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ABSTRACT 

 
Model assessment and comparison are essential aspects 

of statistical inference.  The likelihood ratio test is one of 

the main instruments for model selection; however, this 

is not appropriate when the model under consideration 

contains random effects.  In this paper, we present two 

simulation studies for latent class segmentation models. 

The first Monte Carlo study compares the performance of 

seven Information Criteria in predicting the correct 

number of segments.  The second study investigates 

factors that have an effect on segment membership and 

parameter recovery and affect computational effort.  

 

 
1. INTRODUCTION – A GENERAL MODEL 

 
Latent class models stands out as one of the major 

breakthroughs in market segmentation as they overcome 

the limitations of aggregate analysis and a-priori 

segmentation.  In this approach, the segments and the 

model parameters within these segments are estimated 

simultaneously.  Latent class methodology for market 

segmentation, suggested by (Green 2000) proposes the 

Proportional Odds model as a proper statistical model for 

ordinal data. 
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In this model jny  is a rating response elicited by the thn  

respondent for the thj item; α  is a vector of threshold 

parameters; β  is a vector of regression parameters and 

jx are item or individual covariates. The choices of  .F  

considered are the Logistic, Normal and Extreme Value 

distributions respectively leading to the Logit, Probit and 

Complementary Log-Log links.  For the segmentation 

model, the Proportional Odds model is extended by 

considering a Latent Class model with K segments. 
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where 
k  is the proportion of respondents that are 

assigned to the thk  segment.  The log-likelihood function 

is maximized through the EM algorithm. The merit of 

this model is that it allows for a probabilistic 

classification of respondents into segments and 

simultaneous estimation of a generalized linear 

regression model within each segment.  When applying 

the above model to real data, the actual number of 

segments, K, is unknown and has to be specified.  

Unfortunately, the standard likelihood ratio statistic that 

tests between a K-segment model and a (K+1)-segment 

model does not have an asymptotic chi-square 

distribution and so it is not adequate to identify the 

appropriate number of segments in latent class models.  

Several information criteria have been proposed to 

identify this optimal number of segments. 

 

 
2. INFORMATION CRITERIA TO IDENTIFY 

THE NUMBER OF SEGMENTS 

 
Several Information Criteria have been proposed to 

compare Latent class models with different number of 

components (segments).  These criteria stipulate different 

penalty terms to measure the complexity of the model.  

Most of the information criteria that are proposed are 

based on the bias-corrected log-likelihood given by: 

 

 2logC L dc  Ψ                       (3) 

 

where d is the number of estimated parameters and c is a 

penalty constant.  The second term, which is the penalty 

term, measures the complexity of the model.  For 

instance the well-known Akaike information criterion 

(AIC), proposed by (Akaike 1974), arises when 2c  .  

The major problem with the use of this criterion is that it 

relies on the same asymptotic properties as the likelihood 

ratio test.  Many authors have observed that AIC tend to 

overestimate the correct number of segments.  The 

Modified Akaike information criterion (MAIC) arises 

when 3c   and it penalizes complex models more 
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heavily than AIC.  Another criterion that penalizes the 

log-likelihood more heavily is the Bayesian information 

criterion (BIC), proposed by (Schwarz 1978).  For this 

criterion  log ,c N  where N is the sample size.  The 

penalty term of the BIC criterion depends on the sample 

size and favours models that are more parsimonious.  

For 8,N   BIC penalizes complex models more heavily 

than AIC and MAIC.  BIC reduces the tendency of AIC 

and MAIC to fit too many segments. 

 

The above criteria account for over-parameterization as 

more segments are derived.  However, one must ensure 

that the segments are sufficiently separated for a 

particular solution.  To examine the centroid separation 

between the segments, (Ramaswamy and Cohen 2000) 

use an entropy statistic to investigate the degree of 

separation in the estimated posterior probabilities.   
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where ˆ
nkp  is the posterior probability that the thn  subject 

belongs to the thk  segment and  ˆ
nkEN p  is the entropy 

given by    
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is the penalty term and penalizes models whose segments 

are poorly separated.  When the segment centroids of 

these latent class models are well separated,  ˆ
nkEN p  

will be close to its minimum value of zero.  If the 

segment centroids are not sufficiently separated for the 

number of segments specified then  ˆ
nkEN p  will have a 

large value because the posterior probabilities for each 

observation are approximately equal.  
sE  is a relative 

measure bounded between 0 and 1.  A value close to 1 

indicates that the centroids of the derived segments are 

well separated.  A value close to 0 indicates poor 

separation.   

 

Another criterion that uses  ˆ
nkEN p  to penalize a model 

for its complexity is the Classification Likelihood 

criterion (CLC) proposed by (Biernacki and Govaert 

1997).  This criterion minimizes 

 

   ˆ2log 2 nkCLC L EN p  Ψ                (5) 

 

and the penalty on the log-likelihood depends on how 

well separated the fitted segments are. This criterion 

works best when the probabilities of segment 

membership happen to be similar.  However, it tends to 

overestimate the correct number of segments when no 

restriction is placed on these probabilities.   

 

Another criterion that uses the normalized form of 

 ˆ
nkEN p  for choosing the number of segments is the 

Normalized Entropy Criterion (NEC) proposed by 

(Celeux and Soromenho 1996).  This normalized form is 

given by: 
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where  log L *
Ψ  is the log-likelihood in the case of a 

single segment  1K  . This criterion has a shortcoming 

because  ˆ 0nkEN p   for 1K   and so it is unable to 

decide between 1K   and a value of K greater than one.  

(Biernacki, Celeux and Govaert 1999) proposed a 

modification to overcome this limitation.  The modified 

criterion defines 1NEC   for 1K   and then chooses 

the number of segments to minimize NEC. 

 

Another criterion, proposed by (Biernacki, Celeux and 

Govaert 1999), is the Integrated Classification Likelihood 

(ICL), which assumes that 
kN  are sufficiently large 

values. This criterion is chosen in an attempt to overcome 

the shortcomings of BIC and CLC.  It minimizes 
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3. STUDY DESIGN TO ASSESS INFORMATION 

CRITERIA PERFORMANCE  

 
In order to assess the performance of the proposed 

criteria in identifying the correct number of segments, 

synthetic data sets were generated using a GLIM 

algorithm.  The simulation was devised to mimic the 

application of (Camilleri and Green 2004) in which four 

car brands; four price values and two door features were 

generated to define the item attributes.  In the application, 

a full profile approach was employed in which 32 items 

(cards) were generated where each card had a unique 

item attribute combination.  This guaranteed a full 

factorial design.  In the simulation, the item attribute 

values and the number of hypothetical respondents (N) 

were set the same as in the application.  Two sets of 

uniformly distributed pseudo-random real values in the 

range [0,1] were used to generate the age and gender of 

each hypothetical subject.  Pseudo random values less 

than 0.5 in the first set corresponded to male subjects.  

By transforming the pseudo random values in the second 

set using a linear relationship, the ages of the 

hypothetical subjects were generated to vary from 15 to 

75 years.   

 

To allocate the N hypothetical subjects into K segments, 

the proportions 
k  were set the same as in the 

application.  The cumulative probabilities, 
0 1, ,..., Kq q q , 

were computed such that 
1

,
k

k ii
q 


  where 

0 0q   

and 1Kq  .  A set of uniformly distributed pseudo-

random real values was then generated in the range [0, 1] 

to allocate the hypothetical subjects to one of the K 

segments.  Subjects whose corresponding pseudo-random 

values were in the range  1,  k kq q  were allocated to the 



thk  segment.  This classification gave each subject a 

random segment allocation. 

 

To simulate the subjects’ utility responses, the utility 

model (linear predictor) and the parameter values for the 

K segments were set the same as in the application.  The 

utility model included both main effects and interaction 

terms of the item and individual covariates.  32 synthetic 

data values or utility values were generated for each 

hypothetical subject by substituting the parameter values 

and the values of the item and individual covariates in the 

utility model.  

 

Error terms 
i  were added to these utility values to have 

either a logistic or a normal or an extreme value 

distribution.  These error terms were generated by 

transforming pseudo-random real values 
iu  in the range 

[0,1] from a uniform distribution.  If 
i  has a logistic 

distribution then  ln 1i i iu u     ;  1

i iu    if 
i  

have a normal distribution and  ln ln 1i iu       if 
i  

have an Extreme value distribution.  A set of six 

specified cut-point values 
r  was used to convert these 

modified utility values to rates ranging from 1 to 7. Items 

(cards) whose modified worth values were in the range 

 1,r r   were rated in the thr  worth category.  This 

classification gives the rating responses of each 

hypothetical subject a random category allocation.   

 

 
4. RESULTS OF THE FIRST STUDY  

 

An empirical comparison was carried out to determine 

which of the above criteria best select the correct number 

of segments in a Latent Class model.  The study 

compared the performance of the more recently 

suggested criteria such as CLC, NEC and ICL with 

classical procedures such as AIC, MAIC and BIC.  By 

assuming a Logistic distribution, fifteen data sets were 

generated using the same utility model, design matrix and 

parameter values.  These data sets were simulated using 

310N   and 4K  .  Each simulated data set was re-

fitted four times varying the number of segments from 

three to six clusters.  The log-likelihood and the entropy 

were recorded to determine the number of segments that 

minimize the specified criteria.  Solutions that were 

spurious were eliminated and a different random start 

was considered to initialize the EM algorithm.  The 

numbers of parameters for the latent class model with 3, 

4, 5 and 6 segments were respectively d = 58, 76, 94 and 

112.  These include the parameters of ,   and α β π . 

 

It is evident from tables 1 and 3 that the reduction in the 

log-likelihood is significantly larger when fitting 3 and 4 

segments when compared to fitting 4, 5 and 6 segments.  

This implies that the reduction in the log-likelihood tends 

to become smaller when the number of fitted segments 

exceeds the number of true segments.   

 

 

 K=3 K=4 K=5 K=6 

Set  ˆ2log L Ψ   ˆ2log L Ψ   ˆ2log L Ψ   ˆ2 log L Ψ  

1 15059.3 14083.8 14062.4 13933.5 

2 14987.7 14215.6 14099.2 14090.3 

3 15018.0 14106.8 14039.9 13889.7 

4 15107.5 14195.2 14126.9 14047.3 

5 15006.8 14177.2 14107.8 14034.9 

6 15130.1 14191.1 14141.6 14115.3 

7 14972.7 14143.8 14096.5 14025.8 

8 15077.6 14148.0 14082.7 14043.9 

9 15160.7 14096.1 14062.8 13975.8 

10 15032.9 14059.5 13949.6 13822.5 

11 14857.4 14018.3 13943.7 13825.2 

12 14984.5 14170.1 14125.6 14054.2 

13 14931.4 14186.0 14155.4 14087.4 

14 14995.5 14154.7 14098.2 14021.8 

15 15206.0 14363.9 14296.6 14184.3 

 

Table 1: Deviances for 3, 4, 5 and 6 segments 

 

 
 K=3 K=4 K=5 K=6 

Set Entropy Entropy Entropy Entropy 

1 45.54 9.036 16.23 25.89 

2 17.89 10.43 19.93 13.40 

3 42.88 8.590 18.93 28.48 

4 44.91 10.40 26.44 44.34 

5 48.86 12.15 15.82 40.77 

6 81.86 11.72 23.59 34.77 

7 12.21 10.04 20.50 18.60 

8 71.10 10.01 10.76 33.83 

9 53.89 10.75 18.65 24.11 

10 73.70 15.25 16.70 26.16 

11 43.72 10.06 21.99 23.57 

12 74.00 11.15 9.910 20.94 

13 76.76 15.98 16.36 35.73 

14 70.83 10.99 26.35 25.13 

15 8.210 9.998 20.45 43.42 

 

Table 2: Entropies for 3, 4, 5 and 6 segments 

 

 

  ˆ2 log L Ψ  Entropy 

 

K=3 

Mean 15035.2 51.09 

Standard Deviation 90.77 24.04 

Minimum 14857.4 8.21 

 

K=4 

Mean 14154.0 11.10 

Standard Deviation 80.51 2.049 

Minimum 14018.3 8.59 

 

K=5 

Mean 14092.6 18.84 

Standard Deviation 83.60 4.818 

Minimum 13943.7 9.91 

 

K=6 

Mean 14016.8 29.02 

Standard Deviation 98.36 9.202 

Minimum 13822.5 13.4 

 

Table 3: Descriptive statistics for deviances and entropies 



Table 3 displays another interesting result.  The mean and 

standard deviation of the entropy are smallest when 4 

segments are fitted.  These two measures increase when 

the number of fitted segments exceeds the number of true 

segments.  The addition of extra segments increases the 

mean entropy because the centroid separation between the 

segments is reduced. The number of hypothetical subjects 

in these extra segments also affects the size of the entropy. 

 

Tables 4 and 5 show segment membership recovery of the 

310 hypothetical subjects for the 4
th

 and 7
th

 data sets.  The 

entropies for these two data sets were respectively 44.34 

and 18.60.  This implies that the entropy increases as the 

number of hypothetical subjects in these extra segments 

increases.  When the number of fitted segments exceeds 

the number of true segments there are two possible 

outcomes.  If four of the fitted segments include a large 

proportion of the hypothetical subjects such that the other 

two segments have small frequencies then the segments 

are more likely to be well separated and the posterior 

probabilities tend to be close to either 0 or 1.  This yields 

a small entropy value.  However, if one or more of the 

larger segments split, locations of the new clusters are 

relatively close.  Moreover, the proportion of correctly 

classified hypothetical subjects decreases. So the posterior 

probabilities are more likely to be distant from either 0 or 

1, yielding a larger entropy value.  This explains why the 

dispersion of the entropies increases when too many 

segments are fitted. 

 

 
 Fitted Segments 

1 2 3 4 5 6 

True 

Segments 

1 52 0 0 0 36 0 

2 0 67 0 0 0 0 

3 1 0 45 0 1 31 

4 0 0 0 77 0 0 

 

Table 4: Segment allocations for the 4
th

 data set  

 

 

 Fitted Segments 

1 2 3 4 5 6 

True 

Segments 

1 97 0 0 0 0 0 

2 0 58 0 0 0 3 

3 1 0 56 0 15 0 

4 0 0 0 74 0 6 

 

Table 5: Segment allocations for the 7
th

 data set  

 
Table 6 shows the result of the empirical comparison 

between 7 different criteria to determine which one best 

selects the correct number of segments in a Latent Class 

model.  It is evident that the modern procedures NEC and 

ICL outperform the classical procedures AIC and MAIC.  

AIC and MAIC have a tendency to fit too many 

segments, whereas BIC penalize complex models more 

heavily than AIC and MAIC.  The penalty term of most 

criteria depends on one or more of the following features; 

number of estimated parameters, number of subjects and 

entropy.  Criteria that combine two or more of these 

features in the penalty term are superior to those that 

contain only one feature.  The penalty term of AIC and 

MAIC depends solely on number of estimated parameters 

and the penalty term of CLC depends entirely on the 

entropy.  All three are inferior to the other criteria in 

recovering the true number of segments. 

 

 
K AIC MAIC BIC CLC ICL NEC 

sE  

3 0 0 0 0 0 0 0 

4 0 1 12 0 14 14 11 

5 2 2 1 1 1 0 4 

6 13 12 2 14 0 1 0 

 

Table 6:  Criteria Performance (Logistic distribution) 

 
A further task was included in the study to investigate 

how the choice of the distribution function affects the 

performance of the Information Criteria in selecting the 

optimal number of clusters and how it affects segment 

membership recovery.  To carry out this task, a further 

thirty data sets were generated using the same utility 

model, design matrix and parameter values as in the 

previous assignment. A Normal distribution was assumed 

to generate the first fifteen data sets and an Extreme 

value distribution was assumed to generate the rest.  

These data sets were simulated using 310N   and 

4K  .  Each simulated data set was again re-fitted four 

times varying the number of segments from three to six 

clusters.  The log-likelihood and the entropy were 

recorded to determine the number of segments that 

minimize the specified criteria.   

 

Correct segment allocation deteriorates slightly when an 

Extreme value distribution is assumed; however, segment-

membership recovery improves when using a Normal 

distribution.  Tables 7 and 8 show the results of the 

empirical comparison of the Information Criteria when a 

Normal or an Extreme Value distribution was assumed.  

Both tables display that the procedures ICL, NEC and BIC 

outperform the procedures AIC, MAIC and CLC.  This 

implies that the performance of the Information Criteria in 

selecting the correct number of segments is not affected 

much by the choice of the distribution. 

 

 
K AIC MAIC BIC CLC ICL NEC E 

3 0 0 0 0 0 0 0 

4 0 0 14 1 15 15 12 

5 4 5 1 2 0 0 3 

6 11 10 0 12 0 0 0 

 

Table 7:  Criteria Performance (Normal distribution) 

 

 
K AIC MAIC BIC CLC ICL NEC E 

3 0 0 0 0 0 0 0 

4 0 0 10 0 13 12 10 

5 0 0 4 0 2 1 4 

6 15 15 1 15 0 2 1 

 

Table 8:  Criteria Performance (Extreme value distribution) 



5. FACTORS AFFECTING THE PERFORMANCE 

OF LATENT CLASS MODELS  

 
A further task was to examine the performance of latent 

class models by modifying a number of factors. Three of 

the factors that are highlighted in literature (Vriens, Wedel 

and Wilms 1996; Wedel and DeSarbo 1995) as having 

potential effect on model performance include: 

 

 Number of simulated respondents  

 Number of segments 

 Distribution of the dependent variable 

 

The above three factors reflect a variation in conditions in 

many practical applications and which are expected to 

affect the performance of the model fit.  The following six 

measures are normally used to assess computational effort, 

parameter recovery, predictive power, goodness of fit and 

segment membership recovery. 

 

 The percentage of variance, 2R  accounted for by the 

latent class model is a measure of the goodness of fit. 

 

 The number of iterations required for convergence is a 

measure of the computational effort. 

 

 The root-mean-squared error between the true and 

estimated parameters and the root-mean-squared error 

between the true and estimated segment membership 

probabilities are measures of parameter recovery. 
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ˆ  and p p   are respectively the estimated and true 

parameters; whereas P is the number of parameters. 
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ˆ  and k k   are respectively the estimated and true 

segment membership probabilities; whereas K is the 

number of segments. 

 

 The root-mean-squared-error between the true and 

predicted responses is a measure of the predictive 

power. 
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 and njnjy y  are respectively the estimated and true 

responses; whereas N and J are respectively the 

number of simulated respondents and the number of 

items (cards) assessed by each subject. 

 

 The percentage number of subjects that are correctly 

classified into their true segments is a measure of 

segment membership recovery.  A subject is assigned 

to the segment with highest posterior probability. 

6. STUDY DESIGN TO ASSESS THE FACTORS 

THAT AFFECT MODEL PERFORMANCE 

 
In order to assess the factors that affect the performance of 

latent class models, synthetic data sets were generated 

using a GLIM algorithm. The simulation was devised to 

mimic the application of (Camilleri and Green 2004).  The 

design and the utility model (linear predictor) were set the 

same as in the application.  The age and gender of the N 

hypothetical subjects and their segment allocation were 

generated using a similar procedure described in the first 

simulation study.  To simulate subjects’ rating responses, a 

set of parameters was specified such that all the main 

effects and interaction terms in each segment were 

assigned a parameter.  32 synthetic response values were 

generated for each hypothetical subject by substituting the 

parameter values and the values of the item and individual 

covariates in the utility model.    

 

The number of simulated respondents was varied at two 

levels: 200 and 310.  These levels represent a reasonable 

range of sample sizes that are reported in several 

segmentation applications (Wittink, Vriens and Burhenne 

1994; Wedel and Steenkamp 1991).  Standard theory on 

statistical inference suggests that a greater number of 

simulated respondents improve the precision of the 

estimated segment-level parameters. 

 

The number of segments was also varied at two levels.  A 

two-segment and a four-segment condition were used 

because these represent the range of segments commonly 

found in segmentation applications (Wedel and Steenkamp 

1989; DeSarbo, Oliver and Rangaswamy 1989).  It is 

expected that a greater number of segments deteriorate the 

precision of the estimated segment-level coefficients as a 

greater number of model parameters have to be estimated. 

 

The Proportional Odds model can accommodate three 

possible distribution functions.  The Logistic, Normal and 

Extreme value distributions, which respectively lead to 

logit, probit and complementary log-log link functions, 

were all considered. 

 

A problem associated with the application of the EM 

algorithm to latent class models is its convergence to local 

maxima.  It is caused by the likelihood being multimodal, 

so that the algorithm becomes sensitive to the starting 

values used.  The problem of convergence to local optima 

becomes more conspicuous when the component densities 

are not well separated and when the number of estimated 

parameters is large.  This will lead to a relatively weak 

update in the E-step (Wedel and Kamakura 2000).  To 

overcome this problem five starting values were 

considered for each combination of the factor levels 

defined above.  These were selected from a wide range of 

seed numbers.  Another problem with the EM algorithm is 

that the fitted segments are very often a swapped version 

of the true segments.  To overcome this problem, the 

parameters were chosen to contrast considerably between 

segments.  The purpose was to simplify the identification 

of the correct correspondence between the fitted segments 

and the true segments.   

 



7. RESULTS OF THE SECOND STUDY  

 
Five data sets were generated for each factor level 

combination according to the type of distribution, number 

of subjects and number of segments.  Each simulated data 

set was re-fitted using a latent class model.  Solutions that 

were considered spurious were eliminated and a different 

random start was considered to initialize the EM 

algorithm.  The statistics ˆ( )RMS β ˆ( )RMS π  and ˆ( )RMS y   

were computed after permuting the parameters and 

predicted responses to match estimated and true segments 

optimally.  All the six measures were averaged over these 

five data sets.     

 

Table 9 exhibits some differences in the R
2
 measures 

between the types of distributions.  The goodness of fit is 

improved when the choice of the distribution is Normal or 

Logistic.  The value of R
2
 increases with an increasing 

number of segments and a decreasing number of subjects. 

 

Distribution Number of 

respondents 

Number of 

segments 

2R  

Logistic 200 2 0.8516 

Normal 0.8612 

Extreme 0.8394 

Logistic 310 0.8455 

Normal 0.8563 

Extreme 0.8222 

Logistic 200 4 0.9217 

Normal 0.9366 

Extreme 0.8876 

Logistic 310 0.9158 

Normal 0.9193 

Extreme 0.8685 

 

Table 9:  Measures of goodness of fit  

 

Table 10 demonstrates that the number of segments mostly 

affects computational effort.  An increase in the number of 

segments increases the number of iterations required.  The 

number of simulated respondents and the choice of the 

error distribution have negligible effect on computational 

effort. 

 

Distribution Number of 

respondents 

Number of 

segments 

Number of 

iterations 

Logistic 200 2 29.2 

Normal 30.4 

Extreme 31.6 

Logistic 310 32.2 

Normal 28.8 

Extreme 29.4 

Logistic 200 4 36.6 

Normal 37.8 

Extreme 35.8 

Logistic 310 38.2 

Normal 37.6 

Extreme 38.2 

 

Table 10:  Measures of computational effort  

 

Table 11 exhibits that the number of segments and the 

choice of distribution affect the percentage of correctly 

classified subjects; however, the number of subjects has 

negligible effect on segment-membership recovery.  

Segment-membership recovery deteriorates slightly with 

an increase in the number of segments and this 

deterioration worsens when an Extreme value distribution 

is used.  When hypothetical subjects are allocated to 

segments, a mismatch in a four-segment solution is more 

likely to occur than in a two-segment solution.  Segment-

membership is recovered best when using a Normal or a 

Logistic distribution. 

 

Distribution Number of 

respondents 

Number of 

segments 

Segment 

recovery 

Logistic 200 2 98.8% 

Normal 99.0% 

Extreme 95.1% 

Logistic 310 99.3% 

Normal 99.4% 

Extreme 95.2% 

Logistic 200 4 98.5% 

Normal 98.5% 

Extreme 94.3% 

Logistic 310 98.7% 

Normal 98.9% 

Extreme 94.0% 

 

Table 11: Measures of segment membership recovery 

 

Table 12 exhibits that the mean ˆ( )RMS π  is not affected 

by the choice of distribution used. The mean ˆ( )RMS π  

decreases with an increase in the number of segments and 

hypothetical subjects.  Increasing the number of model 

parameters and increasing the sample size improve the 

probabilities of segment membership.  

 

Distribution Number of 

respondents 

Number of 

segments 
rms  π̂  

Logistic 200 2 0.0429 

Normal 0.0461 

Extreme 0.0433 

Logistic 310 0.0325 

Normal 0.0313 

Extreme 0.0329 

Logistic 200 4 0.0238 

Normal 0.0256 

Extreme 0.0219 

Logistic 310 0.0197 

Normal 0.0195 

Extreme 0.0199 

 

Table 12:  Measures of segment proportion recovery  

 

Table 13 demonstrates that the type of distribution affects 

parameter recovery.  The mean ˆ( )RMS β  is lowest when 

the choice of the error distribution is Normal and highest 

when the Extreme value distribution is used.  Parameter 

recovery improves with an increase in the number of 

simulated subjects but deteriorates with an increase in the 

number of segments.   



Distribution Number of 

respondents 

Number of 

segments 
rms  β̂  

Logistic 200 2 0.2215 

Normal 0.2109 

Extreme 0.2678 

Logistic 310 0.1633 

Normal 0.1527 

Extreme 0.2134 

Logistic 200 4 0.2596 

Normal 0.2578 

Extreme 0.3073 

Logistic 310 0.2236 

Normal 0.2227 

Extreme 0.2511 

 

Table 13:  Measures of parameter recovery  

 

Table 14 shows that an increase in the number of subjects 

and a decrease in the number of segments improve the 

predictive accuracy. The Extreme-value distribution yields 

the highest mean value of ˆ( )RMS y  implying that the 

predictive accuracy deteriorates when this distribution is 

used. 

 

Distribution Number of 

respondents 

Number of 

segments 
rms  ŷ  

Logistic 200 2 2.1629 

Normal 2.1538 

Extreme 2.6664 

Logistic 310 2.1215 

Normal 2.1036 

Extreme 2.5319 

Logistic 200 4 3.0516 

Normal 3.0429 

Extreme 3.1219 

Logistic 310 3.0217 

Normal 3.0424 

Extreme 3.1056 

 

Table 14:  Measures of predictive power 

 

 
8   CONCLUSIONS 

 
In the first Monte Carlo study, several Information Criteria 

were proposed to determine the optimal number of 

segments in a Latent Class model. These criteria specify 

different penalty terms to measure the complexity of the 

model.  These penalty terms depend on one or more model 

features, which include the number of estimated 

parameters, number of hypothetical subjects and entropy. 

This study illustrates that information Criteria that 

combine two or more model features in the penalty term 

outperform those criteria that include solely one feature.  

This study also demonstrates that the performance of these 

Criteria is not affected by the choice of the distribution 

function.  

 

The second simulation study reveals several appealing 

results.  Goodness of fit improves and computational effort 

increases with a larger number of segments; however, 

parameter recovery, segment membership recovery and 

predictive accuracy improve with a smaller number of 

segments.  These results conform to standard theory on 

statistical inference.  The choice of the error distribution 

has noticeable effect on model performance.  The Normal 

and Logistic distributions outperform the Extreme value 

distribution.  These two distributions yield better fits and 

improve predictive power, segment membership recovery 

and parameter recovery. In general, the effects of the 

number of simulated subjects on parameter recovery, 

segment membership recovery, computational effort, 

predictive accuracy and goodness of fit are smaller than 

the effects of the number of segments and distribution 

choice. 
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