## Vectorisation of Sketched Drawings using Co-occurring Sampling Circles

Alexandra Bonnici Kenneth Camilleri University of Malta

## 1|Introduction

Drawing vectorisation algorithms convert raster drawings into a vector format that can be used by computer-aided design tools. Vectorisation techniques typically require that the drawing is binarised before lines can be sampled to obtain a vector representation of the drawing.
Such an approach may be problematic if the image back-ground does not have a uniform intensity.

## $2 \mid$ Contribution

- An alternative vectorisation algorithm that can work directly on grey-level images.
- Junctions can be localised from non centred sampling circles and thus, the drawing can be sampled sparsely.


## $3 \mid$ Theory

The centre $\mathbf{x}_{c}$ of a circle sampler is used as a local point of reference.


The junction point is then defined by:

$$
\mathrm{d}=[\mathrm{d}, \alpha]
$$

At the junction, line segments with a line orientation $\theta$ with the horizontal will intersect the circle sampler at $\beta(\theta)$

$$
\beta(\theta)=f_{r, d}=\theta \pm \sin ^{-1}\left(\frac{d}{r} \sin (\alpha-\theta)\right)
$$

The grey-level intensity on the circle circumference can therefore be expressed as

$$
\mathrm{I}_{\mathrm{r}, \mathrm{~d}}(\beta(\theta))=\delta\left(\beta-\mathrm{f}_{\mathrm{r}, \mathrm{~d}}\right)
$$

where $\delta(\cdot)$ is the Dirac delta function

4 |Locating the junction point
 Since $\theta$ and d are unknown, we can determine their values by scaning over all $\theta$ and d and search along $\beta$ on the sampler circle circumference for evidence of line segments. This evidence can be accumulated in a co-occurrence matrix:

$$
S_{d}(\theta, \Delta \theta)=\frac{1}{M} \sum_{m=1}^{M} I_{r_{m}}(\beta(\theta)) \mathrm{I}_{\mathrm{r}_{\mathrm{m}}}(\beta(\theta+\Delta \theta))
$$

where $M$ is the total number of concentric circle samplers
The junction poistion and line orientations are then estimated from:

$$
[\hat{\theta}, \hat{\mathrm{d}}]=\arg \left\{\max \left\{S_{\mathrm{d}}(\theta, \Delta \theta)\right\}\right\}
$$

## 5|Drawing vectorisation



- The drawing is sampled with multiple concentric circles, evenly distributed across the image.
- Junction points are located from these circles
- A topological graph structure is then used to link the junction points and hence vectorise the drawing


## 6|Results



The vectorisation algorithm was evaluated on several drawings conainting between then, 310 junctions, of which 306 junctions were detected with a localisation accuracy of $4.7 \pm 2.3$ pixels,

