, 57, 21-32. 

BROVNE M.V.(1969): Factor analysis models and their application to 

prediction problems. Ph.D. Thesis, University of South Africa. 

BROVNE M.V. AND ROCK D.A.(1978): The choice of additive constants 1n ridge 

regression. South African Statistical Journal, Vol. 12, No 1, 65-74. 

BROVNLEE K.A. (1965): Statistical llethodology in Science and Engineering, 

Second Edition, John Viley & Sons, Inc., New York. 

BRUCKER P. AND PAULY R. (1985): IX symposium on operations 

II. Sections 5- 8. Proceedings of a symposium held at the 

Osnabruck, Osnabruck, August 27-29, 1984. 

Athenaum/Hain/Hanstein, Konigstein. 

research. Part 

University of 

Verlagsgruppe 

BUCK S.F. (1966): A method of estimation of missing values in multivariate 

data suitable for use with an electronic computer. Journal of the lloyal 

Statistical Society, Series B, 22, 302-360. 

BUTCHER J.C.(1960): Random sampling from the normal distribution. Computer 

J. , 3, 251- 253. 



BIB-11 

BUTTIMER D.J.(1972-1973): Supply response rn the Irish dairy and beef 

herds, 1953-1970: an econometric exercise. Irish Journal of Agricultural 

Economics and Sociology, 4. 

CADY F .B. AND ALLEN D.M. (1972): Combining experiments to predict future 

yield data. Agronomy Journal, 64, 211-214. 

CARNES B.A. AND SLADE N.A. (1988): The use of regression for detecting 

competition with multicollinear data. Ecology, 69, 1266-1274. 

CASELLA G.(1980): Minimax ridge regression estimation. Annals of 

Statistics, 8, 1036-1056. 

CASELLA G. ( 1985): An introduction to empirical Bayes data analysis. The 

American Statistician, 39, 83-87. 

CERDAN S.V.(1989): A note on the behaviour of augmented principal-component 

plots in regression. 

Methods, 18, 331-342 

Communications in Statistics, Part A - Theory and 

CHALTON D.0.(1990): Contributions to influence, outliers and Bayesian 

analysis in the multiple linear regression model. Ph.D. Thesis, University 

of Cape Town. 

CHAMBERS J.M. (1973): Linear regresseon computations: Some numerical and 

statistical aspects. Proceedings of the 39th Session of the International 

Statistical Institute. Bulletin of the International Statistical Institute 
45, Part 4, 245-254. 

CHAMBERS J.M.(1977): Computational Methods for Oata Analysis. John Yiley & 
Sons, New York. 

CHANDLER D. AND KAHAN Y.M.(1970): The rotation of eigenvectors by a 
perturbation III. SIAM Journal on Numererical Analysis, 7, 1-46. 



BIB-12 

CHATTERJEE S. AND HADI A.S.(1988): 

regression. John ~iley & Sons, New York. 

Sensitivity analysis in linear 

CHATTERJEE S. AND PRICE B. (1977): Regression Analysis by Example. John 

~iley & Sons, New York. 

CHENG D.C. AND IGLAISH H.J.(1976): Principal component estimators 1n 

regression analysis. Review of Economics and Statistics, 58, 229-234. 

CHIPMAN J.S.(1964): On least squares with insufficient observations. 

Journal of the American Statistical Association, 59, 1078-1111. 

CHIPMAN J.S.(1976): Estimation and aggregation in econometrics: An 

application of the theory of generalized inverses. Generalized Inverses and 

Applications, ed. M. Zuhair Nashed, Academic Press, New York, 549-769. 

CHRISTENSEN R. (1987): Plane answers to complex questions. The theory of 

linear models. Springer-Verlag, New York-Berlin. 

CHRISTOPEIT N., HELMES K. AND KOHLMANN, M. (1986): Stochastic differential 
systems. Proceedings of the third Bad Honnef conference held in Bad Honnef, 

June 3-7, 1985. Springer-Verlag, Berlin-New York. 

CHUN D.(1968): A Note on a regression transformation for smaller roundoff 

error. Technometrics, 10, 393-396. 

CLARKE G.P.Y.(1980): Moments 

non- linear regression model. 
Series B, 42, 227-237. 

of the least-squares estimators 1n a 

Journal of the Hoyal Statistical Society, 

CLAYTON D.G. (1971): Algorithm AS46: Gram-Schmidt orthogonalization. 
Applied Statistics, 20, 335-337. 

CLUTTON-BROCK 

distribution. 
17- 27. 

M.(1965): Using the observations to 

Journal of the Hoyal Statistical Society, 

estimate prior 

Series B, 27, 



BIB- 13 

COCHRAN V.G.(1953): Sampling Techniques. John Viley & Sons, New York. 

COCHRAN V.G. (1968): Errors of measurements in statistics. Technometrics, 

10, 637-666. 

COHEN J. AND COHEN P.(1975): Applied multiple Regression/Correlation 

analysis for the Behavioral Sciences, John Viley & Sons, New York. 

COLE R.(1969): Data errors and forecasting accuracy. In Economic Forecasts 

and Expectations (J. Mincer, ed.). National Bureau of Economic Research, 
New York. 

CONIFFE D. AND STONE J. (1973): A Critical view of ridge regression. The 

Statistician, 22, 181-187. 

CONNIFFE D. AND STONE J.(1975): A Reply to Smith and Goldstein. The 

Statistician, 24, 67-68. 

COOK R.D.(1977): Detection of influential observations rn linear 
regression. Technometrics, 19, No. 1, February 1977, 15-18. 

COOK R.D.(1979): Influential observations 1n linear regression. Journal of 

the American Statistical Association, 74, 169-174. 

COOK R.D. (1986): Assessment of local influence (with discussion). Journal 

of the Royal Statistical Society, Series B, lethodological, 48, 133-169. 

COOK R.D. AND VEISBERG S.(1980): Characterizations of an empirical 
influence function for detecting influential cases 1n regression. 
Technometrics, 22, 1980, 495-508. 

COOK R.D. AND VEISBERG S.(1982): Residuals and influence in regression. 
Chapman and Hall, New York. 



COPAS J.B.(1969): Compound 

of the discussion). 

lethodological, 

Journal 
31, 397-425. 

BIB-14 

decisions and empirical Bayes. (Vi th 

Royal Statistical Society, Series B, 

COPAS J.B. (1983): Regression, prediction and shrinkage. Journal of the 

Royal Statistical Society, Series B, lethodological, 45, 311-354. 

CORNELL J. A. ( 1981): Experiments with lixtures: Oes igns, lode ls and the 

Analysis of lixture Oata. John Viley & Sons, New York. 

COXE K.(1975): Do principal components solve multicollinearity? The 

Longley data revisited. Presented at joint annual meetings of Biometric 

Soc., Amer. Statist. Assoc., & Inst. of Math. Statist., Atlanta, Georgia, 

August 1975. 

CRAMER N.(1946): lathematical methods of statistics. Princeton University 

Press, Princeton, NJ. 

CRITCHLEY F.(1985): Influence 1n principal components analysis. 

Biometrika, 72, no. 3, 627-636. 

CROCKER D.C. (1971): Letter to the Editor. The American Statistician, 25, 
no. 3, 55. 

CROXTON F.E., COVDEN D.J. AND BOLER B.V.(1969): Practical Business 

Statistics, 4th Ed., Englewood Cliffs, Prentice-Hall, Inc., New Jersey 

DAGENAIS G.(1973): The use of incomplete observations in multiple 

regression analysis, A Generalized least squares Approach. Journal of 

Econometrics, 1, 317-328. 

DAGENAIS M.G.(1983): Extension of the ridge regression technique to 
nonlinear models with additive errors. Econom. Lett., 12, no. 2, 169-174. 

DANIEL C. AND VOOD F .S. (1980): Fitting equations to data, 2nd ed. John 

Viley & Sons, New York. 



BIB-15 

DALING J.R. AND TAMURA H.(1970): Use of orthogonal factors for selection of 

variables regression equation - an illustration. Applied Statistics, 19, 

260- 268. 

DAVID N.A. AND STE\TART G."1.(1982): Significance testing in a functional 

model. Technical Report 1204, Dept. Computer Science, Univ. Maryland. 

DAVID N.A. AND STE\TART G."1.(1986): Hypothesis testing with errors rn the 

variables. Technical Report TR-1735, Dept. Computer Science, Univ. 

Maryland. 

DAVIES R.B. AND HUTTON B. (1975): The effect of errors in the independent 

variables in linear regression. Biometrika, 62, 383-391. 

DAVIS C. AND KAHAN "1.M.(1970): The rotation of 

perturbation III, SIAM Journal on Numerical Analysis, 

eigenvectors 

7, 1- 46. 

by a 

DEEGAN J. Jr(1976): A Test of the numerical accuracy of some matrix 

inversion algorithms commonly used in least squares programs. Journal of 

Statistical Computations and Simulation, 4, 269-278. 

DE GRUTTOLA V., \TARE J.H. AND LOUIS T.A.(1987): Influence analysis of 

generalized least squares estimators. Jou ma l of the American Stat is ti cal 
Association, 82, no. 399, 911-917. 

DEKEN J .G. (1983): Approximating conditional moments of the multivariate 

normal distribution. SIAM Journal on Scientific and Statistical Computing, 

4, no. 4, 720-732. 

DELANEY N.J. AND CHATTERJEE S.(1986): 

cross- validation in ridge regression. 

Statistics, 4, 255-262. 

Use of the bootstrap and 

Journal of Business and Economic 

DEL PINO G.E. (1984): Linear restrictions and two step least squares with 

applications. Statistics B Probability Letters, 2, no. 4, 245-248. 



BIB- 16 

DEL RIO M.(1988): On the potential in the estimation of linear functions in 

Regression. Communications in Statistics, Part A - Theory and Methods, 17, 

729- 738. 

DEMING lJ.E.(1946): Statistical ad)ustment of data. John lJiley & Sons, New 
York. 

DE MOOR B. (1984): First order perturbation analysis of the singular value 

decomposition. Internal Report, ESAT laboratory, K.U.Leuven. 

DEMPSTER A.P.(1971): Model searching and estimations in the logic of 

inference. In Foundations of Statistical Inference (V. P. Godambe and D.A. 

Sprott, eds) 

DEMPSTER A.P.(1973): Alternatives to least squares in multiple 

in D. Kabe and R.P Gupta, eds., Multivariate Statistical 

North-Holland Publishing Co., Amsterdam, 1973, 25-40. 

regression, 

Inference, 

DEMPSTER A.P. AND RUBIN D.B.(1983): Rounding error rn regression: the 
appropriateness of Shepard's corrections. Journal of the Royal Statistical 

Society, Series B, Methodological, 45, no. 1, 51-59. 

DEMPSTER A.P., SCHATZOFF M. AND lJERMUTH N.(1977): A Simulation study of 

alternatives to ordinary least squares. Journal of the American Statistical 

Association, 72, 77-106. 

DENT lJ.T. AND CAVANDER D.C. (1977): More on computational accuracy in 

regression. Journal of the American Statistical Association, 72, 598-600. 

DENTON F. T. AND KUIPER J. ( 1965): The effect of measurement errors on 

parameter estimates and forecasts. Rev. Econ. Statist., 47, 198-206. 

DESOER C.A. AND lJHALEN B.H.(1963): A note on pseudoinverses. J. SIAM 11, 
442-447. 



BIB- 17 

DEY D. K. AND BERGER J. 0. ( 1983): On truncation of shrinkage estimators in 

simultaneous estimation of normal means. Journal of the American 

Statistical Association, 78, 865-869. 

DICKEY J.M.(1968): Three multidimensional-integral identities with Bayesian 

applications. Annals of lathematical Statistics, 39, 1615-1627. 

DICKEY J.(1971): The Bayesian alternatives to the F-Test. SUNY at Buffalo 

Research Report no 50. 

DICKEY J.M. (1974): Bayesian Alternatives to the F-test and least squares 

estimates in the normal linear model. In Studies in Bayesian Econometrics 

and Statistics, Eds. A. Zellner And S. Fienberg, Amsterdam: North-Holland 

Publishing Co. 

DONALDSON J.R. AND SCHNABEL R.B.(1987): Computational experience with 

confidence regions and confidence intervals for nonlinear least squares. 

Technometrics, 29, 67-82. 

DORSETT D. ( 1982): Resistant M- Estimators 

Points. 

University. 

Ph.D.Dissertation. Dept. of 

rn the Presence of Influential 

Statistics, Southern Methodist 

DORSETT D. AND GUNST R.F.(1982): Bounded-Leverage weights for robust 

regression estimators. Technical Report 171. Southern Methodist University, 

Dept. of Statistics. 

DORSETT D., GUNST R.F. AND GARTLAND E.C. Jr(1983): Multicollinear effects 

of weighted least squares regression. Statistics and Probability Letters. 

1, 207- 211. 

DRAPER J. (1964): Some statistical problems rn research and development. 

The Statistician, 14, 311-318. 

DRAPER N.R.(1961): Missing values 1n response surface designs. 
Technometrics, 3, 389-398. 



BIB- 18 

DRAPER N.R. AND JOHN J.A.(1981): Influential observations and outliers 1n 

regression. Technometrics, 23, No. 1, February 1981, 21-26. 

DRAPER N.R. AND SMITH H. (1981): Applied Regression Analysis. John \filey & 

Sons, New York. (2nd ed). 

DRAPER N.R. AND STONEMAN D.M.(1966): Testing for the inclusion of variables 

in linear regression by a randomisation technique. 

695-699. 

Technometrics, 8, 

DRAPER N.R. AND VAN NOSTRAND R.C.(1978): Ridge regression - Is it 
worthwhile? University of \f isconsin Statistics Dept. Technical Report No 

501. 

DRAPER N.R. AND VAN NOSTRAND R.C.(1979): Ridge regression and James-Stein 

estimation: Review and comments. Technometrics, 21, 451-466. 

DRISCOLL M.F. AND BOARDMAN T.J.(1986): Collinearity and points of expansion 

in polynomial regression. Computer Science and Statistics: Proceedings of 
the 18th Symposium on the Interface. 

DYIVEDI T.P., SRIVASTAVA V.K. AND HALL R.L.(1980): Finite sample properties 

of ridge estimators. Technometrics, 22, 205-212. 

DYYER P.S.(1951): Linear Computations. John \filey & Sons, New York. 

DYKSTRA O. Jr. ( 1971): 

IX'XI. Technometrics, 

The Augmentation of experimental data to maximize 

13, 682- 688. 

DYSHIN 0. A.(1988): Noise immunity of the selection criteria for regression 
models with correlated perturbations. Soviet Journal of Automation and 

Information Sciences, 21, no. 3, 16-24. Avtomatika, 1988, no. 3, 17-25, 
93. 

ECKART G. AND YOUNG G.(1936): The approximation of one matrix by another of 
lower rank. Psychometrika, 1, 211-218. 



BIB- 19 

ED~ARDS A.~.F.(1969): Statistical methods 1n scientific inference. Nature, 

Lond. 222, 1233-1237. 

ED~ARDS J.B.(1969): The relation between the F-test and R2 • 

Statistician, 23, 28. 

The American 

EFRON B. AND MORRIS C. (1971): Limiting 
Bayes estimators - Part I: The Bayes 

Statistical Association, 66, 807-815. 

the risk of Bayes and Empirical 

case. Journal of the American 

EFRON B. AND MORRIS C. ( 1972): Empirical Bayes on vector observations - an 

extension of Stein's method. Biometrika, 59, 335-347. 

EFRON B. AND MORRIS C. (1972): Limiting the risk of Bayes and Empirical 
Bayes estimators - Part II: The Empirical Bayes Case. Journal of the 

Ame r i can S t a t is t i c a l Ass o c i a t i on , 6 7 , 13 0- 13 9 . 

EFRON B. AND MORRIS C.(1973): Stein's Estimation rule and its Competitors -

an Empirical Bayes approach. Journal of the American Statistical 

Association, 68, 117-130. 

EFRON B. 
problems. 
379- 421. 

AND MORRIS C.(1973): Combining possibly related estimation 

Journal of the Royal Statistical Society, Series B, 35, 3 (1973), 

EFRON B. AND MORRIS C.(1975): Data analysis using Stein's estimator and its 

generalizations. Journal of the American Stat is t ica l Association, 70, 
311-319. 

EFROYMSON M.A.(1960): Multiple regression analysis. Chapter 17 1n 
!lathematical !lethods for Digital Computers. Edited by A. Ralston and H.S. 
~ilf, John ~iley & Sons, New York. 

EFROYMSON M.A.(1965): Multiple regression analysis. In !lathematical 

!lethods for Digital Computers, 191-203. 



BIB- 20 

EPLETT V.J.R.(1978): A Note about the multipliers 1n latent root 

regression. 

184- 185. 

Journal of the Royal Statistical Society, Series B, 40, 

ERICSON V.A.(1969): Subjective Bayesian models 1n sampling finite 

populations (with Discussion). Journal of the Royal Statistical Society, 

Series B, 31, 195-233. 

EZEKIEL M. (1924): A Method of handling curvilinear correlation for any 

number of Variables. Journal of the American Statistical Association, 19, 

431-453. 

EZEKIEL M. AND FOX K.A.(1959): Methods of Correlation and Regression 

Analysis. John Viley & Sons, New York. 

FABRYCY M.Z.(1975): Multicollinearity caused by specification errors. 

Applied Statistics, 24, 250-254. 

FAREBROTHER R. V. (1972): Principal component estimators and minimum mean 

square error criteria in regression analysis. Review of Economics and 

Statistics, 54, 332-336. 

FAREBROTHER R.V.(1975): The m1n1mum mean square error linear estimator and 

ridge regression. Technometrics, 17, 127-128. 

FAREBROTHER R.V.(1979): Estimation with aggregated data. Journal of 

Econometrics, 10, no. 1, 43-55. 

FAREBROTHER R.V. AND BERRY G.(1974): Remark AS R12: 

AS6: triangular decomposition of a symmetric matrix. 
23, 447. 

A remark on algorithm 

Applied Statistics, 

FARRAR D.E. AND GLAUBER R.R.(1967): Multicollinearity 1n regression 

analysis: The problem revisited. Review of Economics and Statistics, 49, 

92- 107. 



BIB-21 

FEARN T. (1983): A misuse of ridge regression rn the calibration of a near 

infrared reflectance instrument. Applied Statistics, 32, 73-79. 

FELDSTEIN M.S. (1973): Multicollinearity and the mean squared error of the 

alternative estimators. Econometrica, 41, No. 4, 337-346. 

FIENBERG S. F. ( 1967): Cell estimates for one-way and two- way analysis of 

variance tables. lemorandum NS-69, Department of Statistics, Harvard 
University. 

FIENBERG S.F.(1971): Discussion of a paper by H.O. Hartley and R.R. Hocking 
on incomplete data analysis. Biometrics, 27, 813-817. 

FISHER R.A. (1925): Statistical lethods for llesearch florkers. Oliver and 

Boyd, Edinburgh and London, 1925. 

FLACK V. F. (1989) : Predictability measures for ridge regression models. 

Communications in Statistics, Part A - Theory and lethods, 18, 755- 766. 

FLORENS J.P., MOUCHART M., RAOULT J.P., SIMAR L. AND SMITH A.F.M.(1983): 

Specifying statistical models. From parametric to nonparametric, using 

Bayesian or non-Bayesian approaches. Proceedings of the Second 

Franco-Belgian Meeting of Statisticians held at Lou vain- la- Neuve, October 

15-16, 1981. Lecture Notes in Statistics, 16. 

FLORENS J.P. , MOU CHART M. , AND RICHARD J. F. ( 197 4): Bayesian Inference in 

error-in-variables models. Journal of lultivariate Analysis, 4, 419-452. 

FLURY B.~.(1989): Understanding partial statistics and redundancy of 

variables rn regression and discriminant analysis. The American 

Statistician, 43, 27-31 

FOMBY T.B. AND HILL R.C.(1979): Multicollinearity and the minimax 
conditions of the Bock Stein-like estimator. Econometrica, 47, no. 1, 
211-212. 



BIB- 22 

FOMBY T. B. , HILL R. C. AND JOHNSON S. R. ( 1978): An opt irnal property of 

principal components in the context of restricted least squares. Journal of 

the American Statistical Association, 73, 191-193. 

FORSYTHE G.E. (1970): Pitfalls in computation, or why a math book isn't 

enough. The American Mathematical Monthly, 77, 931-956. 

FORSYTHE G. AND MOLER C. (1967): Computer solution of linear algebraic 

systems. Prentice-Hall, Englewood Cliffs, NJ. 

FOURGEAUD C., GOURIEROUX C. AND PRADEL J.(1984): Some theoretical results 

for generalized ridge regression estimators. Journal of Econometrics, 25, 

no. 1-2, 191-203. 

FOX J.(1984): Linear statistical models and related methods with 

applications to social research. John Viley & Sons, New York. 

FOX K.A. AND COONEY J.F.(1954): Effects of Intercorrelations upon Multiple 

Correlation and regression measures. U.S. Dept. of Agriculture, 

Agricultural Marketing Service, Vashingtion, D.C. 

FOX L. (1950): Practical methods for the solution of normal equations and 

the inversion of matrices. Journal of the Royal Statistical Society, Series 

D, 12, 120- 136. 

FRANE J.V.(1978): Detecting and describing statistical and numerical 

ill-conditioning. Proceedings of the Statictical Computing Section, 

American Statistical Association, 68-77. 

FRANCIS I. S. ( 1983): Invited discussion of paper by E.B. James, 

Microcomputers: the corning revolution in Statistics. 

International Statistical Institute, 50, 3, 140. 

Bulletin of the 

FREUND R.J.(1963): A warning of roundoff errors 1n regression. The 

American Statistician, 17, 5, 13-15. 



BIB- 23 

FREUND R.J. AND MINTON P .D. (1979): Regression methods. A tool for data 

analysis. Statistics: Textbooks and Monographs, 30. Marcel Dekker, New 

York. 

FRIEDMAN D.J., 

performance of 

153-163. 

MONTGOMERY D.C.(1985): Evaluation of the predictive 

biased regression estimators. Journal of Forecasting, 4, 

FRISCH R.(1934): Statistical Confluence Analysis by leans of Complete 

Regression Systems. 

Norway. 

Oslo: Universitetets Okonomiske Institutt, Oslo, 

FULLER V.A.(1980): Properties of some estimators for the errors 1n variable 

model. The Annals of Statistics, 8, 407-422. 

GALPIN J.S.(1978): An investigation of methods of ridge regression. 

Technical Report, CSIR, Pretoria. 

GARDNER J. R. AND HYMANS S. H. ( 1978) : An econometric model of the U.S. 

monetary sector. RSQE Research Report. The University of Michigan, Ann 

Arbor, MI. 

GARNHAM N.F.J.(1979): 

multiple regression. 

Kent at Canterbury. 

Some aspects of the use of principal components rn 

Dissertation for M.Sc. in Statistics an University of 

GARSIDE M.J.(1965): The best subset 1n multiple regression analysis. 

Applied Statistics, 14. 

GARSIDE M.J. (1971): Some computational procedures for the best subset 

problem. Applied Statistics, 20, 8-15. 

GAUSS C.F. (1821): Theroria combinationis observationum erroribus minimus 

obnoxiae, in Verke IV, Koniglichen Gessellschaft der Vissenschaften zu 

Gottingen, 1821, pp 1-26. 



BIB- 24 

GAYLOR D. V. AND MERRILL J. A. ( 1968): Augmenting existing data in multiple 

regression. Technometrics, 10, 73-81. 

GEIGENMULLER U., TITULAER U.M. AND FELDERHAF B.U.(1983): The approximate 

nature of the Onsager-Casimir reciprocal relations. Phys. A, 119, no. 1-2, 

53- 66. 

GENTLE J.E.(1978) Computations for least absolute values estimation. 

Communications in Statistics, Part B - Simulation and Computation, 6, no. 

4, 720- 732. 

GENTLEMAN J.F.(1980): Finding the K most likely outliers 1n two-way tables. 

Technometrics, 22, 591-600. 

GENTLEMAN J.F. AND VILK M.B.(1975): Detecting outliers II. Supplementing 

the direct analysis of residuals. Biometrics, 31, 387-410. 

GENTLEMAN V.M.(1973): Least squares computations by Givens transformations 

without square roots. J. Inst. laths. Applies, 12, 329-236. 

GENTLEMAN V.M.(1975): Error analysis of QR decomposition by Givens 

transformations. Linear Algebra and its Applications, 10, 189-197. 

GERHOLD G.A.(1969): Least squares adjustment of weighted data to a general 

linear equation. Amer. J. Phys., 37, 156-161. 

GIBBONS D.G. (1981): A simulation study of some ridge estimators. Journal 

of the American Statistical Association, 76, 131-139. 

GILL P.E. AND MURRAY V.(1979): Computation of Lagrange multiplier estimates 

for constrained minimization. Mathematical Programming, 17, 32-60. 

GLESER L.J.(1981): Estimation in a multivariable errors-in-variables 

regression model : Large sample results. The Annals of Statistics, 9, 

24-44. 



BIB- 25 

GLESER L.J. AND 'WATSON G.S. (1973): Estimation of a linear transformation. 

Biometrika 60, 525-534. 

GODAMBE V.P.(1966): A new approach to sampling from finite populations. I. 

Sufficiency and linear estimation. Journal of the Royal Statistical 

Society, Series B, 28, 310-319. 

GOHBERG I.C. AND KREIN M.G.(1969): Introduction to the theory of 

Nonself-adjoint operators. American Mathematical Society, Providence, B.I. 

GOLDBERGER A.S.(1964): Econometric theory. John 'Wiley & Sons, New York. 

GOLDBERGER A.S.(1968): Topics in Regression Analysis. The Macmillan 

Company, London. 

GOLDER E.R. (1976): The spectral test for the evaluation of congruential 

Pseudo-random generators. Applied Statistics, 25, 173-180. 

GOLDMAN A. J. AND ZELEN M. ( 1964): 'Weak generalized inverses and minimum 
variance linear unbiased estimation. J. Bes. Nat JZ. Bur. St Jds. 68b, 
151-172. 

GOLDSTEIN M. AND SMITH A.F.M.(1974): Ridge-type estimations for regression 

analysis. Journal of the Royal Statistical Society, Series, B, 36, 2, 

284- 291. 

GOLUB G.H.(1965): Numerical methods for solving linear least squares 
problems. Numer. lath. 7, 206-216. 

GOLUB G.H.(1969): Matrix decompositions and statistical calculations. 

Statistical Computation. R.C. Milton and J.A. Nelder, eds. Academic Press, 
New York, pp. 365-397. 

GOLUB G.H.(1973): Some modified eigenvalue problems. SIA.II Review, 15, 
318-344. 



BIB- 26 

GOLUB G.H., HOFFMAN A. AND STElJART G.lJ.(1987): A Generalization of the 

Eckart-Young-Mirsky matrix approximation theorem. Linear Algebra and its 

Applications, 88/89: 317-327. 

GOLUB G. H., KLEMA V. AND STElJART G. lJ. ( 1976): Rank degeneracy and least 
squares problems. Technical Report TR-751, Dept. Computer Science, Univ. 
Maryland. 

GOLUB G.H. AND KAHAN lJ.(1965): Calculating the singular values and 

Pseudo- inverse of a matrix. SIA!I Journal on Numerical Analysis., Ser. B, 

2, 205- 224. 

GOLUB G.H. AND PEREYRA V.(1973): The differentiation of pseudoinverses and 
nonlinear least squares problems whose variables separate. SIAM Journal on 

Numerical Analysis, 10, 413-432. 

GOLUB G. H. AND REINSCH C. ( 1970): Singular- Value decomposition and 
least-squares solutions. Numerische Mathematik, 14, 403-420. 

GOLUB G.H. AND VAN LOAN C. (1979): 
Techniques for curve estimation. 

Springer-Verslag, New York, 69-76. 

Total least squares. In Smoothing 

T. Gasser and M. Rosenblatt, eds. 

GOLUB G.H. AND VAN LOAN C. (1980): An analysis of the total least squares 
problem. SIA!I Journal on Numerical Analysis, 17, 883-893. 

GOLUB G.H. AND VAN LOAN C.F. (1983): !latrix Computations. Johns Hopkins 
University Press. Baltimore, MD, 1983. 

GOLUB G.H. AND 1JILKINSON J .H. (1966): Note on the iterative refinement of 
least squares solution. Numer. !lath., 9, 139-148. 

GONIN R. AND DU TOIT S.H.C.(1987): Numerical algorithms for solving 
nonlinear LP-norm estimation problems. II. A mixture method for large 
residual and ill-conditioned problems. Communications in Statistics, Part A 

Theory and Methods, 16, no. 4, 969-986. 



BIB- 27 

GOODNIGHT J. AND ~ALLACE T.D.(1972): Operational techniques and tables for 

making weak MSE tests for restrictions in regression. Econometrica, 40, 

699- 709. 

GORMAN J. ~. ( 1970): Fitting equations to mixture data with restraints on 

compositions. Journal of Quality Technology, 2, 186-194. 

GORMAN J.~. AND TOMAN R.J.(1966): Selection of variables for fitting 

equations to data. Technometrics, 8, 27-51. 

GOSLING B.J. AND PUTERMAN M L.(1985): Ridge estimation in regression 
problems with autocorrelated errors: A Monte Carlo study. Communications in 

Statistics, Part B - Simulation and Computation, 14, 577-613. 

GRAYBILL F.A.(1969): Introduction to latrices with Applications in 

Statistics. ~adsworth Publishing Company, Belmont, CA. 

GRAYBILL F.A.(1976): Theory and Applications of the Linear lodel. Duxbury 

press, Belmont, California. 

GREENBERG E. (1975): Minimum variance properties of principal component 

regression. Journal of the American Statistical Association, 70, 194-197. 

GREVILLE T. N. E. ( 1959): The pseudo- inverse of a rectangular or singular 

matrix and its application to the solution of systems of linear equations. 

SIAN Review 1, 38-43. 

GREVILLE T.N.E.(1960): Some applictions of the pseudo-inverse of a matrix. 

SIAN Review 2, 15-22. 

GRILICHES Z. AND INTRILIGATOR M.D. (1983): Handbook of econometrics. Vol. 
I. North-Holland Publishing Co., Amsterdam-New York. 



BIB- 28 

GROSSMANN \I. , MOGYORODI J. , VINCZE I. AND \IERTS \I. ( 1988): Probability 

theory and mathematical statistics with applications. Proceedings of the 

Fifth Pannonian Symposium on Mathematical Statistics, held in Visegrad, May 

20- 24, 1985. 

GRUBER, J. (1984): lulticollinearity and biased estimation. Proceedings of 

the conference held at the University of Hagen, Hagen, September 8-10, 1980. 

Edited by Josef Gruber. 

GUERARD J.B. Jr AND BEIDLEMAN C.R. (1986): Composite forecasting of annual 

earnings: An application of biased regression techniques. Journal of 

Statistical Computation and Simulation, 24, 1-16. 

GUILKEY D.K. AND MURPHY J.L.(1975): Directed ridge regression techniques in 

cases of multicollinearity. Journal of the American Statistical 

Ass o c i a t i on , 7 0 , 7 6 9- 7 7 5 . 

GUNST R.F.(1983): Regression analysis with multicollinear predictor 

variables: definition, detection, and effects. Communications in 

Statistics, Part A - Theory and lethods, 12, no. 19, 2217-2260. 

GUNST R.F.(1984): Comment: Toward a balanced assessment of collinearity 

diagnostics. The American Statistician, 38, 79-82. 

GUNST R.F. AND MASON R.L.(1973): Some additional indices for selecting 

variables in regression. Presented at joint annual meetings of Biometric 

Soc., Amer. Statist. Assoc., & Inst. of Math. Statist., New York, Dec. 

27-30. 1973. 

GUNST R.F. AND MASON R.L. (1976): Generalized mean square error properties 

and regression estimators. Communications in Statistics, Part A - Theory 

and lethods, 5, 1501-1508 

GUNST R.F. AND MASON R. L. (1977): Advantages of examining 

multicollinearities in regression analysis. Biometrics, 33, 249-260. 



BIB- 29 

GUNST R.F. AND MASON R.L.(1977): 

evaluation using mean squared error. 

Association, 72, 616-628. 

Baised estimation in regression: an 

Journal of the American Statistical 

GUNST R.F. AND MASON R.L.(1979):. Some considerations in the evaluation of 

alternate prediction equations. Technometrics, 21, no. 1, 55-63. 

GUNST R.F. AND MASON R.L. (1980): Regression analysis and its application. 

A data-oriented approach. Statistics: Textbooks and Monographs, 34. Marcel 

Dekker, New York. 

GUNST R.F., 'JEBSTER J.T. AND MASON R.L.(1976): A comparison of least 

squares and latent root regression estimators. Technometrics, 18, 75-83. 

GUNTHER- JURGENS G., END EBRO CK P. AND KLATTE R. ( 1987): 

experience in computer arithmetic. 

RESI: practical 

GUPTA R.P. (1973): A note on multicollinearity and imprecise estimation. 

Statist. Hefte (H.F.), 14, 84-87. 

HADI A.S.(1986): The Prediction Matrix: Its Properties and ll.ole in Data 

Analysis. Proceedings of the Business and Economic Statistics Section, 

American Statistical Association, 'Jashington, DC. 

HADI A.S.(1988): Diagnosing collinearity-influential observations. 

Computational Statistics 8 Data Analysis, 7, 143-159 

HADI A.SAND VELLEMAN P.F.(1987): Diagnosing near collinearities 1n least 

squares regression (comment on a paper by G.'J. Stewart). Statistical 

Science, 2, 93-98. 

HAITOVSKY Y. (1968): Missing data in regression analysis. Journal of the 

ll.oyal Statistical Society, Series B, 30, 67-82. 

HAITOVSKY Y.(1969): Multicollinearity in regression analysis: Comment. The 

lleview of Economics and Statistics, Vol 51, 486-489. 



BIB- 30 

HAITOVSKY Y. (1972): On errors of measurement in regression analysis rn 

economics. Inte,national Statistical Review, 40, 23-45. 

HALD A. (1952): Statistical Theo,y with Enginee,ing Applications. John 

Viley & Sons, New York. 

HALPERIN M. AND GURIAN J. ( 1971): A note on estimation 

regression when both variables are subject to error. 

Ame,ican Statistical Association, 66, 587-589. 

rn straight line 

Journal of the 

HAMILTON D.(1987): Sometimes R2 > r 2 (yx 1 ) + r 2 (yx 2 ): Correlated variables 

are not always redundant. The Ame,ican Statistician, 41, 129-132. 

HAMMER G. AND PALLASCHKE D.(1984): Contributions to operations research and 

mathematical economics. Vol. II. 

HAMPEL F.R., RONCHETTI F.M., ROUSSEEVV P.J. AND STAHEL V.A.(1986): Robust 

Statistics: The App,oach Based on Influence Functions. John Viley & Sons, 

New York. 

HANSON R.J. AND LAVSON C.L. (1969): Extensions and applications of the 

Householder Algorithm for solving linear least squares problems. 

lathematics of Computation 23, 787-812. 

HARTLEY H. 0. ( 1961): The modified Gauss- Newton method for the fitting of 

non-linear regression functions by least-squares. 

269-280. 

Technomet,ics 3' 

HARVEY A.C.(1977): Some comments on multicollinearity 1n regression. 

Applied Statistics, 26, 188-191. 

HAVKINS D.M. (1973): On the investigation of alternative regressions by 

Principal Component Analysis. Applied Statistics, 22, 275-286. 



BIB- 31 

HAVKINS D.M.(1975): Relations between ridge regression and eigenanalysis of 

the augmented correlation matrix. Technometrics, 17, 477-480. 

HAVKINS D.M.(1980): Identification of Outliers. Chapman and Hall, London. 

HAVKINS D.M. AND EPLETT V.J.R.(1982): The Cholesky factorization of the 

inverse correlation or covariance matrix 1n multiple regression. 

Technometrics, 24, 191-198. 

HEALY M.J.R.(1963): Fitting a quadratic. Biometrics, 19, 362-363. 

HEALY M.J.R.(1963): Programming multiple regression. The Computer Journal, 

6, 57-61. 

HEALY M.J.R.(1968): Algorithm AS6: triangular decomposition of a symmetric 

matric: algorithm AS7: inversion of a positive semi-definite matrix. 

Applied Statistics, 18, 195-199. 

HEARON J.Z. AND EVANS J.V.(1968): Differentiable generalized inverses. J. 
Res. Nat. Bur. Stand., Sect. B, 72B 109-113. 

HEIKKILA E. (1988):. Multicollinearity in regression models with multiple 

distance measures. Journal of Regional Science, 28, 345-361 

HEMMERLE V.J.(1975): An explicit solution for generalized ridge regression. 

Technometrics, 17, 309-314. 

HEMMERLE V.J. AND BRANTLE T.F.(1978): Explicit and constrained generalized 
ridge estimation. Technometrics, 20, 109-120. 

HEMMERLE V.J. AND CAREY M.B. (1983): Some properties of generalized ridge 

estimators. Communications in Statistics, Part B - Simulation and 
Computation, B12, 239-253. 

HENDERSON H.V. AND VELLEMAN P.F.(1981): Building multiple regression models 

interactively. Biometrics, 37, 391-411. 



HENDRY D.F.(1980): 
387-406. 

Econometrics - alchemy or science: 

BIB- 32 

Economica 47, 

HETTMANSPERGER T. P. AND McKEAN J. "1. ( 1977): A Robust alternative based on 

ranks to least squares in analyzing linear models. 

275-284. 

Technometrics, 19, 

HIGHAM N.J. AND STE\TART G."1.(1987): Numerical linear algebra in statistical 

computing. The state of the art in numerical analysis (Birmingham, 1986). 

HILL B.M.(1969): Foundations for the theory of least squares. Journal of 

the Royal Statistical Society, Series B, 31, 89-97. 

HILL R.V.(1977): Robust regression when there are outliers 1n the carriers. 

Unpublished Ph.D.dissertation, Harvard University, Dept. of Statistics. 

HILL R.C., FOMBY T.B. AND JOHNSON S.R.(1977): Component selection norms for 

principal components regression. Communications in Statistics, Part A -
Theory and lethods, 6, 309-334. 

HILL R. C. AND JUDGE G. G. ( 1987): Improved predict ion in the presence of 
multicollinearity. Journal of Econometrics, 35, no.1, 83-100. 1987 

HILL R.C. AND JUDGE G.G.(1990): Improved estimation under collinearity and 

squared error loss. Journal of lultivariate Analysis, 32, 296-312. 

HILL R.C. AND ZIEMER R.F.(1983): Missing regressor values under conditions 

of multicollinearity. Communications in Statistics, Part A - Theory and 
lethods, 12, no. 22, 2557-2573. 

HIMMELBLAU D.M.(1970): Process Analysis by Statistical methods. John \Tiley 
& Sons, New York. 

HINKLEY D.V.(1976): Robust jackknife correlation. Stanford Univ., Biostat. 
Technical Report, 19. 



BIB- 33 

HINKLEY D.V.(1977): Jackknife confidence limts using Student-t 

approximations. Biometrika, 64, 21-28. 

HINKLEY D.V.(1977): Jackknifing in unbalanced situations. Technometrics, 

19, No. 3, 285-292. 

HOAGLIN D.C. AND VELSCH R.E.(1978): The Hat matrix 1n regression and ANOVA. 

The American Statistician, 32, 17-22. 

HOCKING R.R(1976): The analysis and selection of variables in linear 

regression. Biometrics, 32, 1-49. 

HOCKING R.R. (1983): Developments rn linear regression methodology: 

1959-1982 (with discussion). Technometrics, 25, 219-249. 

HOCKING R.R. (1984): Discussion of K-clustering as a detection tool for 

influential subsets rn regression. By J.B. Gray and R.F. Ling, 

Technometrics, 26, 321-323. 

HOCKING R.R AND DUNN M.R. (1982): Collinearity, influential Data and ridge 

Regression, Paper presented at University of Delaware Symposium on Ridge 

Regression. 

HOCKING R.R AND LESLIE R.N.(1967): Selection of the best subset 1n 

regression analysis. Technometrics, 9, 531-540. 

HOCKING R.R. AND PENDLETON O.J.(1983): The regression dilemma. 

Communications in Statistics, Part A - Theory and llethods, 12, 497-527. 

HOCKING R.R., SPEED F.M. AND LYNN M.J.(1976): A class of biased estimators 

in linear regression. Technometrics, 18, 425-437. 

HODGES S. D. AND MOORE P. G. ( 1972): Data uncertainties and least squares 

regression. Applied Statistics, 21, 185-195. 



BIB- 34 

HOERL A.E.(1959): Optimum solution of many variable equations. Chem. Engr. 

Prog., 55, 69-78. 

HOERL A.E. (1962): Application of ridge analysis to regression problems. 

Chem. Engr. Prog., 58, 54-59. 

HOERL A.E. (1964): Ridge analysis. Chem. Engr. Prog. Symposium Series 60, 

67- 77. 

HOERL A.E. AND KENNARD R.Y.(1968): On regression analysis and biased 

estimation. Techometrics, 10, 422-423. Abstract. 

HOERL A.E. AND KENNARD R.Y.(1970): Ridge regression: 
nonorthogonal problems. Technometrics 12, 69-82. 

Applications to 

HOERL A.E. AND KENNARD R.Y.(1970): Ridge regression: Baised estimation for 
nonorthogonal problems. Technometrics 12, 55-69. 

HOERL A.E. AND KENNARD R.Y.(1976): Ridge regression: iterative estimation 
of the biasing parameter. Communication in Statistics, A5, 77-88. 

HOERL A.E. AND KENNARD R.Y.(1982): Ridge Regression, Bibliography Update. 

Accession Report 16487, E.I. du Pont, Yilmington, DE. 

HOERL A.E., KENNARD R.Y. AND BALDYIN K.F.(1975): Ridge regression: some 
simulations. Communications in Statistics, 4, 105-123. 

HOERL A.E., KENNARD R.Y. AND HOERL R.Y.(1985): Practical use of ridge 
regression: A challange met. Applied Statistics, 34, 114-120. 

HOERL R.Y., SCHUENEMEYER J.H. AND HOERL A.E.(1986): A simulation of biased 
estimation and subset selection regression techniques. Technometrics, 28, 
369-380. 

HOLDEN K.(1969): The effect of rev1s1ons to data on two econometric 
studies. lanchester School, 37, 23-37. 



BIB- 35 

HOOPER J.1.i. AND THEIL H.(1958): The extension of lJald's method of fitting 

straight lines to multiple regression. llev. Int. Statist. Inst., 26, Part 

1, 37-47. 

HORN R.A AND JOHNSON C.R. (1987): llatrix Analysis. Cambridge University 

Press, Cambridge. 

HORTON R.L. AND GUERARD J.B. Jr(1985): The management of executive 
compensation in large, dynamic firms: A further look. Communications in 

Statistics, Part B - Simulation and Computation, 14, 441-448. 

HoSCHEL H.P. AND PENEV S.(1980): Least squares curve-fitting for nonlinear 

models with errors-in-variables and globally convergent 

Gauss-Newton-procedures. Discussion Paper 8025, Center for Operation 

Research and Econometrics, Universite Catholique de Louvain. 

HOSMANE B. AND HUA T .A. (1985): Multicollinear effect rn 

regression. American Statistical Association Proceedings 
Statistical Computing Section. 

logistic 
of the 

HOTELLING H. ( 1957): The relations of the newer multi variate statistical 

methods to factor analysis. Brit. J. Statist. Psychol., 10, 69-79. 

HOUSEHOLDER A.S (1964): The theory of llatrices in Numerical Analysis. 

Blaisdell, New York. 

HOlJELL J. A. ( 1971): Algorithm 406. Exact solutions of linear equations 

using residual arithmetic [F4]. Communications of the ACII 14, 180-184. 

HSIANG T.C. (1976): A Bayesian view on ridge regression. The Statistician, 

24, 267-268. 

HSUAN, F.C.(1981): Ridge regression from principal component point of view. 

Communications in Statistics, Part A - Theory and Methods, 10, no. 
1981-1995. 



HUANG D.S. (1970): Regression and Econometrics. 

New York. 

HUBER P.J.(1972): Robust statistics: a review. 
Statistics, 43, 1041-1067. 

BIB- 36 

The Macmillan Company, 

Annals of Mathematical 

HUBER P. J. ( 1973): Robust regression: Asymptotics, Conjectures and Monte 
Carlo. Annals of Statistics. 1, 789-821. 

HUBER P .J. (1975): Robustness and designs. In A Survey of Statistical 
Design and Linear Models, ed. J.N. Srivastava. North-Holland, Amsterdam. 

HUBER P.J.(1981): Robust Statistics. John ~iley & Sons, New York. 

IMAN R.L. AND CONOVER ~.J.(1979): The use of the rank transform in 

regression. Technometrics, 21, 499-510. 

IGLARSH H.J. AND CHENG D.C.(1979): ~eighted estimators in regression with 
multicollinearity. Journal of Statistical Computation and Simulation, 10, 
no. 2, 103-112. 

JACKSON J.E. AND HEARNE F.T.(1973): Relationships among coefficients of 
vectors used in Principal Components. Technometrics, 15, 601-610. 

JACKSON P.H., NOVICK M.R. AND THAYER D.T.(1971): Estimating regressions 1n 
m-groups. Brit. J. lath. Statist. Psychol., 24, 129-153. 

JAHN~- AND RIEDEL M.(1984): Reduction of the dimension in the linear model 
with stochastic regressors. Commen tat ion es la thema t icae Univers i tat is 

Carolinae, 25, no.4, 747-761. 

JAMES ~- AND STEIN C. {1961): Estimation with quadratic loss, in Neyman 
J.(ed.). Proceedings of the Fourth Berkeley Symposium, Los Angeles: 
University of California Press, 1961, 361-379. 

JEFFERS J.N.R.(1965): Correspondence. The Statistician, 15, 207-208. 



BIB-37 

JEFFERS J .N.R. (1967): Two case studies in the application of principal 
component analysis. Applied Statistics, 16, 225-236. 

JEFFERS J.N.R.(1981): Investigation of alternative regressions: some 

practical examples. The Statistician, 30, 79-88. 

JEFFREYS H.(1961): Theory of Probability. Third Edition, Oxford University 

Press, London, Chapter III. 

JOHN J.A. AND DRAPER N.R.(1978): On testing for two outliers or one outlier 
in two-way tables. Technometrics, 20, 69-78. 

JOHNSON S.R., REIMER S.C. AND ROTHROCK T.P.(1973): Principal components and 
the problem of multicollinearity. Xetroeconomica, 25, 306-317. 

JOHNSON T. AND ~ALLACE T.D.(1969): Principal Components and 

Multicollinearity. Department of Economics, Econometrics ~orkshop 

Discussion Paper, North Carolina State University, Raleigh, North Carolina. 

JOHNSTON J.(1963): Econometric Methods. McGraw-Hill, New York. 

JOHNSTONE I. (1987): On the admissibility of some unbiased estimates of 
loss. In Statistical Decision Theory and Belated Topics IV ( U.S. Gupta and 

J. Berger, Eds.), Vol. 1, pp 281-297. Springer-Verlag, New York. 

JOLLIFFE I. T. (1972): Discarding variables 1n a principal component 
analysis. I. Artificial data. Applied Statistics, 21, 160-173. 

JOLLIFFE I. T. (1973): Discarding variables 1n a principal component 
analysis. II. Real data. Applied Statistics, 22, 21-31. 

JOLLIFFE I.T.(1982): A Note on the use of principal components 1n 
regression. Applied Statistics, 31, 300-303. 

JONES D.A. (1978): Nonlinear autoregressive processes. Proceedings of the 

Royal Society of London, Series A, 360, no. 1700, 71-95. 



BIB- 38 

JONES S.(1988): GAUSS, Version 2.0, System and Graphics Jlanual. Aptech 

Systems, Kent, YA. 

JORDAN T.L.(1968): Experiments on error growth associated with some linear 

least-squares procedures. Mathematics of Computation, 22, 579-588. 

JUDGE G.G. AND BOCK M.E.(1976): A comparison of traditional and Stein rule 

estimators under weighted squared error loss. 

Review, 17, 234-240. 

International Economic 

JUDGE G.G. AND BOCK M.E. (1978): The Statistical Implications of Pre-Test 

and Ste in-Rule Estimators in Econometrics. North- Holland Publishing Co., 
New York. 

JUDGE G.G., GRIFFITHS Y.E., HILL R.C. LUTKEPOHL H. AND LEE T.C.(1980): The 

Theory and Practice of Econometrics. Yiley Series in Probability and 
Mathematical Statistics. John Yiley & Sons, New York. (2-nd edition 1985). 

JUDGE G.G., HILL R.C. AND BOCK M.E.(1990): An adaptive empirical Bayes 
estimator of the multivariate normal mean under quadratic loss. J. Econom. 

in press. 

JUDGE G.G., YI G., YANCEY T. AND TERASVIRTA T.(1987): The extended Stein 
procedure for simultaneous model selection and parameter estimation. J. 

Econom., 35, 375-392. 

KADIYALY K. (1984): A class of almost unbiased and efficient estimators of 
regression coefficients. Economics Letters, 16, 293-296. 

KAGIYADA H., KALABA R. AND MEASE K. ( 1977): The flabbiness and instability 
of regression analysis and computational methods for improvement. 
Applications of statistics (Proc. Sympos., Yright State Univ., Dayton, Ohio, 
1976) 



BIB- 39 

KAK\'ANI N.C. (1965): Note on the use of prior information in forecasting 

with a Linear Regression Model. Sankhya, Series A, 27, 101-104. 

KALMAN R.E. (1984): \'e can do something about multicollinearity! 
Communications in Statistics, Part A - Theory and llethods, 13, no. 2, 

115-125. 

KARLIN S. AND STODDEN \'.J. (1966): Optimal experimental design. Annals of 

llathematical Statistics, 37, 783-816. 

KASHYAP A.K., S\'AMY P.A.V.B., MEHTA J.S., AND PORTER R.D.(1984): Estimating 

distributed lag relationships using near-minimax procedures. Special Studies 

Paper, Federal Reserve Board, \'ashington, D.C. 

KATO T.(1966): Perturbation Theory for Linear Operators. Springer, Berlin. 

KEATING J.P. AND MASON R.L.(1985): Practical relevance of an alternative 

criterion in estimation. The American Statistician, 39, 1868-1875. 

KEATING J.P. AND MASON R.L.(1988): James-Stein estimation from an 

alternative perspective. The American Statistician, 42, 160-164. 

KEIFER J.(1959): Optimum experimental designs. Journal of the Royal 

Statistical Society, Series B, 21, 272-319. 

KEMPTHORNE 0.(1957): An Introduction to Genetic Statistics. John \'iley & 
Sons, New York. Reprinted in 1968 by the Iowa State University Press. 

KEMPTHORNE P .J. (1985): Assessing the influence of single cases on the 

condition number of a design matrix. Memorandum NS-509, Department of 
Statistics, Harvard University. 

KENDALL M.G.(1957): A Course in Multivariate Analysis. Griffin, London. 

KENDALL M.G. AND STUART A. (1968): The Advanced Theory of Statistics (2nd 
ed.), Vol. 3. Griffen, London. 



BIB-40 

KENNARD R. lJ AND STONE L. ( 1969): Computer aided design of experiments. 
Technometrics, 11, 137-148. 

KENNEDY lJ .J. Jr AND GENTLE J.E. (1980): Statistical computing. Statistics: 
Textbooks and Monographs, 33. Marcel Dekker, Inc., New York. 

KETELLAPPER R.H.(1982): The Relevance of large-sample properties of 
estimators for the errors-in-variables model: A Monte Carlo study. 
Communications in Statistics, Series B, 11, 625-634. 

KETELLAPPER R.H.(1983): On estimating parameters in a simple Linear 
Errors-in-Variables Model. Technometrics, 25, no. 1, 43-47. 

KHATRI, C.G.(1961): Simultaneous confidence bounds on the departures from a 
particular kind of multicollinearity. Annals of the Institute of 

Statistical Mathematics, 13, 239-242. 

KLEIN L.R. (1962): An Introduction to Econometrics. 

New York. 
The MacMillan Co., 

KLEIN L.R. AND NAKAMURA M. (1962): Singularity in the equation systems of 
Econometrics, Some Aspects of Multicollinearity. 
Review, 3, 274-299. 

International Economic 

KLEINBAUM D.G., KUPPER L.L. AND MULLER K.E.(1988): Applied regression 

analysis and other multivariable methods. PlJS-KENT Publishing company, 
Boston. (Second edition.) 

KMENTA J. (1971): Elements of Econometrics. 

York. 
The MacMillan Company, New 

KNUTH D.E.(1969): The art of computer programming, Vol. 2, Reading, Mass: 
Addison Vesley Publishing Co. 



BIB- 41 

KOPITZKE R., BOARDMAN T.J. AND GRAYBILL F.A.(1975): Least squares programs 

- a look at the square root procedure. 

64- 66. 

The American Statistician, 29, 

KRASKER Y.S. AND YELSCH R.E.(1982): Efficient bounded-influence regression 

estimation. Journal of the American Statistical Association, 77, 595-604. 

KSHIRSAGAR A.M.(1972): lultivariate analysis. Marcel Dekker, New York. 

KUKS J. AND OLMAN V.(1972): Minimax Linear estimation of regression 

Coefficients, II, Iswes t ija Akademija Hauk Es tonskoj, SSR 21, 66- 72. 

KUMAR T .K. ( 1975): Multicollinearity rn regression analysis. 
Economics and Statistics, 57, 365-366. 

Review of 

KUNG E.C. AND SHARIF T.A.(1980): Multi-regression forecasting of the Indian 

summer monsoon with antecedent pattern of the large scale circulation. In 

¥10 Symposium on Probabilistic and statistical lethods in feather 

Forecasting., 295-302. 

KUNUGI T., TAMURA T. AND NAITO T.(1961): New acetylene process uses 
hydrogen dilution. Chemical Engineering Progress, 57, 43-49. 

KUPPER L.L AND MEYDRECH E.F. (1973): A new approach to mean squared error 

estimation of response surfaces. Biometrika, 60, 573-579. 

LAI T.L.V. AND CHING Z.(1986): On the concept of excitation rn least 
squares identification and adaptive control. Stochas ti cs, 

227-254. 
16, no. 3-4, 

LAIRD R.J. AND CADY F.B.(1969): Combined analysis of yield data from 
fertilizer experiments. Agronomy Journal 61, 829-834. 

LARSEN V. A. AND McCLEARY S. J. ( 1972): The use of partial residual plots rn 

regression analysis. Technometrics, 14, 781-790. 



BIB- 42 

LA'JLESS J. F. ( 1981): Mean square error properties of generalized ridge 

estimators. Journal of the American Statistical Association, 76, 462-466. 

LA'JLESS J. F. AND 'JANG P. ( 1976): A simulation study of ridge and other 

regression estimators. Communications in Statistics, 5, 307-323. 

LA'JSON C.L. AND HANSON R.J.(1974): Solving Least-Squares problems. 

Prentice-Hall, Inc., Englewood Cliffs, N.J. 

LEAMER E.E. (1973): Multicollinearity: A Bayesian interpretation. The 

Review of Economics and Statistics, 55, 371-380. 

LEAMER E.E.(1978): Specification Searches. John 'Jiley & Sons, New York. 

LEBO'JITZ 

phenomena. 

New York. 

J.L.(1981): Fourth international conference on collective 

Held in Moscow, April 12-14, 1981. New York Academy of Sciences, 

LEE K. AND CAMPBELL D.B.(1985): Selecting the optimum k 1n ridge 

regression. Communications in Statistics Part A - Theory and Methods, 15, 

1589-1604. 

LEE A.H. AND SILVAPULLE M.J.(1988): Ridge estimation 1n logistic 

regression. Communications in Statistics, Part B - Simulation and 

Computation, 17, 1231-1257. 

LEE T.S.(1987): Algorithm AS 223: optimum ridge parameter selection. 

Applied Statistics, 36, 112-118. 

LEE T.S. AND CAMPBELL D.B.(1985): Selecting the optimum k 1n ridge 

regression. Communications in Statistics, Part A - Theory and Methods, 14, 
1589-1594. 

LEE 'J.'J.(1986): Fractional principal components regression: 

approach to biased estimators. Unpublished Ph.D. dissertation. 

Statistics, Virginia Polytechnic Institute and State University. 

a general 

Dept. of 



BIB-43 

LEE Y.Y.(1987): A new deletion criterion of principal components regression 

with orientations of the parameters. Journal of the Korean Statistical 

Society, 16, 55-70 

LEE Y.Y. AND BIRCH J.B.(1988): Fractional principal components regression: 

A general approach to biased estimators. Communications in Statistics, Part 

D - Simulation and Computation, 17, 713-727. 

LEIFMAN L.J.(1983): (Selected translations). A translation of the 

mathematics section of Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1978, 

vyp. 1, 7, 13, 19. Edited by Lev J. Leifman. Vestnik Leningrad Univ. Math. 

11 ( 1983). 

LEHMER E. (1944): Inverse tables of probabilities of errors of the second 

kind. Annals of Mathematical Statistics 15, 388-398. 

LESAGE J.P. AND SIMON S.D.(1985): Numerical accuracy of statistical 

algorithms for microcomputers. Computational Statistics and Oata Analysis 

3, 47-57. 

LESAGE, J.P. AND SIMON S.D.(1988): Centering and scaling of regression 

algorithms in the face of ill-conditioning. Journal of Statistical 

Computation and Simulation, 30, 273-283 

LEYIS T.O. AND ODELL P.L.(1966): A Generalization of the Gauss-Markov 

theorem. Journal of the American Statistical Association, 61, 1063-1066. 

LICHTENSTEIN C.H. (1981): Ridge regression and its effect on high leverage 

points in the data. M. S. Thesis, Cornell University, Ithaca, N.Y. 

LICHTENSTEIN C.H. AND VELLEMAN P.F.(1983): The effects of Ridge regression 
on high leverage points in the data. Unpublished manuscript. 

LIN K. AND KMENTA J.(1982): Ridge regression under alternative loss 
criteria. Review of Economics and Statistics, 64, 488-494. 



BIB-44 

LINDLEY D.V.(1947): Regression lines and the linear functional 

relationship. Journal of the /loyal Statistical Society, Series B, 9, 

218-244. 

LINDLEY D.V. AND SMITH A.F.M.(1972): Bayes estimates for the linear model. 

(Yith discussion). Journal of the /loyal Statistical Society, Series B, 34, 

1-41. 

LINNIK I. (1961): Jlethod of Least squares and Principles of the Theory of 

Observations. Pergamon Press, New York. 

LIVIATAN J.(1961): Errors-in-variables and Engel curve analysis. 

Econometrica, 29, 336-362. 

LONGLEY J.V.(1967): An appraisal of least squares programs for the 

electronic computer from the point of view of the user. Journal of the 

American Statistical Association, 62, 819-841. 

LONGLEY J. V. ( 1981): Least squares computations and the condition of the 

matrix. Communications in Statistics, Part B - Simulation and Computation, 

10, no. 6, 593-615. 

LONGLEY J.V.(1981): Modified Gram-Schmidt process vs. classical 

Gram-Schmidt. Communications in Statistics, Part B - Simulation and 

Computation, 10, 517-527. 

LORD F .M. AND NOVICK M.R. (1968): Statistical Thoeories of Mental Test 
Scores. Addison-Vesley Publishing Co., Reading, Mass. 

LOTT V.F.(1973): Optimal set of Principal Component Restrictions on a Least 

Squares regression. Communications in Statistics, 2, 449-464. 

LOVERRE J.M. (1974): On the mean square error of parameter estimates for 

some biased estimators. Technometrics, 16, 461-464. 



BIB-45 

LUSH J .L. (1937): Animal Breeding Plans. Iowa State University Press, 

Ames, Iowa. 

LUND R.E. (1975): Tables for an approximate test for outliers rn linear 

models. Technometrics, 17, 473-476. 

MAASOUMI E.(1980): A ridge-like method for simultaneous estimation of 

simultaneous equations. Journal of Econometrics, 12, no. 2, 161-176. 

MACGREGOR J.F., HARRIS T.J. AND \IRIGHT, J.D.(1984): Duality between the 

control of processes subject to randomly occurring deterministic 

disturbances and ARIMA stochastic disturbances. Technome t ri cs, 26, no. 4, 

389-397. 

MADANSKY A. (1959): The fitting of straight lines when both variables are 

subject to error. Journal of the American Statistical Association, 54, 

173- 205. 

MADDALA G.S.(1977): Econometrics. McGraw-Hill, New York. 

MAGEL R.C. AND HERTSGAARD D. (1987): A collinearity diagnostic for nonlinear 

regression. Communications in Statistics, Part B - Simulation and 

Computation, 16, 85-97. 

MAGNUS J .R. AND NEUDECKER H. (1987): Matrix differential calculus with 

applications in statistics and econometrics. 

MAINDONALD J.H.(1976): Least squares programs - a second look. The 

American Statistician, 30, 202-203. 

MAINDONALD J. H. ( 1977): Least squares computations based on the Cholesky 

decomposition of the correlation matrix. Journal of Statistical Computation 

and Simulation, 5, 247-258. 

MALINVAUD E. (1970): Statistical llethods of Econometrics, 2nd ed. 

North-Holland, Amsterdam. 



BIB-46 

MALLOVS C.L.(1964): Choosing variables in a linear regression: A Graphical 

aid, presented at the Central Regional meeting of the Institute of 

Mathematical Statistics, Manhattan, Kansas, May 7-9, 1964. 

MALLOVS C.L.(1973): Some comments on Cp. Technometrics, 15, 661-675. 

MANDEL J. (1982): Use of the singular value decomposition rn regression 

analysis. The American Statistician, 36, 15-24. 

MANDEL J. (1985): The regression analysis of collinear data. Journal of 

Research of the National Bureau of Standards, 90, 465-478 

MANSFIELD E.R.(1975): Principal component approach to handling 

multicollinearity in regression analysis. Ph.D. dissertation, Department of 

Statistics, Southern Methodist University, Dallas, Texas. 

MANSFIELD E.R. AND CONERLY M.D. (1987):. Diagnostic value of residual and 

partial residual plots. The American Statistician, 41, 107-116. 

MANSFIELD E.R. AND HELMS B.P. (1982): Detecting multicollinearity. The 

American Statistician, 36, 158-160. 

MANSFIELD E.R., VEBSTER J.T. AND GUNST R.F.(1977): An analytic variable 

selection technique for principal component regression. Journal of the 

Royal Statistical Society, Series C, 26, no. 1, 34-40. 

MANTEL N. (1970): Vhy Stepdown procedures 1n variable selection. 
Technometrics 12, 621-625. 

MANTEL N.(1987): Coping with collinearities using prior estimates of 

regression coefficients. Rivista Di Statistica Applicata, 20, 357-363. 

MARDIA K.V., KENT J.T. AND BIBBY J.M.(1979): Multivariate Analysis. 
Academic Press, London. 



BIB-47 

MARONNA R., BUSTOS 0. AND YOHAI V.(1979): Bias- and efficiency- robustness 
of general M- estimators for regression with random carriers. Smoothing 

techniques for curve estimation (Proc. w'orkshop, Heidelberg, 1979), 91-116. 

MARQUARDT D.V.(1963): An algorithm for least-squares estimation of 

nonlinear parameters. J. Soc. Indust. Appl. lath., 11, 431-441. 

MARQUARDT D.w'.(1970): Generalized inverses, ridge regression, biased linear 

estimation and nonlinear estimation. Technometrics, 12, 591-612. 

MARQUARDT D. 'ii'. ( 1980): You should standardize the predictor variables rn 

your regression models (discussion of a paper by G. Smith and F. Campbell). 

Journal of the American Statistical Association, 75, 87-91. 

MARQUARDT D.w'., BENNETT R.G. AND BURRELL E.J.(1961): Least-squares analysis 

of Electron Paramagnetic Resonance Spectra. Jour. !lo l ec. Spectroscopy 7, 

269- 279. 

MARQUARDT D.w'. AND SNEE R.D. (1974): Test statistics for mixture models. 

Technometrics, 16, 533-537. 

MARQUARDT D.V. AND SNEE R.D.(1975): Ridge regression rn practice. The 

American Statistician, 29, 3-20 

MARQUARDT D.w'. AND STANLEY R.M.(1979): Biased estimators for mixture models 

and smooth regression: Examples of driving toward the null hypothesis. 
Unpublished manuscript. 

MASON R.L.(1986): Latent root regression: a biased regression methodology 

for use with collinear predictor variables. Communications in Statistics, 

Part A - Theory and Methods, 15, no. 9, 2651-2678. 

MASON R.L. AND GUNST R.F.(1985): Outlier-induced collinearities. 
Technometrics 27, 401-407. 



BIB-48 

MASON R.L. AND GUNST R.F. (1985): Selecting principal components in 

regression. Statistics B Probability Letters, 3, 299-301. 

MASON R.L. GUNST R.F. AND \TEBSTER J.T.(1975): Regression analysis and 

problems of multicollinearity. Communications in Statistics, 4, 277-292. 

MASON R.L., KEATING J.P., SEN P.K. AND BLAYLOCK N.\1.(1989): 

regression estimators using Pitman's measure of closeness. 

Statistical Planning and Inference. to appear. 

Comparison of 

Journal of 

MASSY \T.F.(1965): Principal component regression 1n exploratory statistical 

research. Journal of the American Statistical Association, 60, 234-256. 

MAYER L.S. AND \TILLKE T.A.(1973): On biased estimation in linear models. 

Technometrics, 15, 497-508. 

McCABE G.P.(1978): Evaluation of regression coefficients using 

a-acceptability. Technometrics, 20, 131-139. 

McCABE G.P.(1984): Principal Variables. Technometrics, 26, 137-144. 

McCALLUM B.T.(1970): Artificial orthogonalization in regression analysis . 

.ieview of Economics and Statistics, 52, 110-113. 

McCANN R.C.(1984): Introduction to Linear Algebra. Harcourt Brace 

Jonanovich, New York. 

McCULLAGH P. AND NELDER J.A.(1983): Ceneralized Linear Xodels. Chapman and 
Hall, London. 

McDONALD G.C.(1980): Some algebraic properties of ridge coefficients. 

Journal of the .ioyal Statistical Society, Series B, 42, no. 1, 31-34. 

McDONALD G.C. AND GALARNEAU D.I. (1975): A Monte-Carlo evaluation of some 

ridge-type estimators. Journal of the American Statistical Association, 70, 
407- 416. 



BIB-49 

McDONALD G.C. AND SCH~ING R.C.(1973): Instabilities of regression estimates 

relating air pollution to mortality. Technometrics, 15, 463-481. 

McGIFFEN M.E. Jr, CARMER S.G. RUESINK ~.G.(1988): Diagnosis and treatment 

of collinearity problems and variable selection in least- squares models. 

Journal of Economic Entomology, 81, 1265-70 

MEETER D. A. ( 1966): On a theorem used in nonlinear least squares. SIAM 

Journal on Applied Mathematics, 14, 1176-1179. 

MICKEY M.R., DUNN 0.J. AND CLARK V.(1967): Note on the use of stepwise 

regression in detecting outliers. Computers and Biomedical Ilesearch, 1, 

105-111. 

MILLER A.J.(1990): Subset Selection in Ilegression. Chapman and Hall. 

MILLER R.G.(1974): 

880- 891. 

An unbalance jackknife. Annals of Statistics, 2, 

MILLER R.G.(1974): The jackknife: a review. Biometrika, 61, 1-15. 

MILOVANOVIC G. V.(1984): Numerical methods and approximation theory. Papers 

from the conference held at the University of Nis, Faculty of Electronic 

Engineering, Nis, September 26-28, 1984. 

MIRSKY L. (1960): Symmetric gauge functions and unitarily invariant norms. 

Quarterly Journal of Mathematics, 11, 50-59. 

MITRA A. AND ALAM K. (1980): Measurement error rn regression analysis. 

Communinications in Statistics, Part A - Theory and Methods, 9, no. 7, 

717-723. 

MOGYORODI J., VINCZE I. AND ~ERTS ~. ( 1984): Statistics and probability. 

Proceedings of the third Pannonian symposium on mathematical statistics 

held in Visegrad, September 13-18, 1982. 



BIB-50 

MONTGOMERY D.C.(1982): Introduction to linear regression analysis. John 

Viley & Sons, New York. 

MONTGOMERY D.C. AND ASKIN R.G.(1981): Problems of nonnormality and 
multicollinearity for forecasting methods based on least squares. AIIE 

Transactions, 13, no. 2, 102-115. 

MONTGOMERY D.C. AND PECK E.A. (1982): Introduction to linear regression 

analysis. Viley Series in Probability and Mathematical Statistics. John 

Viley & Sons, New York. 

MONTGOMERY D.C., MARTIN E. AND PECK E.A. (1980): Interior analysis of the 

observations in multiple linear regression. Journal of Quality Technology, 

12, 165-173. 

MORAN P.A. P. (1971): Estimating structural and functional relationships. 
Journal of Multivariate Analysis, 1, 232-255. 

MOSER C.A. AND SCOTT V.(1961): British Towns. Oliver & Boyd., Edinburgh. 

MOSTELLER F. AND TUKEY J. (1977): Data Analysis and Regression. 

Addison-Vesley, Reading, Mass .. 

MUIRHEAD C.R. (1986): Distinguishing outlier types rn time series. Journal 

of the Royal Statistical Society, Series D, 48, no. 1, 39-47. 

MULLETT G.M.(1976): Vhy regression Coefficients have the wrong sign. 
Journal of Quality Technology, 8 121-126. 

MULLETT G.M. AND MURRAY T.V.(1971): A New method for examining rounding 
error in least squares regression Computer programs. Journal of the American 

Statistical Association, 66, 496-498. 

MUNDLAK Y.(1981): On the concept of nonsignificant functions and its 
implications for regression analysis. J. Econom., 16, 139-150. 



BIB- 51 

MURPHY J.L.(1973): Corrective procedures for selected econometric problems. 

Introductory Econometrics. (Illinois: R.D. Irwin Inc., 1973) 

MYERS R.H.(1971): Response Surface Xethodology. Allyn and Bacon, Boston. 

MYERS R.H.(1986): Classical and Xodern Regression iith Applications. 

Duxbury Press, Boston. 

NAES T. AND MARTENS H.(1985): Comparison of prediction methods for 

multicollinear data. Communications in Statistics, Series B - Simulation 

and Computation, 14, 545-576. 

NELDER J.A.(1972): Discussion of a paper by D.V. Lindley and A.F.M. Smith. 

Journal of the Royal Statistical Society, Series B, 34, 18-20. 

NETER J. AND VASSERMAN V.(1974): Applied Linear Statistical Xodels. Irwin, 
Inc. Illinois. 

NEVHOUSE J.P. AND OMAN S.D.(1971): An evaluation of ridge estimators. 
Technical report No. R-716-PR, The Rand Corporation, Santa Monica, Calif. 

NICHOLLS D.F. AND QUINN B.G. (1980): The estimation of random coefficient 

autoregressive models. I. Journal of Time Series Analalysis, 1, no.1, 

37- 46. 

NOMURA M.(1988): On the almost unbiased ridge regression estimator. 
Communications in Statistics, Series B - Simulation and Computation, 17, 
729- 743. 

NOMURA M. AND OHKUBO T. (1985): A note on combining ridge and principal 
component regression. Communications in Statistics, Series A - Theory and 
Xethods, 14, 2489-2493. 

NOVICK M.R., JACKSON P.H., THAYER D.T. AND COLE N.S.(1972): Estimating 
multiple regressions in m-group; a cross-validation study. British Journal 

of Xathematical and Statistical Psychology, 25. 



BIB- 52 

NYQUIST H.(1988): Applications of the jackknife procedure in ridge 

regression. Computational Statistics B Oata Analysis, 6, 177-183. 

OBENCHAIN R.L. (1975): Ridge analysis following a preliminary test of the 

shrunken hypothesis. Technometrics, 17, 431-441. 

OBENCHAIN R.L. (1977): Classical F-tests and confidence regions for ridge 

regression. Technometrics, 19, 429-439. 

OBENCHAIN R.L.(1977): Letter to the editor. Technometrics, 19, 348-349. 

OBENCHAIN R.L.(1978): Good and optimal ridge estimators. Annals of 

Statistics, 6, 1111-1121. 

OBENCHAIN R.L.(1980): Formulas for generalized ridge regression 

computation. Unpublished manuscript. 

OBENCHAIN R.L. AND VINOD H.D.(1974): Estimates of partial derivatives from 

ridge regression on ill-conditioned data. NBER-NSF Seminar on Bayesian 

Inference in Econometrics, Ann Arbor, Mich. 

O'HAGAN J. AND McCABE B.(1975): Tests for the 

multiclollinearity in regression analysis: A comment. 

Economics and Statistics, 57, 368-370. 

severity of 

The lleview of 

OHTANI K.(1986): On small sample properties of the almost unbiased 

generalized ridge estimator. Communication in Statistics, Part A - Theory 

and Methods, 15, 1571-1578. 

OLDFORD R.'ll,(1987): On the N-dimensional geometry of regression 

diagnostics. Communications in Statistics, Part A - Theory and Methods, 16, 
2517-2540. 



BIB- 53 

O'LEARY D. P. AND RUST B. 'Ii. ( 1986): Confidence intervals for inequality

constrained least squares problems, with applications to ill-posed problems. 

Society for Industrial and Applied Mathematics. Journal on Scientific and 

Statistical Computing, 7, no. 2,473-489. 

OMAN S.D. (1978): A Bayesian comparison of some estimators used in linear 

regression with multicollinear data. Communications in Statistics, Part A -

Theory and Methods, 7, no. 6, 517-534. 

OMAN S.D.(1981): A confidence bound approach to choosing the biasing 

parameter in ridge regression. Journal of the American Statistical 

Association, 76, no. 374, 452-461. 

OMAN S.D. (1984): A different empirical Bayes interpretation of ridge and 

Stein estimators. Journal of the Royal Statistical Society, Series B, 46, 

544- 557. 

O'NEILL M., SINCLAIR J .G. AND SMITH F .J. (1969): Polynomial curve fitting 

when abscissas and ordinates are both subject to error. Comput. J., 12, 

52- 56. 

ORRIS J.B. (1982): The role of microcomputers in statistical computing. In 

J.S. Rustagi and D.A. 'liolfe (Eds.), Teaching of Statistics and Statistical 

Computing, Academic Press, New York. 

OSBORNE M.R. (1985): Finite algorithms in optimization and data analysis. 

John 'liiley & Sons, Chichester. 

OSBORNE M.R. AND '\/ATSON G.A.(1985): An analysis of the total approximation 

problem in separable norms, and an algorithm for the total 11 problem. 

Society for Industrial and Applied Mathematics. Journal on Scientific and 

Statistical Computing, 6, no. 2, 410-424. 

OUELLETTE D. V. ( 1981): Schur complement and statistics. Linear Algebra 

Appl., 36, 187-295. 



BIB- 54 

OZAKI T.(1981): Nonlinear phenomena and time series models. Proceedings of 

the 43rd session of the International Statistica Insitute, Vol. 3 (Buenos 

Aires, 1981). ~ith a discussion. Bulletin of the International Statistical 

Institute, 49, no. 3, 1193-1210, 1225-1230. 

OZAKI T.(1982): The statistical analysis of perturbed limit cycle processes 

using nonlinear time series models. Journal of Time Series Analysis, 3, no. 

1, 29-41 

OZTURK F.(1984): A discrete shrinking method as alternative to least 

squares. Universite d 'Ankara. Faculte des Sciences. Communications. Serie 

A1 • lathematiques, 33, no. 22, 179-185 (1986). 

PARK S.H.(1981): Collinearity and optimal restrictions on regression 

parameters for estimating responses. Technometrics 23, no. 3, 289-295. 

PARLETT B.N.(1980): The Symmetric Eigenvalue Problem. Prentice Hall, 

Englewood Cliffs, N.J. 

PAVEL-PARVU M. AND KORGANOFF A. (1969): Iteration functions for solving 

polynomial equations. Constructive Aspects of the Fundamental Theorem of 

Algebra. B. Dejon and P. Henrici, eds., John ~iley & Sons, New York. 

PEARCE D.K. AND REITER S.A.(1985): Regression strategies when 

multicollinearity is a problem: A methodological note. Journal of 

Accounting Research, 23, 405-407. 

PEARSON K. ( 1901): On lines and planes of closest fit to points in space. 

Phil. lag., 2, 559-572. 

PEDDADA S.D.(1985): A Short note on Pitman's measure of nearness. The 

American Statistician, 39, 298-299. 

PEDDADA S.D., NIGAM A.K. AND SAXENA A.K. (1989): On the inadmissibility of 

ridge estimator in a linear model. Communications in Statistics, Part A -
Theory Methods, 18, 3571-3585. 



BIB- 55 

PEELE L. AND RYAN T.(1982): Minimax regression estimators with Application 

to Ridge Regression. Technometrics, 24, 157-159. 

PEMBERTON J. AND TONG H. ( 1981): A note on the distributions of nonlinear 

autoregressive stochastic models. Journal of Time Series Analysis, 2, no 1, 

49- 52. 

PENROSE R. (1955): A generalized inverse for matrices. 

Philos. Soc., 51, 506-513. 

Proc. Cambridge 

PENROSE R.(1956): On best approximate solution of linear matrix equations, 

Proc. Cambridge Philos. Soc., 52, 17-19. 

PEREYRA V.(1969): Stability of general systems of linear equations. 

Aequationes mathematicae, Vol. 2, 194-206. 

PETERS G. AND YILKINSON J.H.(1970): The least squares problem and 

pseudo-inverses. The Computer Journal, Vol 13, 309-316. 

PHLIPS L. (1969): Business pricing policies and inflation: Some evidence 

from EEC countries. Journal of Industrial Economics, 18, no. 1, 1-14. 

PHILLIPS P.C.B.(1984): The exact distribution of the Stein-rule estimator. 

Journal of Econometrics, 25, 591-612. 

PITMAN E.J .G. (1937): The closest estimates of the statistical parameters. 

Proc. of Cambridge Phil. Soc., 33, 212-223. 

PLACKETT R. L. ( 1950): Some theorems in least squares. 
149-157. 

Biometrika, 37, 

POIRIER D.J.(1976): The Econometrics of Structural Change. North-Holland 
Publishing Company, Amsterdam. 



BIB- 56 

POLASEK V. (1984): Regression diagnostics for general linear regression 

models. Journal of the American Statistical Association, 79, no. 386, 

336-340. 

POLASEK V. ( 1987): Bounds on rounding errors rn linear regression models. 

The Statistician, 36, 221-227. 

POPE P. T. AND VEBSTER J. T. (1972): The use of an F- statistic in stepwise 

regression procedures. Technometrics, 14, 327-340. 

POVELL D.R. AND MacDONALD J.R.(1972): A Rapidly convergent iterative method 

for the solution of the generalized nonlinear least squares problem. The 

Computer Journal 15, 148-155. 

PREGIBON D. (1981): Logistic regression diagnostics. Annals of Statistics, 

9, no. 4, 705-724. 

PRESS S.J. (1987): The MISER criterion for imbalance in the analysis of 

covariance. 

375-388. 

Journal of Statistical Planning and Inference, 17, no. 3, 

PRESS V.H., FLANNERY B.P., TEUKOLSKY S.A. AND VETTERLING V.T. (1985): 

Numerical llecipes: The Art of Scientific Computing. Cambridge University 

Press. 

PRICE C.M.(1964): The matrix pseudoinverse and minimal variance estimates. 

SIAl lleview 6, 115-120. 

QUENOUILLE M.H.(1956): 

353- 360. 

Notes on bias 1n estimation. Biometrika, 43, 

RADUCHEL V .J. (1971): Multicollinearity once again. Harvard Institute of 

Economic, llesearch Paper No. 205. 

RAIFFA H. AND SCHLAIFER R.(1961): Applied Statistical Decision Theory, 

Harvard University, Boston, Chapters 11 and 13. 



BIB- 57 

RANDALL J.H. AND RAYNER A.A.(1987): The accuracy of least squares 
calculations with the Cholesky algorithm. Technical report, University of 

Natal. 

RAO C.R.(1962): A Note on a Generalized Inverse of a Matrix with 

Applications to Problems in Mathematical Statistics. Journal of the Royal 

Statistical Society, Series D, 24, 152-158. 

RAO C.R. (1973): Linear Statistical Inference and Its Applications, 2nd 

Edition. John Viley & Sons. New York. 

RAO C.R., KEATING J.P. AND MASON R.L.(1986): Pitman nearness criterion and 
its determination. Communications in Statistics, Part A - Theory and 

lethods, 15, 3173-3191. 

RAO C.R. AND MITRA S.K. (1971): Generalized Inverse of Matrices and Its 

Applications. John Viley & Sons, New York. 

RAVLINGS J.(1988): Applied regression analysis: a research tool. Vadsworth 
& Brooks/Cole: Pacific Grove, California. 

REEDS J.A.(1978): Jackknifing maximum likelihood estimates. The Annals of 

Statistics, 6, 727-739. 

REILLY P.M. AND PATINO-LEAL H.(1981): A Bayesian study of the 

error-in-variables models. Technometrics, 23, no. 3, 221-231. 

REVANKAR M.S. (1974): Some finite sample results in the context of two 
seemingly unrelated regression equations. Journal of the American 

Statistical Association, 69, 187-190. 

RICHARDSON D. H. AND DE- MIN V. ( 1970): Least squares and grouping method 
estimators in the errors- in-variables models. Journal of the American 

Statistical Association, 65, 724-748. 



BIB- 58 

RIEDER H. (1987): Robust regression estimators and their least favorable 

contamination curves. Statistics 8 Decisions, 5, no. 3-4, 307-336. 

RIGGS D., GUARNIERI J. AND ADELMAN S. (1978): Fitting straight lines when 

both variables are subject to error. Life Science, 22, 1305-1360. 

RILEY J .D. (1955): Solving systems of linear equations with a positive 

definite, symmetric, but possibly ill-conditioned matrix. Mathematics of 

Computation, 9, 96-101. 

RINNE H. (1984): A method of choosing additional sets of observations rn 

multiple linear regression models to overcome multicollinearity. In 

Multicollinearity and Biased Estimation, edited by Josef Gruber. 

ROBERTSON A.(1955): Prediction equations rn quantitative genetics. 

Biometrics, 11, 95-98. 

ROLLER Y.F.(1988):, Adjusted variables: 

regression in the applications curricula. 

15, 85- 95 

An important tool for teaching 

Journal of Applied Statistics, 

ROLPH J.E. (1976): Choosing Shrinkage estimators for regression problems. 

Communications in Statistics, Part A - Theory and Methods, 5, 789-801. 

RONNER A.E.(1983): Perturbation and duality in linear models. VII. 

Symposium on operations research, Sektionen 4-9 (St. Gallen, 1982). 

RUPERT D. AND CARROLL R.J.(1980): 

linear model. 

828-838. 

Journal of the 

Trimmed least squares estimation 1n the 

American Statistical Association, 75, 

RUSHTON S.(1951): On least squares fitting by orthogonal polynomials using 

the Cholesky method. Journal of the lloyal Statistical Society, Series B, 

13, 92-99. 



BIB- 59 

RUTISHAUSER H. (1968): Once Again: The Least Square Problem. Linear 

Algebra and Its Applications 1, 479-488. 

RYANT.A.Jr, JOINER B.L. AND RYAN B.F.(1976): llini-tab Student Handbook. 

Duxbury press, North Scituate, Mass. 

SACHS 1J. H. ( 1976): Implicit multifunctional nonlinear regression analysis. 

Technometrics, 18, 161-173. 

SAGER T.lJ. AND THISTED R.A.(1982): Maximum likelihood estimation of 

isotonic modal regression. Annals of Statistics, 10, no. 3, 690-707. 

SARHAN A.E., GREENBERG B.G. AND ROBERTS E. (1962): Modified square root 

method of matrix inversion. Technometrics, 4, 282-287. 

SASTRY M.V.R.(1970): Some limits in the theory of multicollinearity. The 

American Statistician, 24, 39-40. 

SAXENA A.K.(1980): Principal components and its use in regression analysis: 

the problem revisited. Statistica (Bologna), 40, no. 3, 363-368. 

SCHAEFER R.L.(1986): Alternative estimators in logistic regression when the 
data are collinear. Journal of Statistical Computation and Simulation, 25, 

75- 91. 

SCHALL R. AND DUNNE T.T.(1987): Influential variables in linear regression. 

(to appear in Technometrics, 1990). 

SCHALL R. AND DUNNE T. T. (1987): Variance inflation and collinearity in 

regression. Technical Report 5/87, Institute for Biostatistics of the South 
African Medical Research Council, Tygerberg, Republic of South Africa. 

SCHEFFE H. (1959): The Analysis of Variance. John lJiley & Sons, New York. 

SCHNEElJEISS H.(1976): Consistent estimation of a regression with errors-in

variables. lletrica, Band 23, 101-115. 



BIB- 60 

SCHOENSTADT A.L., FAULKNER F.D., FRANKER. AND RUSSAK I.B.(1980): 

Information linkage between applied mathematics and industry. II. 
Proceedings of the Second Annual Vorkshop held in Monterey, Calif., February 

22- 24, 1979. 

SCHVETLICK H. AND TILLER V.(1985): Numerical Methods for estimating 

Parameters in nonlinear models with errors in the variables. Technometrics, 

27, 17-24. 

SCLOVE S.L.(1968): Improved estimators for coefficients 1n linear 

regression. Journal of the American Statistical Association, 63, 596-606. 

SCOTT D.T. BRYCE G.R. AND ALLEN D.M.(1985): Orthogonalization-triangulation 

methods in statistical calculations. The American Statistician, 39, 
128-135. 

SCOTT J.T. Jr(1966): Factor analysis and regression. Econometrica, 34, 

552-562. 

SEARLE S.R.(1971): Linear Models. John Viley & Sons, New York. 

SEARLE S.R.(1981): Matrix Algebra Useful for Statistics. John Viley & 

Sons, New York . 

SEBER G.A.F.(1977): Linear llegression Analysis. John Viley & Sons, New 
York. 

SEIFERT H.G.(1977): Multicollinearity and the prediction error. 

Statistiche Hefte, 18, no. 4, 233-253. 

SHAO J. (1987): On resampling methods for Variance estimation and related 

topics, unpublished Ph.D. thesis, University of Visconsin-Madison, Dept. of 
Statistics. 



BIB- 61 

SHAO J. (1987): Sampling andd resampling: An efficient approximation to 

Jackknife variance estimators. Technical Report 799, University of 

Visconsin-Madison, Dept. of Statistics. 

SHAO J. AND VU C.F.J.(1986): Some general theory for the Jackknife. 

Technical Report 797, University of Visconsin-Madison, Dept. of Statistics. 

SHILLER R.J. (1973): A distributed lag estimator derived from smoothness 

priors. Econometrica, 41, 775-788. 

SIDIK S. M. ( 1975): Comparison of some biased estimation methods ( including 

Ordinary Subset Regression) in the Linear Model. Technical Report No. NASA 

TN D- 7932, National Aeronautics and Space Administration, Lewis Research 

Center, Cleveland. 

SILVEY S.D. (1969): Multicollinearity and imprecise estimation. Journal of 

the Royal Statistical Society, Series B, 31, 539-552. 

SIMON S.D. AND LESAGE J.P.(1988): The impact of collinearity involving the 

intercept term on the numerical accuracy of regression. Computer Science in 

Economics and Management 1, 137-152. 

SIMON S.D. AND LESAGE J.P.(1988): Benchmarking numerical accuracy of 

statistical algorithms, forthcoming in Computational Statistics and f)ata 

Analysis. 

SIMONOFF J .S. AND TSAI C. (1989): The use of guided reformulations when 

collinearities are present rn nonlinear regression. Journal of the Royal 

Statistical Society, Series C, 38, no. 1, 115-126. 

SINGH B. AND CHAUBEY Y.P.(1987): On some improved ridge estimators. 
Statistiche Hefte, 28, 53-67. 

SINGH B., CHAUBEY Y.P. AND DVIVEDI T.D.(1986): An almost unbaised ridge 
estimator. Sankhya, Series B, 48, 342-346. 



BIB- 62 

SIOTANI M., HAYAKAVA T. AND FUJIKOSHI Y.(1985): Modern multivariate 

statistical analysis: a graduate course and handbook. American Sciences 

Press, Columbus, Ohio. 

SLOTTJE D.J. AND BASMANN R.L.(1986): Innovations in quantitative 

economics: essays in honor of Robert L. Basmann. 

introduction by Daniel J. Slottje. 

Edited and with an 

SMITH A.F.M. AND SPIEGELHALTER D.J.(1980): Bayes Factors and choice 

criteria for linear models. Journal of the /loyal Statistical Society, 

Series B, 42, 213-220. 

SMITH G.(1974): Multicollinearity and forecasting. Cowles Foundation 
Discussion Paper No. 383. 

SMITH G. (1980): An example of ridge regression difficulties. Canadian 

Journal of Statistics, 8, 217-225. 

SMITH G. AND BRAINARD V. (1976): The Value of a priori information rn 

estimating a financial model. Journal of Finance, 31, 1299-1322. 

SMITH G. AND CAMPBELL F.(1980): A critique of some ridge regression 
methods. Vith comments by Ronald A. Thisted, Donald V. Marquardt, R. Craig 

Van Nostrand,D. V. Lindley, Robert L. Obenchain, Lawrence C. Peele, Thomas 

P. Ryan, H. D. Vinod and Richard F. Gunst, and with a reply by the authors. 

Journal of the American Statistical Association, 75, no. 369, 74-103. 

SMITH A.F.M. AND GOLDSTEIN M.(1975): Ridge regression: Some Comments on a 

paper of Conniffe and Stone. The Statistician, 24, 61-66. 

SNEE R.D.(1973): Some aspects of nonorthogonal data analysis. Part I. 

Developing prediction equations. Journal of Quality Technology, 5, 67-79. 

SNEE R.D. (1977): Validation of regression models: methods and examples. 
Technometrics, 19, 415-428. 



SNEE R.D.(1983): Review of Regression diagnostics: 

data and Sources of Collinearity, by D.A. Belsley, 

Journal of Quality Technology, 15, 149-153. 

BIB- 63 

Identifying Influential 

E.Kuh and R.E. ~elsch. 

SNEE R.D. (1983): Discussion of "Developments rn Linear Regression 

Methodology: 1959-1982" by R.R. Hocking. Technometrics, 25, 230-237. 

SNEE R.D. AND MARQUARDT D.~.(1984): Collinearity diagnostics depend on the 

domain of prediction, the model, and the data (Comment on "Demeaning 

condition diagnostics through centering" by D.A. Belsley). The American 

Statistician, 38, 83-87. 

SNEE R.D. AND RAYNER A.A. (1982): Assessing the accuracy of Mixture Model 

Regression calculations. Journal of Quality Technology, 14, 67-79. 

SPARKS R.S.(1987): Evaluating prediction procedures in multivariate 

regression: A re-sampling approach. South African Statistical Journal, 

Vol. 21, 63-98. 

SPJOTVOLL E.(1972): Multiple comparison of regression functions. Annals of 

Mathematical Statistics, 43, 1076-1088. 

SPRENT P. ( 1966): A generalized least- squares approach to linear functional 

relationships. Journal of the Royal Statistical Society, Series B, 28, 

278-297. 

STARKS T.H. AND FANG J.H.(1982): On the estimation of the generalized 

covariance function. J. Internat. Assoc. lath. Ceol., 14, no. 1, 57-64. 

STEIN C.(1960): "Multiple Regression", in Contributions to Probability and 

Statistics: Essays in Honor of Harold Hotelling, ed. Ingrim Olkin, 

Stanford University Press., Stanford, Calif. 

STEIN C.M. (1962): Confidence sets for the mean of a multivariate normal 

distribution. Journal of the Royal Statistical Society, Series B, 24, 

265- 296. 



BIB- 64 

STE\f ART G. \f. ( 1969): On the continuity of the generalized inverse. SIAM 

Journal of Applied Mathematics, 17, 33-45. 

STEVART G.V.(1973): Error and perturbation bounds for subspaces associated 

with certain eigenvalue problems. SIAM Review, 15, 727-764. 

STEVART G.V.(1973): Introduction to matrix computations. Academic Press, 

New York. 

STEVART G. V. ( 1977): On the perturbation of pseudo- inverses, projections, 

and linear least squares problems. SIAX Review,. 19, 634-666. 

STEVART G.V.(1977): Sensitivity coefficients for the effects of errors in 

the independent variables in a linear regression. Technical Report TR-571, 

Department of Computer Science, University of Maryland, College Park MD. 

STEVART G.V.(1979):. The effects of rounding error on an algorithm for 

downdating a Cholesky factorization. J. Inst. lath. Appl., 23, no. 2, 
203- 213. 

STEVART G.V.(1983): A Nonlinear version of Gauss's m1n1mum variance 

theorem with applications to an errors- in- the-variables model. 

Science Technical Report TR-1263, Univ. of Maryland, 1983. 

Computer 

STEVART G.V.(1984): On the asymptotic behavior of scaled singular value and 

QR decompositions. Mathematics of Computation, 43, no 168, 483-489. 

STEVART G.V. (1984): On the invariance of perturbed null vectors under 

column scaling. Numer. lath., 44, no. 1, 61-65. 

STEVART G.\f.(1984): Rank degeneracy. SIAX Journal on Scientific and 
Statistical Computing, 5, 403-413. 



BIB- 65 

STEVART G. V. ( 1987): Collinearity and least squares regression. Vi th 
discussion by D.A. Belsley, A.S. Hadi, D.V. Marquardt, P.F. Velleman, R.A. 
Thisted, and with a reply by the author. Statistical Science. 2, no. 1, 

68- 100. 

STEVART G.V. AND ALLEN D.M.(1986): Collinearity, scaling, and rounding 

error. Computer Science and Statistics: Proceedings of the 17th Symposium 

on the Interface. 

ST. JOHN R.C.(1984): Experiments with mixtures, ill-conditioning and ridge 

regression. Journal of Quality Technology, 16, 81-96. 

STONE R.(1945): The analysis of market demand. Journal of the Royal 

Statistical Society, Series A, 108, 286-382. 

STRAVDERMAN V.E.(1978): Minimax adaptive generalized ridge regression 

estimators. Journal of the American Statistical Association, 73, 623-627. 

STROUD V.F.(1972): Comparing conditional means and variances in a 

regression model with measurement errors of known variances. Journal of the 

American Statistical Association, 407-412. 

SVAMY P.A.V.B., MEHTA J.S., THURMAN S.S. AND IYENGAR N. S.(1985): A 

generalized multicollinearity index for regression analysis. Sankhya, Series 

B, 47, no. 3, 401-431. 

SVAMY P.A.V.B. AND MEHTA J.S.(1983): Ridge regression estimation of the 

Rotterdam model. Journal of Econometrics, 22, 365-390. 

SVAMY P.A.V.B. AND MEHTA J.S.(1985): On a neglected measure of 
multicollinearity. 

Vashingtion, DC. 
Special Studies Paper, Federal Reserve Board, 

SVAMY P.A.V.B., MEHTA J.S. AND RAPPOPORT R.N.(1978): 
evaluating Hoerl and Kennard's ridge regression. 

Statistics, A7, 1133-1165. 

Two methods of 
Communications in 



BIB- 66 

SVINDEL B.F.(1976): Good ridge estimators based on prior information. 

Communications in Statistics, AS, 1065-1075. 

SVINDEL B.F. AND BOVER D.R. (1972): Rounding errors rn the independent 

variables 1n a general linear model. Technometrics, 14, 215-218. 

S1«INDEL B.F. AND CHAPMAN D.D. (1973): Good ridge estimators. Proc. Joint 

Statistical meetings, Dec 1973, pp 126. 

TAO G.C. AND ZELLNER A.(1964): Bayes theorem and the use of prior 

information in regression analysis. Biometrika, 51, 219-230. 

TAUBMAN S.B. (1978): A comparison of the accuracy of certain least squares 

procedures, Proceedings of the Statistical Computing Section, American 

Statistical Association, 165-166. 

TAVIL J .J. (1972): The linear structural relationship. Unpublished paper 

1972. 

TAYLOR J.M.G.(1989): A note on the cost of estimating the ratio of 

regression parameters after fitting a power transformation. Journal of 

Statistical Planning Inference, 21, 223-230 

THEIL H. ( 1963): On the use of incomplete prior information in regression 

analysis. Journal of the American Statistical Association, 58, 401-414. 

THEIL H.(1971): Principles of Econometrics. John \Tiley & Sons,, New York. 

THEIL H. (1975): Theory and Measurement of Consumer Oemand, 1. 
North-Holland Publishing Company. 

THEIL H. AND GOLDBERGER A.S. (1961): Pure and mixed statistical estimation 
in economics. International Economic Review, 2, 65-78 



BIB- 67 

THEOBALD C.M. (1974): Generalization of mean square error applied to ridge 

regression. Journal of the /loyal Statistical Society, Series B, 36, 

103-106. 

THISTED R.A. (1976): Ridge regression, minimax estimation and empirical 

Bayes methods. Ph.D. Thesis, Stanford University, Dept. of Statistics. 

THISTED R. A. ( 1978): Multicollinearity, Information, and Ridge Regression. 

Technical lleport No. 66, University of Chicago, Dept. of Statistics. 

THISTED R.A. (1980): Comment. Journal of the American Statistical 

Association, 75, 81-86. 

THISTED R.A. AND MORRIS C.N.(1979): Theoretical results for adaptive 

ordinary ridge regression estimators. Technical /leport No. 94, University 

of Chicago, Dept.of Statistics. 

THOMPSON B. AND BORRELLO G. M. ( 1985): The importance of structure 

coefficients rn regression research. Educational and Psycho logical 

Measurement, 45, 203-209. 

THOMPSON M.L. (1978): Selection of variables in multiple regression: Part 

I. A review and evaluation. International Statistical /leview, 46. 1-20. 

THOMPSON M.L. (1978): Selection of variables in multiple regression: Part 

II. Chosen procedures, computations and examples. International 

Statistical /leview, 46. 129-146. 

THURMAN S.S., SlJAMY P.A.V.B. AND MEHTA J.S.(1984): An examination of 

distributed lag model coefficients estimated with smoothness priors. 

Special Studies Paper, Federal Reserve Board, lJashington. DC. 

TIAO G. C. AND ZELLNER A. ( 1964): Bayes' s theorem and the use of prior 

knowledge in regression analysis. Biometrika, 51, 219-230. 



BIB- 68 

TIHONOV A.N., KUHNERT F., KUZNECOV N.N., MOSZYNSKI K. AND VAKULICZ A.(1978): 

Mathematical models and numerical methods. Papers from the Fifth Semester 
held at the Stefan Banach International Mathematical Center, Varsaw, 
February - June 1975. Banach Center Publications, 3. 

TINTNER G., RAO J .N .K. AND STRECKER H. (1978): New results in the variate 

difference method. Vandenhoeck & Ruprecht, Gottingen. 

TORO-VIZCARRONDO C.E. AND VALLACE T.D.(1968): A test of the mean square 
error criterion for restrictions rn linear regression. Jou ma l of the 

American Statistical Association, 63, 558-572. 

TOUTENBURG H. (1982): Prior information in linear mode ls. Viley Series in 
Probability and Mathematical Statistics. John Viley & Sons, New York. 

TRENKLER G. (1980): Generalized mean square error comparisons of biased 

regression estimators. Communications in Statistics, Part A - Theory and 

lethods, 9, 1247-1259. 

TRENKLER G.(1984): Some further remarks on multicollinearity and the 
minimax conditions of the Bock-Stein-like estimator. Econometrica, 52, no. 
4, 1067-1069. 

TRENKLER D. AND TRENKLER G.(1984): Minimum mean square error ridge 
estimation. Sankhya, Series A, 46, no. 1, 94-101. 

TRENKLER D. AND TRENKLER G.(1984): On the Euclidean distance between biased 
estimators. Communications in Statistics, Part A - Theory and Methods, 13, 
no. 3, 273- 284. 

TRIPP R.E.(1983): Nonstochastic ridge regression and effective rank of the 
regressors matrix. Unpublished Ph.D. dissertation, Virginia Polytechnic 
Institute and State University, Dept. of Statistics. 



BIB- 69 

TROSKIE C.G. AND CONRADIE \i.J.(1986): The distribution of the ratios of 

characteristic roots (condition numbers) and their applications in principal 

component or ridge regression. Linear Algebra and its Applications, 82 

255-279 

TSAI C.L.(1986): Score test for the first-order autoregressive model with 

heteroscedasticity. Biometrika, 73, no. 2, 455-460. 

TUKEY J. \i. ( 1958): Bias and confidence in not quite large samples. The 

Annals of llathematical Statistics, 29, 614. 

TUKEY J.\i.(1972): Data analysis, computation and mathematics. Quarterly of 

Applied llathematics, 30, 51-65. 

TUKEY J.\i.(1972): Some graphic and semigraphic displays, rn Statistical 

papers in Honor of George fl. Snedecor, ed. T. A. Bancroft, 

University Press., Ames, Iowa. 

Iowa State 

TUKEY J.\i.(1975): Instead of Gauss-Markov least squares, what?, in Applied 

Statistics, ed R.P. Gupta, Amsterdam: North-Holland Publishing Co., 

352-372. 

TUKEY J.\i.(1977): Exploratory data analysis. 

Co., Reading, Mass. 

Addison \ielsley Publishing 

TURING A.M.(1948): Rounding-off errors rn matrix processes. 
llech. Appl. !lath. 1, 287-308. 

Quart. J. 

ULLAH A., VINOD H.D. AND KADIYALE R.K.(1981): A family of improved 

shrinkage factors for the ordinary ridge estimator. E.G. Charatsis ed., 

Proceedings of the Econometric Society, European lleeting 1979. Amsterdam: 
North-Holland, 259-277. 

VAN DEN BOS, A.(1981): Degeneracy 1n nonlinear least squares. Proc. IEE-D, 

128, no. 3, 109-116. 



BIB- 70 

VAN DER MEER R., LINSSEN H.N. AND GERMAN A.L.(1978): Improved methods of 
estimating Monomer reactivity ratios 1n Copolymerization by considering 

experimental errors in both variables. J. Polymer SCI. PCE, 16, 2915-2930. 

VAN DER SLUIS A. (1969): Condition numbers and equilibration of matrices. 

Numer. lath. 14, 14-23. 

VAN HUFFEL S.(1985): A reliable, efficient deconvolution technique based on 
total linear least squares for calculating the renal retention function. 
Master's Thesis in Biomedical Engineering, Katholieke Universiteit Leuven. 

VAN RUFFEL S. AND VANDElJALLE J. ( 1985): The use and applicability of the 
total least squares technique in linear regression analysis. Internal 

Report, Esat Lab., Dept. of Electrical Engineering, K.U. Leuven Belgium, 
1985. 

VAN HUFFEL S. AND VANDElJALLE J. ( 1985): The use of total least squares 
techniques for identification and parameter estimation. Preprints 
Proceedings of the 7th IFAC Symposium on Identification and System parameter 
Estimation, York, U.K., 3-7 July, 1167-1172. 

VAN HUFFEL S. AND VANDElJALLE J. (1987): Algebraic relationships between 

classical regression and total least-squares estimation. Linear Algebra and 
its Applications, 93, 149-160. 

VAN HUFFEL S. AND VANDElJALLE J.(1987): Analysis and solution of the 

nongeneric total least-squares problem. SIAl Journal on latrix Analysis and 
Application, 9, No. 3, 360-372. 

VAN HUFFEL S., VANDElJALLE J. AND STAAR J. (1984): The total linear least 

squares problem: properties, applications and generalization. Submitted to 
SIAl Journal on Numerical Analysis. 

VAN LOAN C.(1979): On Stewart's singular value decomposition for 
partitioned orthogonal matrices. Department of Computer Science Report 
STAN-CS-79-767. Stanford University, Stanford CA. 



BIB- 71 

VAN NOSTRAND R.C. (1977): Some Distributional Properties and Comparisons of 

Shrinkage Estimators. PhD thesis, University of Visconsin-Madison, Dept. of 

Statistics. 

VELLEMAN P.F. AND VELLEMAN A.Y.(1969): The Data Desk Handbook. Data 

Description, Ithaca, N.Y. 

VELLEMAN P .F. AND VELSCH R.E. (1981): Efficient computing of regression 

diagnostics. The American Statistician, 35, 234-242. 

VELLEMAN P.F. AND YPELAAR M.A.(1980): Constructing regressions with 

controlled features: a method of probing regression performance. Journal of 

the American Statistical Association, 75, no. 372, 839-844. 

VILLEGAS C.(1966): On the asymptotic efficiency of least squares 

estimators. Annals of Mathematical Statistics, 37, 1676-1683. 

VINOD H.D.(1976): Application of new ridge regression methods to a study of 

Bell System scale economies. Journal of the American Statistical 

Association, 71, 835-841. 

VINOD H. D. ( 1976): Canonical ridge and econometrics of joint production. 
Journal of Econometrics, 4, 147-166. 

VINOD H.D.(1976): Simulation and extension of the minimum mean square error 

estimator in comparison with Stein's. Technometrics, 18, 491-496. 

VINOD H.D. (1978): A Survey of ridge regression and related techniques for 
improvements over ordinary least squares. 

Statistics, 60, 121-131. 
The lleview of Economics and 

VINOD H.D. (1982): Enduring regression estimator. In Time series analysis: 

theory and practice, 1 (Valencia, 1981). 

VINOD H.D. AND ULLAH A. (1981): llecent Advances in Regression Methods. 
Marcell Dekker Inc., New York. 



BIB- 72 

VUCHKOV I. N. AND BOYADZHIVA L. N. ( 1978): Regression analysis of Recycle 

Systems Data, Paper presented at the 6th Int. Congress of Chemical 

Engineering, Praha, Czechoslovakia. 

'WAHBA G. (1977): A Survey of some smoothing problems and the method of 

generalized Cross-Validation for solving them. Applications of Statistics, 

ed. Paruchuri R. Krishnaiah, New York: North-Holland Publishing Co., 

507-523. 

'WALKER E.(1989): Detection of collinearity-influential observations. 

Communications in Statistics, Part A - Theory and Methods, 18, 1675-1690. 

'WALKER E. AND BIRCH J.B. (1988): Influence measures rn ridge regression. 

Technometrics, 30, 221-227. 

'WALKER M.A.(1967): Some critical comments on "An analysis of crimes by the 

method of principal component analysis" by B. AHAMAD. Applied Statistics, 

16, 36-39. 

'WALLACE T. D. ( 1972): 'Weaker criteria and tests for linear restrictions rn 

regression. Econometrica, 40, 689-698. 

'WALLACE T. D. AND ASH AR V. G. ( 1972) : Sequential met hods rn mode 1 

construction. Review of Economics and Statistics, 54, 172-178. 

VALLA CE T. D. AND TORO- VIZCARRONDO C. E. ( 1969): Tables for the mean square 

error test for exact linear restrictions. Journal of the American 

Statistical Association, 64, 1649-1663. 

VALLS R.C. AND 'WEEKS D.L. (1969): A Note on the variance of a predicted 

response in regression. The American Statistician, 23, 24-26. 

'WALSH J.E.(1959): Computer-feasible general method for fitting and using 

regression functions when data are incomplete. Report SP-71, System 

Development Corporation, Santa Monica, California. 



BIB- 73 

'WAMPLER R.H. (1970): A Report on the accuracy of some widely used least 

squares computer programs. Journal of the American Statistical Association, 

65, 549- 565. 

'WAMPLER R.H.(1980): Test procedures and problems for least-squares 

algorithms. Journal of Econometrics, 12, 3-22. 

'WARE J. H. ( 1972): The fitting of straight lines when both variables are 

subject to error and the ranks of the means are known. Journal of the 

American Statistical Association, 67, 891-897. 

'WARGA A. (1989): Experimental design in tests of linear factor models. 

Journal of Business and Economic Statistics, 7, 191-198. 

'WEBSTER J.T., GUNST R.F. AND MASON R.L.(1973): Recent developments in 

stepwise regression procedures. Proc. lfniv. l en tucky Conj. on Regress ion 

with a Large Humber of Predictor Variables. Lexington, Ky., Oct. 11-12, 

1973, 34-53. 

'WEBSTER J. T., GUNST R.F. AND MASON R.L. (1974): 

analysis. Technometrics, 16, 513-522. 

Latent root regression 

'WEDIN P.A.(1969): On pseudo- inverses of perturbed matrices, Lund Univ. 

Comput. Sci. Tech. Rep., Lund, Sweden. 

'WEDIN P.A.(1973): 

217-232. 

Perturbation theory for pseudo-inverses. BIT. 13, 

'WEISBERG S. (1980): Applied Linear Regression. John 'Wiley & Sons, New 

York. 

'WEISBERG S.(1983): Some principles for regression diagnostics and influence 

analysis. Technometrics, 25, 240-244. 

'WELSCH R.E. AND KUH E. (1977): Linear regression diagnostics. 'Working 

paper 173, Cambridge, Mass.: National Bureau of Economic Research. 



lJERMUTH N. ( 1972): An 

Unpublished Ph.D. thesis, 
Cambridge, Mass., 1972. 

BIB- 74 

Empirical Comparison of Regression Methods. 

Department of Statistics, Harvard University, 

lJERMUTH N.(1972): APL-Functions for Oata Simulation, Regression Methods and 

Oata Analysis Techniques. Research Report CP-15, Department of Statistics, 
Harvard University, Cambridge, Mass., 1972. 

lJETHERILL G.B., DUNCOMBE P., KENlJARD M., KOLLERSTROM, J., PAUL S.R. AND 

VOlJDEN B.J. (1986): Regression analysis with applications. Chapman & Hall, 
London-New York. 

lJICHERN D.lJ. AND CHURCHILL G.A.(1978): A comparison of ridge estimators. 
Technometrics, 20, 301-311. 

lJILKINSON J.H.(1963): Rounding errors 1n algebraic processes. 
Prentice-Hall, Englewood Cliffs, N.J. 

lJILKINSON J.H.(1965): The Algebraic Eigenvalue Problem. Oxford University 
Press, London. 

lJILKINSON J.H.(1967): The solution of ill-conditioned linear equations in 
A. Ralston and H.S. lJilf, eds., Mathematical Methods for Digital Computers, 
Vol. 2, John lJiley & Sons, Inc., New York, 65-93. 

lJILKS S.S. (1932): Moments and distributions of estimates of population 
parameters from Fragmentary samples. Annals of Mathematical Statistics, 3, 
163-195. 

lJILKS S.S.(1962): Mathematical statistics. John lJiley & Sons,, New York. 

lJILLAN A.R. AND lJATTS D.G. (1978): Meaningful multicollinearity measures. 
Technometrics, 20, 407-412. 



BIB- 75 

VOLD S., RUHE A., VOLD H. AND DUNN V.J.(1984): The collinearity problem in 

linear regression, the partial least squares (PLS) approach to generalized 

inverses. SIAJI Journal on Scientific and Statistical Computing, 5, no. 3, 
735- 743. 

VONNACOTT R.J. AND VONNACOTT T.H.(1979): Econometrics, 2nd ed. John Viley 

& Sons, New York. 

VOOD F.S.(1973): The use of individual effects and residuals rn fitting 

equations to data. Technometrics, 15, 677-686. 

VOOD F.S.(1984): Effect of centering on collinearity and interpretation of 

the constant (Comment on "Demeaning condition diagnostics through centering" 

by D.A. Helsley). The American Statistician, 38, 88-90. 

VU C.F.J.(1986): Jackknife, bootstrap and other resampling methods in 

regression analysis. The Annals of Statistics, Vol. 14, No. 4, 1261-1295. 

YANCEY T.A., JUDGE G.G. AND BOCK M.E. (1973): Vallace's weak mean square 

error criterion for testing linear restrictions in regression: A Tighter 

bound. Econometrica, 41, 1203-1206. 

YANCEY T.A., JUDGE G.G. AND BOCK M.E.(1974): A Veak square error test when 

stochastic restrictions are used 1n regression. 

Statistics, 3, 755-769. 

Communications in 

YORK D.(1966): Least squares fitting of a straight line. Canad. J. 

Physics, 44, 1079-1086. 

YOSHIOKA S.(1986): Multicollinearity and avoidance 1n regression analysis. 

Behaviormetrika, 19, 103-120. 

YOUNG A.S. (1982): The Bivar criterion for selecting regressors. 
Technometrics, 24, no. 3, 181-189. 



BIB- 76 

ZARKOVICH S.S. (1966): Quality of statistical data. (Food and Agricultural 

Organization of the United nations), Rome. 

ZELLNER A. (1962): An efficient method of estimating seemingly unrelated 

regressions and tests for Aggregation Bias. Journal of the American 

Statistical Association, 57, 348-368. 

ZELLNER A. (1971): An Introduction to Bayesian Inference in Econometrics. 

John Viley & Sons, Inc., New York. 

ZELLNER A. ( 1986): On assessing prior 

analysis with g- prior distributions. 

Techniques (P. Goel and A. Zellner, 

Amsterdam. 

distributions and Bayesian regression 

In Bayesian Inference and Decision 

Eds,), pp 233- 243. North- Holland, 

ZELLNER A. AND HUANG D. (1962): Further properties of efficient estimators 

for seemingly unrelated regression equations. 

Review, 3 300-313. 

International Economic 

ZELLNER A. AND VANDAELE V.(1972): Bayes-Stein estimators for k-means 

regression and simulataneous equations. H.C.B. Alexander Research 

Foundation, Graduate School of Business, University of Chicago, 1972. 




