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ABSTRACT

Latent class methodology has been used extensively in
market research. In this approach, segment membership
and parameter estimates for each derived segment are
estimated simultaneously. A popular approach for fitting
latent class models to rating responses is to assume
mixtures of multivariate conditional normal distributions.
An alternative approach is to assume a Proportional Odds
model. These two approaches are compared empirically
in a Monte Carlo study, assessing segment membership
and parameter recovery, goodness of fit and predictive
accuracy.

INTRODUCTION

Latent class segmentation models are used extensively in
various fields of application to identify latent segments
that can explain unobserved heterogeneity in the data.
Traditionally, segmentation procedures were carried out
using a two-stage approach in which estimation and
clustering were conducted consecutively. In the first step,
individual-level parameter estimates were derived from a
Normal regression model. In the second step, individuals
were clustered on the basis of similarity of the estithate
parameters using a clustering algorithm. Typicallgrat
class regression analysis comprises the following three
simultaneous steps — identify hidden segments; classify
each individual in an appropriate class and estimate a
regression model for each segment. Latent class models
have been utilized for various types of responses,lynain
rating responses. Multivariate normal latent class models
have been applied by DeSarbo, et al. (1992) to analyze
rating responses in a conjoint study that examines the
design of a remote automobile entry device. Helsen, et al.
(1993) used a similar model to classify countries into
homogeneous groups having similar patterns of diffusion
of durable goods. Ramaswamy, et al. (1993) applied the
mixture regression model to cross-sectional time-series
data. Camilleri and Green (2003) combined a latent class
model with the proportional odds model to analyze rating
responses in a study related to car preferences.

LATENT CLASSMODELSFOR RATING DATA

One approach of utilizing latent class models to rating
responses is to assume that respondents perceive scale
spacing so that preferences are used as metric data. A
latent class methodology can then be employed by using
mixtures of multivariate conditional normal distributions
combined with the EM algorithm to estimate parameters
of these mixtures. The conditional multivariate density

function of the response vectoys = (ynj) for j=1,...,J

replications, given that the™ respondent belongs to the
k"™ segment is:

() =2 e 30, =X 2y, )|

where X, is the variance-covariance matrix gf given
segmenk. The unconditional density function is:

fo (VormB) = 21 7 F (VaiB)

The likelihood approach is very often used forraation
of finite mixtures because maximum likelihood esties
have been found to be superior to other methods.Iddn
likelihood function can be formulated as:

N

N K
InL(m,B) =[] f, (oi8) =22 7 (v B
n=. n=1 k=1
The derivatives of the expected log-likelihood flioic
E[InL(m,B)] with respect to the parametepsand =

are not straightforward. An effective procedurat thits a
latent class model witlk segments is to maximize the
expected complete log-likelihood function using
algorithm. The EM algorithm augments the observet d
by introducing unobserved 0-1 indicatd(s, where A,
indicates whether the™ respondent belongs to tHe"
segment. Given the matria = (A, ) of unobserved data,

the complete log-likelihood function is:

InL(m,B|A) :ZN:iAnk.ln e (yn|Bk)+ZN:Z/lnk.ln(ﬂk)

n=1 k=1 n=1k=1
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InL(x,B|A) has a simpler form that L (m,B) and is

easy to differentiate. Once the parameter estsnfate
B, and 7z, are obtained, an estimate for the posterior

probability p, =E(A,) can be calculated using Bayes’
theorem.
By
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Each iteration is composed of an E-step and anédd-st
In the E-step, the expected log-likelihood functian

calculated by replacing(4, ) by p, .

i=1

) whereZK: P =1

A)] :ZN:i P I fo (yn ‘Bk) +ZN:i P -In(75,)

n=1 k=1 n=1k=1

E[InL(m,

In the M-step the two terms oE[In L(n,[S|A)J are

maximized separately with respect to the parameters
Maximizing the first term with respect tf, leads to

independently solving each of tKeexpressions

2 pnk

In i (v,|B,) for k=1..

Maximizing the second term with respecigq subject to

the constraiannk =1, yields

N
7 =iz for k=1,...K
N 7
The iterative procedure is initiated by setting dam
values top, . The algorithm then alternately updates the

parametersfik,@and the posterior probabilitiep,, until

the process converges. Individuals are then asditm
the segment with the highest posterior probabgity

An alternative method to use ordered response caésg
is by forming models of cumulative probabilitieshe
Proportional Odds model described by McCullagh (398
is a cumulative model that preserves the discretmal
nature of the rating responses.

Let y, be the rating response for tfe item using arR-

point Likert scale and IeP(yj < r) be ther™ cumulative

probability of this item. Cumulative probabilitiesflect
the ordering since

P(y;<1)<P(y;<2)<.<P(y;<R)=1

To include the effects of explanatory variablesuse the
model:

P(y, <r)=F(a, +xp) forr=1,...R-1

a= (al,... lo {8 l) is a vector of cutpoint parameters such
that o, <a,<..<0ay,, a,=—o anda,=w. Bis a
parameter vector that contains the regression icaafts
for the covariate vectox; . F is a cumulative distribution

function which includes the logistic, normal or the
extreme value distributions which respectively léathe
logit, probit and complementary log-log link furanis.

P(yj = r) is just the difference of the™ and (r -1)"
cumulative probabilities.

P(y, =r)=F(a, +xB)-F(a +xB)

The link function F is a strictly monotonic function in
the range [0, 1] onto the real line. The cumukatink
model

F'l[P(yj < r)} =a, +x'j[5

links the cumulative probabilities to the real linsing
the link function F™. This model assumes that effects
x; are the same for each cutpoint=1,...,.R—- 1.

For the segmentation model the Proportional Odddemo
is extended by considering a latent class modeh Wit
segments. Lewp =(a,p,x) be the vector comprising the

parameters of the latent class model Witeegments. The
n" density function is of the form

K
P(Yn :ynl(p) :Zmp(Yn :ynlulﬁk)
k=1

75, are the proportion of respondents that are akotd

each segment such th§t“;< . =1andP(y,,=r
the Proportional Odds model. The log-likelihooddtion

Yn :ynlaiﬁk)

is maximized through the EM algorithm. The proaedu
is similar to the one described for latent claggession
models where observed data is augmented by inthogluc
unobserved datd,, in the complete likelihood function.

L(o |A):|jlj[rrk.P(

In the E-step,the expected log-likelihood function is
derived by replacingl,, by posterior probabilitieg,, .

A nk

Yn = yn |a’ﬁk)]

E[I((plA)] = ZZ[ f)nk'ln(T[k) + f)nk'ln P(Yn :ynlal ﬁk)]

n=1 k=1



In the M-step, the two terms on the right hand sifle
E[l(¢|A)] are maximized separately. The maximization

of the first term with respect tar, , is carried out by the
method of Lagrange multipliers subject to the caist
2fnk =1. The maximization of the second term with

respect toe and B, is carried out by transforming the

polychotomous responses as a vector of 0-1 indgato
which allows the use of Poisson likelihood in thedel

fit. Hence each term op "> “ p,.InP(Y, =y, |a.B,) is
considered as a weighted Poisson log-likelihoodtion.

SIMULATION STUDY

In order to assess the performance of the two [mexgbo
models, synthetic data sets were generated usiig
algorithm. The simulation study was devised to mim
the application of Camilleri and Green (2003) iniath
four car brands; four price values and two dootuiess
were generated to define the car attributes. l& th
application, a full profile design was employedwhich

32 items were generated where each item had a eniqu
attribute combination. This guaranteed a full daet
approach.

To simulate subjects’ responses, parameter valwges w
required for each of thK segments. A set of parameter
values was generated for each model describeden th
preceding section using a data set illustratedami@eri

and Green (2003). Model 1 is the latent classession
model using mixtures of multivariate conditionalrmal
distributions. Model 2 is the latent class modghich
accommodates a Proportional Odds model using dtprob
link function. The linear predictor used in bottodels
included all main effects and all pairwise interaics of

the three car attributes. The parameter vediprand =
were used to simulate rating responses and segment
allocation for each of thd hypothetical subjects.

To allocate theN hypothetical subjects intld segments,
the known proportionsr, were used to compute the

cumulative probabilities, q,,q,,...,0, . Where ¢, =0,

O = Zikzlni and g, =1. A set of uniformly distributed

pseudo-random real values was then generated in the
range [0, 1] to allocate the hypothetical subjéatene of
the K segments. Subjects whose corresponding pseudo-

random value was in the ranfg, ,, q,| were allocated

to the k™ segment. This classification gave each subject
a random segment allocation.

To simulate the 32 synthetic data values for eaijest,
given his segment allocation, the known parameter
values B, and the known item attribute values were
substituted in the linear predictor. The lineardctors
were then perturbed by adding an error teemso these

utility values to have either Logistic, Normal oxtEeme
value distribution. These error terms were gendrite

transforming pseudo-random real valugsin the range
[0,1] from a uniform distribution.

g = Iog{li} if & has a Logistic distribution
-y

& =0"(u) if & have a Normal distribution

& =log[ -log(1-u)] if & has an Extreme distribution

A set of 6 specified cutpoint values was used to modify
these perturbed linear predictors to rating scoagging
from 1 to 7. Utility values ranging fromr,_, to a, were
categorized as having a rating scoreThis classification

gave the rating responses for each hypotheticgesuh
random category allocation.

To investigate model performance of the two latdass
models, a number of data sets were generated byg usi
different sets of values, . Four factors that are listed in
literature (Vriens, Wedel and Wilms 1996; Wedel and
DeSarbo 1995) as having potential effect on model
performance include:

¢ Number of simulated respondents
¢ Number of segments

e Size of perturbation

» Distribution of the error terms;

The size of the perturbation was varied by multipgythe
error term & by a specified scalar. These four factors,
which reflect a variation in conditions in applicets, are
examined as parameters of the experiment since atey
expected to affect model performance.

The following six measures are normally used tesss
computational effort, goodness of fit, predictivewer,
parameter recovery and segment membership recovery.

+ The percentage of varianc&® accounted for by the
latent class model is a measure of the goodnéfits of

«  The number of iterations required for convergesca i
measure of the computational effort.

e« The root-mean-squared error between the true and
estimated parameters and the root-mean-squared erro
between the true and estimated segment membership
probabilities are measures of parameter recovery.

(5.2 |

~ P -
RMS(B) = ZL
p=1 P

ﬁp andg, are respectively the estimated and true
parameters; where#&sis the number of parameters.

RMS(#) :{i—(”k _ﬁk)ZT

K



7t andm, are respectively the estimated and true

segment membership probabilities; wher&as the
number of segments.

The root-mean-squared-error between the true and
predicted responses is a measure of the predictive
power.

1
2

Table 1 displays model performance for the two nwoHg
considering 2 segments, a perturbation constan0.3,
and assuming a Normal distribution fgr. An increase in

the number of subjects improves parameter recovery;
however, goodness of fit deteriorates with an iaseein

the sample size. A change in the sample size hggyitde
effect on computational effort and segment memliygrsh
recovery. A latent class model that accommoddtes t
proportional odds model outperforms the latent slas

ars(s)=| 3.3 o)

n=1 j=1 NJ

y,and y, are respectively the estimated and true

responses; whereal and J are respectively the
number of simulated respondents and the number of
items assessed by each subject. A predicted respon
for model 2 was set to the rating category with the
highest predicted probability.

e The percentage number of subjects that are coyrectl
classified into their true segments is a measure of
segment membership recovery. A subject is assigned
to the segment with highest posterior probability.

RESULTSOF THE SIMULATION STUDY

A major limitation of the EM algorithm is that itan
converge on local stationary points and global maxare
not guaranteed. To overcome this limitatifine data sets
were generated for each model varying the type of
distribution for &, number of subjectdN, number of
segmentK and the perturbation constamt These starting
values were selected from a wide range of seed atsnb
N and K were each varied at two levels (200 and 400
subjects; 2 and 4 segments). Two values were demsi

for the constant (0.3 and 1). The Logistic, Normal and
Extreme value distributions were considered §ar Each
simulated data set was re-fitted using either ditenk class
model 1 or model ZRMS(ﬁ), RMS(x) andRMS(y) were
computed after permuting the parameters and pestlict
responses to match estimated and true segmentsatipti

All the six measures were averaged over these data
sets.

M easure N Model 1 Model 2
R? 200 0.8216 0.8613
400 0.8056 0.8473

Number of 200 27.4 30.4

iterations 400 28.9 28.8
Segment 200 95.1% 99.0%
recovery 400 97.3% 99.4%
rms(fi) 200 0.2385 0.2109
400 0.1679 0.1473
rms(&) 200 0.0352 0.0461
400 0.0309 0.0302
rms(y) 200 2.9651 2.1538
400 2.8945 2.0956

Table 1. Model performance by number of subjects

regression model in all the measures except cortipnish

effort.

Measure K Model 1 Model 2
R? 2 0.8512 0.8852
4 0.9033 0.9361

Number of 2 28.3 29.7

iterations 4 35.6 37.4
Segment 2 97.6% 98.3%
recovery 4 94.8% 97.1%
rms(ﬁ) 2 0.1732 0.1231
4 0.2536 0.2246
rms(7) 2 0.0319 0.0322
4 0.0168 0.0159
rms(y) 2 2.1156 1.6897
4 3.0598 2.6781

Table 2: Model performance by number of segments

Table 2 displays model performance for the two nobg
considering 400 subjects, a perturbation constan©.3,
and assuming a Logistic distribution #r Computational

effort increases when fitting a latent class modéh
more segments. Parameter recovery, predictive acgur

and segment membership recovery deteriorate with an

increase in the number of segments; however, gasdofe
fit and recovery of segment membership probahilitie
improve by an increase in the number of segmevizdel

2 performed better than model 1 in almost all the
measures. The number of iterations required amanigan
RMS(rr) are comparable for both models.

Measure c Model 1 Model 2
R? 0.3 0.8017 0.8223
1 0.5452 0.5489

Number of 0.3 30.4 30.9

iterations 1 32.2 33.1
Segment 0.3 93.1% 95.3%
recovery 1 73.4% 79.6%
rms(ﬁ) 0.3 0.2481 0.2134
1 0.3261 0.3144
rms(7) 0.3 0.0316 0.0329
1 0.1896 0.1529
rms(y) 0.3 2.8614 2.5319
1 3.3614 3.2189

Table 3: Model performance by perturbation constant

Table 3 displays model performance for the two nobg
considering 400 subjects and 2 segments and aensxtr
value distribution fog,. Inevitably, the amount of added



error decreases the performance of the algorithvhigh
is a well-known result in estimation theory. Fermore,
goodness of fit, parameter recovery, segment meshiger
and predictive accuracy recovery deteriorate bye@sing
the error variance. Once more, model 2 is outpenifty
model 1 in most of the measures.

M easure Distribution Model 1 Model 2
R? Logistic 0.9011 0.9216
Normal 0.9349 0.9356
Extreme 0.8544 0.8874
Number of Logistic 35.7 36.4
iterations Normal 36.9 37.5
Extreme 35.9 35.8
Segment Logistic 97.8% 98.2%
recovery Normal 98.3% 98.2%
Extreme 90.3% 94.1%
rms(ﬁ) Logistic 0.2786 0.2586
Normal 0.2589 0.2572
Extreme 0.3325 0.3063
rms(&) Logistic 0.0258 0.0227
Normal 0.0211 0.0231
Extreme 0.0312 0.0208
rms(y) Logistic 3.0716 3.0511
Normal 3.0599 3.0435
Extreme 3.2566 3.1207

Table 4: Model performance by type of distribution

Table 4 displays model performance for the two nwbg
considering 200 subjects, 4 segments and a petiomba
constantc =0.3. For each model, the six measures give
comparable results when the choice of the distiobuis
Normal or Logistic. Goodness of fit, parameteroremy,
segment membership and predictive accuracy recovery
deteriorate when the extreme value distributiorused.
The performance of model 1 is at best comparable to
model 2 when the distribution & is Normal. This is due

to the fact that model 1 assumes mixtures of nauitaie
conditional normal distributions.

CONCLUSIONS

A latent class model that accommodates the prapti
odds model outperforms the latent class regressiadel

in segment membership and parameter recovery, gssdn
of fit and predictive accuracy. Goodness of fipmoves

for fewer data points and more segments; however,
parameter recovery, segment membership recovery and
predictive accuracy deteriorate with an increasditiad
segments. Computational effort increases witharease

in the number of clusters but is not affected by ¢hoice

of distribution, sample size and error variancée Thoice

of the error distribution has noticeable effect tre
performance of the two models. The Normal and &figi
distributions outperform the Extreme value disttibn.
This may be attributed partly to the similarity Mbrmal

and Logistic distributions and partly to the choifethe
model to generate the parameter vecfiyrsand = .
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