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Abstract. This paper investigates a new approach to model the stochastic variations in the 

aerodynamic loads on yawed wind turbines experienced at high angles of attack. The method 

applies the one-dimensional Langevin equation in conjunction with known mean and standard 

deviation values for the lift and drag data. The method is validated using the experimental data 

from the NREL Phase VI rotor in which the mean and standard deviation values for the lift and 

drag are derived through the combined use of blade pressure measurements and a free-wake 

vortex model. Given that direct blade pressure measurements are used, 3D flow effects arising 

from the co-existence of dynamic stall and stall delay are taken into account. The model is an 

important step towards verification of several assumptions characterized as the estimated 

standard deviation, Gaussian white noise of the data and the estimated drift and diffusion 

coefficients of the Langevin equation. The results using the proposed assumptions lead to a 

good agreement with measurements over a wide range of operating conditions. This provides 

motivation to implement a general fully independent theoretical stochastic model within a rotor 

aerodynamics model, such as the free-wake vortex or blade-element momentum code, whereby 

the mean lift and drag coefficients can be estimated using 2D aerofoil data with correction 

models for 3D dynamic stall and stall delay phenomena, while the corresponding standard 

derivations are estimated through CFD. 

Nomenclature 

CD
 

drag coefficient 

CL
 

lift coefficient 

CN

 
normal force coefficient 

CT
 

tangential force coefficient 

D
(1)

 drift coefficient 

D
(2)

 diffusion coefficient 

fs 
frequency (Hz) 

M conditional moment 

N sample size 

r local radial position (m) 

R tip radius (m) 

t time (sec) 

Tbin length of the time period at each bin 

Vn normal flow velocity (m/s)  

Vt tangential flow velocity (m/s) 

  

U∞ free stream wind speed (m/s) 

X CL, CD., CN, CT sample data vector 

 angle of attack (rad) 

 mean 

CD mean of drag force coefficient

CL mean of lift force coefficient

 standard deviation 

 total time period (sec) 

0 time increment (sec) 

 yaw angle (deg) 

 blade azimuth angle (deg) 

 bound circulation (m
2
/s) 

G Gaussian white noise (Langevin force) 

  
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1.  Introduction 

Wind turbine design procedures still rely considerably on the use of models that are unable to simulate 

the real unsteady aerodynamic behaviour experienced at high angles of attack. Wind tunnel 

measurements conducted under controlled conditions have evidently shown that wind turbines in yaw 

experience a significant cycle-to-cycle variability in aerodynamic loads at high angles of attack [1]. 

Such behaviour was observed even under simple flow conditions involving a steady and uniform wind 

flow. The unsteady aerodynamic loads can sometimes also be observed under attached flow conditions 

characterized as amplitude and phase variations compared to quasi-steady flow conditions [2]. 

Various models have been developed to simulate the unsteady aerodynamic loads associated with 

dynamic stall. Examples include the Beddeos and Leishman model [2], the Onera model [3], Øye 

model [4] and the Risø fgh model [5]. However, these models still depend on 2D aerofoil wind tunnel 

data and various semi-empirical models that usually cater for 3D aerodynamic phenomena such as 

stall delay. These models are not able to simulate the stochastic cycle-to-cycle variations in the 

aerodynamic loads experienced by the rotor under yawed conditions. 

Several studies have been performed to evaluate the stochastic behaviour of the unsteady 

aerodynamic loads based on measured data from 2D wind tunnels. Bertagnolio at et. [6]  established a 

stochastic approach to model the unsteady effects on a blade exhibiting a static stall originating from 

the self-induced turbulent wake of an aerofoil. The input data to the model can be measured data or 

determined by a CFD code for aerofoil sections at constant angles of attack. The model was also 

applied for wind turbines giving interesting insight on the characteristics of stall. Luhur et al. [7] 

recently developed a stochastic model based on the Langevin stochastic differential equation [8] to 

model the dynamic lift and drag force coefficients on an aerofoil under turbulent wind inflow 

conditions. The work aimed at replacing the 2D typical lookup tables of the static lift and drags force 

coefficients by the dynamic response of the lift and drag forces. Luhur et al. [9] further extended the 

latter work for wind turbine applications. The stochastic model was integrated with the blade element 

momentum (BEM) model in order to predict the dynamic forces on a rotating blade. Although the 

model showed clear insight on the time history of the aerodynamic loads, applications of the model for 

a full scale wind turbine were not provided to demonstrate efficiency of the model. Stochastic models 

have been also used to simulate turbulent atmospheric flows and their effects on the power 

performance of wind turbines as shown in work of Wächter et al. [10] and Gottschall [11]. 

To the authors' knowledge, stochastic modelling of the aerodynamic loads to capture the unsteady 

effects of stalled conditions in yawed rotors is very limited. This work is a first attempt to develop a 

new approach to simulate such a stochastic behaviour. The analysis is based on the NREL Phase VI 

rotor that was tested in the NASA Ames wind tunnel [1]. The main scope is to use experimental data 

for aerodynamic loading for the yawed rotor to verify some assumptions important for developing a 

general fully independent stochastic model. The mean and standard deviation values for the lift and 

drag coefficients derived from such data are used as input in the stochastic model to predict the cycle-

to-cycle aerodynamic based on the principles of Gaussian white noise and the one-dimensional 

stochastic Langevin equation [8]. Through the verification of the various assumptions in the present 

paper, it will be possible to evaluate the potential for developing a general fully independent stochastic 

model in wind turbine aerodynamic design codes such as those based on the Blade-Element-

Momentum (BEM) or free wake vortex (FWV) methods where the mean values of lift and drag 

coefficients are predicted via 2D aerofoil data with correction models for 3D effects arising from 

dynamic stall and stall delay phenomena while the corresponding standard deviation values are 

determined using Computational Fluid Dynamics (CFD). 

2.  NASA Ames UAE Wind Tunnel Data 
For validation of the proposed 3D empirical stochastic model, the two bladed NREL wind turbine 

rotor Phase VI is used [1]. This model is a 10.1m diameter HAWT tested in the NASA Ames 
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24.38m×36.57m wind tunnel. The blade sections have the geometric profile of the S809 aerofoil. The 

case study presented here is for the upwind baseline configuration with a 3
0
-tip pitch angle, a 0

0
-cone 

angle and a constant rotational speed of 71.6 rpm.  Analysis in this study was restricted to a free wind 

speed of 15m/s and a yaw angle of 30
0
. This paper only considered the experimental data collected 

with the ‘H’ configurations (see ref. [1]). 

3.  Methodology Overview 

This section presents the theoretical principles required to build the proposed 3D empirical stochastic 

model. Overviews on these principles are presented as follows: 

3.1 Data Sampling 

The normal and tangential force coefficient data were binned per one-degree azimuth angle. Therefore, 

each individual bin includes a total of 30 data points, each corresponds to an individual rotor rotation. 

The analysis in the remaining sections of this paper was conducted at these samples/bins. Figure 1 

illustrates some samples/bins for these data at U∞=15 m/s at r/R=0.30 at  

  
(a) Normal force coefficient (b) tangential force coefficient 

Figure 1: Variation of normal and tangential force coefficients with blade azimuth angle at U ∞=15 m/s 

at r/R=0.30 at Arrows indicate a selection of data bins for statistical analysis. 

3.2 Normality Test for the Cycle-to-Cycle Aerodynamic Loads 

This subsection presents normality tests carried out using the Shapiro-Wilk p-value (p-value>0.05) 

[12] to identify the type of distribution of the aerodynamic loads along all radial locations and blade 

azimuth angles over 30 rotor rotations. Shapiro-Wilk’s test analyzes the hypothesis of normality based 

on a random sample. It is defined as the ratio of the best estimator of the variance to the usual 

corrected sum of squares estimator of the variance. Further details can be found in [12]. Figure 2 

shows results from the Shapiro-Wilk p-value test for the normal and tangential force coefficients at 

U∞=15m/s and =30
0
. From this test, the percentage numbers of data points having non-normal 

distribution are 10.74% for CN and 13.51% for CT. Hence, it could be reliably assumed that all data are 

normally distributed for engineering analysis. 

3.3 Testing characteristics of White Noise of the Cycle-to-Cycle Aerodynamic Loads 

The autocorrelation function of a continuous random signal can be defined as a condition in which the 

samples are uncorrelated and identically distributed with variance equal to 2
. A white noise process 

is, on the other hand, a random process with a flat power spectral density (PSD). Power spectral 

density function illustrates how much power is included in each of the spectral component and 

describes the distribution of the power of a signal with respect to its frequencies [13]. According to 

Wiener-Khintchine Theorem [14], the Fourier Transform of auto-correlation function of a random 

process is used to calculate the power spectral density function of the random process. The measured 

CN and CT data was binned per one degree azimuth angle (see Figure 1, Subsection 3.1 ). Figure 3 

shows the auto-correlation function and the power spectral density of CN and CT white noise (with zero 
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mean values) determined at wind speed 15m/s at yaw angle 30
0
 at r/R=0.30 at bin 1 given in Figure 1. 

In Figure 3, the auto-correlation function for CN and CT indicates that the CN and CT white noise data 

are zero everywhere except at time lag zero (variance equal to 2
 at zero time lag) meaning that 

samples/variables are statistically uncorrelated with respect to each other. This condition satisfies the 

defined white noise process with variance (2
) equal to variance or power of the corresponding CN and 

CT white noise data at zero time lags. On the other hand, the power spectral density (PSD) of the CN 

and CT white noise data across 30 rotations gives almost fixed power in all the frequency domain (-∞ 

to +∞). The same observation was also found for all other azimuth angle bins for the different radial 

locations. 

  

(a) CN (b) CT 

Figure 2: Normally and non-normally distributed CN and CT data at U∞=15m/s and =30
0
. Dark colour 

indicates the non-normally distributed data (p-value ≤ 0.05), while the white colour indicates the 

normally distributed data (p-value > 0.05). 

  
(a) CN (b) CT 

Figure 3: Power spectral density and auto-correlation function of CN and CT white noise at U∞=15m/s 

and =30
0
 at r/R=0.30 at 
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3.4 Gaussian White Noise (GWN) Process 

In order to model a Gaussian white noise process, the standard Gaussian random variable is a 

commonly used model for a random/stochastic process as given by:  

,1)σ.Normal(0μX   (1) 

where Normal(0, 1) is a random process with zero mean and standard deviation equal to unity, X 

denotes the lift or drag time series. is the mean of lift or drag force which can be determined directly 

from measurements or from 2D aerofoil data and correction models for 3D dynamic stall/stall delay 

implemented in a rotor aerodynamics code (such as FWV/BEM codes). is the standard deviation of 

the lift or drag force which can be either measured data or predicted by a CFD code capable of 

simulating the unsteady aerodynamic loads. To apply equation 1, the optimal sample size should be 

evaluated as follows: 

Optimal Number of Samples 

The optimal number of samples is of great importance for Monte Carlo simulation (MCS) as this 

stochastic technique is mainly based on the use of random numbers to analyze problems of interest. 

The number of samples cannot be randomly selected as this may lead to significant errors in the 

results. In this study, the number of samples is selected according to convergence of standard 

deviation of the investigated parameters; the lift and drag force coefficients using different sets of 

random numbers as input values to equation 1. Thus, the number of samples was gradually increased 

from 0 up 150,000 and the corresponding converged standard deviations of the lift and drag force 

coefficients were determined as shown in Figure 4. From Figure 4, it is obvious that 100,000 samples 

are sufficient for successful Monte Carlo simulation (MCS) as it is guaranteed that the standard 

deviation of such samples is not affected by the sample size, while those below 5000 samples are 

significantly impacted by the sample size. Hence, samples with 100,000 random variables were mainly 

used for the current verifications and analysis in this study. 

  

Figure 4: Illustration for convergence of standard deviation of lift force coefficient to select the 

optimal number of samples for MCS at U∞=15m/s and =30
0
 at r/R=0.30 at  

3.5 One-Dimensional Stochastic Langevin Equation 

The prediction of the aerodynamic loads when moving from one cycle/rotor rotation to another at each 

time step is achieved by applying a first-order stochastic differential equation based on drift and 

diffusion coefficients (the Langevin equation [8]) as given by: 

)()()(
)( )2()1( tXDXD

dt

tdX
G  (2) 

where X denotes the lift or drag force coefficient, and G(t) is Gaussian white noise named as 

Langevin force [8] with mean (  G(t)  =0) and variance (  
G(t)  =2), where  ∙  represents the 

average over time. D
(1)

(X) is the drift term presenting the deterministic part of the Langevin equation 

and it estimates the mean change or mean time derivative of the aerodynamic loads. D
(2)

(X)
 
is the 

diffusion term presenting the stochastic part which is characterized as the fluctuations in the 
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aerodynamic loads since it quantifies the random noisy fluctuations together with G(t). The drift and 

diffusion coefficients can be reconstructed directly from measured data (Siegert et. al [15], Gottschall 

and Peinke [16]) with the use of: 

),(
)(1

!

1
),(

0
lim 


 X

n
M

n
X

n
D   (3) 

where M
(n)

 is the first (n=1) and second (n=2) conditional moment respectively as expressed by 

 



;)(

)( )()(:),(
XtX

nn tXtXXM   (4) 

The drift and diffusion coefficients are determined by dividing the lift and drag force coefficient time 

series in each sample by the number of bins. Equations 3 and 4 are then applied for X(t) =X in each 

bin. The drift coefficient D
(1)

(X) is determined using n=1, while the diffusion coefficient D
(2)

(X) is 

calculated using n=2. Since the Langevin force term, G(t), in Equation 2 involves a Gaussian white 

noise process (a random process), it cannot be assumed that the estimated new stochastic signal, 

representing the aerodynamic loads at each time step, is accurate. This means that several stochastic 

signals will be differ from one another as determined by the term G(t). In order to have a reliable 

estimate of the new stochastic signal of the aerodynamic loads at each time step, Monte Carlo 

simulation (MCS) is performed based on averaged converged standard deviation of different sets of 

estimated stochastic signals as shown in Figure 5. It is apparent that Monte Carlo simulation (MCS) 

requires at least 2000 stochastic signals to successfully provide accurate estimation of the aerodynamic 

loads at each time step. 

  

Figure 5: Illustration for convergence of averaged standard deviation of lift and drag force coefficient 

across different numbers of stochastic signals for MCS at U∞=10m/s and =45
0
 at r/R=0.30 at 

4.  NREL Rotor Lift and Drag Data for Validation of 3D Empirical Stochastic Model 

The proposed stochastic model requires input of both the mean and standard deviation of the lift and 

drag coefficient data for the different rotor blade radial locations and azimuth angles. Such data should 

take into consideration the 3D effects associated with both dynamic stall and stall delay phenomena 

normally experienced by yawed rotors operating with high angles of attack at the blades. To validate 

the proposed model, unsteady lift and drag coefficient data for the NREL rotor were used. These were 

derived directly using the iterative procedure developed by Sant et al. [18] which applies a free-wake 

vortex model to determine the angle of attack from the blade normal and tangential load coefficient 

data obtained from the blade pressure measurements.  In the present study, the free-wake vortex model 

WInDS developed by Sebastian [17] was adopted, allowing the estimation of the time history of the 

time-varying angle of attack  for 30 consecutive rotor rotations, hence accounting for cycle-to-cycle 

variability. A detailed description of this iterative approach may be found in [19]. The time history for 

 was then used with the measured data for the normal and tangential loads to extract the 

corresponding aerodynamic lift and drag coefficients over the 30 rotor evaluations.  Finally, the latter 

values were used to obtain the mean (CL and CD) and standard deviation (CL and CD) values to be 

used as input to the stochastic model. It should be noted that given that direct measured load data were 

used, then 3D flow effects resulting from stall delay and dynamic stall phenomena, as well as those 

associated with the blade flow at the tip, are already taken into account. The standard deviations were 

extracted from the 3D experimental data under various wind speeds and yaw angles as illustrated in 
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Figure 7. These were eventually used as 2D lookup tables in the developed 3D empirical stochastic 

model when modelling the cycle-to-cycle variations of the aerodynamic loads. 

  

Figure 6: Standard deviations of the lift and drag force coefficients derived from the NREL rotor phase 

VI at several radial locations, wind speeds and yaw angles. 

5.  Numerical Algorithm of the 3D Empirical Stochastic Model 

This section describes the numerical algorithm of the stochastic model when implemented in the free-

wake vortex model WInDS [17]. The aerodynamic quantities obtained from the NREL rotor blade 

pressure measurements described in Section 4 above (CL and CD, CL and CD) were used as input 

to predict the cycle-to-cycle aerodynamic loads on a rotating blade of the NREL rotor. The following 

procedure was applied over successive 36 azimuth angle steps (blade rotational increments of 10
0
): 

1. For each new time step, 100,000 random variables (samples) are generated for each individual 

bin following Gaussian white noise (see Equation 1 and Subsection 3.4). These are added to 

the mean experimental aerodynamic lift and drag force coefficients, CLandCD|=0 

determined from the first stage (Section 4) as given by: 

)(0,1.NormalσμC
0ΨCL0ΨCLinitialL 

  (5) 

)(0,1.NormalσμC
0ΨCD0ΨCDinitialD 

  (6) 

where CL and CD are the standard deviation of the lift and drag force coefficients. These are 

computed from the 2D lookup tables generated using the data plotted in Figure 6. 

2. The drift coefficients, D
(1)

(CL|initial,) and D
(1)

(CD|initial,), and the diffusion coefficients, 

D
(2)

(CL|initial,) and D
(2)

(CD|initial,), are determined from the 100,000 samples generated in 

Step 1 of the second stage and Equations 3 and 4. The value of drift can be estimated by fitting 

a linear function, while the diffusion can be predicted by a second-order polynomial with least 

square regression scheme applied for each case. Figure 7 illustrates sample results for the 

estimated D
(1)

(CL|initial,) and D
(2)

(CL|initial,) at bin 4 in Figure 1at U∞= 15m/s and 

at r/R=0.30. 

3. The Langevin process (Equation 2) is then applied to determine the lift and drag force 

coefficients at () or (t=0) over 30 successive rotor rotations as given in the discrete form 

by: 

)()()( 20,NormalΨ,CDτΨ,CDτμC
initialL

(2)
0initialL

(1)
00ΨCL0ΨL 


 (7) 

)()()( 20,NormalΨ,CDτΨ,CDτμC
initialD

(2)
0initialD

(1)
00ΨCD0ΨD 


 (8) 

where )2,0(Normal  is Gaussian white noise with mean 0 and variance 2. The time 

increment 0 is equal to the inverse sampling rate. This may be replaced by the sampling 
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frequency of the actual values. Equations 7 and 8 are solved by Monte Carlo Simulation using 

2000 stochastic random signals as explained in Subsection 3.5 and shown in Figure 8. 

  
(a) D

(1)
(CL, ) (b) D

(2)
(CL, ) 

Figure 7: Estimated drift and diffusion coefficients of CL and CD at bin 4 in 

Figure 1at U∞= 15m/s and at 0.30R.
 

4. Because the aerodynamic loads deviate around the mean CL and CD values at each blade 

azimuth angle across 30 rotor rotations (see Figure 8), the model was extended to present the 

aerodynamic load oscillations for the current time step over 30 rotor rotations as follows: 

)cos(
2

1
s0CL0ΨLmodelL f2πσCC 


 (9) 

)cos(
2

1
s0CD0ΨDmodelD f2πσCC 


 (10) 

where fs is the frequency of the wave  ( bins 1/Tf  ), where Tbin is the length of the time period 

at each azimuth angle or bin presented in Figure 1. In Figure 8, the grey color represents the 

generated 2000 stochastic signals which have been already verified in Figure 5. The solid 

black markers denote the estimated averaged solution over the 2000 stochastic signals 

determined by Equations 9 and 10. Each individual marker represents the predicted value at 

each individual rotor rotation at each new time step and each individual bin. 

 

  
Figure 8: Unsteady normal and tangential force coefficients predicted by the extended model 

(Equation 9 and 10) at U∞= 15m/s, =30
0
, r/R=0.30 at bin 1 in Figure 1. 

5. A necessary step to ensure that the predictions of the aerodynamic loads at each time step are 

reliable is to check for any predicted values outside the 99% confidence interval. It is crucial 

to make sure that 99% of the predicted aerodynamic loads always contain the true value. This 
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coefficients as follows: 
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N
CC L

modelLfinalL




58.2
 (11) 

N
CC D

modelDfinalD




58.2
 (12) 

where N is the sample size (N=100,000). 

6. The bound circulations, B, are computed using the Kutta‐Joukowksi theorem using Equation 

13 and the cycle-to-cycle lift force coefficients CL|final. 

c.VC.Γ relfinalLB
2

1
  (13) 

7. The free wake downstream for the current time step is generated to determine the 3D unsteady 

induced velocities on the lifting line and all wake nodes via Biot-Savart law over 30 rotor 

rotations. The angle of attack is then determined by: 

)/(tan 1
tn VV  (14) 

8. The cycle-to-cycle normal and tangential force coefficients are then determined by Equations 

15 and 16. 

)sin()cos( 
finalDfinalLN CCC   (15) 

)cos()sin( 
finalDfinalLT CCC   (16) 

Steps 1-8 are repeated for all time steps and radial locations over a whole rotor rotation (36 time 

steps). 

6.  Results 

Sample results from the 3D empirical stochastic model are presented in Figure 9 for three individual 

rotor rotations, 10
th
, 20

th
 and 30

th
, at wind speed 15m/s and a yaw angle 30

0
 at the 30% span location. 

Comparisons over 30 rotor rotations are also achieved at U∞= 15m/s at  atR and 0.8R as 

illustrated in Figure 10. It is observed that there is in general very good agreement between the 

measurements and the predictions.  Some slight under/over prediction can be observed in Figure 9 due 

to assumptions and estimations made in this study. It was previously assumed that all data follow a 

normal distribution for each blade radial and azimuth position, but in fact some small regions do not 

really follow Gaussian distributions (Figure 2). It is also expected that the determined drift and 

diffusion coefficients suffer from errors created by the strong measurement noise as well as the curve 

fitting procedure (Figure 7). Despite these, it is shown that the stochastic model is successfully capable 

of reproducing the cycle-to-cycle variability in the load coefficients experienced at blade azimuth 

positions having a large angle of attack. Indeed, the averaged loads are already affected by the 

dynamic stall phenomenon, while the unstable/random process of the dynamic stall vortex shedding 

causes the variations around the mean values from cycle (revolution) to another. Hence, the model is 

able to capture the effects of the 3D dynamic stall vortex shedding at high angles of attack relatively 

well. On the other hand, the strategy of the binning process presented in Figure 1 would simplify the 

complexity of the process used in the developed 3D stochastic model when moving from a bin to 

another (i.e. when progressing with time). Such binning process would typically reduce the correlation 

between the samples/bins given that the averaged values of CN and CT at each new bin are either 

measurements or determined by a dynamic stall and stall delay models integrated with a rotor 

aerodynamics code (as for example FWV or BEM codes). The results shown in Figures 9 and 10 

indicate that the used binning process is still valid to provide an acceptable level of accuracy. 
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Figure 9: A comparison between measured and predicted normal and tangential force coefficients at 

U∞= 15m/s at =30
0
 at 0.3R. These are results of 10

th
, 20

th
 and 30

th
 individual rotor rotations. 
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(b) 0.80R 

Figure 10: A comparison between measured and predicted normal and tangential force coefficients at 

U∞= 15m/s at =30
0
 at 0.3R and 0.8R. Results are shown for 30 rotor rotations. 
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7.  Conclusions 

A 3D empirical stochastic model has been developed and applied to predict the cycle-to-cycle 

aerodynamic loads on the blades of the NREL Phase VI rotor under yawed conditions. The results 

presented here show that the assumptions and approximations (the standard deviation, the normally 

distributed data, the estimated drift and diffusion coefficients and the white Gaussian noise principles) 

used within the 3D empirical stochastic model should provide sufficient accuracy to develop a fully 

theoretical stochastic model for wind turbine design applications. The model presented in this paper 

was based on the input of the mean and standard deviation values of aerodynamic loads from the 

NREL wind tunnel measurements. Further work is intended to apply the same technique with the use 

of dynamic stall and stall delay models integrated in a FWV or BEM model to independently predict 

the mean values of the aerodynamic loads instead of using measurement data, while the standard 

deviation data can be obtained from a CFD code. Further work will also test the developed model with 

different wind turbine rotors for which blade aerodynamic load distribution measurements are 

available over multiple rotations.   
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