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Materials having a negative Poisson’s ratio (auxetic) get fatter rather than thinner when
uniaxially stretched. This phenomenon has been often explained through models that
describe how particular geometric features in the micro or nanostructure of the material
deform when subjected to uniaxial loads. Here, a new model based on scalene rigid
triangles rotate relative to each other will be presented and analysed. It is shown that
this model can afford a very wide range of Poisson’s ratio values, the sign and magnitude
of which depends on the shape of the triangles and the angles between them. This new
model has the advantage that it is very generic and may be potentially used to describe
the properties in various types of materials, including auxetic foams and their relative
surface density. Specific applications of this model, such as a blueprint for a system that
can exhibit temperature-dependent Poisson’s ratios, are also discussed.
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1. Introduction

Auxetic materials, unlike conventional materials, expand transversely when
uniaxially stretched and contract in width when uniaxially compressed, i.e.
exhibit a negative Poisson’s ratio (Evans 1991). Apart from being unusual,
these materials exhibit several enhanced properties, including higher resistance to
indentation, the natural ability to adopt a dome-shape surface and high-energy
absorption properties (Lakes 1987; Evans 1991; Lakes & Elms 1993; Alderson
1999; Scarpa & Tomlinson 2000; Scarpa & Smith 2004). These characteristics
make auxetics suitable for the manufacture of various superior products ranging
from pipes with enhanced shear modulus (Wadee et al. 2007) to more comfortable
cushions that wrap better around human body parts while also offering higher
protection as a result of their enhanced indentation resistance (Evans 1991).
Other proposed that products made from auxetic components include specially
designed ‘expanding blast-proof curtains’ made using auxetic fibres aimed at
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protecting people in an explosion by capturing debris from smashed glass
(EPSRC 2010), smart medical dressings that release medication in proportion
to the extent of swelling (Alderson 1999) and several components of aircrafts,
naval vessels and automobiles (Burke 1997).

Over the past few decades, several naturally existing auxetics have been
discovered. These include biomaterials such as cow teat skin (Lees et al. 1991)
and cat skin (Veronda & Westmann 1970), as well as inorganic materials such
as silicates (Yeganeh-Haeri et al. 1992; Alderson et al. 2005; Grima et al.
2005), zeolites (Grima et al. 2000, 2007a) and metals (Baughman et al. 1998).
In addition to these, several man-made auxetic materials have been designed
and/or manufactured. These include auxetic foams (Lakes 1987; Chan & Evans
1997; Scarpa et al. 2004; Bezazi & Scarpa 2006; Grima et al. 2009), microporous or
nanostructured polymers (Evans & Caddock 1989; Alderson et al. 1997; He et al.
1998) and fabrics (Hook et al. 2006; Liu et al. 2010). In all of these materials,
the negative Poisson’s ratio can be explained in terms of particular geometric
features in the materials’ micro or nanostructure (geometry) and the way these
deform when a uniaxial stress is applied (the deformation mechanism), as is the
case with most material where a certain mechanical property is correlated to
the microstructure (Ashby et al. 1995; Gibson et al. 1995).

In fact, in an attempt to attain a better insight into the mechanisms that result
in auxeticity, various geometry-based models have been proposed and developed
not only to explain the observed negative Poisson’s ratios in naturally occurring
auxetic materials, but also to act as a blueprint for the design and manufacture
of novel man-made auxetics. These include two-dimensional models based on the
re-entrant hexagonal honeycomb structure (Gibson et al. 1982; Masters & Evans
1996) deforming through flexure and/or hinging, dilating structures (Masters &
Evans 1996; Grima et al. 2008a), chiral structures (Wojciechowski & Branka
1989; Lakes 1991; Grima et al. 2008b), models based on rigid ‘free’ molecules
(Wojciechowski 2003; Wojciechowski & Frenkel 2004) and ‘rotating polygons’
models based on rotating squares, triangles, rectangles, parallelograms or rhombi
(Grima & Evans 2000a; Ishibashi & Iwata 2000; Grima et al. 2011). Three-
dimensional models for auxetics include models based on rotating and/or dilating
tetrahedra (Alderson & Evans 2002) and three-dimensional cells having re-entrant
features (Evans et al. 1994; Choi & Lakes 1995). Here, it should be noted that
although two-dimensional models have their obvious limitations when compared
with three-dimensional models, their popularity lies in the fact that they are
less complex to analyse, while at the same time often being adequate enough to
predict the behaviour of particular two-dimensional projections of a more complex
three-dimensional arrangement where the Poisson’s ratios is being measured (the
Poisson’s ratio is a two-dimensional property).

In recent years, models based on rotating polygons have attracted considerable
attention in view of their ability to explain the observed auxeticity in various
materials ranging from zeolites to foams. For example, it has also been proposed
that some zeolite-type frameworks may also exhibit negative Poisson’s ratios as
a result of nano-level deformations, which can be explained through rotating
triangles or rotating square models where the triangles or squares represent
the two-dimensional projection of the nano framework (Grima et al. 2000).
Also, a recent study discussing rotating different-sized rectangles and squares
suggests that a generic rotating rectangle model can be useful in describing the
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properties of various materials such as liquid crystalline polymers and silicates
(Grima et al. 2005, 2011). Furthermore, it has also been proposed that the concept
of rotating triangles can be used to explain the experimentally measured negative
Poisson’s ratios in polymeric foams manufactured through the classic thermo-
mechanical process (Lakes 1987) or the more recently proposed chemo-mechanical
process (Grima et al. 2009). In such a description, the triangles represent the two-
dimensional projection of the joints in the foam, which are proposed to behave
like rigid units that rotate relative to each other (Grima et al. 2006), a hypothesis
that is supported by three-dimensional X-ray microtomography (McDonald et al.
2010) and scanning electron microscope (SEM) images (Bianchi et al. 2010,
2011). However, although this concept marks an important step forward in
elucidating the mechanisms that result in negative Poisson’s ratio in auxetic
foams, auxetics that are probably the closest to commercialization, the existent
highly symmetric rotating triangle models (Grima & Evans 2006, 2010) cannot
be used to realistically model the behaviour of foams because the microstructure
of foams is too complex to describe it through highly symmetric models. In
view of this, in an attempt to produce a more realistic and generic model that
can better predict the behaviour of real auxetic materials, such as auxetic foams
that may have rather irregular microstructures, here we propose and discuss a
highly generic model built from scalene triangles. In particular, we derive the
mechanical properties of systems made from tessellates of two non-equivalent
scalene triangles connected together through their vertices via flexible hinges and
show that amongst other things, this generic model can predict Poisson’s ratios
that are similar in magnitude to those measured in foams.

2. Generic analytical model

Referring to figure 1, the proposed model consists of two non-equivalent rigid
scalene triangles with sides a1, b1, c1 and a2, b2, c2, respectively, with corresponding
interior angles a1, b1, g1 and a2, b2, g2, where the interior angle a1 lies opposite to
the side of length a1 and similarly for the other interior angles. These triangles
are connected through simple flexible hinges with angle 4 at point A, angle u at
point B and angle q at point C so as to form a tessellation (figure 1). For ease of
reference, this system will be denoted by [a1 × b1 × c1, a2 × b2 × c2].

Uniaxial tensile or compressive loading of such structures will result in a change
in the angles 4, u, q between the triangles, which—as discussed below, for some
particular combinations of the geometric variables and for particular directions
of loading—result in a negative Poisson’s ratios (figure 2).

Note that the angles 4, u and q are interdependent variables and can be re-
written in terms of each other and the internal angles of the triangles through,

4 = q − a1 + g2 = u + b1 − a2

u = q + g1 − b2 = 4 − b1 + a2

and q = u − g1 + b2 = 4 + a1 − g2

⎫⎪⎬
⎪⎭. (2.1)

Also note that because it is being assumed that the triangles are perfectly rigid
but may rotate relative to each other, then it is clear that for a given set of
triangles the parameters a1, b1, c1, a2, b2 and c2 remain constant and, because
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Figure 1. (a) The system made from connected different-sized scalene triangles of dimensions
a1 × b1 × c1 and a2 × b2 × c2 (denoted by [a1 × b1 × c1, a2 × b2 × c2]) discussed in this paper. (b)
The parallelogramic unit cell where X22 = l2 is parallel to the Ox2 direction, whereas X11 is the
projection of the unit cell in the Ox1 direction and a12 is the unit cell angle.
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Figure 2. A typical deformation profile that may be obtained from the model proposed. Shown
here is the deformation of the different-sized scalene triangles structure [2 × 7 × 6, 8 × 5 × 4]. Note
that this structure is both auxetic and conventional, depending on the value of angle between
the triangles. This figure is also provided as an animation (electronic supplementary material, see
Anim-2). (Online version in colour.)
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the parameters 4, u, q are interdependent variables, then the geometry of the
system at any instant is only dependent on a single variable (e.g. q).

Thus, as illustrated in figure 1, the shape and size of this system can be
described in terms of q through a parallelogramic unit cell of side lengths l1,
l2 and included angle a12 given by

l1 =
√

c2
1 + c2

2 + 2c1c2 cos(q − a1 − b2) (2.2)

l2 =
√

b2
1 + b2

2 − 2b1b2 cos(q + g2) (2.3)

and a12 = cos−1
(
l21 + l22 − l23

2l1l2

)
, (2.4)

where l3 is the diagonal of the unit cell opposite to angle a12, which can be
written as

l3 =
√

a2
1 + a2

2 − 2a1a2 cos(q + g1). (2.5)

For the purpose of this derivation, it will be assumed that the structure is aligned
in such a way that the unit cell side of length l2 is always aligned parallel to
the Ox2 direction while allowing the other unit cell side of length l1 to assume
any direction. Here, it should be noted that there is no simple way how to
experimentally determine the mechanical properties of real macrosystems with
non-zero shear coupling coefficients such as the ones studied here because the
standard mechanical property testing techniques are inappropriate for testing
of such systems. In particular, under certain loading conditions, loading the
structure in certain directions may cause the unit cell in figure 1 to rotate with
respect to the global axis, something that is not catered for in this model.
Nevertheless, the alignment assumed here is suitable for modelling of systems
that undergo very small deformations, which are loaded in the appropriate
manner so as to ensure that assumptions made here remain valid. Also, the
imposition of an alignment constraint, such as the one imposed here, is essential
as otherwise the system becomes indeterminate. In fact, it should be noted that
this type of alignment is typical in the molecular modelling of crystals and is the
standard alignment method used in a number of molecular modelling packages
(e.g. CERIUS2, Accelrys Inc.; Grima et al. 2000; Alderson et al. 2005).

With this proposed alignment, the projections of the unit cell in the Ox1 and
Ox2 directions are, respectively, given by

X11 = l1 sin a12 =
√

4l21 l22 − (l21 + l22 − l23 )2

2l2
(2.6)

and

X22 = l2 (2.7)

Before proceeding any further, it should be noted that such tessellation
is not necessarily space-filling. Also, not all structures for all angles are
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physically realistic owing to overlapping of triangles. In fact, the hinging angle
q for physically realistic structures where the triangles do not overlap must
range between

max(0◦, b2 − g1, a1 − g2) ≤ q ≤ min(360◦ − g1 − g2, 180 + a1, 180 + b2). (2.8)

Furthermore, it should be highlighted that the way the two different scalene
triangles are connected is important and different mechanical properties result
for different connectivities.

(a) On-axis mechanical properties

The system discussed here is an anisotropic structure, i.e. a structure that
behaves differently when loaded in different directions (Daniel & Ishai 1994).
The behaviour of such structure when subjected to normal and/or shear stresses
can be described using the (3 × 3) symmetric compliance matrix S having six
independent terms that relate the applied stress s to the resulting strain 3 through
3 = Ss, where S is of the form (Daniel & Ishai 1994):

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
E1

−n21

E2

h31

G12

−n12

E1

1
E2

h32

G12

h13

E1

h23

E2

1
G12

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.9)

where Ei is the Young’s modulus in the Oxi direction, G12 is the shear modulus
in the Ox1–Ox2 plane, whereas hi3 and h3i are the shear coupling coefficients
as defined and used elsewhere (Grima & Gatt 2010). In the case of an isotropic
material, i.e. a material that has an infinite number of symmetric planes, the
mechanical properties for loading at different directions are equal such that
the compliance matrix reduces to

S = 1
E

(1 1 0
1 1 0
0 0 0

)
(2.10)

(i) On-axis strains

Applying infinitesimally small stresses results in infinitesimally small changes
dq in the angle q between the triangles, which in turn results in infinitesimally
small uniaxial strains d3i in the Oxi directions and/or infinitesimally small shear
strains dg in the Ox12 plane. These strains may be defined as

d3i = dXii

Xii
= 1

Xii

dXii

dq
dq (i = 1, 2) (2.11)
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and (Grima et al. 2007b, 2010)

dg = 1
X11

(
cos a12

dl1
dq

− l1 sin a12
da12

dq
− m

dl2
dq

)
dq, (2.12)

where

m = l1 cos a12

l2
(2.13)

that is

d31 = 1
4l42X 2

11

⎛
⎜⎝

2a1a2l22 (l21 + l22 − l23 ) sin(q + g1)

+b1b2(l21 + l22 − l23 )(l21 − l22 − l23 ) sin(q + g2)

+2c1c2l22 (l21 − l22 − l23 ) sin(q − a1 − b2)

⎞
⎟⎠dq (2.14)

d32 = dX22

X22
= 1

l22
b1b2 sin(q + g2)dq (2.15)

and dg = −X−1
11 l−3

2 (a1a2l22 sin(q + g1) + b1b2(l21 − l23 ) sin(q + g2)

+ c1c2l22 sin(q − a1 − b2))dq (2.16)

(ii) On-axis Poisson’s ratios and the shear coupling coefficients

The Poisson’s ratios nij in the Oxi–Oxj plane for loading in the Oxi direction
can be defined by

nij = −d3j

d3i
(i, j = 1, 2) (2.17)

i.e. by substituting equations (2.14) and (2.15) in equation (2.17), the Poisson’s
ratios for loading in the Oxi directions are given by

n21 = n−1
12 = −

⎛
⎜⎝

2a1a2l22 (l21 + l22 − l23 ) sin(q + g1)

+b1b2(l21 + l22 − l23 )(l21 − l22 − l23 ) sin(q + g2)

+2c1c2l22 (l21 − l22 − l23 ) sin(q − a1 − b2)

⎞
⎟⎠

× (
4X 2

11l
2
2 b1b2 sin(q + g2)

)−1
(2.18)

Note that this expression may in general assume both positive and negative
values as illustrated in figure 3, which shows the variation of n21 against q
for the system in figure 2, which corresponds to a system having dimensions
[a1 × b1 × c1, a2 × b2 × c2] = [2 × 7 × 6, 8 × 5 × 4]. In figure 3b, it should be noted
that at q = 0◦, the structure is fully closed such that when the structure is
loaded, a more open structure results owing to an expansion in both the loading
and lateral directions. Such behaviour is particularly evident for space-filling
structures, which will be discussed later. (electronic supplementary material,
Anim-2 and Anim-6i–6xi show this more clearly.) This plot clearly shows that
there are two values of q where the Poisson’s ratio changes sign, which correspond
to the values of q where the numerator or the denominator of the expression
in equation (2.18) become zero. It should however be highlighted that this is
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Figure 3. (a) A typical structure and (b) plot of the on-axis Poisson’s ratio for a general case
where [a1 × b1 × c1, a2 × b2 × c2] = [2 × 7 × 6, 8 × 5 × 4]. This system is geometrically realizable
for hinging angle q between 0◦ and 195◦ (correct to nearest degree) and may be both auxetic and
conventional depending on value of angle between the triangles as evident from the plot. (Online
version in colour.)

not always the case. For example, as discussed below, there are some special
cases where the Poisson’s ratio is constant throughout the deformation with a
removable discontinuity in the Poisson’s ratio corresponding to a value of q which
makes both the denominator and numerator equal to zero.

In a similar manner, the shear coupling coefficients, defined as the ratio of the
normal to shear strain, are defined by

h13 = h−1
31 = dg

d31
and h23 = h−1

32 = dg

d32
, (2.19)

where d31, d32 and dg are given in equations (2.14)–(2.16). Note that, in general,
these terms may be non-zero meaning that the system may shear upon uniaxial
on-axis loading in the Oxi directions.

(iii) On-axis Young’s and shear moduli

As noted above, the triangles in the structure are interconnected at their
vertices through simple flexible hinges. In particular, referring to figure 1, each
unit cell contains three hinges that correspond to each of the 4, u and q angles
(henceforth referred to as the 4-, u- and q-hinge, respectively), where the values
of the angles 4, u and q are related to each other using equation (2.1). The
stiffness of the structure is imparted through the stiffness of these hinges and
may be defined through a stiffness constant Kh.

The Young’s moduli can be obtained by an energy conservation approach.
Assuming that the only mode of deformation is hinging, i.e. the triangles are
perfectly rigid, a stress applied along one of the Oxi directions will result in a
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change in the hinging angles 4, u, q denoted by d4, du and dq, respectively.
The work required to produce these changes is given by

W = 1
2Kh(dq)2 + 1

2Kh(df)2 + 1
2Kh(du)2, (2.20)

where Kh is the stiffness constant of the hinges. Analysis of equation (2.1) implies
that the changes in the hinging angles are equal to each other, i.e. dq = df = du.
Thus, the total work performed per unit cell, W , is given by

W = 3
2Kh(dq)2. (2.21)

The strain energy U per unit volume owing to an infinitesimally small strain d3i
in the Ox1 direction by is defined

U = 1
2Ei(d3i)2, (2.22)

where Ei is the Young’s modulus of the structure along the Oxi direction. From
the principle of conservation of energy, U and W are related to each other through

U = W
V

, (2.23)

where V is the volume of the unit cell given by

V = X11X22z = z
2

√
4l21 l22 − (l21 + l22 − l23 )2 (2.24)

and z is the out-of-plane thickness of the triangles. Hence, from equations (2.14),
(2.15), (2.21)–(2.24), the Young’s moduli in the Oxi direction simplify to

E1 = 48Khl72 X 3
11

z

⎛
⎜⎝

2a1a2l22 (l21 + l22 − l23 ) sin(q + g1)
+b1b2(l21 + l22 − l23 )(l21 − l22 − l23 ) sin(q + g2)
+2c1c2l22 (l21 − l22 − l23 ) sin(q − a1 − b2)

⎞
⎟⎠

−2

(2.25)

and

E2 = 3Khl32
b2
1b

2
2X11z sin2(q + g2)

. (2.26)

Through a similar energy conservation approach, the shear modulus G12 can be
derived. In this case, the strain energy per unit volume is given by

U = 1
2G12 (dg)2 . (2.27)

Hence, by substituting equations (2.16), (2.21) and (2.23) in equation (2.27) and
re-arranging, the shear modulus simplifies to

G12 = 3Khl52X11

z
(a1a2l22 sin(q + g1) + b1b2(l21 − l23 ) sin(q + g2)

+ c1c2l22 sin(q − a1 − b2))−2 (2.28)

(b) Off-axis mechanical properties

The mechanical properties for loading in an off-axis direction may be obtained
by transforming the on-axis properties using standard axis transformation
techniques (Nye 1957). It should be noted that in addition to the dependency of
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the Poisson’s ratio and other properties on the hinging angle q and the lengths
of the sides, the Poisson’s ratio and other mechanical properties may also be
dependent on the loading direction.

In particular, the Poisson’s ratio of a structure made of two non-equivalent
scalene triangles when loaded at angle x clockwise with the Ox1 axis is given by
(Nye 1957)

n
x
12 =

[
n12 cos4(x)

E1
− cos3(x) sin(x)

(
h32

G12
− h13

E1

)

− cos2(x) sin2(x)
(

1
E1

+ 1
E2

− 1
G12

)

− cos(x) sin3(x)
(

h31

G12
− h23

E2

)
+ n21 sin4(x)

E2

]
E x

1 , (2.29)

where

E x
1 =

[
cos4(x)

E1
+ cos3(x) sin(x)

(
h31

G12
+ h13

E1

)

− cos2(x) sin2(x)
(

n12

E1
+ n21

E2
− 1

G12

)

+ cos(x) sin3(x)
(

h23

E2
+ h32

G12

)
+ sin4(x)

E2

]−1

. (2.30)

The off-axis plots that correspond to the systems illustrated in figure 2 (i.e. the
structure [2 × 7 × 6, 8 × 5 × 4] when q = 50◦, 100◦ and 150◦) are shown in figure 4.
Note that as already pointed out when discussing the on-axis Poisson’s ratio, in
general the structure may be auxetic and non-auxetic for loading at different off-
axis angle x, i.e. the Poisson’s ratio depends not only on the geometric parameters
(i.e. the lengths of sides of the triangles and the hinging angle q) but also on the
loading direction x. However, this is not always the case and as discussed below,
for example, the system where a1 = b1 = c1 = a2 = b2 = c2 has a constant Poisson’s
value of −1, which is independent of the loading direction (Grima & Evans 2006).
Note also that there seems to be no apparent correlation between the direction at
which maximum auxeticity is obtained and the geometry of the structure. This
can be inferred by comparing the polar plots of the off-axis Poisson’s ratio n

x
12

against the loading direction x in figure 4 with the structures at the corresponding
hinging angle shown in figure 2, and that there may be particular systems that
are not auxetic for loading in any direction.

3. Discussion

The expressions and plots presented above highlight the fact that systems made
from rigid triangular units that can rotate relative to each other may exhibit
negative Poisson’s ratios. This is very significant, not only due to the fact that
it is well known that a negative Poisson’s ratio is a highly desirable property
and may lead to enhancements of various useful properties, but also in view
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Figure 4. The off-axis Poisson’s ratio for the structure discussed shown in figure 2: [a1 × b1 × c1,
a2 × b2 × c2] = [2 × 7 × 6, 8 × 5 × 4] at hinging angles 50◦, 100◦, 150◦. The shaded regions show
ranges of loading direction where the system is auxetic. It is clearly evident that auxeticity
for a particular structure depends on the hinging angles and on the loading direction. (Online
version in colour.)

of the fact that as discussed below, there are various auxetic materials that
have nano or microstructural features, which make them describable through
the model presented here, including the (010) plane of the nepheline hydrate I
(JBW) zeolite (Grima et al. 2000), hypothetical polyphenylacetylene networks
(Grima & Evans 2000b) and the microstructure of foam (Grima et al. 2006).
However, the equations also highlight the fact that not all systems made from
rotating rigid triangles exhibit negative Poisson’s ratios since for a given set
of triangles [a1 × b1 × c1, a2 × b2 × c2] the occurrence or otherwise of auxetic
behaviour may depend on the angle between the triangles and the direction of
loading. For example, figure 3 clearly shows that for loading in the Ox2 direction,
the Poisson’s ratio n21 of the system in figure 2 having triangles of dimensions
[2 × 7 × 6, 8 × 5 × 4] may be either negative or positive, depending on the angle
between the triangles, q. In fact, figure 3 suggests that the Poisson’s ratio n21 is
negative for systems having small values of q, which become positive through a
continuous transition when q ≈ 58◦, a value that makes the numerator of equation
(2.18) equal to zero and then changes sign again in an asymptotic manner when
q ≈ 156◦, which corresponds to the point when the denominator of equation (2.18)
is equal to zero (i.e. when sin(q + g2) = 0). Note that this asymptotic change in
the Poisson’s ratio occurs at the point where the Young’s modulus in the Ox2
direction becomes infinite (sin(q + g2) is also in the denominator of E2), thus
suggesting that the system becomes ‘locked’ for stretching in the Ox2 directions.
This ‘locking’ occurs as a result of the fact that as illustrated in figure 5a, the
system when sin(q + g2) corresponds to the ‘fully open’ conformation of this
structure in the Ox2 direction, something that happens when the side b1 becomes
aligned with b2 and with the Ox2 direction (the stretching direction). Obviously, it
should be noted that the systems with q being greater than the ‘locking angle’ (i.e.
the angle when the structure becomes locked upon stretching) are geometrically
feasible and in such systems, stretching would result in a decrease in the angle
q, not an increase. In fact, it should be noted that one may ‘force’ the system to
move from one side of the ‘locking angle’ to the other by physically rotating one
of the triangles, or, if possible, by applying a moment through shearing.
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Figure 5. Structures at the ‘locking angle’: (i) an example of a general system having triangular
dimensions [a1 × b1 × c1, a2 × b2 × c2] = [2 × 7 × 6, 8 × 5 × 4] and (ii) a particular system having
triangular dimensions [a × b × c, ka × kb × kc] = [0.8 × 1.0 × 1.2, 1.6 × 2.0 × 2.4]. Locking of the
structure (i) occurs when the sides of length b1 and b2 are aligned with the loading direction, i.e.
when q + g2 = 180◦, in this case when q = 156◦. In the particular case (ii) where the triangles are
similar, the structure is locked when sides of length a, b and c in one triangle are aligned collinearly
with sides of length ka, kb and kc of the other triangle that geometrically explains why such system
‘lock’ at the same value of q (q = 180◦ − g) for loading in any direction. Obviously, this will not
be possible in the general case where the locking angle is dependent on the direction of loading.
(Online version in colour.)

Note also that as n12 = n−1
21 , the continuous transition in n21 necessarily

corresponds to an asymptotic transition in n12, a point that corresponds to the
point when E1 becomes infinite, i.e. the system becomes ‘locked’ for stretching in
the Ox1 directions. This may be easily inferred by looking at the expressions for
n12 and E1, which share the same denominator. It should also be noted that the
Poisson’s ratios n12 and n21 must necessarily have the same sign since these two
properties are the reciprocal of each other.

Although the behaviour illustrated in figures 3 and 4 is typical for systems
where a1 �= b1 �= c1 �= a2 �= b2 �= c2, not all systems behave in this manner. In fact,
as discussed in electronic supplementary material, appendix A, there are various
special cases arising from particular combinations of the dimensions of the
triangles in the generalized model where the behaviour is much simpler.

In particular, it is shown that the Poisson’s ratio of the congruent equilateral
triangles structure, denoted by [a × a × a, a × a × a] (figure 6i), is equal to
−1 for all values of the hinging angle q and for all loading directions, i.e.
its Poisson’s ratio is strain-independent and isotropic. This is in accordance
with previous work by Grima & Evans (2006). Furthermore, this system
does not shear upon loading since it exhibits an infinite shear modulus. It
is interesting to note that such non-shearing systems having isotropic strain-
independent Poisson’s ratio of −1 may be obtained from the much more
general system [a × b × c, ka × kb × kc] (figure 6xi), which may be regarded as
the parent case of a number of much more symmetric systems. These include
the system [a × a × a, ka × ka × ka], which represents a system made from two
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Figure 6. The special cases of the structure [a1 × b1 × c1, a2 × b2 × c2] considered in this work,
namely (i) The congruent equilateral triangles; (ii) The different-sized equilateral triangles; (iii–v)
congruent isosceles triangles; (vi–x) congruent scalene triangles; (xi) similar scalene triangles. Cases
(i), (ii), (iv), (x) and (xi) are isotropic and strain-independent with Poisson’s ratios of −1. As can
be seen cases, (i), (iii)–(vii) can be described using a rectangular unit cell. Such structures do not
shear when loaded along their line of symmetry, i.e. along Ox2. Animations illustrate how these
structures behave when unixial loaded are shown in electronic supplementary material, Anim-6i–
6xi. These structures are discussed in detail in the electronic supplementary material, appendix A.
(Online version in colour.)
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similar equilateral triangles (figure 6ii); the system [a × b × a, a × b × a], which
represents one of the three systems made from congruent isosceles triangles
(figure 6iv); the system [a × b × c, a × b × c], which represents one of the systems
made from congruent scalene triangles (figure 6x). It is interesting to note that
in these isotropic systems, the ‘locking’ angle is equal to 180◦−g not only for
loading in the Ox2 direction but also in other directions. Also, unlike what is
observed in the general case, there is no asymptotic transition in the Poisson’s
ratio at the locking angle, but a ‘removable discontinuity’. In fact, it should
be noted that, while in general the profile of n21 against q has a continuous
and an asymptotic transition, for these systems the numerator and denominator
equation (2.18) for n21 are equal to zero for the same hinging angle and thus only a
removable discontinuity at q = 180◦−g results. Obviously, owing to the isotropy,
this property is exhibited not only in the Ox2 direction but also in all directions.
Geometrically, this locking angle corresponds to the conformation where sides of
length a, b and c in one triangle are aligned collinearly with sides of length ka,
kb and kc of the other triangle (figure 5ii).

Also of interest are systems with a line of symmetry, which can be defined
using a rectangular unit cell containing four congruent triangles (as shown in
figure 6), a property which clearly suggests that when such systems are loaded
along this line of symmetry, no shearing takes place. Such structures include
the congruent scalene cases [a × b × c, c × b × a], [a × c × b, b × c × a] and [c ×
a × b, b × a × c] (figure 6f, g, h, respectively) and some of the systems discussed
above, namely the equilateral and isosceles cases [a × a × a, a × a × a] and [a ×
a × b, b × a × a] as discussed by Grima and co-workers (Grima & Evans 2006,
Grima et al. 2010; figure 6i,iii, respectively) and the cases [a × b × a, a × b × a]
and [b × a × a, a × a × b] (figure 6iv,v, respectively). The symmetry present in
these structures is also reflected in the off-axis plots where the Poisson’s ratio
obtained when loading at an angle x is the same as that for loading at an angle
180◦ − x. Furthermore, the system consisting of congruent equilateral triangles
(figure 6i), congruent isosceles system [b × a × a, a × a × b] (figure 6v) and the
congruent scalene system [a × b × c, b × c × a] (figure 6ix) are also space-filling
when q = 0◦ as can be seen in electronic supplementary material, animations 6v,vi,
respectively, something that does not happen in the general case. The special
cases highlighted here are discussed in more detail in the electronic supplementary
material, appendix A.

Let us now discuss some situations where the models derived above may be
applied in practical applications. In this respect, it should be highlighted that,
in recent years, (Grima et al. 2006, 2009) had identified a number of auxetic
or potentially auxetic real materials such as foams or zeolite materials (Grima
et al. 2000), where the deformation mechanism leading to the negative Poisson’s
ratio could be described in terms of two-dimensional rotating rigid or semi-
rigid units having the shape of a triangle. For instance, it has been proposed
that the zeolite JBW framework may exhibit auxetic behaviour in its (010)
plane through a mechanism that may be described through a rotating triangle
model (Grima et al. 2000). More recently, it has been proposed by Grima et al.
(2006) that the auxeticity in auxetic foam can be explained through rotation of
rigid units—in particular, rotating rigid equilateral triangles connected at their
vertices. This hypothesis can be confirmed through images of the microstructure
of both the conventional and the auxetic foam, which indicate that there is
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additional thickness in the region where the ribs of the foam meet at a particular
point (Grima et al. 2006). These features may result in the ‘joints’ behaving
as rigid (or semi-rigid) units, which—in the auxetic foams—are oriented in
such a way that permit them to rotate relative to each other to form a more
open microstructure, hence the auxetic behaviour. Experimental evidence which
confirms the important role that such mechanistic features have, has recently
been obtained by McDonald et al. (2010) through three-dimensional X-ray
microtomography. In fact it was shown that the rotation of rigid units has a
very important role in generating the observed negative Poisson’s ratio in such
foams. Furthermore, the presence of indentations in auxetic foams which act as
hinges that result in rotation of the units upon loading is also evident in SEM
images by Bianchi et al. (2010). Here, it should be emphasized that although the
model presented here still needs to be further developed to permit the possibility
that the triangular units themselves change shape, it offers a very significant
improvement over the existing published models as all the earlier models were
based on highly symmetric units. While these earlier models may have been
sufficient to model the properties of idealized forms of crystalline systems, it
is not surprising that the regularity of Grima’s earlier models always posed
difficulty in describing real materials such as foams, which are characterized by a
microstructure that is highly asymmetric and irregular. The model discussed here
marks an important step forward in this respect since—for the first time—it has
been made possible to predict the properties of a system that is much less regular,
achieved by increasing the number of geometric parameters through the use of
scalene triangles, something that would enable it to be used in a wider range of
situations. In this respect, it should be noted that the model presented here can
easily explain three properties of the foam: (i) the fact that Poisson’s ratio in
the auxetic foams need not be −1, (ii) the fact that foams in particular auxetic
foams are anisotropic as evident in the results obtained by Bianchi et al. (2011)
and (iii) the fact that foams that are auxetic at low strains may start to exhibit
conventional positive Poisson’s ratios at higher strains. Note that the latter can be
deduced from figure 3b which shows that as the structure is loaded and the hinging
angle increases (up to the locking position), the Poisson’s ratio value changes
from negative to positive. Furthermore, the model presented here can be used to
predict the variation in the surface density (the two-dimensional equivalent of the
normal volumetric density) or the relative surface density of foam (i.e. the two-
dimensional equivalent of the normal volumetric density divided by the density
of the undeformed foam). The suitability of our model to predict such density
variations is clearly illustrated in figure 7, which shows how the predictions from
our model compare with the experimental results on auxetic polyurethane foams
obtained by Smith et al. (2000). (Details on the calculations involved in comparing
the relative surface density as a function of true strain obtained analytically
and through experiments are given in the electronic supplementary material,
appendix A.)

Before proceeding any further, it should be highlighted that knowledge of which
structural features and mechanistic deformation is responsible for the observed
mechanical properties is important not only because it helps us understand
better the relationship between the microstructure and the macroproperties of
the material but also because it can help us predict how the material will behave
in particular practical applications. One such application is that of filtration,
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Figure 7. Plot of relative surface density against true strain in the loading direction Ox2 obtained
analytically (solid line) where the structure is made of unit cells denoted by [a1 × b1 × c1, a2 ×
b2 × c2] with the sides [37.5 × 22.5 × 37.5, 37.5 × 22.5 × 37.5] (in millimetres) and experimentally
(data points) using the data obtained by Smith et al. (2000). The methodology used for obtaining
this comparison is discussed in electronic supplementary material, appendix A. Note the excellent
agreement between the experimental data published by Smith et al. (2000) and the model proposed
here, thus highlighting the adequacy of this model to predict the behaviour of foam. (Online version
in colour.)

which generally involves the use of micro or nanostructured materials and
where it was recently proved that a negative Poisson’s ratio may impart several
beneficial properties on filters (Alderson et al. 2000; Rasburn et al. 2001). In
particular, unlike conventional filters that have limited pore tunability properties
and tend to become easily clogged, auxetic filters can easily be cleaned simply
by applying a stress that opens the pore size further to facilitate filter cleaning.
Other practical advantages afforded by auxetic filter include the ability to store
particular substances within their pores, which may then be easily released when
needed through the application of a mechanical stress. This feature may make
auxetics suitable for use in a wide range of scenarios ranging from fuel storage
applications to medical applications where auxetics are used as smart bandages,
which can release medication on demand in a controlled manner (Alderson &
Alderson 2007).

In addition, models such as those derived here are of particular use to
researchers and industrialists who are working on designing and developing new
materials, with tailor-made properties for use in particular practical applications.
The model proposed here is characterized by its ability to offer a very wide
range of mechanical properties, which may be fine-tuned through the choice of
the geometric properties associated with the triangles. Given the current state of
the art, one interesting application of the proposed model would be the possibility
of using it as the underlying knitted geometry in auxetic textiles in analogy with
the previous work by Hu et al. (2010), where the rotating squares structure was
used. Also, this model can provide experimentalists with a ‘blueprint’ for the
manufacture of auxetics by including perforations of the right shape and position
so that the resulting system may behave in a manner similar to that predicted
by this model. Modelling and experimental work on such systems have already
confirmed that this principle can indeed result in auxetic behaviour (Bertoldi
et al. 2010; Grima & Gatt 2010; Grima et al. 2010) and the additional variability
associated with the current model will make it possible to achieve a higher degree
of tunability of the properties afforded by such systems.
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Figure 8. The structure made of congruent equilateral triangles subjected to heat energy results
in a different-sized triangle depending on the amount of different thermal coefficients that the
structure has. This results in a change in the Poisson’s ratio of the triangle from a Poisson’s ratio
of −1 to a Poisson’s ratio that is dependent on the new lengths of the sides of the triangles and
the hinging angle. The new structures obtained when the structure is subjected to heating if (i)
all sides have one of two different thermal coefficients and (ii) all sides have a different thermal
coefficient are presented. (Online version in colour.)

Finally, it should be noted that the model presented here may be easily
adapted so as to produce a template for the design of auxetics where the degree
of auxeticity can be temperature-dependent. Such property may be achieved if
the triangles are constructed in a truss-like manner from beam elements having
different thermal expansion coefficients. If such systems experience a change in
temperature, then there will be an uneven extent of expansion in the side lengths
of the triangles with the result that the triangles change shape and hence the
system will exhibit different mechanical properties. To illustrate this concept,
one may look at a structure which—at a temperature T0—is made of congruent
equilateral triangles. As illustrated in figure 8i, if the triangles in such structure
are made in such a way that one of their sides is made from a material that
responds more to heat than the other sides, then a change in temperature from
T0 to T0 + DT will cause the triangle to deform to isosceles triangles, which
system will have different Poisson’s ratios than the system at a temperature T0.
Here, it should be highlighted that the model presented here suggests that the
macroscopic Poisson’s ratio properties of such systems would depend on which
of the sides is made to have different thermal properties from the others since
there are different ways that isosceles triangles can be connected (figure 6iii–v).
Obviously, the model discussed here caters for even more complex structures
whereby both triangles have sides with different thermal expansion coefficients,
resulting in a system with six sides that behave differently to temperature
(figure 8b). For such systems, the on-axis Poisson’s ratio, Young’s and shear
moduli at a temperature T are given by the equations derived above (equations
(2.18), (2.25), (2.26), (2.28)), which are modified so that the side lengths are
made functions of temperatures, for example, through expressions such as

l = l0[1 + aL(T − T0)], (3.1)

where l is the length of the particular side at a temperature T , l0 is its respective
length at a reference temperature T0 and aL is its linear coefficient of thermal
expansion.

Before concluding it is important to note that although the model presented
here is highly generic and can be used in a wide range of applications, it still has
some limitations which may need to be addressed in the future. In particular,
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the model presented here is a two-dimensional model while real materials are
characterized with nano and microstructures that are of a three-dimensional
nature. In such cases, the model presented here may only be used to explain the
behaviour in one particular plane of the material. Although previous work in this
field has confirmed that such an approach still yields highly valuable information
on the behaviour of real materials (Grima et al. 2000, 2005; Alderson & Evans
2002), any deformations that result as a consequence of the three-dimensional
nature of the micro or nanostructure will not be adequately represented in this
model. Furthermore, the model presented was based on the assumption that
the triangular units remain perfectly rigid throughout the deformation process.
Such idealized behaviour is unlikely to be observed in real materials where the
rotation of the units will probably be accompanied by a simultaneous change in
the shape of the units, possibly owing to stretching of the sides, i.e. the units
are semi-rigid rather than fully-rigid. Such change in shape may cause drastic
changes in the mechanical properties, for example, a structure that, due to being
of the type [a × b × c, ka × kb × kc], was isotropic with a Poisson’s ratio of −1 will
cease to be isotropic if the sides of a particular triangle do not change length in
proportion to each other, hence resulting in non-similar triangles. Similar effects
were observed in the rotating squares model when the constraint of perfectly
rigid squares was relaxed (Grima et al. 2007c; Attard et al. 2009). Probably
more important is the fact that non-crystalline materials such as foams may be
significantly more irregular than what is permitted through the model presented
here. The extension of the model presented here to incorporate such features is
likely to further extend the suitability of this model to explain and predict the
mechanical behaviour of real materials.

4. Conclusion

In this work, the mechanical properties of a highly generic model structure
made up of two different scalene triangles have been derived and discussed.
Analysis of this model confirms that auxetic behaviour may be obtained from
such systems, the extent of which is dependent on the shape of the triangles
and the way they are connected together. For example, it was shown that some
structures—in particular, all structures made of two similar triangles denoted by
[a × b × c, ka × kb × kc]—are isotropic with a Poisson’s ratio of −1 while other
structures have a Poisson’s ratio dependent on the length of sides of triangles,
on the hinging angle between the triangles and on the loading direction. It was
also shown that this model can be used to explain auxeticity in various classes
of materials. For example, an analogy between this model and the microstructure
of foam was highlighted, eliciting the significance of this work in the study
of auxetic foam materials behaviour, including the prediction of the dependency of
density with strain. Given the various enhanced properties of auxetic structures,
it is hoped that this model will stimulate further work, which could lead to better
understanding of naturally occurring and man-made auxetics and present systems
and possibly to the manufacture of new auxetic systems that mimic the behaviour
of the model presented here.
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