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Abstract 

Although classification maps are required for management and for the estimation of agricultural 

disaster compensation, those techniques have yet to be established. This paper describes the 

comparison of three different classification algorithms for mapping crops in Hokkaido, Japan, 

using TerraSAR-X (including TanDEM-X) dual-polarimetric data. In the study area, beans, beets, 

grasslands, maize, potatoes and winter wheat were cultivated. In this study, classification using 

TerraSAR-X-derived information was performed. Coherence values, polarimetric parameters and 
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gamma nought values were also obtained and evaluated regarding their usefulness in crop 

classification. Accurate classification may be possible with currently existing supervised learning 

models. A comparison between the classification and regression tree (CART), support vector 

machine (SVM) and random forests (RF) algorithms was performed. Even though J-M distances 

were lower than 1.0 on all TerraSAR-X acquisition days, good results were achieved (e.g., 

separability between winter wheat and grass) due to the characteristics of the machine learning 

algorithm. It was found that SVM performed best, achieving an overall accuracy of 95.0% based 

on the polarimetric parameters and gamma nought values for HH and VV polarizations. The 

misclassified fields were less than 100 a in area and 79.5-96.3% were less than 200 a with the 

exception of grassland. When some feature such as a road or windbreak forest is present in the 

TerraSAR-X data, the ratio of its extent to that of the field is relatively higher for the smaller 

fields, which leads to misclassifications. 

Keywords: classification, random forest, support vector machine, TerraSAR-X 

 

1. Introduction 1 

Crop type classification maps are useful for estimating the amount and type of crops 2 

harvested in a certain area or for determining agricultural disaster compensation. To managers 3 

in the agricultural field, the ability to generate crop type classification maps without concurrent 4 

training data is useful for reducing labour costs and eliminating the need for the preliminary 5 
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collection of information. Optical remote sensing is one of the most attractive options for obtaining 6 

biomass information, as currently available sensors offer fine spatial and spectral resolutions 7 

(Sarker and Nichol 2011). Some optical satellites such as the Landsat have also been used for crop 8 

type classification (Hartfield et al. 2013; Mishra and Crews 2014). A significant amount of 9 

information about soil and vegetation parameters has also been obtained by microwave remote 10 

sensing such as synthetic aperture radar (SAR) systems. The latter technique is seeing increased 11 

use in the management of land and water resources for agricultural applications (Fontanelli et 12 

al. 2013). This is because unlike passive systems, SAR systems are not subject to atmospheric 13 

influences or weather conditions, which makes them suitable for a multi-temporal classification 14 

approach (Bargiel and Herrmann 2011). An increasing amount of studies on rice monitoring and 15 

mapping is employing SAR data. The results of these studies have generally found that there are 16 

high correlations between backscattering coefficients, plant height and age. The backscattering 17 

coefficient is a function of the geometric and dielectric properties of the target and the amount of 18 

biomass in the cultivated areas, allowing the distinguishing of different types of temporal changes 19 

with multi-temporal SAR data. The first large backscatter intensity change occurs as a result of 20 

ploughing and seeding. Subsequent smaller changes are mainly due to variations of biomass and 21 

plant water content, or to changes in plant structure in the case of X-band SAR data. Harvesting 22 

causes large backscatter intensity changes. However, there are times when no backscatter 23 

intensity change is detected despite the presence of geometric changes, typically in areas of dense 24 

vegetation such as grassland (Macelloni et al., 2001). Coherence with repeat-pass SAR 25 

interferometry is useful for determining sensitivity to state changes in fields. Coherence decay 26 

due to crop growth has been observed, although smaller changes were connected to variations in 27 
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soil moisture and vegetation water content. These observations enhance the potential of InSAR 28 

coherence in the estimation of crop parameters during the growing season (Blaes and Defourny 29 

2003). When combined with texture parameters, coherence is useful for forest classification 30 

(Liesenberg and Gloaguen 2013). Accordingly, coherence clearly has potential in crop type 31 

classification, which was evaluated in the present study. 32 

In this study, HH and VV polarization data of the X-band from TerraSAR-X was used. 33 

Following the launch of TerraSAR-X on June 15, 2007, X-band SAR data is now widely available. 34 

The objective of the TerraSAR-X mission was to develop an operational spaceborne X-band 35 

synthetic aperture radar (SAR) system to produce various processed data for commercial and 36 

scientific use. TerraSAR-X delivers X-band SAR data of high geometric accuracy at a high spatial 37 

resolution of 2.5-6 m in a 30 km swath in Stripmap mode (Ager and Bresnahan 2009). 38 

Polarimetric parameters are also available in this dataset.  39 

Classification using polarimetric parameters has been performed in previous studies. Most 40 

studies have, however, focused on land use and land cover classification using quad-pol (fully 41 

polarimetric) SAR data (Liu et al. 2013; Loosvelt et al. 2012; Uhlmann and Kiranyaz 2014). In 42 

this study, crop classifications using the polarimetric parameters obtained from the TerraSAR-X 43 

dual-polarimetric data for HH and VV polarization were examined. The main objective was to 44 

evaluate the potential of Terra-SAR-X data for crop type classification and crop map generation, 45 

without the use of concurrent training data. 46 

2. Data and methods 47 

2.1. Study area and field work 48 

The study area was a farming area in western Tokachi Plain, Hokkaido, Japan (extent: 49 

142°55′12″ to 143°05′51″E, 42°52′48″ to 43°02′42″N). In total, 5089 fields (1023 bean fields, 616 50 
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beet fields, 629 grasslands, 592 maize fields, 704 potato fields and 1525 winter wheat fields) were 51 

monitored using TerraSAR-X/TanDEM-X. Average field size was 220 a, ranging from 0.01 ha to 52 

18.0 ha. The cultivation calendar for the crops in this study area is shown in Table 1. 53 

All fields were buffered inward by 10 m to account for field shape. The buffers were used to 54 

avoid selecting training pixels from the edge of a field, which would create a mixed signal and 55 

affect the accuracy assessment. We used a stratified random sampling approach to select 56 

approximately 20% of the crop fields for training samples. The number of samples for each crop 57 

type was determined based on the percentage of fields in the area. The remaining 80% of fields 58 

were used to perform the accuracy assessment. Table 2 represents the numbers of fields of each 59 

crop type.  60 

2.2. SAR data 61 

The whole processing workflow is illustrated in Figure 1. We used 16 scenes of TerraSAR-X and 62 

TanDEM-X data (Table 3) obtained as Single-look Slant range Complex (SSC) with dual-polarized 63 

StripMap mode (HH and VV polarization). The SARs used in this study area are side-looking 64 

SARs based on active phased array antenna technology. They are situated in a sun-synchronous 65 

dawn-to-dusk orbit with an 11 day cycle, at an altitude of 514 km above the equator (Roth et al. 66 

2004). When calculating coherence, only adjacent pairs were used, as it was found that InSAR 67 

quality was low if the time interval between subsequent observations was more than 22 days.  68 

The two polarimetric parameters, average alpha angle and scattering entropy, were obtained 69 

using the European Space Agency’s (ESA) PolSARpro SAR Data Processing Educational Tool 70 

(Pottier et al. 2009). They were orthorectified using the Alaska Satellite Facility’s MapReady 71 

Remote Sensing Toolkit (Gens and Logan 2003), the 10 m mesh DEM produced by the Geospatial 72 

Information Authority of Japan (GSI) and the Earth Gravitational Model 2008 (EGM2008). The 73 
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PolSARPro was developed under contract to the ESA in response to recommendations made at 74 

the PolInSAR 2003 workshop in Frascati, Italy. The MapReady Remote Sensing Toolkit was 75 

developed by the Alaska Satellite Facility and exports data in GeoTIFF format. Its processing 76 

flow includes terrain correction of SAR data using a digital elevation model (DEM) to remove the 77 

distortions caused by the side-looking geometry, geocoding into a number of pre-defined standard 78 

map projections, and exporting in GeoTIFF format (Gens et al. 2013). To compensate for spatial 79 

variability and to avoid problems related to uncertainty in georeferencing, average values of SAR 80 

data were calculated for the fields and for each observation using field polygons (shape file format) 81 

provided by Tokachi Nosai (http://www.tokachi-nosai.or.jp/). These processes were conducted 82 

using ERDAS IMAGINE version 14.0 distributed by Intergraph Corporation.  83 

2.3. Classification algorithm and evaluation 84 

Jeffries-Matusita (J-M) distances (Richards, 1999) were calculated to compare statistical 85 

separability among crop types. J-M distance measurements take values from 0 to 2.0 and indicate 86 

the degree to which the two selected crop types are statistically separated. As a general rule, if 87 

the J-M value is greater than 1.9, then separation is good. If the J-M is between 1.7 and 1.9 then 88 

separation is fairly good.  89 

In earlier studies, the classification and regression tree (CART) algorithm was used to identify 90 

crops such as alfalfa, corn, cotton, grain, melon orchards and sorghum from Landsat Thematic 91 

Mapper (TM) image data(Hartfield et al. 2013). This algorithm achieved an overall accuracy of 92 

87–92% using data acquired in 2008. Using training data from one year and applying it to another 93 

year for classification purposes resulted in an overall accuracy of 71–83%, although accuracies 94 

were consistently greater than 85% for some crops. In addition to CART, two widely used 95 

supervised learning models – support vector machine (Bovolo et al. 2010; Foody and Mathur 2004; 96 
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Lizarazo 2008; Pal 2008) and random forest (Duro et al. 2012; Gislason et al. 2006; Kavzoglu and 97 

Colkesen 2013; Pal 2005; Rodriguez-Galiano et al. 2012) – were used in this study. 98 

The Support Vector Machine algorithm is based on fitting a logistic distribution to the output 99 

values of the decision functions of classifiers and using quadratic optimization to obtain class 100 

probabilities (Chang et al. 2011). In this study, the Gaussian Radial Basis Function (RBF) kernel 101 

was applied. There are two parameters that control the flexibility of the classifier: the 102 

regularization parameter C and the kernel bandwidth γ. If the C value is too large, we have a 103 

high penalty for no separable points and we may store many support vectors and over fit. If it is 104 

too small, we may have under fitting. It controls the trade-off between errors of the SVM on 105 

training data and margin maximization (C = ∞ leads to hard margin SVM). The γ value defines 106 

how far the influence of a single training example reaches, with low values meaning ‘far’ and high 107 

values meaning ‘close’. Optimal parameters for flexibility control were determined through a grid 108 

search in the bivariate parameter space. The parameter space was discretized along 2x, where x 109 

= –1 to 8 for the regularization parameter C and x = –12 to 0 for the kernel bandwidth γ. Both 110 

parameters were determined using the k-fold cross-validation technique. The grid search was 111 

used to minimize the misclassification error rate. K-fold cross-validation was also used to assess 112 

classifier performance (Puertas et al. 2013). This technique repeatedly generates training and 113 

test data sets from a reference sample with known land cover class membership. It is used for 114 

model validation and consists of partitioning the data into k equally-sized subsets (here, k = 10). 115 

A classifier is trained on all except one of these subsets and then evaluated on the excluded subset. 116 

Accuracy measures are averaged over all test datasets. 117 

The accuracy of land cover classification from the Random Forest (RF) technique from optical 118 
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imagery was superior to the results of the maximum likelihood classifier, which is one of the most 119 

common classification methods (Rodriguez-Galiano et al. 2012). RF is an ensemble learning 120 

technique that builds multiple trees based on random bootstrapped samples of the training data 121 

(Breiman 2001). Each tree is built using a different subset from the original training data, 122 

containing about two thirds of the cases, and the nodes are split using the best split variable out 123 

of a group of randomly selected variables (Liaw and Wiener 2002). This strategy provides 124 

robustness to over-fitting and can handle thousands of dependent and independent input 125 

variables without variable deletion. The output is determined by a majority vote of the trees. The 126 

two user-defined parameters are the number of trees (k) and the number of variables used to split 127 

the nodes (m). If the number of trees is increased, the generalization error always converges, and 128 

over-training is not a problem. On the other hand, a reduction in the number of predictor variables 129 

results in each individual tree of the model being weaker. Therefore, picking a large number of 130 

trees is recommended, as well as using the square root of the number of variables used to split 131 

the node for the value of m (Breiman 2001). The samples which are not present in the training 132 

subset are included as part of another subset called out-of-bag (OOB). These OOB elements, which 133 

are not considered for the training of the tree, can be classified by the tree to evaluate performance. 134 

The ratio between the misclassifications and the total number of OOB elements contributes an 135 

unbiased estimation of the generalization error (Rodriguez-Galiano et al. 2012). RF uses the Gini 136 

Index as a measure to identify the best split selection. This index measures the impurity of a 137 

given element with respect to the rest of the classes. Data with a higher Gini Index is more 138 

important for discrimination. By using a given combination of features, a decision tree can thus 139 

grow up to its maximum depth with no pruning. These classifications algorithms were applied 140 
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using the statistical software R (R Core Team 2013).  141 

The classification maps were evaluated in terms of their overall accuracy (OA), producer’s 142 

accuracy (PA), and user’s accuracy (UA). Furthermore, measures of quantity disagreement (QD) 143 

and allocation disagreement (AD) were used for evaluation. The QD is defined as the difference 144 

between the reference data and the classified data based upon mismatch of class proportions. AD 145 

can be considered as the difference between the classified data and the reference data due to 146 

incorrect spatial allocations of pixels in the classification. The total disagreement is the sum of 147 

QD and AD (Baker et al, 2013; Pontius and Millones 2011). These measures are much more useful 148 

to summarize a cross-tabulation matrix than the kappa index of agreement. In order to compare 149 

the accuracy of classification methods, McNemar’s test (Hartfield et al., 2013; McNemar 1947) or 150 

Z-test (Baker et al., 2012; Congalton and Green 2008; Laurin et al., 2013) were used. McNemar’s 151 

test takes into account the use of no independent samples by focusing on how each point was 152 

either correctly or incorrectly classified in the two classifications being compared. A chi-squared 153 

value ≥ 3.84 indicates a significantly different overall accuracy between the two methods at the 154 

95% level of significance. The Z test offers two types of information. First, it determines whether 155 

the independently computed kappa is better than one from a random model. Second, it determines 156 

whether two independently computed kappas are significantly different (Benjankar et al., 2010). 157 

The value of Z score is an approximation of the standard normal deviate of 1.96 for the 95% two-158 

sided confidence level. Since, the purpose is to reveal the best algorithm for crop type classification 159 

in this study, the Z-test was performed for a pairwise comparison of the proposed methods. 160 
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3. Results and discussion 161 

3.1. Time-Series plot of TerraSAR-X- derived information 162 

Figure 2 shows the temporal patterns of the gamma nought values. A decrease in HH 163 

polarization was found from July 31 to August 11 (Figure 2 (a)). However, this was not found for 164 

VV polarization in the winter wheat fields (Figure 2 (b)). Although the growth stage was the 165 

period of maturity, most winter wheat plants suffered from lodging by a heavy rainfall (Figure 166 

3).It has been shown that the HH polarized wave penetrates a canopy more deeply than the VV 167 

polarized wave. Sonobe et al. (2014b) reported a depth of 59.3 cm for VV polarization and of 75.7 168 

cm for HH polarization in winter wheat. A decrease in the thickness of the canopy by lodging was 169 

thus connected to an increased influence of the topsoil in HH polarization compared to VV 170 

polarization in our results. 171 

Figure 4 shows the temporal patterns of the coherence values. Coherence values in the period 172 

from late June to mid-August were low for both HH (Figure 4 (a)) and VV polarization (Figure 4 173 

(b)). Since crop body growth is most pronounced during this period, the satellite return frequency 174 

of 11 days was too long to maintain high complex correlation values. In addition, coherence in 175 

winter wheat fields and grassland showed low values (~0.4) until harvest season because the 176 

crops had been planted in the previous year. 177 

Figure 5 shows the temporal patterns of the polarimetric parameters. Crops were mostly 178 

distributed over Z5 and Z6, which supports previous results. In potato fields, direct reflections 179 

from the pronounced furrow ridges (30–35 cm in height) resulted in a simple scattering pattern 180 

and a noticeable concentration of data in Z8. During early growth periods and post-harvest 181 

periods, bare soil fields increased in extent and data was distributed over Z8 in a similar manner. 182 
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The period from June 28 to July 9 was marked by only a small amount of precipitation (11 mm 183 

on June 4), causing desiccation and leading to a decrease in the height of sugar beet plants in 184 

spite of the growth period. As a result, the component of the surface scattering increase around 185 

July 9, leading to a decrease of entropy values and an increase in data distribution over Z8. 186 

3.2. Separability assessments 187 

Figure 6 presents the chronological changes for the J-M distance of gamma nought values. The 188 

data acquired from June 17 to September 24 was especially useful. Values for the pairs of beans-189 

beet, beans-grassland, beans-wheat, beet-grassland, beet-maize, beet-potato, grassland-maize, 190 

grassland-potato, maize-wheat and potato-wheat were over 1.7. This separability was available 191 

for both polarizations (Figure 6 (a), (b)). In contrast, values were lower than 1.0 for beans-maize, 192 

beans-potato, grassland-wheat and maize-potato. These combinations were more difficult to 193 

separate in single polarization data acquired on a specific observation day. A decrease in the J-M 194 

distance for many crop combinations was observed due to the rainfall on July 31.  195 

Figure 7 presents the chronological changes in the J-M distance of the coherence values. Values 196 

were lower than for gamma nought and at no point larger than 1.0 for beans-beet, beats-grassland, 197 

beans-maize, beans-potato, beans-grassland, beet-maize, beet-potato, beet-wheat, grassland-198 

maize, grassland-potato, grassland-wheat, maize-potato, maize-wheat and potato-wheat, for both 199 

polarizations (Figure 7 (a) and (b)). In the growth period, coherence values were low for all six 200 

crop types due to their high crop height and elongation. 201 

Figure 8 presents the chronological changes for the J-M distance of the polarimetric parameters. 202 

The values for entropy (Figure 8 (b)) showed slightly better separability than those for averaged 203 

alpha angle (Figure 8 (a)). It is likely that the proportions of the scattering patterns from plant 204 

bodies were changed with the growth of the crops, although the types of scattering patterns were 205 
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relatively constant during the growth period. The low selectivity of the average alpha angle for 206 

the last growth period was caused by the approximately equal scattering pattern observed for all 207 

crops. The average alpha angle value observed from May 15 to August 31 was particularly 208 

effective for classification. Some J-M distances for beans-winter wheat, sugar beet-winter wheat, 209 

corn-winter wheat, and potato-winter wheat were larger, yet always below 1.7. A similar tendency 210 

was seen for the entropy values and for the separabilities between beans-maize, beans-potato and 211 

grassland-winter wheat. 212 

3.3. Parameters of Classifiers 213 

The application of SVM and RF required parameter tunings. For SVM, the optimal values of 214 

the two parameters, C and γ, were examined. Figure 9 shows the relationship between these two 215 

parameters and the averaged error rate calculated using a 10-fold cross validation. This includes 216 

(a) gamma nought, (b) coherence, (c) polarimetric parameters (averaged alpha angle and entropy), 217 

(d) the combination of gamma nought and coherence, (e) the combination of gamma nought and 218 

polarimetric parameters and (f) the combination of gamma nought, coherence, and polarimetric 219 

parameters. In this study, the γ values influenced more than the C values. The optimal parameter 220 

pairs were (2-10，28) for (a), (2-6，23) for (b), (2-5，20) for (c), (2-7，23) for (d), (2-8，22) for (e) and (2-221 

8，21) for (f). Since the error rate of (b) was relatively high, the colour scale differs from others. 222 

The higher accuracy observed in the central range of C and γ indicates that nearly the same power 223 

combination is suitable except (b). Visually, the difference of the distributions is not clear between 224 

(e) and (f) and that may imply there is no advantage of adding coherence to gamma nought and 225 

polarimetric parameters.  226 

When applying the RF technique, increasing the number of trees causes the generalization 227 

error to converge; thus over-training is not a problem (Breiman 1996). Figure 10 indicates that 228 
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the minimum useful number of trees is approximately 50. In this study, 50 was chosen as the 229 

number of trees for all cases. The number of trees should be taken large enough in order to allow 230 

for convergence of the OOB error, especially, in case of the separabilities are low for the inputs. 231 

Since the number of trees was a fourth part of some studies using multispectral SPOT 5 image 232 

(Ok et al., 2012) or EMISAR imagery (Loosvelt et al., 2012), a stable accuracy can be expected 233 

from the classification using the multitemporal TerraSAR-X dual-polarimetric data. Figure 11 234 

shows the relative importance of the contribution to the RF classification model for the 235 

combination of gamma nought, coherence and polarimetric parameters. According to the Gini 236 

index, the features with the greatest contribution to the classification model were the data that 237 

were acquired from June to August. In this period, all types of crops were cultivated and the 238 

influence of the soil could be ignored for all fields, while the SAR data had a high sensitivity to 239 

soil moisture or roughness due to sparse vegetation cover before June (seedlings or transplanting 240 

of beans, beet and maize) and after August (the harvest season of winter wheat). Coherence was 241 

of low importance, while gamma nought and polarimetric parameters were particularly effective 242 

for classification. 243 

3.4. Accuracy Validation 244 

The corresponding confusion matrices of classifications using TerraSAR-X data are given in 245 

Table 4. For all algorithms, classification results of (e) were superior to the other combinations. 246 

When coherence was added to gamma nought, overall accuracy increased from 89.7% to 90.5%. 247 

When coherence was added to gamma nought and polarimetric values, overall accuracy increased 248 

from 93.8 to 94.4. Furthermore, the OOB error decreased (Figure 9). However, the advantages of 249 

using coherence were not confirmed at the 95% level of significance. 250 

In all of the information derived from the TerraSAR-X data and algorithms used in this study, 251 
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the discrimination precision for winter wheat and sugar beet were higher than for the other four 252 

kinds of crops. Even though J-M distances were lower than 1.0 on all TerraSAR-X acquisition 253 

days, good results were achieved (e.g., separability between winter wheat and grass) due to the 254 

characteristics of the machine learning algorithm. When the coherence data were used, overall 255 

accuracy was 75.7% for SVM, 77.0% for RF and 68.5% for CART, respectively, which is lower than 256 

the accuracy for the other TerraSAR-X-derived information. On the other hand, an overall 257 

accuracy of more than 90% was confirmed for applying SVM to backscattering coefficient, and 258 

SVM or RF to polarimetric parameters. This supports the separability results discussed in the 259 

previous section. In addition, PA and UA for maize were lower than for other crops. This result 260 

agrees with an earlier study which applied RF to backscattering coefficient (Sonobe et al. 2014a). 261 

Using polarimetric parameters did however lead to improvements in precision. For all algorithms, 262 

classification results using gamma nought and polarimetric parameters were superior to those 263 

using other parameters. No advantages of using coherence were confirmed. 264 

3.5. Statistical comparison 265 

A Z-test was used to compare classification accuracy among the different types of TerraSAR-X-266 

derived information. Table 5 (a) shows the results for CART, Table 5 (b) for SVM and Table 5 (c) 267 

for RF. To be significantly different at the 95% confidence level, the absolute value of the Z score 268 

should be >1.96, and this happened for 11 inputs out of 15 using CART, 12 inputs out of 15 269 

using SVM and 13 inputs out of 15 using RF. Except RF, the differences between the 270 

classification results of gamma nought, and that of polarimetric parameters were not 271 

meaningful. And There are no meaningful differences between the classification results of 272 

gamma nought and that of gamma nought and coherence except CART.  273 
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Furthermore, no meaningful differences were observed between the classification results 274 

using all TerraSAR-X-derived information and those using gamma nought and polarimetric 275 

parameters only for all algorithms. The applicability of coherence in crop classification therefore 276 

remains unclear, while the combination of gamma nought and polarimetric parameters appears 277 

to be effective for this purpose. 278 

A Z-test was also used to compare the accuracy of the classification results for each classification 279 

technique when gamma nought and polarimetric parameters were used. Z-scores are shown in 280 

Table 6. Results indicate that the SVM classifier using gamma nought and polarimetric 281 

parameters provided the highest quality crop classification map in this study area. Figure 12 282 

shows the crop classification map, with misclassified fields outlined in red. The most of the 283 

misclassifications happened in the small fields. Since grasslands have large area and more 284 

grasslands were located in the northern part, more misclassifications were observed in the 285 

southern part than in the northern part. There were 202 misclassified fields, consisting of 55 bean 286 

fields (6.7% of total beans fields in the test data), 17 sugar beet fields (3.4%), 20 grasslands (4.0%), 287 

39 maize fields (8.2%), 32 potato fields (5.7%) and 39 winter wheat fields (3.2%). Figure 13 shows 288 

the relationship between field area and misclassified field. 43.6–62.5% of the misclassified fields 289 

were less than 100 a in area and 79.5–96.3% were less than 200 a (with the exception of grassland). 290 

When some feature such as a road or windbreak forest is present in the TerraSAR-X data, the 291 

ratio of its extent to that of the field is relatively higher for the smaller fields, which leads to 292 

misclassifications. However, misclassifications were found in fields larger than 222 a (the mean 293 

of included field areas), and were outstanding for grassland in particular. After the harvest of 294 

grass, roll veils are often left in the fields and may cause strong directional reflection, which leads 295 
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to high gamma nought values. Furthermore, harvesting periods varied among grassland fields, 296 

causing unevenness in growth and influencing scattering patterns. 297 

4. Conclusions 298 

Analytical techniques using SAR data include interferometric SAR and polarimetric SAR in 299 

addition to the use of backscattering coefficients such as gamma nought. These techniques are 300 

capable of acquiring information about the shape and changes of a target area by employing multi-301 

temporal SAR data. This study demonstrated the great potential of TerraSAR-X HH and VV 302 

polarization data operated in StripMap mode for agricultural applications. Sixteen acquisitions 303 

and their corresponding gamma nought, averaged alpha angle and scattering entropy values were 304 

analyzed together with in situ measurements. The high sensitivity of gamma nought to crop 305 

height was demonstrated statistically for beans, beet and maize. In addition, comparisons were 306 

conducted among the CART, SVM and RF algorithms. The SVM classifier using gamma nought 307 

and polarimetric parameters was found to be able to generate the best crop classification map of 308 

the monitored study area with an overall accuracy of 95.0%. 309 
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Table 1. Cultivation calendar for the crops in this study area. 441 

    May June July August September October 

    late early  mid late early  mid late early  mid late early  mid late early  mid late 

Beans Azuki sowing   sprouting                       harvesting   

  Soy sowing   sprouting                         harvesting 

Beet                               harvesting   

Grassland     
appearance of 

ears of grain  

first 

harvesting 
        

second 

harvesting 
          

Maize sowing             
appearance 

of tassel 

            harvesting   

Potato   planting    sprouting                   harvesting       

Wheat appearance of ears of grain               harvesting             

 442 

  443 
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Table 2 Crop type and number of fields. 444 

Crop type 
No. of fields 

Training data Test data 

Beans 205 818 

Beet 122 494 

Grassland 126 503 

Maize 119 473 

Potato 141 563 

Wheat 304 1221 

445 
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Table 3 Characteristics of the satellite data. 446 

Satellite Acquisition Precipitation (mm) 

TerraSAR-X 15 May, 2013 08:21'26.021410''  (UTC) 0.0  

TerraSAR-X 26 May, 2013 08:21'27.113650'' (UTC) 0.0  

TerraSAR-X 06 June, 2013 08:21'26.972120" (UTC) 0.0  

TerraSAR-X 17 June, 2013 08:21'28.577500" (UTC) 3.5  

TerraSAR-X 28 June, 2013 08:21'29.086800" (UTC) 0.0  

TerraSAR-X 09 July, 2013 08:21'29.596490" (UTC) 0.0  

TanDEM-X 20 July, 2013 08:21'30.468880" (UTC) 0.0  

TerraSAR-X 31 July, 2013 08:21'31.124660" (UTC) 9.0  

TanDEM-X 11 August, 2013 08:21'32.229560"(UTC) 0.0  

TanDEM-X 22 August, 2013 08:21'32.437250"(UTC) 0.0  

TanDEM-X 02 September, 2013 08:21'32.815840"(UTC) 0.5  

TanDEM-X 13 September, 2013 08:21'33.421140"(UTC) 0.0  

TanDEM-X 24 September, 2013 08:21'33.753040"(UTC) 0.0  

TanDEM-X 05 October, 2013 08:21'33.544700"(UTC) 0.0  

TanDEM-X 16 October, 2013 08:21'33.901930"(UTC) 55.0  

TanDEM-X 27 October, 2013 08:21'33.731850"(UTC) 0.0  

  447 
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Table 4 Accuracy results.  448 

  

TerraSAR-X-derived information 

(a) (b) (c) (d) (e) (f) 

C
A

R
T

 

Producer’s accuracy       

Beans 0.811  0.660  0.774  0.812  0.779  0.779  

Beet 0.877  0.583  0.739  0.891  0.866  0.866  

Grasslands 0.783  0.640  0.819  0.783  0.839  0.783  

Maize 0.385  0.641  0.662  0.622  0.721  0.721  

Potato 0.785  0.474  0.796  0.760  0.824  0.824  

Wheat 0.947  0.875  0.916  0.947  0.927  0.943  

User’s accuracy       

Beans 0.674  0.684  0.835  0.733  0.934  0.934  

Beet 0.846  0.539  0.713  0.840  0.738  0.738  

Grasslands 0.881  0.638  0.715  0.881  0.823  0.876  

Maize 0.611  0.649  0.751  0.724  0.683  0.683  

Potato 0.781  0.599  0.736  0.818  0.776  0.776  

Wheat 0.913  0.803  0.932  0.913  0.943  0.912  

Overall accuracy 0.803  0.685  0.808  0.829  0.841  0.839  

Kappa 0.754  0.608  0.762  0.787  0.804  0.801  

Allocation disagreement 14.023  27.824  15.864  13.089  12.058  11.469  

Quantity disagreement 5.673  3.708  3.364  4.003  3.856  4.641  

S
V

M
 

Producer’s accuracy       

Beans 0.885  0.707  0.916  0.883  0.933  0.930  

Beet 0.955  0.684  0.949  0.964  0.966  0.970  

Grasslands 0.954  0.875  0.924  0.952  0.960  0.962  

Maize 0.850  0.628  0.873  0.801  0.918  0.896  

Potato 0.897  0.584  0.929  0.883  0.943  0.945  

Wheat 0.965  0.903  0.963  0.964  0.968  0.970  

User’s accuracy       

Beans 0.894  0.686  0.949  0.876  0.951  0.952  

Beet 0.940  0.788  0.929  0.939  0.968  0.964  

Grasslands 0.894  0.653  0.891  0.907  0.918  0.905  

Maize 0.846  0.686  0.892  0.810  0.891  0.922  

Potato 0.923  0.751  0.899  0.907  0.943  0.925  

Wheat 0.981  0.877  0.971  0.983  0.984  0.982  

Overall accuracy 0.924  0.757  0.932  0.916  0.950  0.949  

Kappa 0.906  0.699  0.916  0.896  0.939  0.937  

Allocation disagreement 6.557  18.615  5.599  7.318  4.052  3.954  

Quantity disagreement 1.081  5.648  1.203  1.081  0.909  1.154  
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R
F

 
Producer’s accuracy       

Beans 0.880  0.713  0.910  0.892  0.936  0.932  

Beet 0.939  0.700  0.911  0.943  0.945  0.955  

Grasslands 0.920  0.795  0.909  0.920  0.938  0.940  

Maize 0.710  0.634  0.871  0.738  0.869  0.892  

Potato 0.876  0.680  0.913  0.888  0.927  0.934  

Wheat 0.962  0.921  0.972  0.964  0.969  0.975  

User’s accuracy       

Beans 0.824  0.725  0.916  0.828  0.932  0.944  

Beet 0.939  0.826  0.922  0.961  0.967  0.967  

Grasslands 0.897  0.760  0.903  0.911  0.909  0.920  

Maize 0.787  0.713  0.888  0.837  0.873  0.881  

Potato 0.901  0.654  0.915  0.891  0.934  0.933  

Wheat 0.968  0.854  0.957  0.966  0.971  0.975  

Overall accuracy 0.897  0.770  0.924  0.905  0.938  0.944  

Kappa 0.872  0.714  0.906  0.882  0.924  0.931  

Allocation disagreement 8.644  19.524  7.024  7.809  5.673  5.133  

Quantity disagreement 1.694  3.463  0.540  1.694  0.491  0.442  

Note: (a) gamma nought, (b) coherence, (c) polarimetric parameters (averaged alpha angle and 449 

entropy), (d) the combination of gamma nought and coherence, (e) the combination of gamma 450 

nought and polarimetric parameters and (f) the combination of gamma nought, coherence, and 451 

polarimetric parameters. 452 

  453 
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Table 5 Z-test results for TerraSAR-X-derived information. 454 

CART       

  (a) (b) (c) (d) (e) (f) 

gamma nought   12.98  0.76  3.19  4.86  4.54  

coherence   13.76  16.21  17.95  17.62  

polarimetric parameters     2.44  4.10  3.78  

gamma nought + 

coherence 
    1.65  1.34  

gamma nought + 

polarimetric parameters 
          0.32  

SVM       

 (a) (b) (c) (d) (e) (f) 

gamma nought  21.83  1.47  1.28  5.03  4.72  

coherence   23.25  20.57  26.61  26.33  

polarimetric parameters     2.75  3.57  3.26  

gamma nought + 

coherence 
    6.30  5.99  

gamma nought + 

polarimetric parameters 
          0.31  

RF       

 (a) (b) (c) (d) (e) (f) 

gamma nought  16.12  4.45  1.27  6.97  8.09  

coherence   20.51  17.38  22.95  24.03  

polarimetric parameters     3.18  2.54  3.68  

gamma nought + 

coherence 
    5.71  6.83  

gamma nought + 

polarimetric parameters 
          1.14  

Note: (a) gamma nought, (b) coherence, (c) polarimetric parameters (averaged alpha angle and 455 

entropy), (d) the combination of gamma nought and coherence, (e) the combination of gamma 456 

nought and polarimetric parameters and (f) the combination of gamma nought, coherence, and 457 
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polarimetric parameters. 458 

  459 
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Table 6 Z-test results for CART, SVM and RF. 460 

 SVM RF CART 

SVM  2.40 16.76 

RF   14.46 

CART    

  461 
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 462 

Figure 1. Overview of the data processing. 463 

TerraSAR-X time series

(SSC)

Evaluations of the classifications

Gamma nought Coherence
Polarimetric parameters

(entropy and alpha angle)

Radiometric correction Interferometry Polarimetric decomposition

Classification result

Parameters tuning and classification using CART, SVM or RF 

Making some combinations

(a) gamma nought, (b) coherence, (c) polarimetric parameters 

(averaged alpha angle and entropy), (d) the combination of gamma 

nought and coherence, (e) the combination of gamma nought and 

polarimetric parameters, and (f) the combination of gamma nought, 

coherence, and polarimetric parameters
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464 

Figure 2 Temporal variation of gamma nought values. 465 
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 466 

Figure 3 Damaged winter wheat field. Photographed on August 1, 2013 467 
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 468 

Figure 4 Temporal variation of coherence. 469 
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 470 

  471 

Figure 5 Temporal variation of polarimetric parameters. 472 
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 474 

Figure 6 Jeffries-Matusita distances for gamma nought. The thick lines represent the Jeffries-475 

Matusita distances values are greater than 1.7 at least one day, the dotted lines represent below 476 

1.0 in the every observation days. 477 
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 479 

Figure 7 Jeffries-Matusita distances for coherence. The x-axis represents the data acquisitiondate 480 

of the master data for coherence. The thick lines represent the Jeffries-Matusita distances values 481 

are greater than 1.7 at least one day, the dotted lines represent below 1.0 in the every observation 482 

days. 483 
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 485 

Figure 8 Jeffries-Matusita distances for polarimetric parameters. The thick lines represent the 486 

Jeffries-Matusita distances values are greater than 1.7 at least one day, the dotted lines represent 487 

below 1.0 in the every observation days. 488 
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 489 

Figure 9 Results of 10-fold cross-validation for SVM classification of the training data. 490 
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 492 

 493 

Figure 10 Relationships between number of trees and error rate for OOB samples. 494 
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 495 

Figure 11 Importance of data acquisition date based on Gini measures. 496 
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 497 

Figure 12 Crop classification map. 498 
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 499 

Figure 13 Relationship between field area and misclassified fields. 500 
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