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Figure 1: Circle-based vectorization

Abstract

Vectorization algorithms described in the literature assume that the
drawings being vectorized are either binary images or have a clear
white background. Sketches of artistic objects however also con-
tain shadows which help the artist to portray intent, particularly in
potentially ambiguous sketches. Such sketches are difficult to bi-
narise since the shading strokes make these sketches non bimodal.
For this reason, we describe a circle-based vectorization algorithm
that uses signatures obtained from sample points on the line strokes
to identify and vectorize the line strokes in the sketch. We show
that the proposed algorithm performs as well as other vectorization
techniques described in the literature, despite the shadows present
in the sketch.

CR Categories: I.4.3 [Image Processing and Computer Vi-
sion]: Enhancement—Grayscale manipulation I.4.6 [Image Pro-
cessing and Computer Vision]: Segmentation—Edge and feature
detection;

Keywords: vectorization, shadows, sketches

1 Introduction

Sketches of three dimensional objects can be ambiguous particu-
larly since the spatial relation between different objects is lost in
the flat representation of the scene. Artists and designers therefore
introduce a number of cues, among which are shadows or shading
which would help the artist portray the desired spatial represen-
tation in the sketch [Oliver 1979]. These shadows help the ma-
chine interpretation of the sketch. In particular, shadows can be
used as additional constraints in the line-labelling interpretation of
sketches, limiting the possible interpretations of the edges they bear
upon. In [Bonnici and Camilleri 2012] we show how the shadows
can be used in conjunction with trihedral junctions dictionaries to
obtain the desired interpretation of the sketch. However, the pres-
ence of shadows poses an additional burden on the interpretation
of the sketch since it is now necessary to distinguish between ink
markings that form the shading and those that form the line strokes.

In online sketch based interfaces, this problem can be resolved if
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temporal information as well as pen-contact and pen pressure are
available, since the drawing action for shading and line strokes is
different. In off-line sketching, and in particular in paper-based
sketching, such information is unavailable such that all ink mark-
ings are indistinguishable from one another.

In [Bonnici and Camilleri 2012] the separation of the ink strokes
from the line strokes was achieved by requiring that the artist
sketches the strokes and shading in different colours. While such a
method does allow an easy distinction between the two, it shifts the
burden onto the artists, who do not generally use different colours
for edges and shading. For this reason, an alternative method for
acquiring the line strokes from the shading strokes is required in
order to successfully interpret artistic sketches.

In this paper, we build on the concept introduced in [Bonnici and
Camilleri 2009] and use circles to sample the sketched drawing, ob-
taining from each sampling circle a grey-level signature from which
we can discriminate between line strokes and surrounding shading
strokes and hence obtain line vectors directly from the grey-level
representation of the sketched drawing. The rest of this paper is
organized as follows; Section 2 gives a review of vectorization al-
gorithms described in the literature, Section 3 introduces the con-
cept of the circle signature, Section 4 describes how this signature
can be used to vectorise drawings with shading, Section 5 presents
the evaluation methodology, Section 6 presents the results obtained
while Section 7 concludes the paper.

2 Related Work

In off-line interpretation algorithms, line strokes are identified using
vectorization techniques whose scope is to locate the line strokes
and represent these strokes as vectors which can be interpreted by
computer-aided design (CAD) tools [Tombre et al. 2000]. Vectori-
sation algorithms have been used in applications involving engi-
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Figure 2: A sketch with shading (a) is not bimodal as can be ev-
idenced from the shape of its histogram (c). As a result, binarisa-
tion techniques which segment the image pixels into a foreground
and a background classes do not allow for distinction between the
sketched strokes, the shading and the background, erroneously clus-
tering the shading strokes with either the foreground class or the
background class.

neering drawings [Liu and Dori 1999], architectural drawings [Hi-
laire and Tombre 2006] and maps [Röösli and Monagan 1996]. In
such drawings, the task of the line location problem is to identify
the smallest group of pixels that represent the drawing’s topology,
and this is often referred to as the medial axis of the drawing [Katz
and Pizer 2004]. This medial axis can be determined using a va-
riety of techniques among which are algorithms based on skele-
tonization [Hilaire and Tombre 2006], drawing contours [Ramel
et al. 1998], the Hough-transform [Song and Lyu 2005], run-
graphs [Keysers and Breuel 2006] and sparse-pixel sampling tech-
niques [Song et al. 2002]; [Bonnici and Camilleri 2009]. In all
three methods however, there is the underlying assumption that the
drawing can be easily separated into two classes, namely a fore-
ground class, containing the inked edge stroke pixels and a back-
ground class containing all the remaining pixels. Such a separa-
tion into foreground and background classes is typically achieved
through binarisation [Davies 2004] or by assuming that the back-
ground class consists solely of pixels with uniform grey level. This
is possible because the images vectorized by these algorithms are
generally bimodal. However, the introduction of shading strokes to
the drawing forces the drawing to loose its bimodality such that, as
shown in Figure 2, the use of a threshold to separate the image grey
levels into two classes is not suitable to distinguish between the line
strokes, the shaded regions and the image background.

Such a two-tier approach to the line location has further disadvan-
tages, particularly since errors introduced in the binarisation pro-
cess will inevitably effect the outcome of the vectorisation. In ad-
dition, the binarisation algorithms are applied on a pixel-by-pixel
basis, whereas the decision an whether a pixel forms part of the
background (and shading) or the line strokes would be more in-
formed if this is driven by decisions made on other line stroke pix-
els. This calls for a vectorization algorithm that locates the lines
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Figure 3: (a) A circle with radius r is placed such that its centre
c coincides with the line’s medial axis. The angles at which the
circle intersects with the line will provide an estimate of the line
orientation θL. (b) The grey-level profile along the circumference
of such a circle will consist of two pulses centred at θL and θL + π

from the grey-level image itself, performing the separation of fore-
ground strokes from the rest of the sketch while these strokes are
being vectorized. Therefore, we propose a vectorization algorithm
based upon a signature obtained along the circumference of a circle
centred on points of interest, as described next.

3 The circle signature

Consider a discrete circle, defined as x = c + ruθ where c is the
centre of the circle, r is the circle’s radius, uθ = [cos θ, sin θ]′,
θ = [0, δθ, 2δθ, · · · , 2π] and δθ is the angular resolution with
which sample points on the circle’s circumference are obtained.
Such a circle can be used to sample the environment of a given
centre pixel at a locus of points equidistant from the centre pixel.
For this reason, we define the circle signature Sr,c(uθ) as the grey-
level profile of the sample points on the circle’s circumference, that
is, Sr,c(uθ) = I(x), where I is the sketch image. Since x are not
necessarily integer co-ordinates, we use the bilinear interpolation to
obtain I(x).

In order to obtain a well defined circle, the sample points that define
the circle’s circumference should be at least 8-connected, ensuring
that the signature Sr,c(uθ) samples all the pixels that lie on the
circle’s circumference. Thus the distance between two pixels on the
circumference should be

√
2 which will be achieved if δθ =

√
2
r



4 The circle signature for vectorization

Consider a line having an unknown orientation θL. If the sampling
circle is placed such that c is on the medial axis of the line, then,
as shown in Figure 3(a), the signature Sr,c(uθ) will contain two
pulses corresponding to the intersection of the circle circumference
with the line as shown in Figure 3(b). The position of these pulses
on Sr,c(uθ) will provide an estimate θ̂L for the line orientation.

From an initial sample point ct on the medial axis of the line, a sub-
sequent sample point ct+1 can be obtained using ct+1 = ct ± dΦ,
where ct is a sample point on the line’s medial axis and the centre of
the sampling circle, Φ = [sin θ̂L cos θ̂L]′ and d is the distance be-
tween consecutive sample points. In this way, it is possible to span
the line in both directions from a given initial sample point, thereby
obtaining the line’s medial axis which can in turn be parameterized
by the equation of the line.

Each sketched stroke in the sketch occurs in the context of other
strokes and by sampling the immediate neighbourhood of the se-
lected point on the medial axis, it is possible to capture the local
context of the line in the signature Sr,c(uθ). In particular, as the
sample points approach junction points, the sampling circle inter-
sects with other lines present at the junction which will be present
as additional line pulses in Sr,c(uθ). By comparing the signature
obtained from each sample point with an idealised line signature,
it is therefore possible to determine when the sampling circle ap-
proaches the end of the line or a junction point and hence identify
the end-points of the line being traced.

Thus, the vectorization of the sketch image can be achieved by first
locating a suitable starting sample point, from which an initial cir-
cle signature, and hence an initial signature Sr,c0(uθ) is obtained.
An estimate θ̂L of the line orientation can then be obtained from the
signature Sr,c0(uθ) and this is used to locate a subsequent sample
point on the medial axis and hence a new signature Sr,c1(uθ). The
signature is compared to the idealised line signature S̄r , hence ver-
ifying whether the sample point is a valid point on the line. This
is repeated until no other sample point can be located on the line
at which point, the line tracing is terminated, as shown in Figure 4.
This is repeated until all lines in the sketch are located and vector-
ized. Details of each step are described hereunder.

4.1 Obtaining the line orientation estimate

The line orientation θ̂L can be defined as 1
2
(θ1 + θ2), where θ1 and

θ2 are the angles defining the edges of the line pulse in Sr,c(uθ),
providing that the sampling circle is centred on the medial axis of
the line. In ideal, isolated line strokes, the values of θ1 and θ2
can be determined from the derivative of the signature, where θ1
corresponds to the negative gradient peaks and θ2 corresponds to
the positive gradient peaks.

However, the sketched lines can be embedded in shading or shadow.
When this happens, the circle signature would have additional
pulses that correspond to the shading strokes and, as a result, the
signature derivative will contain peaks at other locations besides
those at θ1 and θ2. It is therefore necessary to discriminate between
gradient magnitudes that define the edges of line strokes and others
that define shadow strokes in order to determine the line orientation.

As shown in Figure 5, the local peaks in the derivative of the sig-
nature that correspond to the line stroke boundaries will typically
have a larger magnitude than other peaks. However, selecting a
single threshold on the gradient magnitude or the signature itself
can result in misclassification of the shadow and line strokes, par-
ticularly in instances where the shading is variable or considerably

Obtain the circle signature Sx

Locate the pulses in Sx

Compare Sx with some ideal
signature S̄

Update the estimate of the
line orienation θ̂L

Deteremine the new sample
point ct+1 = ct ± dΦ

Locate a starting point

Is Sx similar
to S̄?

Yes

Terminate tracking
No

Figure 4: The vectorization of a single line. Each step is described
in further detail in the text

dark. For this reason, we use a hysteresis-like thresholding to ob-
tain a clean signature Ŝr,c(uθ) in which pulses corresponding to
line strokes are classified as such and assigned a label ωl while all
other signature values are classified as background and assigned a
label ωb.

If two sample points on the line are aligned with the line’s me-
dial axis, then any two consecutive signatures Sr,ct(uθ) and
Sr,ct+1(uθ) are expected to have the line pulses at the same lo-
cation on the circle circumference, such that the clean signature
obtained from Sr,ct(uθ) can guide the search for line pulses in
Sr,ct+1(uθ). As the sampling circle is propagated along the line,
the sample circle can intersect with new lines, particularly when
the sampling circle approaches a junction. Similarly, the circle may
cease to intersect with a line if this has reached an open-ended ter-
mination point. In such cases, it should be possible to detect the
insertion or removal of line pulses in Sr,ct+1(uθ) as these effect
the line vectorization. Thus, we introduce two thresholds Tl and Th
such that any signature component less than Tl is labelled as a line
pulse while any signature component greater than Th is labelled as
a shadow or background. Ambiguous parts of the signature that
are greater than Tl but less than Th are labelled according to the
previous signature, such that:

Ŝr,ct+1 =


ωl, if Sr,ct+1(θ) ≤ Tl
ωb, if Sr,ct+1(θ) ≥ Th
ωl, if Tl ≤ Sr,ct+1(θ) ≤ Th, Ŝr,ct(θ) = 0

ωb, if Tl ≤ Sr,ct+1(θ) ≤ Th, Ŝr,ct(θ) = 1

(1)

where ωl is the label assigned to a line pulse and ωb is the label
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Figure 5: (a) A sketch image with a sample circle centered on one
of the sketched lines. (b) The signature Sx obtained from this circle.
(c) The derivative of the signature in (b)

assigned to a shadow or background pulse in the signature, θn ≤
θ ≤ θp and [θn, θp] are pairs of consecutive negative and positive
gradient magnitude peaks in the signature derivative.

In this way, line pulses are introduced to the signature if there is
sufficient evidence that the pulse in the signature corresponds to a
line stroke. Similarly, lines are removed from the signature if there
is sufficient evidence that the pulse present in previous signatures
is no longer present in the current signature. Such evidence is ob-
tained through the grey-level value at each point on the sampling
circle and hence the values of Tl and Th provide the limit for which
pulses in Sr,c(uθ) can be considered as switching from ωb to ωl or
vice versa.

We suggest that the value of Th and Tl can be found through a
clustering algorithm. In general, the sketch with shadows has clus-
ters of grey-levels. The darkest grey-level cluster, which we denote
by ḡl corresponds to the line strokes, the brightest grey-level clus-
ter, which we denote by ḡb corresponds to the sketch background,
while a range of intermediary grey-level clusters, which we denote
by ḡsn , where n = 1 · · ·N and N is the number of distinguishable
shades, defines the sketched shadows. In sketches that have uni-
form, consistent shading throughout the sketch, N = 1 and there is
only one cluster that characterises all shadow pixels. However, with
variable shading, it is possible to identify unique shades such that
N > 1 in such sketches. In our classification of the clean signa-
ture Ŝr,c, the class defined by ωl corresponds to the cluster with
grey-level ḡl whereas the class defined by ωb which defines the
sketch background, incorporates the clusters defined by ḡsn and
ḡb, that is, all parts of the image that are not line strokes. Typi-
cally, ḡl < ḡs1 , · · · , ḡsN < ḡb, in order to allow the observer to
distinguish between the line strokes, the shading strokes and the
image background, however, the grey-level distributions of these
categories may overlap such that clustering alone can possibly mis-
classify pixels in each category.
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Figure 6: Using k-means clustering to identify the three grey-level
clusters in the image and hence the thresholds Th and Tl

If we were to model the grey-level distribution in each cluster by
a Gaussian distribution, then we can choose the thresholds Tl =
µl−σl and Th = µs +σs, where µl, σl are the mean and standard
deviation of the grey-level values of pixels classified as cluster ḡl
and µs, σs are the mean and standard deviation of the grey-level
values of pixels classified as cluster ḡs1 . Figure 6 illustrates the se-
lection of these thresholds when N = 1. Thus, Tl and Th represent
the non-overlapping grey-levels between the ḡl and ḡs clusters. In
this implementation, we use the K-means algorithm [Davies 2004]
to perform the clustering, although other clustering algorithms can
be used [Hamerly and Elkan 2002].

4.2 Measuring the validity of the signature

While tracing the line stroke, it is important to verify the validity of
the signature. This is necessary so that we determine whether the
sampling circle is centred on the medial axis of the line stroke and
hence establish whether the orientation obtained from the signature
is a valid estimate of the line orientation. Such verification is there-
fore necessary to ensure accurate line tracing. In order to verify
the validity of the signature, we require an idealised signature S̄r
against which the cleaned signature Ŝr can be compared. Such a
signature can be obtained from a binary, ground-truth line, whose
orientation and medial axis are known. By placing the sampling
circle on the medial axis of such a ground-truth line, we obtain a
signature which is naturally segmented into the two classes ωl and
ωb, making it suitable as an ideal signature against which actual line
signatures, obtained from the sketched strokes can be compared.

Comparison of the idealised signature and the cleaned signature re-
quires matching the location of the pulses of the two signatures,
confirming that the signature is obtained from a sampling circle
centred on the line medial axis. Such a comparison can be obtained
by determining the sum of squared distances between the two signa-
tures. The line stroke however, is not necessarily of the same orien-
tation as that of the ground-truth line such that it is necessary to first
align the signatures such that the sum of squared distances between
the signatures is minimized. Such an alignment of the signatures
can be achieved through correlation. However, the cleaned and ide-
alised signatures can also have discrepancies in the pulse widths
which effect the correlation between the two signatures. These dis-
crepancies in the pulse widths are due to two main causes. In the
first instance, line strokes may have different line widths to that of
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Figure 7: An idealised signature consists of two pulses separated
by π. (a) If the line stroke from which the cleaned signature is
obtained has a larger line width, the signature pulses will also be
uniformly wider. (b) As the sampling circle approaches a junction,
the circle will intersect with the line stroke tangentially, causing an
non-uniform increase in the pulse widths.

the ground-truth line. In such a case, the two cleaned signature
pulses would have a uniform increase (or decrease) in the pulse
width when compared to the ideal signature as shown in Figure 7.
Such a pulse width difference does not detract from the accuracy
of the orientation estimate or the location of the medial point, and
therefore, should not be penalised in the comparison of the cleaned
signature to the ideal signature. On the other hand, when a sampling
circle approaches a junction, the sampling circle starts to intersect
tangentially with the other lines at the junction. As a result, the sig-
nature would experience a non-uniform increase in the pulse width
as shown in Figure 7. Such a non-uniform increase in the pulse
width would cause a deviation in the line orientation estimates and
should therefore be penalised. Thus, changes in pulse widths be-
tween the ideal line signature and the cleaned signature should be
treated differently. Correlation however does not provide the mech-
anism for this distinction and any change from the line width of
the ideal signature would be penalised as a sign of non-conformity
between the two signatures. For this reason, we propose an alterna-
tive method for comparing the two signatures which first aligns the
signature Ŝr,c(uθ) with the ideal signature S̄r(uθ) after which the
difference between the two signatures is quantified.

To align the two signatures, we first shift Ŝr,c(uθ) until there is the
least discrepancy between the position of the pulses in Ŝr,c(uθ)
and in S̄r(uθ). In this way, we would have effectively aligned
the stroke orientation with that of the ideal line. Once the orien-
tation is aligned, we alter the stroke width of Ŝr,c(uθ) until there is
the least discrepancy between the pulse widths in Ŝr,c(uθ) and in
S̄r(uθ). One way of doing this is by changing the number of sam-
ples that define the pulse, effectively performing angular-scaling on
the pulses in the signature [Kamen and Heck 2007]. If this angular-
scaling is applied uniformly to the two pulses in the signature, the
discrepancy between the ideal signature and the cleaned signature
would be eliminated if the difference in pulse width is a result of
a difference in the line width. If the difference in pulse width be-
tween the two signatures is caused by a tangential intersection of
the sampling circle with the line strokes, then, although Ŝr,c(uθ) is
adjusted to fit as close as possible to S̄r(uθ), a discrepancy in the

pulse widths will still remain.

To quantify the differences between the resulting signature and the
idealised signature, we then use a comparison measure that is made
up of two components. The first measures the separation between
the pulses, which is expected to be at π for a sampling circle centred
on the line’s medial axis such that

Dθ = 1− |π − (θ̂L2 − θ̂L1)|
π

(2)

where θ̂L1 and θ̂L2 are the line orientation estimates obtained from
the two signature pulses that best match with the ground-truth
pulses. In this way, Dθ = 1 when the line pulses are separated by
π and decreases as the separation differs from this expected value.

The second component measures the difference between the ground
truth signature and adjusted sample signature, hence measuring the
differences incurred by changes in line width as well as changes
in the number of pulses present in the signature, hence determin-
ing if new lines are being detected or if the sampling circle has
approached an open-ended line end-point. Thus, we define:

Dw = 1− |(Ŝr,c(uθ) = ωb) ∩ (S̄r(uθ) = ωl)|
2|(Ŝr,c(uθ) = ωb)|

+

|(Ŝr,c(uθ) = ωl) ∩ (S̄r(uθ) = ωb)|
2|(S̄r(uθ) = ωb)|

(3)

which has a value of Dw = 1 when the two signature are perfect
matches and decreases when the pulse widths are mismatch and
when the number of pulses in Ŝr,c(uθ) differs from the expected
two pulses.

Hence, we define the comparison measure as D = 1
2
Dθ + 1

2
Dw

4.3 Locating a suitable starting point

The line tracing requires the location of an initial starting point on
the line. Although there are various techniques which can be used
to locate such a point, such as those described in [Liu and Dori
1999] and [Song et al. 2002] among others, we choose to use the
circle signatures to determine suitable initial starting points as this
allows us to locate these points more efficiently.

We do this by selecting an initial point on the image. This could be
the geometric centre of the image, or determine through image mo-
ments [Davies 2004]. Once located, a sampling circle is centred on
this point and a signature is obtained. The pulses on this signature
that have a grey-level value which is less than Tl are likely to cor-
respond to line strokes. However, since the sampling circle is not
centred on the stroke itself, the sampling circle does not necessarily
pass through the medial axis of the stroke segment. Thus, given this
initial location of a line segment, we create a sequence of sample
points that lie on a line perpendicular to the circle circumference
at the point of intersection with the line segment as shown in Fig-
ure 8. The signature at these points is obtained and compared to the
ground truth signature such that the sample point that provides the
best matching signature is used as a starting point on the line.

This sampling circle can therefore locate multiple starting points on
different lines which are traced individually, providing that the line
would not have already been traced. Once all starting points have
been exhausted, the radius of this sampling circle can be increased
in order to search for new, untraced lines. This can be repeated until
the circle radius is equal to half the image size, hence exploring all
the lines in the image.



Figure 8: Initial sample points on the sketched lines are located
by using sampling circles centered on the image centre. Sample
points perpendicular to the point of intersection of the circle cir-
cumference with the sketched lines are identified at each candidate
starting point and the signature at each of these sample points is
compared to the ground truth to determine the most suitable start-
ing point on each line.

4.4 Parameterising the line strokes

Once a line has been completely traced, it is represented by a set of
points that should coincide with the medial axis of a straight line.
These points can therefore be parameterised by the equation of the
straight line such that each line stroke is represented by a linear
equation and the line endpoints. Since the line stroke is obtained
from a freehand sketch, the line stroke itself is not necessarily a
perfect straight line, such that this line parameterisation must be
performed by finding the best fitting line, using mathematical tech-
niques such as linear regression.

From the line parameterisation, it is also possible to determine the
location of the junction points or the intersection between adjacent
lines. Once again, the sketched nature of the line strokes implies
that it is unlikely that three or more line vectors will intersect at a
common point, such that the junction point can be located by solv-
ing the intersection point in the least-squares sense [Salahi 2010].

5 Evaluation methodology

In order to evaluate the performance of the circle-based vectoriza-
tion algorithm, we test the algorithm on sketches such as those
shown in Figure 9. These sketches have been drawn on A4, plain
paper, using a soft 4B pencil for the shading and line strokes. The
sketches were then scanned with a flat-bed scanner, using the de-
fault resolution of 300dpi. These sketches provide examples of
sketches of varying complexity and have mixtures of uniform and
variable shading as would be expected in artistic sketches [Oliver
1979]. These sketches also contain different instances of W , Y , T
and L junctions and therefore provide good examples of sketches
of trihedral objects.

To quantify the performance of the vectorization algorithm, the per-
formance evaluation protocol described in [Liu and Dori 1997] can
be used. This protocol defines the performance of vectorization
algorithms by using two indexes, namely the pixel recovery index
(PRI) and the vector recovery index (V RI).

The role of the PRI is that of determining the ability of the vec-
torization algorithm to locate the line strokes in the sketch. This
index operates at a pixel level and compares the line stroke pixels
detected by the vectorization algorithm with the known line stroke
pixels of a ground-truth image, identifying the true detection rate,
that is the fraction of ground truth pixels detected by the vectoriza-

Figure 9: The sketches used to evaluate the circle-based vectoriza-
tion algorithm

(2)

(1)

Figure 10: Sketches with instances of poor contrast between edge
strokes and shadows

tion algorithm, and the false detection rate, that is, the fraction of
detected pixels that do not have matching ground-truth pixels [Liu
and Dori 1997]. On the other hand, the V RI compares the vector-
ization algorithm at a vector level. In this case, the quality of the
detected vectors is measured by the proximity of the end-points as
well as the distance between the detected vectors and the ground-
truth vectors. The V RI also takes into account the fragmentation
rate, hence determining whether the ground-truth vector is detected
in its entirety [Liu and Dori 1997].

To use this evaluation protocol, it is necessary to obtain ground-
truth vectors against which the detected vectors can be compared.
Such ground-truth vectors cannot be obtained directly from the
sketch such that it is necessary to create artificial sketches with
known ground-truth vectors. Ideally, these artificial sketches are as
realistic as possible, such that the performance measures obtained
from these sketches reflect the expected performance of the algo-
rithm on real sketches. To do so, we create the ground-truth vectors
by manually selecting the junction points in the sketches shown in
Figure 9. From these junction points we create vectors which serve
as the medial axis of the sketch. These vectors are dilated, thereby
obtaining line strokes. Shading strokes are introduced to these im-
ages by copying the texture of shading strokes of the sketches in 9
onto the desired locations in the new images.

In addition, the circle based vectorization algorithm was performed
on drawings such as those shown in Figure 10. These drawings
have instances, such as those marked (1) and (2), where there is no
contrast between the shading and the line strokes. In such cases, it
is difficult to obtain signatures in which two distinct poses, corre-
sponding to the line strokes, are obtained. These drawings there-
fore serve to illustrate the way the vectorization algorithm handles
sketches from which a good signature cannot always be obtained.



Figure 11: The vectors obtained for the sketches in Figure 9

6 Results and discussion

The results obtained by the circle-based vectorization for the
sketches shown in Figure 9 are shown in Figure 11. In this im-
plementation, we set the radius of the sampling circle to r = 30
pixels. This was determined empirically as being suitable for the
resolution of the sketches at hand, allowing sampling circles to fit
within the shortest line segments while at the same time providing
sufficient context for the line signature to be meaningful. The trac-
ing step size was set to d = 1 pixel, such that each point on the
medial axis of the line is sampled.

The results obtained show that the vectors obtained from the circle-
based vectorization algorithm are well placed with respect to the
sketch image strokes. These results show that the circle-based vec-
torization algorithm can successfully vectorize sketches containing
shadows of uniform as well as varying grey-levels. These results
are corroborated by the values of PRI and V RI presented in Ta-
ble 1. Ideally, the PRI and V RI values are both 1, indicating
a perfect match between the detected line vectors and the ground
truth vectors. In practice however, discrepancies in the estimation
of the stroke width as well as pixel variations in the location of the
detected vectors will reduce the values of the PRI and the V RI to
less than unity. Table 1 shows that the PRI and V RI values ob-
tained by the circle-based vectorization algorithm are close to unity.
These values are in fact comparable to the values obtained by other
vectorization algorithms as reported in the literature [Liu and Dori
1997]; [Liu and Dori 1999], indicating that circle-based vectoriza-
tion retains the same level of accuracy while obtaining the stroke
vectors from sketches with shadows.

Figure 12 shows the results obtained for the sketches with instances
of poor contrast between shadows and edge strokes given in Fig-
ure 10. In both sketch examples, the edge marking the discontinuity
between the two surfaces is made more evident by shading contrast
rather than by the line stroke representing the edge. This can be
observed in particular on the edges marked (1) and (2) in Figure 12,
where, in the case of edge (1) the line stroke is not present and in the
case of edge (2), the dark shading has the same grey-level as the line

Table 1: The PRI and VRI values obtained for the artificial sketches

Sketch Mean
1 2 3 4 5 6 Value

PRI 0.99 0.95 0.98 0.97 0.98 0.91 0.95
VRI 0.90 0.82 0.92 0.89 0.93 0.80 0.88

strokes. In both examples, the grey-level signature obtained from
circles centred on these edges do not contain the expected two line
pulses as shown in Figure 13. In the case of edge (1), the grey-level
of the shading falls within the range Tl < Sr,c(θ) < Th such that,
using Equation 3, this should be cleaned according to the previous
signature. However, since no medial point on this edge matches the
idealised line signature, all the signature Sr,c is labelled as back-
ground and, in consequence, no edge medial point is determined.
On the other-hand, all of the shading strokes found on the signa-
tures obtained from edge (2) in Figure 12, have a grey level smaller
than Tl, such that, all shading strokes on the circumference of the
sampling circle are labelled as foreground. As a result, the result-
ing cleaned signature would differ from the idealised line signature
such that no edge medial points are detected from this signature.
In consequence, as shown in Figure 12, line strokes sketched under
these conditions are either not traced by the vectorization algorithm,
or, in cases of variable shading, the tracking terminates prematurely,
as can be observed in the edges labelled (3) and (4) in Figure 12.
In the context of vectorization as the necessary pre-processing for
edge labelling applications, such missing vectors can potentially
be identified through post-processing, by comparing the vectors at
junctions with the permissible trihedral junctions.

7 Conclusion

In this paper, we show that the circle-based vectorization algorithm
can be used to vectorize sketches that have shading and shadow
marks. The performance of the algorithm is shown to be compa-



(1)

(2)(4)

(3)

Figure 12: Vectors obtained for sketches in Figure 10. The edges
labelled (1) and (2) are not vectorised since as shown in Figure 13,
the signature does not contain the expected line pulses. Edges
(3) and (4) show examples of instances when the tracing termi-
nates prematurely, in these examples, this happens because the dark
shading masks part of the line strokes.

rable to other vectorization algorithms described in the literature,
making this algorithm suitable for sketch interpretation applications
which make use of shadows and shading.

The algorithm is parameterised by the circle radius r and the trac-
ing step d, both of which are currently determined in an empirical
manner. The circle radius is directly linked to the resolution of the
sketch image and has an effect on the length of the smallest segment
that can be detected by the algorithm as well as the proximity of line
strokes. Similarly, the tracing step size has an effect on the number
of sample points obtained from a line stroke and hence, the level of
detail that is captured along the line stroke. Choosing a tracing step
size that is too large, can lead to the possibility of missing junctions
on the line, while small tracing step sizes result in over-sampling of
the line stroke, which, although has no adverse effect on the qual-
ity of the line vectors obtained, increases the computational costs
required to obtain these vectors.

Ideally, the circle radius and the step size are adapted automatically
according to the resolution of the sketch. Since the sketch resolu-
tion can vary on a local basis, as can be observed in Figure 9, with
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Figure 13: Grey-level signature obtained from points on the edges
marked (1) and (2) in Figure 12. In (a), corresponding to the edge
marked (1), the signature grey-levels fall within the thresholds Tl
and Th while in (b), which corresponds to the signature of a point
on the edge marked (2), the grey-level of the shading strokes is less
than Tl. In both cases, the signature does not have the two expected
pulses.

an individual sketch having a mixture of sparse lines and regions
with relatively high detail, we believe that this requires a multi-
resolution approach to line vectorization. Such an issue is common
to all vectorization algorithms but we believe that the extending this
work to include circle signatures obtained from sampling circles of
different radii, the vectorization algorithm would be able to handle
this multi-resolution problem efficiently.
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