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ABSTRACT 
 
Latent class methodology has been used extensively in 
market research.  In this approach, segment membership 
and parameter estimates for each derived segment are 
estimated simultaneously.  A popular approach for fitting 
latent class models to rating responses is to assume 
mixtures of multivariate conditional normal distributions.  
An alternative approach is to assume a Proportional Odds 
model.  These two approaches are compared empirically 
in a Monte Carlo study, assessing segment membership 
and parameter recovery, goodness of fit and predictive 
accuracy.   
 
 
INTRODUCTION  
 
Latent class segmentation models are used extensively in 
various fields of application to identify latent segments 
that can explain unobserved heterogeneity in the data. 
Traditionally, segmentation procedures were carried out 
using a two-stage approach in which estimation and 
clustering were conducted consecutively. In the first step, 
individual-level parameter estimates were derived from a 
Normal regression model.  In the second step, individuals 
were clustered on the basis of similarity of the estimated 
parameters using a clustering algorithm.  Typically, latent 
class regression analysis comprises the following three 
simultaneous steps – identify hidden segments; classify 
each individual in an appropriate class and estimate a 
regression model for each segment.  Latent class models 
have been utilized for various types of responses, mainly 
rating responses.  Multivariate normal latent class models 
have been applied by DeSarbo, et al. (1992) to analyze 
rating responses in a conjoint study that examines the 
design of a remote automobile entry device. Helsen, et al. 
(1993) used a similar model to classify countries into 
homogeneous groups having similar patterns of diffusion 
of durable goods.  Ramaswamy, et al. (1993) applied the 
mixture regression model to cross-sectional time-series 
data.  Camilleri and Green (2003) combined a latent class 
model with the proportional odds model to analyze rating 
responses in a study related to car preferences. 

LATENT CLASS MODELS FOR RATING DATA 
 
One approach of utilizing latent class models to rating 
responses is to assume that respondents perceive scale 
spacing so that preferences are used as metric data.  A 
latent class methodology can then be employed by using 
mixtures of multivariate conditional normal distributions 
combined with the EM algorithm to estimate parameters 
of these mixtures.  The conditional multivariate density 

function of the response vectors ( )n njy=y  for 1,...,j J=  

replications, given that the thn  respondent belongs to the 
thk  segment is:  
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where kΣ is the variance-covariance matrix of ny  given 

segment k.  The unconditional density function is: 
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The likelihood approach is very often used for estimation 
of finite mixtures because maximum likelihood estimates 
have been found to be superior to other methods. The log 
likelihood function can be formulated as: 
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The derivatives of the expected log-likelihood function 

( )ln ,E L  π β  with respect to the parameters β and π  

are not straightforward.  An effective procedure that fits a 
latent class model with K segments is to maximize the 
expected complete log-likelihood function using the EM 
algorithm. The EM algorithm augments the observed data 
by introducing unobserved 0-1 indicatorsnkλ , where nkλ  

indicates whether the thn  respondent belongs to the thk  

segment. Given the matrix ( )nkλ=Λ of unobserved data, 

the complete log-likelihood function is: 
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( )ln ,L π β Λ  has a simpler form than ( )ln ,L π β  and is 

easy to differentiate.  Once the parameter estimates for 

kβ and kπ  are obtained, an estimate for the posterior 

probability ( )ˆ nk nkp E λ=  can be calculated using Bayes’ 

theorem. 
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Each iteration is composed of an E-step and an M-step.  
In the E-step, the expected log-likelihood function is 
calculated by replacing( )nkE λ  by ˆnkp . 
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In the M-step the two terms of ( )ln ,E L  π β Λ  are 

maximized separately with respect to the parameters. 
Maximizing the first term with respect to kβ  leads to 

independently solving each of the K expressions 
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Maximizing the second term with respect tokπ , subject to 

the constraint
1

1
K

kπ =∑ , yields 
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The iterative procedure is initiated by setting random 
values toˆnkp .  The algorithm then alternately updates the 

parameters ̂ ˆ,k kπβ and the posterior probabilities ˆnkp  until 
the process converges.  Individuals are then assigned to 
the segment with the highest posterior probabilityˆnkp . 
 
 
An alternative method to use ordered response categories 
is by forming models of cumulative probabilities.  The 
Proportional Odds model described by McCullagh (1980) 
is a cumulative model that preserves the discrete ordinal 
nature of the rating responses. 
 
Let jy  be the rating response for thethj  item using an R-

point Likert scale and let ( )jP y r≤  be the thr cumulative 

probability of this item.  Cumulative probabilities reflect 
the ordering since 
 

( ) ( ) ( )1 2 ... 1j j jP y P y P y R≤ ≤ ≤ ≤ ≤ ≤ =  

 
To include the effects of explanatory variables we use the 
model: 

( ) ( )'
j r jP y r F α≤ = + x β   for 1,..., 1r R= −  

 

( )1 1,..., Rα α −=α  is a vector of cutpoint parameters such 

that  1 2 1... Rα α α −≤ ≤ ≤ , 0α = −∞  and Rα = ∞ .  β is a 

parameter vector that contains the regression coefficients 
for the covariate vector jx . F is a cumulative distribution 

function which includes the logistic, normal or the 
extreme value distributions which respectively lead to the 
logit, probit and complementary log-log link functions.   

( )jP y r=  is just the difference of the thr  and ( 1)thr −  

cumulative probabilities. 
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The link function 1F −  is a strictly monotonic function in 
the range [0, 1] onto the real line.  The cumulative link 
model 

 

( )1 '
j r jF P y r α−  ≤ = +  x β  

 
links the cumulative probabilities to the real line using 
the link function 1F − .  This model assumes that effects 

jx  are the same for each cutpoint, 1,..., 1r R= − .  

 
For the segmentation model the Proportional Odds model 
is extended by considering a latent class model with K 
segments.  Let ( , , )=φ α  β π  be the vector comprising the 

parameters of the latent class model with K segments. The 
thn density function is of the form  
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kπ  are the proportion of respondents that are allocated to 

each segment such that 
1

1
K

kπ =∑  and ( , )jn kP y r= α β  is 

the Proportional Odds model. The log-likelihood function  
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is maximized through the EM algorithm.  The procedure 
is similar to the one described for latent class regression 
models where observed data is augmented by introducing 
unobserved data nkλ  in the complete likelihood function.  
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In the E-step, the expected log-likelihood function is 
derived by replacing nkλ  by posterior probabilitieŝnkp . 
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In the M-step, the two terms on the right hand side of 
[ ( )]E l φ Λ  are maximized separately.  The maximization 

of the first term with respect to kπ , is carried out by the 
method of Lagrange multipliers subject to the constraint 

1
1

K

kπ =∑ .  The maximization of the second term with 

respect to α  and kβ  is carried out by transforming the 
polychotomous responses as a vector of 0-1 indicators, 
which allows the use of Poisson likelihood in the model 

fit.  Hence each term of 
1 1

.ln ( , )
N K

nk n n kp P =∑ ∑ Y y α β is 

considered as a weighted Poisson log-likelihood function.   
 
 
SIMULATION STUDY 
 
In order to assess the performance of the two proposed 
models, synthetic data sets were generated using a GLIM 
algorithm.  The simulation study was devised to mimic 
the application of Camilleri and Green (2003) in which 
four car brands; four price values and two door features 
were generated to define the car attributes.  In the 
application, a full profile design was employed in which 
32 items were generated where each item had a unique 
attribute combination.  This guaranteed a full factorial 
approach.  
 
To simulate subjects’ responses, parameter values were 
required for each of the K segments.  A set of parameter 
values was generated for each model described in the 
preceding section using a data set illustrated in Camilleri 
and Green (2003).  Model 1 is the latent class regression 
model using mixtures of multivariate conditional normal 
distributions.  Model 2 is the latent class model, which 
accommodates a Proportional Odds model using a probit 
link function.  The linear predictor used in both models 
included all main effects and all pairwise interactions of 
the three car attributes.  The parameter vectors kβ  and π  
were used to simulate rating responses and segment 
allocation for each of the N hypothetical subjects. 
 
To allocate the N hypothetical subjects into K segments, 
the known proportions kπ  were used to compute the 

cumulative probabilities, 0 1, ,..., Kq q q , where 0 0q = , 

1

k

k ii
q π

=
=∑  and 1Kq = .  A set of uniformly distributed 

pseudo-random real values was then generated in the 
range [0, 1] to allocate the hypothetical subjects to one of 
the K segments.  Subjects whose corresponding pseudo-
random value was in the range [ ]1,  k kq q−  were allocated 

to the thk  segment.  This classification gave each subject 
a random segment allocation. 
 
To simulate the 32 synthetic data values for each subject, 
given his segment allocation, the known parameter 
values kβ  and the known item attribute values were 
substituted in the linear predictor. The linear predictors 
were then perturbed by adding an error terms iε  to these 
utility values to have either Logistic, Normal or Extreme 
value distribution. These error terms were generated by 

transforming pseudo-random real values iu  in the range 
[0,1] from a uniform distribution.  
   

log
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i
i

i

u

u
ε

 
=  − 

 if iε  has a Logistic distribution 

( )1
i iuε −= Φ  if iε  have a Normal distribution 

( )log log 1i iuε = − −    if iε  has an Extreme distribution 

 
A set of 6 specified cutpoint values rα was used to modify 
these perturbed linear predictors to rating scores ranging 
from 1 to 7.  Utility values ranging from 1rα −  to rα  were 
categorized as having a rating score r.  This classification 
gave the rating responses for each hypothetical subject a 
random category allocation.   
 
To investigate model performance of the two latent class 
models, a number of data sets were generated by using 
different sets of values iu .  Four factors that are listed in 
literature (Vriens, Wedel and Wilms 1996; Wedel and 
DeSarbo 1995) as having potential effect on model 
performance include:  
 
• Number of simulated respondents  
• Number of segments 
• Size of perturbation 
• Distribution of the error terms iε  

 
The size of the perturbation was varied by multiplying the 
error term iε  by a specified scalar c.  These four factors, 
which reflect a variation in conditions in applications, are 
examined as parameters of the experiment since they are 
expected to affect model performance. 
 
The following six measures are normally used to assess 
computational effort, goodness of fit, predictive power, 
parameter recovery and segment membership recovery. 
 
• The percentage of variance, 2R  accounted for by the 

latent class model is a measure of the goodness of fit. 
 
• The number of iterations required for convergence is a 

measure of the computational effort. 
 
• The root-mean-squared error between the true and 

estimated parameters and the root-mean-squared error 
between the true and estimated segment membership 
probabilities are measures of parameter recovery. 
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ˆ  and k kπ π  are respectively the estimated and true 
segment membership probabilities; whereas K is the 
number of segments. 

 
• The root-mean-squared-error between the true and 

predicted responses is a measure of the predictive 
power. 
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ˆnjy and njy  are respectively the estimated and true 

responses; whereas N and J are respectively the 
number of simulated respondents and the number of 
items assessed by each subject.  A predicted response 
for model 2 was set to the rating category with the 
highest predicted probability. 
 

• The percentage number of subjects that are correctly 
classified into their true segments is a measure of 
segment membership recovery.  A subject is assigned 
to the segment with highest posterior probability. 

 
 
RESULTS OF THE SIMULATION STUDY  
 
A major limitation of the EM algorithm is that it can 
converge on local stationary points and global maxima are 
not guaranteed.  To overcome this limitation, f ive data sets 
were generated for each model varying the type of 
distribution for iε , number of subjects N, number of 

segments K and the perturbation constant c.  These starting 
values were selected from a wide range of seed numbers.  
N and K were each varied at two levels (200 and 400 
subjects; 2 and 4 segments).  Two values were considered 
for the constant c (0.3 and 1).  The Logistic, Normal and 
Extreme value distributions were considered for iε .  Each 
simulated data set was re-fitted using either the latent class 

model 1 or model 2. ˆ ˆ( ),  ( )RMS RMSβ π  and ˆ( )RMS y  were 

computed after permuting the parameters and predicted 
responses to match estimated and true segments optimally.  
All the six measures were averaged over these five data 
sets.     
 

Measure N Model 1 Model 2 
200 0.8216 0.8613 2R  
400 0.8056 0.8473 
200 27.4 30.4 Number of 

iterations 400 28.9 28.8 
200 95.1% 99.0% Segment 

recovery 400 97.3% 99.4% 
200 0.2385 0.2109 rms ( )β̂  
400 0.1679 0.1473 
200 0.0352 0.0461 rms ( )π̂  
400 0.0309 0.0302 
200 2.9651 2.1538 rms ( )ŷ  
400 2.8945 2.0956 

 
Table 1: Model performance by number of subjects  

Table 1 displays model performance for the two models by 
considering 2 segments, a perturbation constant 0.3c = , 
and assuming a Normal distribution for iε .  An increase in 
the number of subjects improves parameter recovery; 
however, goodness of fit deteriorates with an increase in 
the sample size. A change in the sample size has negligible 
effect on computational effort and segment membership 
recovery.  A latent class model that accommodates the 
proportional odds model outperforms the latent class 
regression model in all the measures except computational 
effort. 
 

Measure K Model 1 Model 2 
2 0.8512 0.8852 2R  
4 0.9033 0.9361 
2 28.3 29.7 Number of 

iterations 4 35.6 37.4 
2 97.6% 98.3% Segment 

recovery 4 94.8% 97.1% 
2 0.1732 0.1231 rms ( )β̂  
4 0.2536 0.2246 
2 0.0319 0.0322 rms ( )π̂  
4 0.0168 0.0159 
2 2.1156 1.6897 rms ( )ŷ  
4 3.0598 2.6781 

 
Table 2: Model performance by number of segments  
 
Table 2 displays model performance for the two models by 
considering 400 subjects, a perturbation constant 0.3c = , 
and assuming a Logistic distribution foriε . Computational 

effort increases when fitting a latent class model with 
more segments. Parameter recovery, predictive accuracy 
and segment membership recovery deteriorate with an 
increase in the number of segments; however, goodness of 
fit and recovery of segment membership probabilities 
improve by an increase in the number of segments.  Model 
2 performed better than model 1 in almost all the 
measures.  The number of iterations required and the mean 

ˆ( )RMS π  are comparable for both models. 

 
Measure c Model 1 Model 2 

0.3 0.8017 0.8223 2R  
1 0.5452 0.5489 

0.3 30.4 30.9 Number of 
iterations 1 32.2 33.1 

0.3 93.1% 95.3% Segment 
recovery 1 73.4% 79.6% 

0.3 0.2481 0.2134 rms ( )β̂  
1 0.3261 0.3144 

0.3 0.0316 0.0329 rms ( )π̂  
1 0.1896 0.1529 

0.3 2.8614 2.5319 rms ( )ŷ  
1 3.3614 3.2189 

 
Table 3: Model performance by perturbation constant  
 
Table 3 displays model performance for the two models by 
considering 400 subjects and 2 segments and an extreme 
value distribution for iε .  Inevitably, the amount of added 



error decreases the performance of the algorithms, which 
is a well-known result in estimation theory.  Furthermore, 
goodness of fit, parameter recovery, segment membership 
and predictive accuracy recovery deteriorate by increasing 
the error variance.  Once more, model 2 is outperforming 
model 1 in most of the measures. 
 

Measure Distribution Model 1 Model 2 
Logistic 0.9011 0.9216 
Normal 0.9349 0.9356 

2R  

Extreme 0.8544 0.8874 
Logistic 35.7 36.4 
Normal 36.9 37.5 

Number of 
iterations 

Extreme 35.9 35.8 
Logistic 97.8% 98.2% 
Normal 98.3% 98.2% 

Segment 
recovery 

Extreme 90.3% 94.1% 
Logistic 0.2786 0.2586 
Normal 0.2589 0.2572 

rms ( )β̂  

Extreme 0.3325 0.3063 
Logistic 0.0258 0.0227 
Normal 0.0211 0.0231 

rms ( )π̂  

Extreme 0.0312 0.0208 
Logistic 3.0716 3.0511 
Normal 3.0599 3.0435 

rms ( )ŷ  

Extreme 3.2566 3.1207 
 
Table 4: Model performance by type of distribution  
 
Table 4 displays model performance for the two models by 
considering 200 subjects, 4 segments and a perturbation 
constant 0.3c = . For each model, the six measures give 
comparable results when the choice of the distribution is 
Normal or Logistic.  Goodness of fit, parameter recovery, 
segment membership and predictive accuracy recovery 
deteriorate when the extreme value distribution is used. 
The performance of model 1 is at best comparable to 
model 2 when the distribution of iε  is Normal. This is due 
to the fact that model 1 assumes mixtures of multivariate 
conditional normal distributions. 
 
 
 
CONCLUSIONS 
 
A latent class model that accommodates the proportional 
odds model outperforms the latent class regression model 
in segment membership and parameter recovery, goodness 
of fit and predictive accuracy.  Goodness of fit improves 
for fewer data points and more segments; however, 
parameter recovery, segment membership recovery and 
predictive accuracy deteriorate with an increase in fitted 
segments.  Computational effort increases with an increase 
in the number of clusters but is not affected by the choice 
of distribution, sample size and error variance.  The choice 
of the error distribution has noticeable effect on the 
performance of the two models.  The Normal and Logistic 
distributions outperform the Extreme value distribution.  
This may be attributed partly to the similarity of Normal 
and Logistic distributions and partly to the choice of the 
model to generate the parameter vectors kβ  and π . 
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