HOKKAIDO UNIVERSITY

Title	Radial Bargmann representation for the Fock space of type B
Author(s)	A sai, Nobuhiro; Bozejko, Marek; Hasebe, Takahiro
Citation	Journal of mathematical physics, 57(2), 021702 https://doi.org/10.1063/L.4939748
Issue Date	2016.02
Doc URL	http:/hdll.handle.net/2115/64421
Type	article
File Information	1512.088622.pd.pdf

Instructions for use

Radial Bargmann representation for the Fock space of type B

Nobuhiro ASAI, Marek BOŻEJKO ${ }^{\dagger}$, and Takahiro HASEBE ${ }^{\ddagger}$

Abstract

Let $\nu_{\alpha, q}$ be the probability and orthogonality measure for the q-Meixner-Pollaczek orthogonal polynomials, which has appeared in BEH15 as the distribution of the (α, q)-Gaussian process (the Gaussian process of type B) over the (α, q)-Fock space (the Fock space of type B). The main purpose of this paper is to find the radial Bargmann representation of $\nu_{\alpha, q}$. Our main results cover not only the representation of q-Gaussian distribution by [LM95, but also of q^{2}-Gaussian and symmetric free Meixner distributions on \mathbb{R}. In addition, non-trivial commutation relations satisfied by (α, q) operators are presented.

Keywords: Radial Bargmann representation, deformation, Fock spaces, q-orthogonal polynomials. 2010 Mathematics Subject Classification: 33D45, 46L53, 60E99.

1 Introduction

Bożejko-Ejsmont-Hasebe BEH15 considered a deformation of the (algebraic) full Fock space with two parameters α and q, namely, the (α, q)-Fock space (or the Fock space of type B) $\mathcal{F}_{\alpha, q}(H)$ over a complex Hilbert space H. The deformation with $\alpha=0$ is equivalent to the q-deformation by Bożejko-Speicher BS91 and Bożejko-Kümmerer-Speicher BKS97, and the corresponding q-Bargmann-Fock space has been constructed by van Leeuwen-Maassen LM95.

For the construction of $\mathcal{F}_{\alpha, q}(H)$, their starting point is to replace the Coxeter group of type A, that is, symmetric group S_{n} for the q-Fock space by the Coxeter group of type $\mathrm{B}, \Sigma_{n}:=\mathbb{Z}_{2}^{n} \rtimes S_{n}$ in (A.1) of the Appendix A. This replacement provides us a more general symmetrization operator on $H^{\otimes n}$ than that of BS91 to define the (α, q)-inner product $\langle\cdot, \cdot\rangle_{\alpha, q}$ in A.3). One can define annihilation $B_{\alpha, q}^{-}(f)$ and creation $B_{\alpha, q}^{+}(f)$ operators acting on $\mathcal{F}_{\alpha, q}(H)$, and the (α, q)-Gaussian process (the Gaussian process of type B) $G_{\alpha, q}(f)$ for $f \in H$ as the sum of them, $G_{\alpha, q}(f):=B_{\alpha, q}^{-}(f)+B_{\alpha, q}^{+}(f)$. It is one of their main interests to find a probability distribution $\mu_{\alpha, q, f}$ on \mathbb{R} of $G_{\alpha, q}(f),\|f\|_{H}=1$, with respect to the vacuum state $\langle\Omega, \cdot \Omega\rangle_{\alpha, q} . \mathcal{F}_{\alpha, q}(H)$ equipped with $\langle\cdot, \cdot\rangle_{\alpha, q}, B_{\alpha, q}^{-}(f)$, and $B_{\alpha, q}^{+}(f)$ is a typical example of interacting Fock spaces in the sense of Accardi-Bożejko AB98. It suggests that the theory of orthogonal polynomials plays intrinsic roles in all previous works mentioned above. In fact, the measure $\mu_{\alpha, q, f}$ given in BEH15. Theorem 3.3] is derived essentially from the orthogonality measure $\nu_{\alpha, q}$ associated with the q-Meixner-Pollaczek orthogonal polynomials $\left\{P_{n}^{(\alpha, q)}(x)\right\}$ for $\alpha, q \in(-1,1)$ given by the recurrence relation,

$$
\left\{\begin{array}{l}
P_{0}^{(\alpha, q)}(x)=1, P_{1}^{(\alpha, q)}(x)=x \\
x P_{n}^{(\alpha, q)}(x)=P_{n+1}^{(\alpha, q)}(x)+\left(1+\alpha q^{n-1}\right)[n]_{q} P_{n-1}^{(\alpha, q)}(x), \quad n \geq 1
\end{array}\right.
$$

where $[n]_{q}=1+q+\cdots+q^{n-1}$ is the q number. However, the Bargmann representation (measure on \mathbb{C}) of $\nu_{\alpha, q}$ has not been obtained yet except the case of $\alpha=0$ for $0 \leq q<1$ LM95, for $q=1$ Barg61 AKK03, for $q=0$ Bi97, and t-deformed cases of these AKW16 KW14, and for $q>1$ Kr98.

[^0]Therefore, the main purpose of this paper is to find the radial Bargmann representation of the probability measure $\nu_{\alpha, q}$ on \mathbb{R}. Our results cover the radial Bargmann representations of q-Gaussian, symmetric free Meixner (Kesten) and q^{2}-Gaussian distributions on \mathbb{R}.

The organization of this paper will be as follows. In Section 2 we shall explain how the (α, q)-Fock space is related to the notion of one-mode interacting Fock spaces and Bargmann representation. In Section 3, the radial Bargmann representation of $\nu_{\alpha, q}$ is constructed explicitly in Theorem 3.11. In Section 4 commutation relations satisfied by one-mode (α, q)-annihilation and creation operators will be treated. In the Appendix, we shall give a minimum reference on the Coxeter group of type B extracted from [BEH15].

2 Key ideas and our purpose

Let us point out some of the keys to calculate the distribution of $G_{\alpha, q}(f)$ in BEH15. It is shown that a linear map, $\Phi: \operatorname{Span}\left\{f^{\otimes n} \mid f \in H, n \geq 0\right\} \rightarrow L^{2}\left(\mathbb{R}, \mu_{\alpha, q, f}\right)$ given by $\Phi\left(f^{\otimes n}\right)=P_{n}^{\left(\alpha\langle f, \bar{f}\rangle_{H}, q\right)}(x)$, is an isometry and a relation under $\|f\|_{H}=1$,

$$
\begin{aligned}
G_{\alpha, q}(f) f^{\otimes n} & =\left(B_{\alpha, q}^{+}(f)+B_{\alpha, q}^{-}(f)\right)\left(f^{\otimes n}\right) \\
& =f^{\otimes(n+1)}+\left(1+\alpha\langle f, \bar{f}\rangle_{H}\right) q^{n-1}[n]_{q} f^{\otimes(n-1)},
\end{aligned}
$$

is satisfied where \bar{f} denotes a self-adjoint involution of $f \in H$ in (A.2). This corresponds to the three terms recursion relation satisfied by $P_{n}^{\left(\alpha\langle f, \bar{f}\rangle_{H}, q\right)}(x)$ through Φ. Then, it is proved that $\mu_{\alpha, q, f}=\nu_{\alpha\langle f, \bar{f}\rangle_{H}, q}$ (see $\nu_{\alpha, q}$ in (3.3)) in the sense of

$$
\begin{equation*}
\left\langle\Omega, G_{\alpha, q}(f)^{n} \Omega\right\rangle_{\alpha, q}=\int x^{n} \mu_{\alpha, q, f}(d x) \tag{2.1}
\end{equation*}
$$

where Ω denotes the vacuum vector. Therefore, in order to get the Bargmann representation of $\nu_{\alpha\langle f, \bar{f}\rangle_{H}, q}$, it is enough to consider that of $\nu_{\alpha, q}$ in the sense of Definition 2.2 given later.

Since the structure mentioned above can be reduced to the one-mode analogue of (α, q)-Fock spaces, let us recall fundamental relationships between one-mode interacting Bargmann-Fock spaces and the theory of orthogonal polynomials of one variable.

Definition 2.1. Let $\left\{\omega_{n}\right\}_{n=0}^{\infty}$ with $\omega_{0}:=1$ be an infinite sequence of positive real numbers and $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be of real numbers. A one-mode interacting Bargmann-Fock space \mathcal{B} is defined as $\bigoplus_{n=0}^{\infty} \mathbb{C} \Phi_{n}$ equipped with $\Phi_{n}:=z^{n} /\left[\omega_{n}\right]!,\left[\omega_{n}\right]!:=\prod_{k=0}^{n} \omega_{k}$, the inner product $\left\langle\Phi_{m}, \Phi_{n}\right\rangle_{\mathcal{B}}=\delta_{m, n}$ for all $m, n \in \mathbb{N} \cup\{0\}$, operators of creation a^{+}, annihilation a^{-}, and conservation a° defined by

$$
\begin{cases}a^{+} \Phi_{n}:=\sqrt{\omega_{n+1}} \Phi_{n+1}, & n \geq 0, \tag{2.2}\\ a^{-} \Phi_{0} 0, a^{-} \Phi_{n}:=\sqrt{\omega_{n}} \Phi_{n-1}, & n \geq 1, \\ a^{\circ} \Phi_{n}:=\alpha_{n} \Phi_{n}, & n \geq 0 .\end{cases}
$$

Let $\left(\left\{\omega_{n}\right\}_{n=0}^{\infty},\left\{\alpha_{n}\right\}_{n=0}^{\infty}\right)$ be a pair of sequences in Definition 2.1 and define a sequence of monic polynomials $\left\{P_{n}(x)\right\}$ recurrently by

$$
\left\{\begin{array}{l}
P_{0}(x)=1, P_{1}(x)=x-\alpha_{0} \tag{2.3}\\
x P_{n}(x)=P_{n+1}(x)+\omega_{n} P_{n-1}+\alpha_{n} P_{n}(x), \quad n \geq 1
\end{array}\right.
$$

Then there exists a probability measure μ on \mathbb{R} with finite moments of all orders such that $\left\{P_{n}(x)\right\}$ is the orthogonal polynomials with $\left\langle P_{m}(x), P_{n}(x)\right\rangle_{L^{2}(\mathbb{R}, \mu)}=\delta_{m, n}\left[\omega_{n}\right]$! for all $m, n \in \mathbb{N} \cup\{0\}$. (See Chi78] HO07, for example.)

It is easy to see that a linear map

$$
U: \mathcal{B}=\bigoplus_{n=0}^{\infty} \mathbb{C} \Phi_{n} \rightarrow L^{2}(\mathbb{R}, \mu)
$$

defined by $U\left(\sqrt{\left[\omega_{n}\right]!} \Phi_{n}\right)=P_{n}(x)$ is an isometry and in addition $a^{+}+a^{-}+a^{\circ}=U^{*} X U$ is satisfied due to (2.2) and (2.3), where X represents the multiplication operator by x in $L^{2}(\mathbb{R}, \mu)$. This intertwining relation provides a notion of the quantum decomposition of a classical random variable X and

$$
\begin{equation*}
\left\langle\Phi_{0},\left(a^{+}+a^{-}+a^{\circ}\right)^{n} \Phi_{0}\right\rangle_{\mathcal{B}}=\int x^{n} \mu(d x) . \tag{2.4}
\end{equation*}
$$

Therefore, if $\omega_{n}=\left(1+\alpha q^{n-1}\right)[n]_{q}, \alpha_{n}=0$, the equality in (2.4) is a one-mode analogue of (2.1).
Now it is interesting to consider the following moment problem to realize the inner product by the integral:

Problem 1. For a given $\left\{\omega_{n}\right\}$ of μ, find a probability measure γ_{μ} satisfying the equality,

$$
\begin{equation*}
\int_{\mathbb{C}} \bar{z}^{m} z^{n} \gamma_{\mu}\left(d^{2} z\right)=\delta_{m, n}\left[\omega_{n}\right]! \tag{2.5}
\end{equation*}
$$

for all $m, n \in \mathbb{N} \cup\{0\}$.
Definition 2.2. A measure γ_{μ} satisfying the equality (2.5) is called a Bargmann representation (measure on \mathbb{C}) of a measure μ on \mathbb{R}.

It was proved in Sz07] (see also AKW16 KW14) that if a measure μ admits any Bargmann representation, then it also admits a radial (rotation invariant) Bargmann representation

$$
\gamma_{\mu}\left(d^{2} z\right)=\frac{1}{2 \pi} \lambda_{[0,2 \pi)}(d \theta) \rho_{\mu}(d r), z=r e^{i \theta}, r \geq 0, \theta \in[0,2 \pi),
$$

where $\lambda_{[0,2 \pi)}$ is the Lebesgue measure on $[0,2 \pi)$. It says that the angular part takes care of orthogonality of (2.5). Therefore, Problem 1 can be transformed into the following Problem 2:

Problem 2. Find a positive radial measure ρ_{μ} satisfying

$$
\int_{0}^{\infty} r^{2 n} \rho_{\mu}(d r)=\left[\omega_{n}\right]!
$$

for all $m, n \in \mathbb{N} \cup\{0\}$.
Main Purpose: We shall consider Problem 2 associated with $\omega_{n}=\left(1+\alpha q^{n-1}\right)[n]_{q}, \alpha_{n}=0$ of $\nu_{\alpha \cdot q}$ in Section 3. Furthermore, commutation relations satisfied by a^{+}, a^{-}acting on \mathcal{B} associated with $\omega_{n}=$ $\left(1+\alpha q^{n-1}\right)[n]_{q}$ will be presented in Section 4
Remark 2.3. (1) One can notice that γ_{μ} and ρ_{μ} are determined only by $\left[\omega_{n}\right]$!. Therefore, it is enough in general for the Bargmann representation in the above sense to consider the symmetric measure μ with $\alpha_{n}=0$ for all n, which implies that a° is a zero operator.
(2) If μ is symmetric, then $\alpha_{n}=0$ for all n is implied. The converse statement is true if μ is determined by its moments.

$3(\alpha, q)$-Bargmann representation

$3.1 \quad q$-Meixner-Pollaczek polynomials

Let us recall standard notations from q-calculus, which can be found in GR04 KLS10 for example. The q-shifted factorials are defined by

$$
(a ; q)_{0}:=1, \quad(a ; q)_{k}:=\prod_{\ell=1}^{k}\left(1-a q^{\ell-1}\right), k=1,2, \ldots, \infty
$$

and the product of q-shifted factorials is defined by

$$
\left(a_{1}, a_{2} ; q\right)_{k}:=\left(a_{1} ; q\right)_{k}\left(a_{2} ; q\right)_{k}, \quad k=1,2, \ldots, \infty
$$

Remark 3.1. The q-shifted factorials are a natural extension of the Pochhammer symbol $(\cdot)_{n}$ because one can see that $\lim _{q \rightarrow 1}[k]_{q}=k$ implies

$$
\begin{equation*}
\lim _{q \rightarrow 1} \frac{\left(q^{k} ; q\right)_{n}}{(1-q)^{n}}=(k)_{n} \tag{3.1}
\end{equation*}
$$

where $(k)_{0}:=1,(k)_{n}:=k(k+1) \cdots(k+n-1), n \geq 1$.
As we have mentioned, $\left\{P_{n}^{(\alpha, q)}(x)\right\}$ for $\alpha, q \in(-1,1)$ is the q-Meixner-Pollaczek polynomials satisfying the recurrence relation,

$$
\left\{\begin{array}{l}
P_{0}^{(\alpha, q)}(x)=1, P_{1}^{(\alpha, q)}(x)=x, \tag{3.2}\\
x P_{n}^{(\alpha, q)}(x)=P_{n+1}^{(\alpha, q)}(x)+\left(1+\alpha q^{n-1}\right)[n]_{q} P_{n-1}^{(\alpha, q)}(x), \quad n \geq 1
\end{array}\right.
$$

It is known in [KLS10, 14.9.2] and BEH15, page 1781] that the orthogonality measure $\nu_{\alpha . q}$ for such polynomials has the density of the form,

$$
\begin{equation*}
\frac{\left(q, \gamma^{2} ; q\right)_{\infty}}{2 \pi} \sqrt{\frac{1-q}{4-(1-q) x^{2}}}\left(\frac{g(x, 1 ; q) g(x,-1 ; q) g(x, \sqrt{q} ; q) g(x,-\sqrt{q} ; q)}{g(x, i \gamma ; q) g(x,-i \gamma ; q)}\right) \tag{3.3}
\end{equation*}
$$

supported on the interval $(-2 / \sqrt{1-q}, 2 / \sqrt{1-q})$ where

$$
g(x, b ; q)=\prod_{k=0}^{\infty}\left(1-4 b x(1-q)^{-1 / 2} q^{k}+b^{2} q^{2 k}\right)
$$

and

$$
\gamma= \begin{cases}\sqrt{-\alpha}, & \alpha<0 \\ i \sqrt{\alpha}, & \alpha \geq 0\end{cases}
$$

Example 3.2. (1) If $\alpha=0$, then q-Meixner-Pollaczek polynomials get back to the q-Hermite polynomials $H_{n}^{(q)}(x)$ whose orthogonality measure is the standard q-Gaussian measure on $(-2 / \sqrt{1-q}, 2 / \sqrt{1-q})$ given by

$$
\nu_{q}(d x):=\frac{\sqrt{1-q}}{\pi} \sin \theta \prod_{n=1}^{\infty}\left(1-q^{n}\right)\left|1-q^{n} e^{2 i \theta}\right|^{2} d x
$$

where $x \sqrt{1-q}=2 \cos \theta, \theta \in[0, \pi]$. Furthermore, one can get the standard Gaussian law as $q \rightarrow 1$, the Bernoulli law as $q \rightarrow-1$, and the standard Wigner's semi-circle law if $q=0$. See BKS97.BS91.
(2) The measure $\nu_{\alpha, 0}$ is the symmetric free Meixner law An03 BB06 SY01.
(3) The measure $\nu_{q, q}$ is the q^{2}-Gaussian law scaled by $\sqrt{1+q}$.
(4) If $\alpha=-q^{2 \beta}$ as suggested in Remark 3.1 then the measure $\nu_{-q^{2 \beta}, q}$ under a certain scaling converges to the classical symmetric Meixner law as $q \uparrow 1$,

$$
\begin{equation*}
\frac{2^{2 \beta}}{2 \pi \Gamma(2 \beta)}|\Gamma(\beta+i x)|^{2} d x, \quad x \in \mathbb{R} \tag{3.4}
\end{equation*}
$$

See also KLS10, 14.9.15].

3.2 Problem

For $\alpha, q \in(-1,1)$, we would like to know when there exists a radial measure $\rho_{\nu_{\alpha, q}}$ satisfying

$$
\begin{equation*}
\int_{0}^{\infty} r^{2 k} \rho_{\nu_{\alpha, q}}(d r)=(-\alpha ; q)_{k}[k]_{q}!, \quad k \in \mathbb{N} \cup\{0\} \tag{3.5}
\end{equation*}
$$

Here $[k]_{q}$! denotes the q-factorials defined by

$$
[0]_{q}!:=1, \quad[k]_{q}!:=\prod_{\ell=1}^{k}[\ell]_{q}=\frac{(q ; q)_{k}}{(1-q)^{k}}, k \geq 1
$$

It is easy to get the inequality for $\alpha, q \in(-1,1)$,

$$
\begin{equation*}
\left|(-\alpha ; q)_{k}[k]_{q}!\right| \leq\left(\frac{4}{1-|q|}\right)^{k}, k \in \mathbb{N} \cup\{0\} . \tag{3.6}
\end{equation*}
$$

Due to Carleman criterion for the moment problem, this inequality implies that a radial measure $\rho_{\nu_{\alpha, q}}$ is determined uniquely by the sequence $\left\{(-\alpha ; q)_{k}[k]_{q}!\right\}$.

We shall follow the procedure below to construct $\rho_{\nu_{\alpha, q}}$ in (3.5).
(1) Recall the radial part of the q-Gaussian measure on \mathbb{C} (q-Bargmann measure), $\rho_{\nu_{q}}=\rho_{\nu_{0, q},}$, obtained in LM95,

$$
\begin{equation*}
\int_{0}^{\infty} r^{2 k} \rho_{\nu_{q}}(d r)=[k]_{q}!. \tag{3.7}
\end{equation*}
$$

(2) Find a radial (possibly signed) measure $\rho_{\alpha, q}$ having the moment $(-\alpha ; q)_{k}$.
(3) Compute the multiplicative (Mellin) convolution $\rho_{\nu_{q}} \circledast \rho_{\alpha, q}$ to get $\rho_{\nu_{\alpha, q}}$.

Remark 3.3. It is known LM95 that a radial measure $\rho_{\nu_{q}}$ in (3.7) does not exist for $q<0$. However, one can see that the positivity assumption on q can be relaxed for $\rho_{\nu_{\alpha, q}}$ if $\alpha=q$. It will be discussed right after the proof of Proposition 3.6 and in Proposition 3.7 .

3.3 Construction of (α, q)-radial measures

Lemma 3.4. Suppose that $\alpha \in(-1,1)$ and $q \in[0,1)$. Let

$$
\rho_{\alpha, q}:=(-\alpha ; q)_{\infty} \sum_{n=0}^{\infty} \frac{(-\alpha)^{n}}{(q ; q)_{n}} \delta_{q^{n / 2}}
$$

which is a signed measure. Then we have

$$
\int_{0}^{\infty} r^{2 k} \rho_{\alpha, q}(d r)=(-\alpha ; q)_{k}, \quad k \in \mathbb{N} \cup\{0\}
$$

In particular, if taking $\alpha=-q$, then one can see $\rho_{\nu_{q}}=D_{(1-q)^{-1 / 2}}\left(\rho_{-q, q}\right)$, namely,

$$
\int_{0}^{\infty} r^{2 k} D_{(1-q)^{-1 / 2}}\left(\rho_{-q, q}\right)(d r)=\frac{(q ; q)_{k}}{(1-q)^{k}}=[k]_{q}!
$$

where $D_{t}(\lambda)$ is the push-forward of λ by the map $x \mapsto t x$ for a measure λ on \mathbb{R}.
Proof. Firstly, we have

$$
\int_{0}^{\infty} r^{2 k} \rho_{\alpha, q}(d r)=(-\alpha ; q)_{\infty} \sum_{n=0}^{\infty} \frac{\left(-\alpha q^{k}\right)^{n}}{(q ; q)_{n}}
$$

Since Euler's formula (see GR04, 1.3.15]),

$$
\begin{equation*}
\frac{1}{(a ; q)_{\infty}}=\sum_{n=0}^{\infty} \frac{a^{n}}{(q ; q)_{n}} \tag{3.8}
\end{equation*}
$$

is known, we replace a by $-\alpha q^{k}$ in (3.8) to obtain

$$
\begin{aligned}
\int_{0}^{\infty} r^{2 k} \rho_{\alpha, q}(d r) & =\frac{(-\alpha ; q)_{\infty}}{\left(-\alpha q^{k} ; q\right)_{\infty}} \\
& =(-\alpha ; q)_{k}
\end{aligned}
$$

The proof is complete.

Remark 3.5. (1) The last equality in proof is due to the formula

$$
(a ; q)_{k}=\frac{(a ; q)_{\infty}}{\left(a q^{k} ; q\right)_{\infty}}
$$

See [GR04, 1.2.30], for example.
(2) Euler's formula is considered as the q-analogue of exponential function e^{a} due to

$$
\lim _{q \rightarrow 1} \frac{1}{((1-q) a ; q)_{n}}=e^{a}
$$

Let

$$
\left[\begin{array}{c}
n \\
\ell
\end{array}\right]_{q}:=\frac{[n]_{q}!}{[\ell]_{q}![n-\ell]_{q}!}=\frac{(q ; q)_{n}}{(q ; q)_{\ell}(q ; q)_{n-\ell}}
$$

be the q-binomial coefficients and $h_{n}(z \mid q)$ be the Rogers-Szegö polynomials GR04 S05 defined by

$$
h_{n}(z \mid q)=\sum_{\ell=0}^{n}\left[\begin{array}{l}
n \\
\ell
\end{array}\right]_{q} z^{\ell}
$$

Proposition 3.6. Suppose that $\alpha \in(-1,1)$ and $q \in[0,1)$. Let

$$
\rho_{\nu_{\alpha, q}}:= \begin{cases}(-\alpha, q ; q)_{\infty} \sum_{n=0}^{\infty} \frac{q^{n}}{(q ; q)_{n}} h_{n}\left(-\alpha q^{-1} \mid q\right) \delta_{(1-q)^{-1 / 2} q^{n / 2}}, & q>0, \tag{3.9}\\ -\alpha \delta_{0}+(1+\alpha) \delta_{1}, & q=0,\end{cases}
$$

which is a signed measure in general. Then we have

$$
\begin{equation*}
\int_{0}^{\infty} r^{2 k} \rho_{\nu_{\alpha, q}}(d r)=\frac{(-\alpha, q ; q)_{k}}{(1-q)^{k}}=(-\alpha ; q)_{k}[k]_{q}!, \quad k \in \mathbb{N} \cup\{0\} \tag{3.10}
\end{equation*}
$$

Proof. First of all, it is easy to show (3.10) for the case $q=0$. Therefore, let us assume $q>0$.
One can compute the multiplicative (Mellin) convolution \circledast to get $\rho_{\nu_{\alpha, q}}$ as follows:

$$
\begin{aligned}
\rho_{\nu_{\alpha, q}} & =\rho_{\alpha, q} \circledast D_{(1-q)^{-1 / 2}}\left(\rho_{-q, q}\right) \\
& =(-\alpha, q ; q)_{\infty} \sum_{n=0}^{\infty}\left(\sum_{\ell=0}^{n} \frac{(-\alpha)^{\ell} q^{n-\ell}}{(q ; q)_{\ell}(q ; q)_{n-\ell}}\right) \delta_{(1-q)^{-1 / 2} q^{n / 2}} \\
& =(-\alpha, q ; q)_{\infty} \sum_{n=0}^{\infty} \frac{q^{n}}{(q ; q)_{n}} h_{n}\left(-\alpha q^{-1} \mid q\right) \delta_{(1-q)^{-1 / 2} q^{n / 2}} .
\end{aligned}
$$

On the other hand, by Lemma 3.4 we have

$$
\int_{0}^{\infty} r^{2 k} D_{(1-q)^{-1 / 2}}\left(\rho_{-q, q}\right)(d r)=\frac{(q ; q)_{k}}{(1-q)^{k}}=[k]_{q}!
$$

Therefore, one can get

$$
\begin{aligned}
\int_{0}^{\infty} r^{2 k} \rho_{\nu_{\alpha, q}}(d r) & =\int_{0}^{\infty} r^{2 k} \rho_{\alpha, q}(d r) \int_{0}^{\infty} r^{2 k} D_{(1-q)^{-1 / 2}}\left(\rho_{-q, q}\right)(d r) \\
& =(-\alpha ; q)_{k}[k]_{q}!, \quad k \in \mathbb{N} \cup\{0\}
\end{aligned}
$$

In Proposition 3.6 we have obtained $\rho_{\nu_{\alpha, q}}$ for $\alpha \in(-1,1)$ and $q \in(0,1)$. Due to the term

$$
\delta_{(1-q)^{-1 / 2} q^{n / 2}} \text { in } \rho_{\nu_{\alpha, q}},
$$

it seems impossible for $q \in(-1,0)$ to define $\rho_{\nu_{\alpha, q}}$. However, if $-1<\alpha=q<0$ then $\nu_{q, q}$ coincides with a scaled q^{2}-Gaussian measure, and hence the Bargmann measure exists.

Proposition 3.7. Suppose $-1<\alpha=q<0$. We define

$$
\begin{align*}
\rho_{\nu_{q, q}} & :=D_{(1+q)^{1 / 2}}\left(\rho_{\nu_{q^{2}}}\right) \\
& =\left(q^{2} ; q^{2}\right)_{\infty} \sum_{n=0}^{\infty} \frac{q^{2 n}}{\left(q^{2} ; q^{2}\right)_{n}} \delta_{(1-q)^{-1 / 2}(-q)^{n}} \tag{3.11}
\end{align*}
$$

Then one can see

$$
\int_{0}^{\infty} r^{2 k} \rho_{\nu_{q, q}}(d r)=(1+q)^{k}[k]_{q^{2}}!=(-q ; q)_{k}[k]_{q}!
$$

Proof. One can see by direct computations

$$
\begin{aligned}
(-q ; q)_{k}[k]_{q}! & =\left\{\prod_{\ell=1}^{k}\left(1-(-q) q^{\ell-1}\right)\right\}\left\{\prod_{\ell=1}^{k} \frac{1-q^{\ell}}{1-q}\right\} \\
& =(1+q)^{k} \prod_{\ell=1}^{k} \frac{1-q^{2 \ell}}{1-q^{2}} \\
& =(1+q)^{k}[k]_{q^{2}}!
\end{aligned}
$$

Thus $\rho_{\nu_{q, q}}$ can be defined as the radial measure for q^{2}-Gaussian measure on \mathbb{C} scaled by $(1+q)^{1 / 2}$, namely, $\rho_{\nu_{q, q}}=D_{(1+q)^{1 / 2}}\left(\rho_{\nu_{q^{2}}}\right)$.
Remark 3.8. If we use the fact that $h_{n}(-1 \mid q)=0$ for odd $n \geq 1$ (see proof of Lemma 3.9 below), we can extend the definition (3.9) to the case $-1<\alpha=q<0$. This will give an alternative way to define $\rho_{\nu_{q, q}}$ for $-1<q<0$, but both definitions give the same measure.

We need some properties of the Rogers-Szegö polynomials to know when the measure $\rho_{\nu_{\alpha, q}}$ becomes positive.

Lemma 3.9 (MGH90). Suppose that $q \in(-1,1)$.
(1) If $n \geq 0$ is odd, then $h_{n}(x \mid q) \geq 0$ if and only if $x \geq-1$. Moreover, the point $x=-1$ is the unique zero of $h_{n}(x \mid q)$ on \mathbb{R}.
(2) If $n \geq 0$ is even, then $h_{n}(x \mid q)>0$ for all $x \in \mathbb{R}$.

Proof. It is known that all the zeros of $h_{n}(z \mid q)$ lie on the unit circle $|z|=1$. See MGH90] or S05, Theorem 1.6.11]. Note that the result was obtained for $q \in[0,1)$, but the proof can be extended to $q \in(-1,1)$ without any modifications.

By definition, one can see

$$
\left[\begin{array}{l}
n \\
\ell
\end{array}\right]_{q}=\frac{\left(1-q^{n-\ell+1}\right)\left(1-q^{n-\ell+2}\right) \cdots\left(1-q^{n}\right)}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{\ell}\right)}>0
$$

and hence $h_{n}(1 \mid q)>0$ for all $n \geq 0$. Thus, $h_{n}(x \mid q) \neq 0$ for $x \in \mathbb{R} \backslash\{-1\}$. It then suffices to show that $h_{n}(-1 \mid q)>0$ for all even $n \geq 0$ and $h_{n}(-1 \mid q)=0$ for all odd $n \geq 1$. The recurrence relation for the Rogers-Szegö polynomials is known to be

$$
\begin{equation*}
h_{n+1}(z \mid q)=(z+1) h_{n}(z \mid q)-\left(1-q^{n}\right) z h_{n-1}(z \mid q), \quad n \geq 1 \tag{3.12}
\end{equation*}
$$

See [S05, 1.6.76] (note that formula (1.6.76) has an error of a sign). It is easy to see that $h_{0}(-1 \mid q)=$ $1>0, h_{1}(-1 \mid q)=0$, so by induction and (3.12) one can show $h_{n}(-1 \mid q)>0$ for all even $n \geq 0$ and $h_{n}(-1 \mid q)=0$ for all odd $n \geq 1$.

We need the following lemma in proof of Theorem 3.11 for the non-existence part of a radial Bargmann measure.

Lemma 3.10. Let μ be a signed measure on \mathbb{R} with compact support and let ν be a nonnegative measure on \mathbb{R}. If μ and ν have the same finite moments of all orders, then $\mu=\nu$.

Proof. We denote by m_{n} the moments of μ (and ν by assumption). Since μ is compactly supported, say on $[-R, R]$,

$$
\left|m_{n}\right|=\left|\int_{[-R, R]} x^{n} \mu(d x)\right| \leq\|\mu\| R^{n}, \quad n \in \mathbb{N} \cup\{0\}
$$

where $\|\mu\|$ denotes the total variation of μ. Therefore, ν is also supported on $[-R, R]$. By Weierstrass' approximation, we have

$$
\begin{equation*}
\int_{[-R, R]} f(x) \mu(d x)=\int_{[-R, R]} f(x) \nu(d x) \tag{3.13}
\end{equation*}
$$

for all $f \in C([-R, R])$. This implies that $\mu=\nu$ since, if we use the Hahn decomposition $\mu=\mu_{+}-\mu_{-}$, then (3.13) implies

$$
\int_{[-R, R]} f(x) \mu_{+}(d x)=\int_{[-R, R]} f(x)\left(\nu+\mu_{-}\right)(d x)
$$

and hence $\mu_{+}=\nu+\mu_{-}$as nonnegative finite measures.
In summary, the complete answer to the unique existence of a radial Bargmann representation of $\nu_{\alpha, q}$ is stated as follows:

Theorem 3.11. Suppose that $\alpha, q \in(-1,1)$. The probability measure $\nu_{\alpha, q}$ has a radial Bargmann representation if and only if either (i) $q \geq 0$ and $\alpha \leq q$ or (ii) $\alpha=q \neq 0$.

In fact, the radial measure is given uniquely by

$$
\rho_{\nu_{\alpha, q}}= \begin{cases}-\alpha \delta_{0}+(1+\alpha) \delta_{1} & (\alpha \leq q=0), \\ (-\alpha, q ; q)_{\infty} \sum_{n=0}^{\infty} \frac{q^{n}}{(q ; q)_{n}} h_{n}\left(-\alpha q^{-1} \mid q\right) \delta_{(1-q)^{-1 / 2} q^{n / 2}} & (q>0, \alpha<q), \\ \left(q^{2} ; q^{2}\right)_{\infty} \sum_{n=0}^{\infty} \frac{q^{2 n}}{\left(q^{2} ; q^{2}\right)_{n}} \delta_{(1-q)^{-1 / 2}|q|^{n}} & (\alpha=q \neq 0) .\end{cases}
$$

Proof. 1. Existence and uniqueness. If $q \in[0,1)$ and $\alpha \leq q$, then by Proposition 3.6 and Lemma 3.9 the signed measure $\rho_{\nu_{\alpha, q}}$ is in fact a nonnegative measure and becomes the radial part of a Bargmann measure. The case $\alpha=q<0$ was discussed in Proposition 3.7. Due to Carleman criterion for the moment problem, the inequality given in (3.6) guarantees the uniqueness of $\rho_{\nu_{\alpha, q}}$ for these cases.
2. Non-existence. (1) If $q \in(0,1)$ and $\alpha>q$, then $\rho_{\nu_{\alpha, q}}$ is not a nonnegative measure and is really a signed measure since $h_{n}(-\alpha / q \mid q)<0$ for odd integers $n \geq 0$ and $q>0$ from Lemma 3.9, By Lemma 3.10 if a radial Bargmann measure exists, then it must be equal to the signed measure $\nu_{\alpha, q}$. This is a contradiction. Thus, a radial Bargmann measure does not exist.
(2) If $q=0$ and $\alpha>q=0$ then by (3.9) $\nu_{\alpha, 0}$ is really a signed measure, and hence by the same argument as above, a radial Bargmann measure does not exist.
(3) Let

$$
\beta_{k}(\alpha, q):=(-\alpha ; q)_{k}[k]_{q}!, \quad k \geq 0, \alpha, q \in(-1,1) .
$$

Given $q<0$ and $\alpha \neq q$, suppose that there exists a radial part of a Bargmann measure, ρ. Let ρ^{2} be the push-forward of ρ by the map $x \mapsto x^{2}$. Then,

$$
\begin{equation*}
\beta_{k}(\alpha, q)=\int_{0}^{\infty} x^{k} \rho^{2}(d x)=\int_{0}^{\infty} x^{2 k} \rho(d x) \tag{3.14}
\end{equation*}
$$

By the way, by Proposition 3.6 it holds that $\beta_{k}\left(\alpha, q^{\prime}\right)=\int_{0}^{\infty} x^{2 k} \rho_{\nu_{\alpha, q^{\prime}}}(d x)$ for any $q^{\prime}>0$, that is,

$$
\begin{equation*}
\beta_{k}\left(\alpha, q^{\prime}\right)=\left(-\alpha, q^{\prime} ; q^{\prime}\right)_{\infty} \sum_{n=0}^{\infty} \frac{\left(q^{\prime}\right)^{n}}{\left(q^{\prime} ; q^{\prime}\right)_{n}} h_{n}\left(-\alpha\left(q^{\prime}\right)^{-1} \mid q^{\prime}\right) \frac{\left(q^{\prime}\right)^{k n}}{\left(1-q^{\prime}\right)^{k}}, \quad q^{\prime}>0 \tag{3.15}
\end{equation*}
$$

which is true even for $q^{\prime}=q$ by analytic continuation.
Now let us consider the signed measure

$$
\mu:=(-\alpha, q ; q)_{\infty} \sum_{n=0}^{\infty} \frac{q^{n}}{(q ; q)_{n}} h_{n}\left(-\alpha q^{-1} \mid q\right) \delta_{(1-q)^{-1} q^{n}}, \quad \alpha \neq q<0
$$

supported on the points $\frac{q^{n}}{1-q}$ for $n=0,1,2,3, \ldots$ Then by (3.15) for $q^{\prime}=q$ and by (3.14),

$$
\int_{\mathbb{R}} x^{k} \mu(d x)=\beta_{k}(\alpha, q)=\int_{0}^{\infty} x^{k} \rho^{2}(d x), \quad k \in \mathbb{N} \cup\{0\}
$$

By Lemma 3.10, the signed measure μ and the probability measure ρ^{2} should be equal. However, the support of μ is not contained in $[0, \infty)$, and hence μ cannot be equal to ρ^{2}. This is a contradiction.

Example 3.12. (1) The radial measure $\rho_{\nu_{0, q}}$ for $q \in[0,1)$ is of the q-Bargmann LM95.
(2) The radial measure $\rho_{\nu_{q, q}}$ for $q \in(-1,1)$ is of the q^{2}-Bargmann.
(3) $\lim _{q \uparrow 1} \rho_{\nu_{\alpha, q}}$ is of the classical Bargmann Barg61 AKK03.
(4) Consider $\alpha=-q^{2 \beta}, \beta>0$. This choice of α is suggested by (3.1) in Remark 3.1. In fact, one can see

$$
\lim _{q \Uparrow 1} \frac{\left(1-q^{2 \beta+n-1}\right)[n]_{q}}{4(1-q)}=\frac{1}{4}(n+2 \beta-1) n .
$$

This limit sequence is the Jacobi sequence of the symmetric Meixner distribution in (3.4), so that $\rho_{\nu_{-q^{2 \beta}, q}}$ under suitable scaling converges weakly as $q \uparrow 1$ to the radial measure with the density,

$$
\frac{2 \pi r}{\Gamma(2 \beta)} \int_{0}^{\infty} h(r, t / 4) e^{-t} t^{2 \beta-1} d t
$$

where

$$
h(r, t)=\frac{1}{\pi t} \exp \left(-\frac{r^{2}}{t}\right), r \in \mathbb{R}, t>0 .
$$

This is an integral representation of the radial density for the Bessel kernel measure, which can be also represented by the modified Bessel function As05 As09.
(5) $\rho_{\nu_{\alpha, 0}}$ for $\alpha \in(-1,0]$ is the radial measure for the symmetric free Meixner distribution. See Remark 3.13 below.

Remark 3.13. Let μ_{t} be a t-deformed probability measure of a probability measure μ on \mathbb{R} defined through the Cauchy transform G_{μ} of μ,

$$
\frac{1}{G_{\mu_{t}}(z)}:=\frac{t}{G_{\mu}(z)}+(1-t) z, \quad t \geq 0
$$

examined by Bożejko-Wysoczański BW98, BW01. Krystek-Wojakowski KW14 discussed the radial Bargmann representation of a t-deformed probability measure μ_{t}, t-Bargmann representation for short, and obtained necessary and sufficient condition for the admissibility of the representation. The t Bargmann representation of the Kesten measure κ_{t} has the form,

$$
\rho_{\kappa_{t}}=\left(1-\frac{1}{t}\right) \delta_{0}+\frac{1}{t} \delta_{\sqrt{t}}, \quad t \geq 1 .
$$

In AKW16, the t-Bargmann representation of a symmetric free Meixner law $\varphi_{s, t}$ with two positive parameters s, t is treated and is admitted if and only if $t \geq 1$. In fact, one can see $\rho_{\varphi_{s, t}}=D_{s}\left(\rho_{\kappa_{t}}\right)$ and hence

$$
\rho_{\nu_{(1-t) / t, 0}}=\rho_{\varphi_{1 / \sqrt{t}, t}}=D_{1 / \sqrt{t}}\left(\rho_{\kappa_{t}}\right), \quad t \geq 1 .
$$

Therefore, the case (5) in Example 3.12 can be viewed as a t-Bargmann representation, too.
Furthermore, let us state the t-deformed version of Theorem 3.11 for $q \neq 0$ without proof:
Proposition 3.14. The t-deformed version of $\rho_{\nu_{\alpha, q}}$ for $q \neq 0$ is given by

$$
\left(1-\frac{1}{t}\right) \delta_{0}+\frac{1}{t} \rho_{\nu_{\alpha, q}}, \quad t \geq 1
$$

Remark 3.15. The t-Bargmann representation of ν_{q} is treated in KW14 for $q=1$ and AKW16 for $0 \leq q<1$.

Before closing this section, let us give a short remark about relations with the free infinite divisibility. Many of particular examples have so far suggested that the free infinite divisibility of a probability measure implies the existence of a radial Bargmann representation. The converse is not true in general because the Askey-Wimp-Kerov distribution $\mu_{9 / 10}$ for instance, discussed in BBLS11, is not freely infinitely divisible, but it has a Bargmann representation with a gamma distribution as its radial measure. However, not many counterexamples have been found.

Therefore, we conjecture that the free infinite divisibility of our (α, q)-Gaussian distribution is equivalent to the existence of its radial Bargmann measure:
Conjecture. Suppose that $\alpha, q \in(-1,1)$. The probability measure $\nu_{\alpha, q}$ is freely infinitely divisible if and only if if and only if $\alpha=q$ or $\alpha<q \geq 0$.

This conjecture is guaranteed to be true in the restricted subfamilies $\left\{\nu_{\alpha, 0} \mid \alpha \in(-1,1)\right\}$ (SY01, Theorem 3.2]), $\left\{\nu_{0, q} \mid-1<q<1\right\}$ (ABBL10 and AH13, Example 3.11] for the free infinite divisibility), and $\left\{\nu_{q, q} \mid q \in(-1,1)\right\}$ (all measures in this family are freely infinitely divisible since they are q^{2} Gaussians).

4 Commutation relations among one-mode (α, q)-operators

Definition 4.1. Suppose that $\alpha, q \in(-1,1)$ and f is analytic on \mathbb{C}.
(1) Let Z be the multiplication operator defined by

$$
(Z f)(z):=z f(z)
$$

(2) Let D_{q} be the Jackson derivative given by

$$
\left(D_{q} f\right)(z)= \begin{cases}\frac{f(z)-f(q z)}{(1-q) z}, & z \neq 0 \\ f^{\prime}(0), & z=0\end{cases}
$$

(3) The α-deformed Jackson derivative is given as

$$
D_{\alpha, q}:= \begin{cases}D_{q}+\alpha q^{2 N} D_{1 / q}, & q \neq 0 \\ D_{0}+\left.\alpha \frac{d}{d z}\right|_{0}, & q=0\end{cases}
$$

where N is the number operator. For $q \neq 0$, we can also write

$$
D_{\alpha, q}=D_{q}+\frac{\alpha}{q^{2}} D_{1 / q} q^{2 N}
$$

Remark 4.2. It is easy to check that the α-deformed Jackson derivative is equivalently defined as

$$
\left(D_{\alpha, q} f\right)(z)=\left(D_{q} f\right)(z)+\alpha\left(D_{1 / q} f\right)\left(q^{2} z\right), \quad q \neq 0
$$

For example, if $f(z)=z^{n},\left(D_{\alpha, q} f\right)(z)=\left(1+\alpha q^{n-1}\right)[n]_{q} z^{n-1}$ holds. In fact, the α-deformed Jackson derivative is an analogue of the operator in [BEH15, Theorem2.5].

Then, one can realize one-mode analogue of (α, q)-operators on an appropriate domain of the one-mode interacting Bargmann-Fock space \mathcal{B} with $\omega_{n}=\left(1+\alpha q^{n-1}\right)[n]_{q}$ and $\alpha_{n}=0$ by

$$
a^{+}:=Z, a^{-}:=D_{\alpha, q}, \text { and } \Phi_{n}:=\frac{z^{n}}{\sqrt{\left[\omega_{n}\right]!}} .
$$

In fact, it is easy to check that

$$
\left\{\begin{array}{l}
a^{+} \Phi_{n}=\sqrt{\omega_{n+1}} \Phi_{n+1} \\
a^{-} \Phi_{n}=\sqrt{\omega_{n}} \Phi_{n-1}
\end{array}\right.
$$

hold and the q-commutation relation, one-mode analogue of (A.4),

$$
\begin{aligned}
{\left[a^{-}, a^{+}\right]_{q} \Phi_{n} } & :=\left(a^{-} a^{+}-q a^{+} a^{-}\right) \Phi_{n} \\
& =\left(I+\alpha q^{2 N}\right) \Phi_{n},
\end{aligned}
$$

is satisfied. Let us put $M_{\alpha, q}=I+\alpha q^{2 N}$ and then one can get the expression,

$$
M_{\alpha, q}=(1+\alpha) I-\alpha\left(1-q^{2}\right) Z D_{q^{2}},
$$

due to $\left(Z D_{q^{2}}\right) \Phi_{n}=[n]_{q^{2}} \Phi_{n}$.
Therefore one can obtain the following
Theorem 4.3. Suppose $\alpha \in(-1,1)$ and $q \in(-1,1)$. Then the following are satisfied.
(1) $\left[a^{-}, a^{+}\right]_{q}=M_{\alpha, q}, \quad\left[a^{-}, M_{\alpha, q}\right]_{q^{2}}=\left(1-q^{2}\right) a^{-}, \quad\left[M_{\alpha, q}, a^{+}\right]_{q^{2}}=\left(1-q^{2}\right) a^{+}$.
(2) $M_{\alpha, q}=(1+\alpha) I-\alpha\left(1-q^{2}\right) Z D_{q^{2}}$.
(3) In particular, if $\alpha=q$, then one can obtain a more refined relation, $\left[a^{-}, a^{+}\right]_{q^{2}}=(1+q) I$.

Example 4.4. (1) $\alpha=0$ implies $\left[a^{-}, a^{+}\right]_{q}=I$. Hence $M_{0, q}=I$ commutes with both a^{+}and a^{-},

$$
\left[a^{-}, M_{0, q}\right]_{1}=\left[M_{0, q}, a^{+}\right]_{1}=0
$$

Therefore, the case $\alpha \neq 0$ provides non-trivial commutation relations.
(2) If $\alpha=-q^{2 \beta}$ for $\beta>0$, then the limiting case of the scaled operator is obtained as

$$
\lim _{q \uparrow 1} \frac{M_{-q^{2 \beta}, q}}{1-q^{2}}=\lim _{q \uparrow 1} \frac{I-q^{2 \beta} q^{2 N}}{1-q^{2}}=N+\beta .
$$

Moreover, let us consider the scaled operators,

$$
A^{ \pm}:=\lim _{q \uparrow 1} \frac{a^{ \pm}}{\sqrt{1-q^{2}}}
$$

Then one can get

$$
\left[A^{-}, A^{+}\right]_{1}=N+\beta
$$

and hence

$$
\left[A^{-}, N\right]_{1}=A^{-},\left[N, A^{+}\right]_{1}=A^{+}
$$

It should be noted that these are the commutation relations for the classical Meixner-Pollaczek polynomials with respect to the symmetric Meixner distribution in (3.4). See As08.

Acknowledgments. N. Asai was partially supported by Grant-in-Aid for Scientific Research (C) 23540131, JSPS. M. Bożejko was partially supported by the MAESTRO grant DEC-2011/02/A/ ST1/00119 and OPUS grant DEC-2012/05/B/ST1/00626 of National Center of Science. T. Hasebe was supported by Grant-in-Aid for Young Scientists (B) 15K17549, JSPS.

A Appendix

Let Σ_{n} be the set of bijections σ of the $2 n$ points $\{ \pm 1, \pm 2, \cdots, \pm n\}$ with $\sigma(-k)=-\sigma(k)$. Equipped with the composition operation as a product, Σ_{n} becomes what is called a Coxeter group of type B. It is generated by $\pi_{0}:=(1,-1)$ and $\pi_{i}:=(i, i+1), 1 \leq i \leq n-1$, which satisfy the generalized braid relations

$$
\begin{cases}\pi_{i}^{2}=e, & 0 \leq i \leq n-1, \tag{A.1}\\ \left(\pi_{0} \pi_{1}\right)^{4}=\left(\pi_{i} \pi_{i+1}\right)^{3}=e, & 1 \leq i \leq n-1, \\ \left(\pi_{i} \pi_{j}\right)^{2}=e, & |i-j| \geq 2,0 \leq i, j \leq n-1\end{cases}
$$

An element $\sigma \in \Sigma_{n}$ expresses an irreducible form,

$$
\sigma=\pi_{i_{1}} \cdots \pi_{i_{k}}, \quad 0 \leq i_{1}, \ldots, i_{k} \leq n-1
$$

and in this case

$$
\begin{aligned}
& \ell_{1}(\sigma):=\text { the number of } \pi_{0} \text { in } \sigma \\
& \ell_{2}(\sigma):=\text { the number of } \pi_{i}, 1 \leq i \leq n-1, \text { in } \sigma
\end{aligned}
$$

are well defined. Let H be a separable Hilbert space. For a given self-adjoint involution $f \mapsto \bar{f}$ for $f \in H$, an action of Σ_{n} on $H^{\otimes n}$ is defined by

$$
\begin{cases}\pi_{0}\left(f_{1} \otimes \cdots \otimes f_{n}\right)=\overline{f_{1}} \otimes f_{2} \otimes \cdots \otimes f_{n}, & n \geq 1 \tag{A.2}\\ \pi_{i}\left(f_{1} \otimes \cdots \otimes f_{n}\right)=f_{1} \otimes \cdots \otimes f_{i-1} \otimes f_{i+1} \otimes f_{i} \otimes f_{i+2} \otimes \cdots \otimes f_{n}, & n \geq 2,1 \leq i \leq n-1\end{cases}
$$

The (α, q)-inner product on the full Fock space $\mathcal{F}(H)$ is defined by

$$
\begin{equation*}
\left\langle f_{1} \otimes \cdots \otimes f_{m}, g_{1} \otimes \cdots \otimes g_{n}\right\rangle_{\alpha, q}:=\delta_{m, n} \sum_{\sigma \in \Sigma_{n}} \alpha^{\ell_{1}(\sigma)} q^{\ell_{2}(\sigma)} \prod_{j=1}^{n}\left\langle f_{j}, g_{\sigma(j)}\right\rangle_{H}, \alpha, q \in(-1,1) \tag{A.3}
\end{equation*}
$$

with conventions $0^{0}=1$ and $g_{-k}=\overline{g_{k}}, k=1,2, \ldots, n$. For example, if one may define the involution as $\bar{f}:=-f$, then $g_{-k}=-g_{k}$. Equipped with this inner product the full Fock space $\mathcal{F}(H)$ is denoted by $\mathcal{F}_{\alpha, q}(H)$ to emphasize on the dependence of the inner product on α, q.

The (α, q)-creation operator $B_{\alpha, q}^{+}(f)$ is the usual left creation operator on the full Fock space, and the (α, q)-annihilation operator $B_{\alpha, q}^{-}(f)$ is its adjoint with respect to the inner product $\langle\cdot, \cdot\rangle_{\alpha, q}$. They satisfy the commutation relation

$$
\begin{equation*}
B_{\alpha, q}^{-}(f) B_{\alpha, q}^{+}(g)-q B_{\alpha, q}^{+}(g) B_{\alpha, q}^{-}(f)=\langle f, g\rangle_{H} I+\alpha\langle\bar{f}, g\rangle_{H} q^{2 N}, \quad f, g \in H \tag{A.4}
\end{equation*}
$$

The readers can consult BEH15 for details.

References

[AB98] L. Accardi and M. Bożejko, Interacting Fock space and Gaussianization of probability measures, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 1, no. 4, (1998), 663-670.
[An03] M. Anshelevich, Free martingale polynomials, J. Funct. Anal., 201, (2003), 228-261.
[ABBL10] M. Anshelevich, S.T. Belinschi, M. Bożejko, and F. Lehner, Free infinite divisibility for q Gaussians, Math. Res. Lett. 17, (2010), 905-916.
[AH13] O. Arizmendi and T. Hasebe, Semigroups related to additive and multiplicative, free and Boolean convolutions, Studia Math., 215, (2013), 157-185.
[As05] N. Asai, Hilbert space of analytic functions associated with the modified Bessel function and related to orthogonal polynomials. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8, (2005), 505-514.
[As08] N. Asai, Hilbert space of analytic functions associated with a rotation invariant measure. in: Quantum Probability and Related Topics. J.C. García, R. Quezada and S. B. Sontz (eds.) (World Scientific, 2008) pp. 49-62.
[As09] N. Asai, The construction of subordinated probability measures on \mathbb{C} associated with the Jacobi-Szegö parameters. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12, (2009), 401411.
[AKW16] N. Asai, D. Krystek, and Ł.J. Wojakowski, Interpolations of Bargmann type measures, Demonstr. Math., 49, (2016) (to appear)
[AKK03] N. Asai, I. Kubo, and H.-H. Kuo, Segal-Bargmann transforms of one-mode interacting Fock spaces associated with Gaussian and Poisson measures, Proc. Amer. Math. Soc., 131, no. 3, (2003), 815-823.
[Barg61] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, I. Comm. Pure Appl. Math., 14, (1961), 187-214.
[BBLS11] S.T. Belinschi, M. Bożejko, F. Lehner, and R. Speicher, The normal distribution is \boxplus-infinitely divisible, Adv. Math., 226, No. 4, (2011), 3677-3698.
[Bi97] P. Biane, Segal-Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and circular systems. J. Funct. Anal., 44 (1997), 232-286.
[BB06] M. Bożejko and W. Bryc, On a class of free Levy laws related to a regression problem, J. Funct. Anal., 236, no. 1, (2006), 59-77.
[BEH15] M. Bożejko, W. Ejsmont, and T. Hasebe, Fock space associated with Coxeter groups of type B, J. Funct. Anal., 269, (2015), 1769-1795.
[BKS97] M. Bożejko, B. Kümmerer, and R. Speicher, q-Gaussian processes: Non-Commutative and classical aspects, Comm. Math. Phys., 185, (1997), 129-154.
[BS91] M. Bożejko and R. Speicher, An example of a generalized Brownian motion, Comm. Math. Phys., 137, (1991), 519-531.
[BW98] M. Bożejko and J. Wysoczański, New examples of convolutions and non-commutative central limit theorem, Banach Center Publ., 43, (1998), 95-103.
[BW01] M. Bożejko and J. Wysoczański, Remarks on t-transformations of measures and convolutions, Ann. Inst. Henri Poincaré Prob. Stats., 37, no. 6, (2001), 737-761.
[Chi78] T.S. Chihara, An Introduction to Orthogonal Polynomials. Gordon and Breach, 1978.
[GR04] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd ed., Encyclopedia of mathematics and its applications (edited by G.-C. Rota), Vol. 96, Cambridge University Press, Cambridge, 2004.
[HO07] A. Hora and N. Obata, Quantum probability and spectral analysis of graphs. Springer-Verlag, Berlin, 2007.
[KLS10] R. Koekoek, P.A. Lesky and R.F. Swarttouw, Hypergeometric orthogonal polynomials and their q-analogues, Springer-Verlag, Berlin, 2010.
[Kr98] I. Królak, Measures connected with Bargmann's representation of the q-commutation relation for $q>1$, Banach Center Publ., 43, (1998), 253-257.
[KW14] A.D. Krystek and Ł.J. Wojakowski, Bargmann measures for t-deformed probability, Probab. Math. Statist., 34, no. 2, (2014), 279-291.
[MGH90] D.S. Mazel, J.S. Geronimo and M.H. Hayes, On the geometric sequences of reflection coefficients, IEEE Transactions on Acoustics. Speech. Signal Processing, 38, no. 10 (1990), 1810-1812.
[SY01] N. Saitoh and H. Yoshida, The infinite divisibility and orthogonal polynomials with a constant recursion formula in free probability theory, Probab. Math. Statist., 21, No. 1, (2001), 159-170.
[S05] B. Simon, Orthogonal Polynomials on the Unit Circle Part 1: Classical Theory, Amer. Math. Soc., Providence, RI, 2005.
[Sz07] F.H. Szafraniec, Operators of the q-oscillator, Banach Center Publ., 78, (2007), 293-307.
[LM95] H. van Leeuwen and H. Maassen, A q deformation of the Gauss distribution, J. Math. Phys., 36, (1995), 4743-4756.

[^0]: ${ }^{*}$ Department of Mathematics, Aichi University of Education, Hirosawa 1, Igaya, Kariya 448-8542, Japan. Email: nasai[at]auecc.aichi-edu.ac.jp
 ${ }^{\dagger}$ Institute of Mathematics, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland. Email: marek.bozejko[at]math.uni.wroc.pl
 ${ }^{\ddagger}$ Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan. Email: thasebe[at]math.sci.hokudai.ac.jp

