| Title            | Radial Bargmann representation for the Fock space of type B                      |
|------------------|----------------------------------------------------------------------------------|
| Author(s)        | Asai, Nobuhiro; Bozejko, Marek; Hasebe, Takahiro                                 |
| Citation         | Journal of mathematical physics, 57(2), 021702 https://doi.org/10.1063/1.4939748 |
| Issue Date       | 2016-02                                                                          |
| Doc URL          | http://hdl.handle.net/2115/64421                                                 |
| Туре             | article                                                                          |
| File Information | 1512.08862v2.pd.pdf                                                              |



# Radial Bargmann representation for the Fock space of type B

Nobuhiro ASAI, Marek BOŻEJKO, and Takahiro HASEBE;

#### Abstract

Let  $\nu_{\alpha,q}$  be the probability and orthogonality measure for the q-Meixner-Pollaczek orthogonal polynomials, which has appeared in [BEH15] as the distribution of the  $(\alpha,q)$ -Gaussian process (the Gaussian process of type B) over the  $(\alpha,q)$ -Fock space (the Fock space of type B). The main purpose of this paper is to find the radial Bargmann representation of  $\nu_{\alpha,q}$ . Our main results cover not only the representation of q-Gaussian distribution by [LM95], but also of  $q^2$ -Gaussian and symmetric free Meixner distributions on  $\mathbb{R}$ . In addition, non-trivial commutation relations satisfied by  $(\alpha,q)$ -operators are presented.

**Keywords**: Radial Bargmann representation, deformation, Fock spaces, q-orthogonal polynomials. **2010 Mathematics Subject Classification**: 33D45, 46L53, 60E99.

#### 1 Introduction

Bożejko-Ejsmont-Hasebe [BEH15] considered a deformation of the (algebraic) full Fock space with two parameters  $\alpha$  and q, namely, the  $(\alpha, q)$ -Fock space (or the Fock space of type B)  $\mathcal{F}_{\alpha,q}(H)$  over a complex Hilbert space H. The deformation with  $\alpha=0$  is equivalent to the q-deformation by Bożejko-Speicher [BS91] and Bożejko-Kümmerer-Speicher [BKS97], and the corresponding q-Bargmann-Fock space has been constructed by van Leeuwen-Maassen [LM95].

For the construction of  $\mathcal{F}_{\alpha,q}(H)$ , their starting point is to replace the Coxeter group of type A, that is, symmetric group  $S_n$  for the q-Fock space by the Coxeter group of type B,  $\Sigma_n := \mathbb{Z}_2^n \rtimes S_n$  in (A.1) of the Appendix A. This replacement provides us a more general symmetrization operator on  $H^{\otimes n}$  than that of [BS91] to define the  $(\alpha,q)$ -inner product  $\langle\cdot,\cdot\rangle_{\alpha,q}$  in (A.3). One can define annihilation  $B_{\alpha,q}^-(f)$  and creation  $B_{\alpha,q}^+(f)$  operators acting on  $\mathcal{F}_{\alpha,q}(H)$ , and the  $(\alpha,q)$ -Gaussian process (the Gaussian process of type B)  $G_{\alpha,q}(f)$  for  $f \in H$  as the sum of them,  $G_{\alpha,q}(f) := B_{\alpha,q}^-(f) + B_{\alpha,q}^+(f)$ . It is one of their main interests to find a probability distribution  $\mu_{\alpha,q,f}$  on  $\mathbb{R}$  of  $G_{\alpha,q}(f)$ ,  $\|f\|_H = 1$ , with respect to the vacuum state  $\langle\Omega,\cdot\Omega\rangle_{\alpha,q}$ .  $\mathcal{F}_{\alpha,q}(H)$  equipped with  $\langle\cdot,\cdot\rangle_{\alpha,q}$ ,  $B_{\alpha,q}^-(f)$ , and  $B_{\alpha,q}^+(f)$  is a typical example of interacting Fock spaces in the sense of Accardi-Bożejko [AB98]. It suggests that the theory of orthogonal polynomials plays intrinsic roles in all previous works mentioned above. In fact, the measure  $\mu_{\alpha,q,f}$  given in [BEH15, Theorem 3.3] is derived essentially from the orthogonality measure  $\nu_{\alpha,q}$  associated with the q-Meixner-Pollaczek orthogonal polynomials  $\{P_n^{(\alpha,q)}(x)\}$  for  $\alpha,q \in (-1,1)$  given by the recurrence relation,

$$\begin{cases} P_0^{(\alpha,q)}(x) = 1, \ P_1^{(\alpha,q)}(x) = x, \\ xP_n^{(\alpha,q)}(x) = P_{n+1}^{(\alpha,q)}(x) + (1 + \alpha q^{n-1})[n]_q P_{n-1}^{(\alpha,q)}(x), \quad n \ge 1 \end{cases}$$

where  $[n]_q = 1 + q + \cdots + q^{n-1}$  is the q number. However, the Bargmann representation (measure on  $\mathbb{C}$ ) of  $\nu_{\alpha,q}$  has not been obtained yet except the case of  $\alpha = 0$  for  $0 \le q < 1$  [LM95], for q = 1 [Barg61][AKK03], for q = 0 [Bi97], and t-deformed cases of these [AKW16][KW14], and for q > 1 [Kr98].

<sup>\*</sup>Department of Mathematics, Aichi University of Education, Hirosawa 1, Igaya, Kariya 448-8542, Japan. Email nasai[at]auecc.aichi-edu.ac.jp

 $<sup>^\</sup>dagger Institute$  of Mathematics, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland. Email: marek.bozejko[at]math.uni.wroc.pl

<sup>&</sup>lt;sup>‡</sup>Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan. Email: thasebe[at]math.sci.hokudai.ac.jp

Therefore, the main purpose of this paper is to find the radial Bargmann representation of the probability measure  $\nu_{\alpha,q}$  on  $\mathbb{R}$ . Our results cover the radial Bargmann representations of q-Gaussian, symmetric free Meixner (Kesten) and  $q^2$ -Gaussian distributions on  $\mathbb{R}$ .

The organization of this paper will be as follows. In Section 2, we shall explain how the  $(\alpha, q)$ -Fock space is related to the notion of one-mode interacting Fock spaces and Bargmann representation. In Section 3, the radial Bargmann representation of  $\nu_{\alpha,q}$  is constructed explicitly in Theorem 3.11. In Section 4, commutation relations satisfied by one-mode  $(\alpha, q)$ -annihilation and creation operators will be treated. In the Appendix, we shall give a minimum reference on the Coxeter group of type B extracted from [BEH15].

### 2 Key ideas and our purpose

Let us point out some of the keys to calculate the distribution of  $G_{\alpha,q}(f)$  in [BEH15]. It is shown that a linear map,  $\Phi: \operatorname{Span}\{f^{\otimes n} \mid f \in H, n \geq 0\} \to L^2(\mathbb{R}, \mu_{\alpha,q,f})$  given by  $\Phi(f^{\otimes n}) = P_n^{(\alpha\langle f, \overline{f} \rangle_H, q)}(x)$ , is an isometry and a relation under  $||f||_H = 1$ ,

$$G_{\alpha,q}(f)f^{\otimes n} = (B_{\alpha,q}^{+}(f) + B_{\alpha,q}^{-}(f))(f^{\otimes n})$$
  
=  $f^{\otimes (n+1)} + (1 + \alpha \langle f, \overline{f} \rangle_{H})q^{n-1}[n]_{q}f^{\otimes (n-1)},$ 

is satisfied where  $\overline{f}$  denotes a self-adjoint involution of  $f \in H$  in (A.2). This corresponds to the three terms recursion relation satisfied by  $P_n^{(\alpha\langle f,\overline{f}\rangle_H,q)}(x)$  through  $\Phi$ . Then, it is proved that  $\mu_{\alpha,q,f} = \nu_{\alpha\langle f,\overline{f}\rangle_H,q}$  (see  $\nu_{\alpha,q}$  in (3.3)) in the sense of

$$\langle \Omega, G_{\alpha,q}(f)^n \Omega \rangle_{\alpha,q} = \int x^n \mu_{\alpha,q,f}(dx)$$
 (2.1)

where  $\Omega$  denotes the vacuum vector. Therefore, in order to get the Bargmann representation of  $\nu_{\alpha\langle f,\overline{f}\rangle_H,q}$ , it is enough to consider that of  $\nu_{\alpha,q}$  in the sense of Definition 2.2 given later.

Since the structure mentioned above can be reduced to the one-mode analogue of  $(\alpha, q)$ -Fock spaces, let us recall fundamental relationships between one-mode interacting Bargmann-Fock spaces and the theory of orthogonal polynomials of one variable.

**Definition 2.1.** Let  $\{\omega_n\}_{n=0}^{\infty}$  with  $\omega_0 := 1$  be an infinite sequence of positive real numbers and  $\{\alpha_n\}_{n=0}^{\infty}$  be of real numbers. A one-mode interacting Bargmann-Fock space  $\mathcal{B}$  is defined as  $\bigoplus_{n=0}^{\infty} \mathbb{C}\Phi_n$  equipped with  $\Phi_n := z^n/[\omega_n]!$ ,  $[\omega_n]! := \prod_{k=0}^n \omega_k$ , the inner product  $\langle \Phi_m, \Phi_n \rangle_{\mathcal{B}} = \delta_{m,n}$  for all  $m, n \in \mathbb{N} \cup \{0\}$ , operators of creation  $a^+$ , annihilation  $a^-$ , and conservation  $a^{\circ}$  defined by

$$\begin{cases}
 a^{+}\Phi_{n} := \sqrt{\omega_{n+1}}\Phi_{n+1}, & n \ge 0, \\
 a^{-}\Phi_{0} = 0, \ a^{-}\Phi_{n} := \sqrt{\omega_{n}}\Phi_{n-1}, & n \ge 1, \\
 a^{\circ}\Phi_{n} := \alpha_{n}\Phi_{n}, & n \ge 0.
\end{cases}$$
(2.2)

Let  $(\{\omega_n\}_{n=0}^{\infty}, \{\alpha_n\}_{n=0}^{\infty})$  be a pair of sequences in Definition 2.1 and define a sequence of monic polynomials  $\{P_n(x)\}$  recurrently by

$$\begin{cases} P_0(x) = 1, \ P_1(x) = x - \alpha_0, \\ xP_n(x) = P_{n+1}(x) + \omega_n P_{n-1} + \alpha_n P_n(x), \quad n \ge 1. \end{cases}$$
 (2.3)

Then there exists a probability measure  $\mu$  on  $\mathbb{R}$  with finite moments of all orders such that  $\{P_n(x)\}$  is the orthogonal polynomials with  $\langle P_m(x), P_n(x) \rangle_{L^2(\mathbb{R},\mu)} = \delta_{m,n}[\omega_n]!$  for all  $m, n \in \mathbb{N} \cup \{0\}$ . (See [Chi78][HO07], for example.)

It is easy to see that a linear map

$$U: \mathcal{B} = \bigoplus_{n=0}^{\infty} \mathbb{C}\Phi_n \to L^2(\mathbb{R}, \mu)$$

defined by  $U\left(\sqrt{[\omega_n]!}\Phi_n\right) = P_n(x)$  is an isometry and in addition  $a^+ + a^- + a^\circ = U^*XU$  is satisfied due to (2.2) and (2.3), where X represents the multiplication operator by x in  $L^2(\mathbb{R}, \mu)$ . This intertwining relation provides a notion of the quantum decomposition of a classical random variable X and

$$\langle \Phi_0, (a^+ + a^- + a^\circ)^n \Phi_0 \rangle_{\mathcal{B}} = \int x^n \mu(dx).$$
 (2.4)

Therefore, if  $\omega_n = (1 + \alpha q^{n-1})[n]_q$ ,  $\alpha_n = 0$ , the equality in (2.4) is a one-mode analogue of (2.1).

Now it is interesting to consider the following moment problem to realize the inner product by the integral:

**Problem 1.** For a given  $\{\omega_n\}$  of  $\mu$ , find a probability measure  $\gamma_{\mu}$  satisfying the equality,

$$\int_{\mathbb{C}} \overline{z}^m z^n \gamma_{\mu}(d^2 z) = \delta_{m,n}[\omega_n]! \tag{2.5}$$

for all  $m, n \in \mathbb{N} \cup \{0\}$ .

**Definition 2.2.** A measure  $\gamma_{\mu}$  satisfying the equality (2.5) is called a Bargmann representation (measure on  $\mathbb{C}$ ) of a measure  $\mu$  on  $\mathbb{R}$ .

It was proved in [Sz07] (see also [AKW16][KW14]) that if a measure  $\mu$  admits any Bargmann representation, then it also admits a radial (rotation invariant) Bargmann representation

$$\gamma_{\mu}(d^2z) = \frac{1}{2\pi}\lambda_{[0,2\pi)}(d\theta)\rho_{\mu}(dr), \ z = re^{i\theta}, \ r \ge 0, \ \theta \in [0,2\pi),$$

where  $\lambda_{[0,2\pi)}$  is the Lebesgue measure on  $[0,2\pi)$ . It says that the angular part takes care of orthogonality of (2.5). Therefore, Problem 1 can be transformed into the following Problem 2:

**Problem 2.** Find a positive radial measure  $\rho_{\mu}$  satisfying

$$\int_0^\infty r^{2n} \rho_\mu(dr) = [\omega_n]!$$

for all  $m, n \in \mathbb{N} \cup \{0\}$ .

Main Purpose: We shall consider Problem 2 associated with  $\omega_n = (1 + \alpha q^{n-1})[n]_q$ ,  $\alpha_n = 0$  of  $\nu_{\alpha,q}$  in Section 3. Furthermore, commutation relations satisfied by  $a^+, a^-$  acting on  $\mathcal{B}$  associated with  $\omega_n = (1 + \alpha q^{n-1})[n]_q$  will be presented in Section 4.

Remark 2.3. (1) One can notice that  $\gamma_{\mu}$  and  $\rho_{\mu}$  are determined only by  $[\omega_n]!$ . Therefore, it is enough in general for the Bargmann representation in the above sense to consider the symmetric measure  $\mu$  with  $\alpha_n = 0$  for all n, which implies that  $a^{\circ}$  is a zero operator.

(2) If  $\mu$  is symmetric, then  $\alpha_n = 0$  for all n is implied. The converse statement is true if  $\mu$  is determined by its moments.

## 3 $(\alpha, q)$ -Bargmann representation

#### 3.1 *q*-Meixner-Pollaczek polynomials

Let us recall standard notations from q-calculus, which can be found in [GR04][KLS10] for example. The q-shifted factorials are defined by

$$(a;q)_0 := 1, \quad (a;q)_k := \prod_{\ell=1}^k (1 - aq^{\ell-1}), \ k = 1, 2, \dots, \infty,$$

and the product of q-shifted factorials is defined by

$$(a_1, a_2; q)_k := (a_1; q)_k (a_2; q)_k, \quad k = 1, 2, \dots, \infty.$$

Remark 3.1. The q-shifted factorials are a natural extension of the Pochhammer symbol  $(\cdot)_n$  because one can see that  $\lim_{q\to 1} [k]_q = k$  implies

$$\lim_{q \to 1} \frac{(q^k; q)_n}{(1 - q)^n} = (k)_n, \tag{3.1}$$

where  $(k)_0 := 1$ ,  $(k)_n := k(k+1) \cdots (k+n-1)$ ,  $n \ge 1$ .

As we have mentioned,  $\{P_n^{(\alpha,q)}(x)\}$  for  $\alpha, q \in (-1,1)$  is the q-Meixner-Pollaczek polynomials satisfying the recurrence relation,

$$\begin{cases} P_0^{(\alpha,q)}(x) = 1, \ P_1^{(\alpha,q)}(x) = x, \\ x P_n^{(\alpha,q)}(x) = P_{n+1}^{(\alpha,q)}(x) + (1 + \alpha q^{n-1})[n]_q P_{n-1}^{(\alpha,q)}(x), \quad n \ge 1. \end{cases}$$
(3.2)

It is known in [KLS10, 14.9.2] and [BEH15, page 1781] that the orthogonality measure  $\nu_{\alpha,q}$  for such polynomials has the density of the form,

$$\frac{(q, \gamma^2; q)_{\infty}}{2\pi} \sqrt{\frac{1 - q}{4 - (1 - q)x^2}} \left( \frac{g(x, 1; q)g(x, -1; q)g(x, \sqrt{q}; q)g(x, -\sqrt{q}; q)}{g(x, i\gamma; q)g(x, -i\gamma; q)} \right), \tag{3.3}$$

supported on the interval  $(-2/\sqrt{1-q},2/\sqrt{1-q})$  where

$$g(x,b;q) = \prod_{k=0}^{\infty} (1 - 4bx(1-q)^{-1/2}q^k + b^2q^{2k}),$$

and

$$\gamma = \begin{cases} \sqrt{-\alpha}, & \alpha < 0, \\ i\sqrt{\alpha}, & \alpha \ge 0. \end{cases}$$

**Example 3.2.** (1) If  $\alpha = 0$ , then q-Meixner-Pollaczek polynomials get back to the q-Hermite polynomials  $H_n^{(q)}(x)$  whose orthogonality measure is the standard q-Gaussian measure on  $(-2/\sqrt{1-q},2/\sqrt{1-q})$  given by

$$\nu_q(dx) := \frac{\sqrt{1-q}}{\pi} \sin \theta \prod_{n=1}^{\infty} (1-q^n) |1-q^n e^{2i\theta}|^2 dx,$$

where  $x\sqrt{1-q}=2\cos\theta$ ,  $\theta\in[0,\pi]$ . Furthermore, one can get the standard Gaussian law as  $q\to 1$ , the Bernoulli law as  $q\to -1$ , and the standard Wigner's semi-circle law if q=0. See [BKS97][BS91].

- (2) The measure  $\nu_{\alpha,0}$  is the symmetric free Meixner law [An03][BB06][SY01].
- (3) The measure  $\nu_{q,q}$  is the  $q^2$ -Gaussian law scaled by  $\sqrt{1+q}$ .
- (4) If  $\alpha = -q^{2\beta}$  as suggested in Remark 3.1, then the measure  $\nu_{-q^{2\beta},q}$  under a certain scaling converges to the classical symmetric Meixner law as  $q \uparrow 1$ ,

$$\frac{2^{2\beta}}{2\pi\Gamma(2\beta)}|\Gamma(\beta+ix)|^2dx, \quad x \in \mathbb{R}.$$
 (3.4)

See also [KLS10, 14.9.15].

#### 3.2 Problem

For  $\alpha, q \in (-1, 1)$ , we would like to know when there exists a radial measure  $\rho_{\nu_{\alpha,q}}$  satisfying

$$\int_{0}^{\infty} r^{2k} \, \rho_{\nu_{\alpha,q}}(dr) = (-\alpha; q)_{k}[k]_{q}!, \qquad k \in \mathbb{N} \cup \{0\}. \tag{3.5}$$

Here  $[k]_q!$  denotes the q-factorials defined by

$$[0]_q! := 1, \quad [k]_q! := \prod_{\ell=1}^k [\ell]_q = \frac{(q;q)_k}{(1-q)^k}, \ k \ge 1.$$

It is easy to get the inequality for  $\alpha, q \in (-1, 1)$ ,

$$|(-\alpha;q)_k[k]_q!| \le \left(\frac{4}{1-|q|}\right)^k, \ k \in \mathbb{N} \cup \{0\}.$$
 (3.6)

Due to Carleman criterion for the moment problem, this inequality implies that a radial measure  $\rho_{\nu_{\alpha,q}}$  is determined uniquely by the sequence  $\{(-\alpha;q)_k[k]_q!\}$ .

We shall follow the procedure below to construct  $\rho_{\nu_{\alpha,q}}$  in (3.5).

(1) Recall the radial part of the q-Gaussian measure on  $\mathbb{C}$  (q-Bargmann measure),  $\rho_{\nu_q} = \rho_{\nu_{0,q}}$ , obtained in [LM95],

$$\int_0^\infty r^{2k} \, \rho_{\nu_q}(dr) = [k]_q!. \tag{3.7}$$

- (2) Find a radial (possibly signed) measure  $\rho_{\alpha,q}$  having the moment  $(-\alpha;q)_k$ .
- (3) Compute the multiplicative (Mellin) convolution  $\rho_{\nu_q} \otimes \rho_{\alpha,q}$  to get  $\rho_{\nu_{\alpha,q}}$ .

Remark 3.3. It is known [LM95] that a radial measure  $\rho_{\nu_q}$  in (3.7) does not exist for q < 0. However, one can see that the positivity assumption on q can be relaxed for  $\rho_{\nu_{\alpha,q}}$  if  $\alpha = q$ . It will be discussed right after the proof of Proposition 3.6 and in Proposition 3.7.

#### **3.3** Construction of $(\alpha, q)$ -radial measures

**Lemma 3.4.** Suppose that  $\alpha \in (-1,1)$  and  $q \in [0,1)$ . Let

$$\rho_{\alpha,q} := (-\alpha; q)_{\infty} \sum_{n=0}^{\infty} \frac{(-\alpha)^n}{(q; q)_n} \delta_{q^{n/2}},$$

which is a signed measure. Then we have

$$\int_0^\infty r^{2k} \, \rho_{\alpha,q}(dr) = (-\alpha; q)_k, \qquad k \in \mathbb{N} \cup \{0\}.$$

In particular, if taking  $\alpha = -q$ , then one can see  $\rho_{\nu_q} = D_{(1-q)^{-1/2}}(\rho_{-q,q})$ , namely,

$$\int_0^\infty r^{2k} D_{(1-q)^{-1/2}}(\rho_{-q,q})(dr) = \frac{(q;q)_k}{(1-q)^k} = [k]_q!,$$

where  $D_t(\lambda)$  is the push-forward of  $\lambda$  by the map  $x \mapsto tx$  for a measure  $\lambda$  on  $\mathbb{R}$ .

*Proof.* Firstly, we have

$$\int_0^\infty r^{2k} \, \rho_{\alpha,q}(dr) = (-\alpha;q)_\infty \sum_{n=0}^\infty \frac{(-\alpha q^k)^n}{(q;q)_n}.$$

Since Euler's formula (see [GR04, 1.3.15]),

$$\frac{1}{(a;q)_{\infty}} = \sum_{n=0}^{\infty} \frac{a^n}{(q;q)_n},$$
(3.8)

is known, we replace a by  $-\alpha q^k$  in (3.8) to obtain

$$\int_0^\infty r^{2k} \, \rho_{\alpha,q}(dr) = \frac{(-\alpha; q)_\infty}{(-\alpha q^k; q)_\infty}$$
$$= (-\alpha; q)_k.$$

The proof is complete.

Remark 3.5. (1) The last equality in proof is due to the formula

$$(a;q)_k = \frac{(a;q)_{\infty}}{(aq^k;q)_{\infty}}.$$

See [GR04, 1.2.30], for example.

(2) Euler's formula is considered as the q-analogue of exponential function  $e^a$  due to

$$\lim_{q \to 1} \frac{1}{((1-q)a; q)_n} = e^a.$$

Let

$$\left[\begin{array}{c} n \\ \ell \end{array}\right]_q := \frac{[n]_q!}{[\ell]_q![n-\ell]_q!} = \frac{(q;q)_n}{(q;q)_\ell(q;q)_{n-\ell}}$$

be the q-binomial coefficients and  $h_n(z \mid q)$  be the Rogers-Szegő polynomials [GR04][S05] defined by

$$h_n(z \mid q) = \sum_{\ell=0}^n \begin{bmatrix} n \\ \ell \end{bmatrix}_q z^{\ell}.$$

**Proposition 3.6.** Suppose that  $\alpha \in (-1,1)$  and  $q \in [0,1)$ . Let

$$\rho_{\nu_{\alpha,q}} := \begin{cases} (-\alpha, q; q)_{\infty} \sum_{n=0}^{\infty} \frac{q^n}{(q; q)_n} h_n(-\alpha q^{-1} \mid q) \delta_{(1-q)^{-1/2} q^{n/2}}, & q > 0, \\ -\alpha \delta_0 + (1+\alpha) \delta_1, & q = 0, \end{cases}$$
(3.9)

which is a signed measure in general. Then we have

$$\int_0^\infty r^{2k} \, \rho_{\nu_{\alpha,q}}(dr) = \frac{(-\alpha, q; q)_k}{(1-q)^k} = (-\alpha; q)_k [k]_q!, \qquad k \in \mathbb{N} \cup \{0\}.$$
 (3.10)

*Proof.* First of all, it is easy to show (3.10) for the case q = 0. Therefore, let us assume q > 0. One can compute the multiplicative (Mellin) convolution  $\circledast$  to get  $\rho_{\nu_{\alpha,q}}$  as follows:

$$\rho_{\nu_{\alpha,q}} = \rho_{\alpha,q} \circledast D_{(1-q)^{-1/2}}(\rho_{-q,q})$$

$$= (-\alpha, q; q)_{\infty} \sum_{n=0}^{\infty} \left( \sum_{\ell=0}^{n} \frac{(-\alpha)^{\ell} q^{n-\ell}}{(q; q)_{\ell}(q; q)_{n-\ell}} \right) \delta_{(1-q)^{-1/2} q^{n/2}}$$

$$= (-\alpha, q; q)_{\infty} \sum_{n=0}^{\infty} \frac{q^{n}}{(q; q)_{n}} h_{n}(-\alpha q^{-1} \mid q) \delta_{(1-q)^{-1/2} q^{n/2}}.$$

On the other hand, by Lemma 3.4, we have

$$\int_0^\infty r^{2k} D_{(1-q)^{-1/2}}(\rho_{-q,q})(dr) = \frac{(q;q)_k}{(1-q)^k} = [k]_q!.$$

Therefore, one can get

$$\int_0^\infty r^{2k} \, \rho_{\nu_{\alpha,q}}(dr) = \int_0^\infty r^{2k} \, \rho_{\alpha,q}(dr) \int_0^\infty r^{2k} \, D_{(1-q)^{-1/2}}(\rho_{-q,q})(dr)$$
$$= (-\alpha; q)_k [k]_q!, \qquad k \in \mathbb{N} \cup \{0\}.$$

In Proposition 3.6, we have obtained  $\rho_{\nu_{\alpha,q}}$  for  $\alpha \in (-1,1)$  and  $q \in (0,1)$ . Due to the term

$$\delta_{(1-q)^{-1/2}q^{n/2}}$$
 in  $\rho_{\nu_{\alpha,q}}$ ,

it seems impossible for  $q \in (-1,0)$  to define  $\rho_{\nu_{\alpha,q}}$ . However, if  $-1 < \alpha = q < 0$  then  $\nu_{q,q}$  coincides with a scaled  $q^2$ -Gaussian measure, and hence the Bargmann measure exists.

**Proposition 3.7.** Suppose  $-1 < \alpha = q < 0$ . We define

$$\rho_{\nu_{q,q}} := D_{(1+q)^{1/2}}(\rho_{\nu_{q^2}}) 
= (q^2; q^2)_{\infty} \sum_{n=0}^{\infty} \frac{q^{2n}}{(q^2; q^2)_n} \delta_{(1-q)^{-1/2}(-q)^n}.$$
(3.11)

Then one can see

$$\int_0^\infty r^{2k} \, \rho_{\nu_{q,q}}(dr) = (1+q)^k [k]_{q^2}! = (-q;q)_k [k]_q!.$$

*Proof.* One can see by direct computations

$$(-q;q)_k[k]_q! = \left\{ \prod_{\ell=1}^k (1 - (-q)q^{\ell-1}) \right\} \left\{ \prod_{\ell=1}^k \frac{1 - q^{\ell}}{1 - q} \right\}$$
$$= (1+q)^k \prod_{\ell=1}^k \frac{1 - q^{2\ell}}{1 - q^2}$$
$$= (1+q)^k [k]_{q^2}!.$$

Thus  $\rho_{\nu_{q,q}}$  can be defined as the radial measure for  $q^2$ -Gaussian measure on  $\mathbb{C}$  scaled by  $(1+q)^{1/2}$ , namely,  $\rho_{\nu_{q,q}} = D_{(1+q)^{1/2}}(\rho_{\nu_{q^2}})$ .

Remark 3.8. If we use the fact that  $h_n(-1 \mid q) = 0$  for odd  $n \ge 1$  (see proof of Lemma 3.9 below), we can extend the definition (3.9) to the case  $-1 < \alpha = q < 0$ . This will give an alternative way to define  $\rho_{\nu_{q,q}}$  for -1 < q < 0, but both definitions give the same measure.

We need some properties of the Rogers-Szegö polynomials to know when the measure  $\rho_{\nu_{\alpha,q}}$  becomes positive.

**Lemma 3.9** ([MGH90]). Suppose that  $q \in (-1, 1)$ .

- (1) If  $n \ge 0$  is odd, then  $h_n(x \mid q) \ge 0$  if and only if  $x \ge -1$ . Moreover, the point x = -1 is the unique zero of  $h_n(x \mid q)$  on  $\mathbb{R}$ .
- (2) If  $n \ge 0$  is even, then  $h_n(x \mid q) > 0$  for all  $x \in \mathbb{R}$ .

*Proof.* It is known that all the zeros of  $h_n(z \mid q)$  lie on the unit circle |z| = 1. See [MGH90] or [S05, Theorem 1.6.11]. Note that the result was obtained for  $q \in [0,1)$ , but the proof can be extended to  $q \in (-1,1)$  without any modifications.

By definition, one can see

$$\begin{bmatrix} n \\ \ell \end{bmatrix}_q = \frac{(1 - q^{n-\ell+1})(1 - q^{n-\ell+2}) \cdots (1 - q^n)}{(1 - q)(1 - q^2) \cdots (1 - q^\ell)} > 0,$$

and hence  $h_n(1 \mid q) > 0$  for all  $n \ge 0$ . Thus,  $h_n(x \mid q) \ne 0$  for  $x \in \mathbb{R} \setminus \{-1\}$ . It then suffices to show that  $h_n(-1 \mid q) > 0$  for all even  $n \ge 0$  and  $h_n(-1 \mid q) = 0$  for all odd  $n \ge 1$ . The recurrence relation for the Rogers-Szegö polynomials is known to be

$$h_{n+1}(z \mid q) = (z+1)h_n(z \mid q) - (1-q^n)zh_{n-1}(z \mid q), \qquad n \ge 1.$$
(3.12)

See [S05, 1.6.76] (note that formula (1.6.76) has an error of a sign). It is easy to see that  $h_0(-1 \mid q) = 1 > 0$ ,  $h_1(-1 \mid q) = 0$ , so by induction and (3.12) one can show  $h_n(-1 \mid q) > 0$  for all even  $n \geq 0$  and  $h_n(-1 \mid q) = 0$  for all odd  $n \geq 1$ .

We need the following lemma in proof of Theorem 3.11 for the non-existence part of a radial Bargmann measure.

**Lemma 3.10.** Let  $\mu$  be a signed measure on  $\mathbb{R}$  with compact support and let  $\nu$  be a nonnegative measure on  $\mathbb{R}$ . If  $\mu$  and  $\nu$  have the same finite moments of all orders, then  $\mu = \nu$ .

*Proof.* We denote by  $m_n$  the moments of  $\mu$  (and  $\nu$  by assumption). Since  $\mu$  is compactly supported, say on [-R, R],

$$|m_n| = \left| \int_{[-R,R]} x^n \, \mu(dx) \right| \le ||\mu|| R^n, \qquad n \in \mathbb{N} \cup \{0\},$$

where  $\|\mu\|$  denotes the total variation of  $\mu$ . Therefore,  $\nu$  is also supported on [-R, R]. By Weierstrass' approximation, we have

$$\int_{[-R,R]} f(x) \,\mu(dx) = \int_{[-R,R]} f(x) \,\nu(dx) \tag{3.13}$$

for all  $f \in C([-R, R])$ . This implies that  $\mu = \nu$  since, if we use the Hahn decomposition  $\mu = \mu_+ - \mu_-$ , then (3.13) implies

$$\int_{[-R,R]} f(x) \, \mu_+(dx) = \int_{[-R,R]} f(x) \, (\nu + \mu_-)(dx),$$

and hence  $\mu_{+} = \nu + \mu_{-}$  as nonnegative finite measures.

In summary, the complete answer to the unique existence of a radial Bargmann representation of  $\nu_{\alpha,q}$  is stated as follows:

**Theorem 3.11.** Suppose that  $\alpha, q \in (-1, 1)$ . The probability measure  $\nu_{\alpha,q}$  has a radial Bargmann representation if and only if either (i)  $q \geq 0$  and  $\alpha \leq q$  or (ii)  $\alpha = q \neq 0$ .

In fact, the radial measure is given uniquely by

$$\rho_{\nu_{\alpha,q}} = \begin{cases} -\alpha \delta_0 + (1+\alpha)\delta_1 & (\alpha \leq q = 0), \\ (-\alpha, q; q)_{\infty} \sum_{n=0}^{\infty} \frac{q^n}{(q; q)_n} h_n(-\alpha q^{-1} \mid q) \delta_{(1-q)^{-1/2}q^{n/2}} & (q > 0, \ \alpha < q), \\ (q^2; q^2)_{\infty} \sum_{n=0}^{\infty} \frac{q^{2n}}{(q^2; q^2)_n} \delta_{(1-q)^{-1/2}|q|^n} & (\alpha = q \neq 0). \end{cases}$$

- *Proof.* 1. Existence and uniqueness. If  $q \in [0,1)$  and  $\alpha \leq q$ , then by Proposition 3.6 and Lemma 3.9, the signed measure  $\rho_{\nu_{\alpha,q}}$  is in fact a nonnegative measure and becomes the radial part of a Bargmann measure. The case  $\alpha = q < 0$  was discussed in Proposition 3.7. Due to Carleman criterion for the moment problem, the inequality given in (3.6) guarantees the uniqueness of  $\rho_{\nu_{\alpha,q}}$  for these cases.
- **2. Non-existence.** (1) If  $q \in (0,1)$  and  $\alpha > q$ , then  $\rho_{\nu_{\alpha,q}}$  is not a nonnegative measure and is really a signed measure since  $h_n(-\alpha/q \mid q) < 0$  for odd integers  $n \geq 0$  and q > 0 from Lemma 3.9. By Lemma 3.10, if a radial Bargmann measure exists, then it must be equal to the signed measure  $\nu_{\alpha,q}$ . This is a contradiction. Thus, a radial Bargmann measure does not exist.
- (2) If q = 0 and  $\alpha > q = 0$  then by (3.9)  $\nu_{\alpha,0}$  is really a signed measure, and hence by the same argument as above, a radial Bargmann measure does not exist.
- (3) Let

$$\beta_k(\alpha, q) := (-\alpha; q)_k [k]_q!, \qquad k \ge 0, \alpha, q \in (-1, 1).$$

Given q < 0 and  $\alpha \neq q$ , suppose that there exists a radial part of a Bargmann measure,  $\rho$ . Let  $\rho^2$  be the push-forward of  $\rho$  by the map  $x \mapsto x^2$ . Then,

$$\beta_k(\alpha, q) = \int_0^\infty x^k \, \rho^2(dx) = \int_0^\infty x^{2k} \, \rho(dx). \tag{3.14}$$

By the way, by Proposition 3.6 it holds that  $\beta_k(\alpha, q') = \int_0^\infty x^{2k} \rho_{\nu_{\alpha,q'}}(dx)$  for any q' > 0, that is,

$$\beta_k(\alpha, q') = (-\alpha, q'; q')_{\infty} \sum_{n=0}^{\infty} \frac{(q')^n}{(q'; q')_n} h_n(-\alpha(q')^{-1} \mid q') \frac{(q')^{kn}}{(1 - q')^k}, \qquad q' > 0,$$
(3.15)

which is true even for q' = q by analytic continuation.

Now let us consider the signed measure

$$\mu := (-\alpha, q; q)_{\infty} \sum_{n=0}^{\infty} \frac{q^n}{(q; q)_n} h_n(-\alpha q^{-1} \mid q) \delta_{(1-q)^{-1}q^n}, \qquad \alpha \neq q < 0,$$

supported on the points  $\frac{q^n}{1-q}$  for  $n=0,1,2,3,\ldots$  Then by (3.15) for q'=q and by (3.14),

$$\int_{\mathbb{R}} x^k \, \mu(dx) = \beta_k(\alpha, q) = \int_0^\infty x^k \, \rho^2(dx), \qquad k \in \mathbb{N} \cup \{0\}.$$

By Lemma 3.10, the signed measure  $\mu$  and the probability measure  $\rho^2$  should be equal. However, the support of  $\mu$  is not contained in  $[0, \infty)$ , and hence  $\mu$  cannot be equal to  $\rho^2$ . This is a contradiction.  $\square$ 

**Example 3.12.** (1) The radial measure  $\rho_{\nu_{0,q}}$  for  $q \in [0,1)$  is of the q-Bargmann [LM95].

- (2) The radial measure  $\rho_{\nu_{q,q}}$  for  $q \in (-1,1)$  is of the  $q^2$ -Bargmann.
- (3)  $\lim_{q \downarrow 1} \rho_{\nu_{\alpha,q}}$  is of the classical Bargmann [Barg61][AKK03].
- (4) Consider  $\alpha = -q^{2\beta}, \beta > 0$ . This choice of  $\alpha$  is suggested by (3.1) in Remark 3.1. In fact, one can see

$$\lim_{q \uparrow 1} \frac{(1 - q^{2\beta + n - 1})[n]_q}{4(1 - q)} = \frac{1}{4}(n + 2\beta - 1)n.$$

This limit sequence is the Jacobi sequence of the symmetric Meixner distribution in (3.4), so that  $\rho_{\nu_{-q^{2\beta},q}}$  under suitable scaling converges weakly as  $q \uparrow 1$  to the radial measure with the density,

$$\frac{2\pi r}{\Gamma(2\beta)} \int_0^\infty h(r, t/4) e^{-t} t^{2\beta - 1} dt$$

where

$$h(r,t) = \frac{1}{\pi t} \exp\left(-\frac{r^2}{t}\right), \ r \in \mathbb{R}, \ t > 0.$$

This is an integral representation of the radial density for the Bessel kernel measure, which can be also represented by the modified Bessel function [As05][As09].

(5)  $\rho_{\nu_{\alpha,0}}$  for  $\alpha \in (-1,0]$  is the radial measure for the symmetric free Meixner distribution. See Remark 3.13 below.

Remark 3.13. Let  $\mu_t$  be a t-deformed probability measure of a probability measure  $\mu$  on  $\mathbb{R}$  defined through the Cauchy transform  $G_{\mu}$  of  $\mu$ ,

$$\frac{1}{G_{\mu_t}(z)} := \frac{t}{G_{\mu}(z)} + (1 - t)z, \quad t \ge 0,$$

examined by Bożejko-Wysoczański [BW98, BW01]. Krystek-Wojakowski [KW14] discussed the radial Bargmann representation of a t-deformed probability measure  $\mu_t$ , t-Bargmann representation for short, and obtained necessary and sufficient condition for the admissibility of the representation. The t-Bargmann representation of the Kesten measure  $\kappa_t$  has the form,

$$\rho_{\kappa_t} = \left(1 - \frac{1}{t}\right)\delta_0 + \frac{1}{t}\delta_{\sqrt{t}}, \quad t \ge 1.$$

In [AKW16], the t-Bargmann representation of a symmetric free Meixner law  $\varphi_{s,t}$  with two positive parameters s,t is treated and is admitted if and only if  $t \geq 1$ . In fact, one can see  $\rho_{\varphi_{s,t}} = D_s(\rho_{\kappa_t})$  and hence

$$\rho_{\nu_{(1-t)/t,0}} = \rho_{\varphi_{1/\sqrt{t},t}} = D_{1/\sqrt{t}}(\rho_{\kappa_t}), \quad t \ge 1.$$

Therefore, the case (5) in Example 3.12 can be viewed as a t-Bargmann representation, too.

Furthermore, let us state the t-deformed version of Theorem 3.11 for  $q \neq 0$  without proof:

**Proposition 3.14.** The t-deformed version of  $\rho_{\nu_{\alpha,q}}$  for  $q \neq 0$  is given by

$$\left(1 - \frac{1}{t}\right)\delta_0 + \frac{1}{t}\rho_{\nu_{\alpha,q}}, \quad t \ge 1.$$

Remark 3.15. The t-Bargmann representation of  $\nu_q$  is treated in [KW14] for q=1 and [AKW16] for  $0 \le q < 1$ .

Before closing this section, let us give a short remark about relations with the free infinite divisibility. Many of particular examples have so far suggested that the free infinite divisibility of a probability measure implies the existence of a radial Bargmann representation. The converse is not true in general because the Askey-Wimp-Kerov distribution  $\mu_{9/10}$  for instance, discussed in [BBLS11], is not freely infinitely divisible, but it has a Bargmann representation with a gamma distribution as its radial measure. However, not many counterexamples have been found.

Therefore, we conjecture that the free infinite divisibility of our  $(\alpha, q)$ -Gaussian distribution is equivalent to the existence of its radial Bargmann measure:

Conjecture. Suppose that  $\alpha, q \in (-1, 1)$ . The probability measure  $\nu_{\alpha,q}$  is freely infinitely divisible if and only if if and only if  $\alpha = q$  or  $\alpha < q \ge 0$ .

This conjecture is guaranteed to be true in the restricted subfamilies  $\{\nu_{\alpha,0} \mid \alpha \in (-1,1)\}$  ([SY01, Theorem 3.2]),  $\{\nu_{0,q} \mid -1 < q < 1\}$  ([ABBL10] and [AH13, Example 3.11] for the free infinite divisibility), and  $\{\nu_{q,q} \mid q \in (-1,1)\}$  (all measures in this family are freely infinitely divisible since they are  $q^2$ -Gaussians).

### 4 Commutation relations among one-mode $(\alpha, q)$ -operators

**Definition 4.1.** Suppose that  $\alpha, q \in (-1, 1)$  and f is analytic on  $\mathbb{C}$ .

(1) Let Z be the multiplication operator defined by

$$(Zf)(z) := zf(z).$$

(2) Let  $D_q$  be the Jackson derivative given by

$$(D_q f)(z) = \begin{cases} \frac{f(z) - f(qz)}{(1 - q)z}, & z \neq 0, \\ f'(0), & z = 0. \end{cases}$$

(3) The  $\alpha$ -deformed Jackson derivative is given as

$$D_{\alpha,q} := \begin{cases} D_q + \alpha q^{2N} D_{1/q}, & q \neq 0, \\ D_0 + \alpha \frac{d}{dz} \Big|_0, & q = 0, \end{cases}$$

where N is the number operator. For  $q \neq 0$ , we can also write

$$D_{\alpha,q} = D_q + \frac{\alpha}{q^2} D_{1/q} q^{2N}.$$

Remark 4.2. It is easy to check that the  $\alpha$ -deformed Jackson derivative is equivalently defined as

$$(D_{\alpha,q}f)(z) = (D_qf)(z) + \alpha(D_{1/q}f)(q^2z), \quad q \neq 0.$$

For example, if  $f(z) = z^n$ ,  $(D_{\alpha,q}f)(z) = (1 + \alpha q^{n-1})[n]_q z^{n-1}$  holds. In fact, the  $\alpha$ -deformed Jackson derivative is an analogue of the operator in [BEH15, Theorem2.5].

Then, one can realize one-mode analogue of  $(\alpha, q)$ -operators on an appropriate domain of the one-mode interacting Bargmann-Fock space  $\mathcal{B}$  with  $\omega_n = (1 + \alpha q^{n-1})[n]_q$  and  $\alpha_n = 0$  by

$$a^+ := Z, \ a^- := D_{\alpha,q}, \text{ and } \Phi_n := \frac{z^n}{\sqrt{[\omega_n]!}}.$$

In fact, it is easy to check that

$$\begin{cases} a^+ \Phi_n = \sqrt{\omega_{n+1}} \Phi_{n+1}, \\ a^- \Phi_n = \sqrt{\omega_n} \Phi_{n-1}, \end{cases}$$

hold and the q-commutation relation, one-mode analogue of (A.4),

$$[a^-, a^+]_q \Phi_n := (a^- a^+ - q a^+ a^-) \Phi_n$$
  
=  $(I + \alpha q^{2N}) \Phi_n$ ,

is satisfied. Let us put  $M_{\alpha,q} = I + \alpha q^{2N}$  and then one can get the expression,

$$M_{\alpha,q} = (1+\alpha)I - \alpha(1-q^2)ZD_{q^2},$$

due to  $(ZD_{q^2})\Phi_n = [n]_{q^2}\Phi_n$ .

Therefore one can obtain the following

**Theorem 4.3.** Suppose  $\alpha \in (-1,1)$  and  $q \in (-1,1)$ . Then the following are satisfied.

- (1)  $[a^-, a^+]_q = M_{\alpha,q}$ ,  $[a^-, M_{\alpha,q}]_{q^2} = (1 q^2)a^-$ ,  $[M_{\alpha,q}, a^+]_{q^2} = (1 q^2)a^+$ .
- (2)  $M_{\alpha,q} = (1+\alpha)I \alpha(1-q^2)ZD_{q^2}$ .
- (3) In particular, if  $\alpha = q$ , then one can obtain a more refined relation,  $[a^-, a^+]_{q^2} = (1+q)I$ .

**Example 4.4.** (1)  $\alpha = 0$  implies  $[a^-, a^+]_q = I$ . Hence  $M_{0,q} = I$  commutes with both  $a^+$  and  $a^-$ ,

$$[a^-, M_{0,q}]_1 = [M_{0,q}, a^+]_1 = 0.$$

Therefore, the case  $\alpha \neq 0$  provides non-trivial commutation relations.

(2) If  $\alpha = -q^{2\beta}$  for  $\beta > 0$ , then the limiting case of the scaled operator is obtained as

$$\lim_{q\uparrow 1} \frac{M_{-q^{2\beta},q}}{1-q^2} = \lim_{q\uparrow 1} \frac{I - q^{2\beta}q^{2N}}{1-q^2} = N + \beta.$$

Moreover, let us consider the scaled operators,

$$A^{\pm} := \lim_{q \uparrow 1} \frac{a^{\pm}}{\sqrt{1 - q^2}}.$$

Then one can get

$$[A^-, A^+]_1 = N + \beta$$

and hence

$$[A^-, N]_1 = A^-, [N, A^+]_1 = A^+.$$

It should be noted that these are the commutation relations for the classical Meixner-Pollaczek polynomials with respect to the symmetric Meixner distribution in (3.4). See [As08].

**Acknowledgments.** N. Asai was partially supported by Grant-in-Aid for Scientific Research (C) 23540131, JSPS. M. Bożejko was partially supported by the MAESTRO grant DEC-2011/02/A/ST1/00119 and OPUS grant DEC-2012/05/B/ST1/00626 of National Center of Science. T. Hasebe was supported by Grant-in-Aid for Young Scientists (B) 15K17549, JSPS.

## A Appendix

Let  $\Sigma_n$  be the set of bijections  $\sigma$  of the 2n points  $\{\pm 1, \pm 2, \dots, \pm n\}$  with  $\sigma(-k) = -\sigma(k)$ . Equipped with the composition operation as a product,  $\Sigma_n$  becomes what is called a Coxeter group of type B. It is generated by  $\pi_0 := (1, -1)$  and  $\pi_i := (i, i+1)$ ,  $1 \le i \le n-1$ , which satisfy the generalized braid relations

$$\begin{cases}
\pi_i^2 = e, & 0 \le i \le n - 1, \\
(\pi_0 \pi_1)^4 = (\pi_i \pi_{i+1})^3 = e, & 1 \le i \le n - 1, \\
(\pi_i \pi_j)^2 = e, & |i - j| \ge 2, \ 0 \le i, j \le n - 1.
\end{cases}$$
(A.1)

An element  $\sigma \in \Sigma_n$  expresses an irreducible form,

$$\sigma = \pi_{i_1} \cdots \pi_{i_k}, \quad 0 \le i_1, \dots, i_k \le n - 1,$$

and in this case

 $\ell_1(\sigma) := \text{the number of } \pi_0 \text{ in } \sigma,$ 

 $\ell_2(\sigma) := \text{the number of } \pi_i, \ 1 \le i \le n-1, \text{ in } \sigma$ 

are well defined. Let H be a separable Hilbert space. For a given self-adjoint involution  $f \mapsto \overline{f}$  for  $f \in H$ , an action of  $\Sigma_n$  on  $H^{\otimes n}$  is defined by

$$\begin{cases}
\pi_0(f_1 \otimes \cdots \otimes f_n) = \overline{f_1} \otimes f_2 \otimes \cdots \otimes f_n, & n \geq 1, \\
\pi_i(f_1 \otimes \cdots \otimes f_n) = f_1 \otimes \cdots \otimes f_{i-1} \otimes f_{i+1} \otimes f_i \otimes f_{i+2} \otimes \cdots \otimes f_n, & n \geq 2, \ 1 \leq i \leq n-1.
\end{cases}$$
(A.2)

The  $(\alpha, q)$ -inner product on the full Fock space  $\mathcal{F}(H)$  is defined by

$$\langle f_1 \otimes \cdots \otimes f_m, g_1 \otimes \cdots \otimes g_n \rangle_{\alpha, q} := \delta_{m, n} \sum_{\sigma \in \Sigma_n} \alpha^{\ell_1(\sigma)} q^{\ell_2(\sigma)} \prod_{j=1}^n \langle f_j, g_{\sigma(j)} \rangle_H, \ \alpha, q \in (-1, 1)$$
(A.3)

with conventions  $0^0 = 1$  and  $g_{-k} = \overline{g_k}$ , k = 1, 2, ..., n. For example, if one may define the involution as  $\overline{f} := -f$ , then  $g_{-k} = -g_k$ . Equipped with this inner product the full Fock space  $\mathcal{F}(H)$  is denoted by  $\mathcal{F}_{\alpha,q}(H)$  to emphasize on the dependence of the inner product on  $\alpha, q$ .

The  $(\alpha, q)$ -creation operator  $B_{\alpha,q}^+(f)$  is the usual left creation operator on the full Fock space, and the  $(\alpha, q)$ -annihilation operator  $B_{\alpha,q}^-(f)$  is its adjoint with respect to the inner product  $\langle \cdot, \cdot \rangle_{\alpha,q}$ . They satisfy the commutation relation

$$B_{\alpha,q}^{-}(f)B_{\alpha,q}^{+}(g) - qB_{\alpha,q}^{+}(g)B_{\alpha,q}^{-}(f) = \langle f, g \rangle_{H}I + \alpha \langle \overline{f}, g \rangle_{H}q^{2N}, \quad f, g \in H.$$
(A.4)

The readers can consult [BEH15] for details.

#### References

- [AB98] L. Accardi and M. Bożejko, Interacting Fock space and Gaussianization of probability measures, *Infin. Dimens. Anal. Quantum Probab. Relat. Top.*, **1**, no. 4, (1998), 663–670.
- [An03] M. Anshelevich, Free martingale polynomials, J. Funct. Anal., 201, (2003), 228–261.
- [ABBL10] M. Anshelevich, S.T. Belinschi, M. Bożejko, and F. Lehner, Free infinite divisibility for q-Gaussians, *Math. Res. Lett.* **17**, (2010), 905–916.
- [AH13] O. Arizmendi and T. Hasebe, Semigroups related to additive and multiplicative, free and Boolean convolutions, *Studia Math.*, **215**, (2013), 157–185.
- [As05] N. Asai, Hilbert space of analytic functions associated with the modified Bessel function and related to orthogonal polynomials. *Infin. Dimens. Anal. Quantum Probab. Relat. Top.* 8, (2005), 505–514.
- [As08] N. Asai, Hilbert space of analytic functions associated with a rotation invariant measure. in: Quantum Probability and Related Topics. J.C. García, R. Quezada and S. B. Sontz (eds.) (World Scientific, 2008) pp. 49–62.
- [As09] N. Asai, The construction of subordinated probability measures on  $\mathbb{C}$  associated with the Jacobi-Szegö parameters. *Infin. Dimens. Anal. Quantum Probab. Relat. Top.* **12**, (2009), 401–411.
- [AKW16] N. Asai, D. Krystek, and Ł.J. Wojakowski, Interpolations of Bargmann type measures, *Demonstr. Math.*, **49**, (2016) (to appear)

- [AKK03] N. Asai, I. Kubo, and H.-H. Kuo, Segal-Bargmann transforms of one-mode interacting Fock spaces associated with Gaussian and Poisson measures, *Proc. Amer. Math. Soc.*, **131**, no. 3, (2003), 815–823.
- [Barg61] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, I. Comm. Pure Appl. Math., 14, (1961), 187–214.
- [BBLS11] S.T. Belinschi, M. Bożejko, F. Lehner, and R. Speicher, The normal distribution is ⊞-infinitely divisible, *Adv. Math.*, **226**, No. 4, (2011), 3677–3698.
- [Bi97] P. Biane, Segal-Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and circular systems. *J. Funct. Anal.*, **44** (1997), 232–286.
- [BB06] M. Bożejko and W. Bryc, On a class of free Levy laws related to a regression problem, *J. Funct. Anal.*, **236**, no. 1, (2006), 59–77.
- [BEH15] M. Bożejko, W. Ejsmont, and T. Hasebe, Fock space associated with Coxeter groups of type B, J. Funct. Anal., 269, (2015), 1769–1795.
- [BKS97] M. Bożejko, B. Kümmerer, and R. Speicher, q-Gaussian processes: Non-Commutative and classical aspects, Comm. Math. Phys., 185, (1997), 129–154.
- [BS91] M. Bożejko and R. Speicher, An example of a generalized Brownian motion, *Comm. Math. Phys.*, **137**, (1991), 519–531.
- [BW98] M. Bożejko and J. Wysoczański, New examples of convolutions and non-commutative central limit theorem, *Banach Center Publ.*, **43**, (1998), 95–103.
- [BW01] M. Bożejko and J. Wysoczański, Remarks on t-transformations of measures and convolutions, Ann. Inst. Henri Poincaré Prob. Stats., 37, no. 6, (2001), 737–761.
- [Chi78] T.S. Chihara, An Introduction to Orthogonal Polynomials. Gordon and Breach, 1978.
- [GR04] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd ed., Encyclopedia of mathematics and its applications (edited by G.-C. Rota), Vol. 96, Cambridge University Press, Cambridge, 2004.
- [HO07] A. Hora and N. Obata, Quantum probability and spectral analysis of graphs. Springer-Verlag, Berlin, 2007.
- [KLS10] R. Koekoek, P.A. Lesky and R.F. Swarttouw, *Hypergeometric orthogonal polynomials and their q-analogues*, Springer-Verlag, Berlin, 2010.
- [Kr98] I. Królak, Measures connected with Bargmann's representation of the q-commutation relation for q > 1, Banach Center Publ., 43, (1998), 253–257.
- [KW14] A.D. Krystek and L.J. Wojakowski, Bargmann measures for t-deformed probability, *Probab. Math. Statist.*, **34**, no. 2, (2014), 279–291.
- [MGH90] D.S. Mazel, J.S. Geronimo and M.H. Hayes, On the geometric sequences of reflection coefficients, *IEEE Transactions on Acoustics. Speech. Signal Processing*, **38**, no. 10 (1990), 1810–1812.
- [SY01] N. Saitoh and H. Yoshida, The infinite divisibility and orthogonal polynomials with a constant recursion formula in free probability theory, *Probab. Math. Statist.*, **21**, No. 1, (2001), 159–170.
- [S05] B. Simon, Orthogonal Polynomials on the Unit Circle Part 1: Classical Theory, Amer. Math. Soc., Providence, RI, 2005.
- [Sz07] F.H. Szafraniec, Operators of the q-oscillator, Banach Center Publ., 78, (2007), 293–307.
- [LM95] H. van Leeuwen and H. Maassen, A q deformation of the Gauss distribution, J. Math. Phys., **36**, (1995), 4743–4756.