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Hexagonal Honeycombs with Zero Poisson’s Ratios and
Enhanced Stiffness**

By Joseph N. Grima*, Ludovica Oliveri, Daphne Attard, Brian Ellul, Ruben Gatt, Gianluca Cicala and
Giuseppe Recca

In recent years there have been several studies on

two-dimensional honeycombs,[1–24] particularly honeycombs

based on hexagonal cells as illustrated in Figure 1(a) in view of

their simplicity and their utility in various practical applica-

tions ranging from aerodynamic components in cars and

aircrafts to domestic internal doors. These include various

studies aimed at studying their mechanical properties. In

particular, in their seminal 1982 paper,[1] Gibson and Ashby

derived equations for the in-plane properties of hexagonal

honeycomb systems such as the ones illustrated in Figure 1

deforming through flexure of the cell walls and show that the

in-plane Poisson’s ratios nij and Young’s moduli Ei for loading

in the Oxi directions are given by:

E1 ¼ Es

t

l

� �3 cosðuÞ
½h=lþ sinðuÞ�sin2ðuÞ!E2 ¼ Es

t

l

� �3 h=lþ sinðuÞ
cos2ðuÞ

n21 ¼ n�1
12 ¼ ½h=lþ sinðuÞ�sinðuÞ

cos2ðuÞ
where as illustrated in Figure 1, h is the length of the vertical

ribs, l the length of the inclined ribs, t the thickness of the ribs,

u the angle that the inclined ribs make with the horizontal,

taken to be positive for conventional honeycombs and

negative for auxetic ones, and Es is the intrinsic Young’s

moduli of the honeycombs. These equations clearly suggest

that honeycombs whose inclined cell walls are inverted

inward commonly referred to as re-entrant honeycombs [i.e.,

honeycombs where u as defined in Fig. 1 is negative, see

Fig. 1(b)] can exhibit negative Poisson’s ratios[1] if they

deform through flexure of the cell walls. Further studies on

other honeycomb systems with a negative Poisson’s ratio,

chiral honeycombs[20–23] and missing rib honeycombs[24] in

particular, have also been performed.

In this work we use finite elements modeling (FEM) and

analytical modeling (AM) to analyze a novel class of

hexagonal honeycomb structures which as illustrated in

Figure 2 are constructed in such a way that their cells contain

both re-entrant and non re-entrant features thus henceforth

referred to as the ‘‘semi re-entrant’’ honeycomb.[25] We show

that these semi re-entrant systems exhibit two extremely

useful mechanical properties namely zero Poisson’s ratio for

loading in the Ox1 direction and very high Young’s moduli for

loading in the Ox2 direction, the latter property being in
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In view of their potential applications in sandwich structures, there has been increasing interest in
honeycomb networks. Several different types of honeycomb systems have been proposed each exhibiting
different mechanical properties. Here we propose a new hexagonal honeycomb structure composed of
two different geometrical features: a re-entrant feature which is known to generate auxetic behavior,
and a non re-entrant feature found in regular hexagonal honeycombs which leads to conventional
behavior. This results in a ‘‘semi re-entrant honeycomb’’ built of alternate conventional and auxetic
layers. Finite element analysis and analytical modeling of these honeycombs show that they exhibit a
zero Poisson ratio in one direction and a higher than normal Young’s modulus in the orthogonal
direction. We also show that by virtue of its zero Poisson’s ratio, this honeycomb has a natural tendency
to form cylindrical shaped curvatures, something which is very difficult to achieve with conventional or
auxetic honeycombs.
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accordance with the predictions made by Lim[26] and Kocer

et al. [27] for composites made from alternate layers of auxetic

and conventional materials.

Simulations

The mechanical behavior of various examples of the

honeycombs illustrated in Figure 1 and 2, i.e., the conventional

[Fig. 1(a)], the re-entrant [Fig. 1(b)] and the semi re-entrant

honeycombs (Fig. 2) were simulated using the FEM software

ANSYS in an attempt to understand how the new semi

re-entrant configuration behaves when compared to the more

traditional honeycombs. In particular simulations were

performed using three values of the angle u and three sets

of l/h ratios, namely u¼ 30, 45, and 608 (i.e., �30, �45, and

�608 in the case of the re-entrant systems) and with (l,

h)¼ (100 mm, 180 mm), (100 mm, 250 mm), and (125 mm,

250 mm). All systems were modeled using the triangular

6-noded PLANE146 p-element which supports plane stress

and plane strain analysis and free meshed in a manner which

is fine enough such that convergence of the results was

possible. In all systems t was set at 2 mm and the material was

modeled as perfectly elastic with a Young’s modulus of

10 GPa and a Poisson’s ratio of 0.3 which is common for

commercial plastics. Note that the dimensions h and l were

measured along half the thickness of the ribs.

All of these systems were constructed as finite systems

having m� n cells (see Fig. 3 for definition of m and n) and

were subjected to a 0.5% engineering strain in the Ox1 and Ox2

directions, respectively. In particular, in the case of loading in

the Ox2 directions, the systems constructed had

(m� n)¼ (5� 21) cells, where these values of m and n where

chosen because the aspect ratio of all the structures is bigger

than 10 so as to fulfill the aspect ratio convergence limit

suggested by the simulations of Kocer et al. for the ‘‘half

auxetic–half conventional’’ semi re-entrant structures. The

restraints were applied in such a way that all the nodes lying at

the bottom face of the honeycomb were constrained to have a

zero displacement in the Ox2 direction whilst all the nodes

lying at the top face of the honeycomb were constrained to

have a displacement in theOx2 direction which corresponds to

0.5%. In addition to this, the centremost nodes on both the top

and bottom faces were also constrained to have a zero

displacement in the Ox1 direction so as to ensure that there are

no rigid body movements and also to ensure that the top and

bottom faces remain aligned on top of each other. In the case of

loading in the Ox1 directions, the systems constructed had

(m� n)¼ (21� 5) cells with the restraints being applied in an

equivalent manner.

Typical images of the deformed structures, where the

displacements are scaled by a factor of 1 and 10% so as to aid

interpretation, are shown in Figure 4. These images clearly

show that with the exception of the semi re-entrant system

when loaded in the Ox2 direction, all systems behaved in such

a way that if one ignored the cells on the edges, the deformed

structures may still be describable in terms of repeat units as

all the non-edge cells in the structures deform in the same

manner, i.e., behave as ‘‘well behaved’’ periodic structures.

Furthermore, these well behaved structures (i.e., all systems

with the exception of the semi re-entrant system when loaded

in the Ox2 direction) were found to behave in such a way that

their deformations are describable through flexure of the

non-vertical cell walls in a manner that is conducive to

positive Poisson’s ratios in the case of the conventional

honeycombs (stretching in both Ox1 and Ox2) and negative

Poisson’s ratios in the case of the fully re-entrant honeycombs

(stretching in both Ox1 and Ox2). In the case of the re-entrant

and non re-entrant honeycomb, these observations are in

accordance with the assumptions made by Gibson and
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Fig. 1. The hexagonal honeycomb geometry considered by Gibson and Ashby. Shown
here are (a) the conventional non re-entrant form and (b) the auxetic re-entrant form.
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θ

Fig. 2. The novel ‘‘semi re-entrant’’ hexagonal honeycomb geometry considered in this
paper. Note that this honeycomb contains both re-entrant (normally associated with
auxetic behavior) and non re-entrant (normally associated with conventional behavior)
features.

Fig. 3. Definition of the constraints used in ANSYS for modeling the behavior of the
systems as they are stretched in the Ox2 dimension.
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Ashby[1] in their derivation of their analytical models for

hexagonal honeycombs. These observations also suggest that

analogous analytical models may be derived for the properties

of the novel semi re-entrant honeycombs for stretching in the

Ox1 direction using the unit–cell approach (see Section

Analytical Modeling).

In contrast to all this, very different behavior was observed

in the case of semi re-entrant systems when stretched in the

Ox2 direction where one may observe that the deformations of

the cells are highly dependent on their position within the

structure. This suggests that for loading in the Ox2 direction,

the semi re-entrant honeycombs may not be considered as

‘‘well behaved’’ periodic structures and thus the analytical

expressions for their mechanical properties for stretching in

the Ox2 direction may not be derived using the unit–cell

approach.

In an attempt to further analyze the behavior of the

structures and compare the simulated properties with the

analytical models by Gibson and Ashby[1] and those derived

in this paper (Section Analytical Modeling), we also measured

the Young’s moduli and Poisson’s ratios for the different

honeycombs as simulated by FEM. In particular, the

simulated Young’s modulus E2 for loading in the Ox2

direction which is defined as E2 ¼ s2="2 was calculated by

measuring the total reactions
P

F2 in the Ox2 direction of the

fixed top nodes that result from the applied strain "2 ¼ 0:005

J. N. Grima et al./Hexagonal Honeycombs with Zero Poisson’s Ratios and . . .

Fig. 4. Typical images showing the deformed (a) auxetic, (b) conventional, and (c) semi re-entrant systems for loading in the (i) Ox1 and (ii) Ox2 directions. Shown here are the
systems where u, l, h¼ 308, 100mm, 180mm respectively when they are subjected to a 0.5% displacement. Note that the deformations shown here have been magnified by a factor of
1% (a–i, b–ii, c–ii) and 10% (a–ii, b–i, c–ii).
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honeycomb so as to obtain the resultant stress s2 in the Ox2

direction. The simulated Young’s modulus E1 for loading in

the Ox1 was similarly calculated by measuring the total

reactions in the Ox1 direction.

Furthermore, for the well behaved structures, we also

attempted to measure the simulated Poisson’s ratio of typical

repeat units of the systems. In particular, the FEM simulated

Poisson’s ratio nij was measured for the centremost cells (in an

attempt to minimize edge effects) from the strains ei in the Oxi
directions calculated from measurements of the displace-

ments of particular easily identifiable key-points, illustrated in

Figure 5, which give approximate measurements of the

changes in dimensions of the repeat unit of the structure.

Analytical Modeling

The honeycomb considered here can be described by the

unit–cell shown in Figure 2. Using the parameters defined in

the figure, the projections of the undeformed unit–cell can be

given by:

X1 ¼ 2lcosðuÞ (1)

X2 ¼ 2h (2)

If the Young’s modulus Es of the material is high enough

for deformation by stretching of the ribs to be negligible then,

when the system is loaded by a stress s1 in the Ox1 direction,

each rib experiences a force F at its end (see Fig. 6) causing it to

flex. Using standard beam theory, for a rib of length l and

thickness t, the deflection at one end of the rib relative to the

other is given by:

d ¼ l3FsinðuÞ
12EsI

(3)

where F is the force acting along the loading direction and

I ¼ zt3=12 is the second moment of inertia of the beam with z
being the out-of-plane thickness of the network. The force F

can be written in terms of the applied stress as F ¼ shz so that

the total deflection d perpendicular to the rib can be expressed

as:

d ¼ shzl3sinðuÞ
12EsI

(4)

and the total deflections dOx1 and dOx2 along the Ox1 and Ox2

directions are given by:

dOx1 ¼
shzl3sin2ðuÞ

12EsI
(5)

and

dOx2
¼ shzl3sinðuÞcosðuÞ

12EsI
(6)

Now it may be immediately noted that dOx2
for the

re-entrant and conventional ribs is equal in magnitude but

opposite in direction, i.e., the re-entrant ribs act to push the

vertical ribs outward by dOx2
while the conventional ones act to

pull it inward by dOx2
so that the net strain e2 along the Ox2

direction is zero, and therefore the Poisson’s ratio n12 can be

simply given by:

n12 ¼ � "2

"1
¼ 0 (7)

Note that this equation once again confirms that the

Poisson’s ratio is scale independent which means that this

effect may be manifested at any scale ranging from the nano

(molecular) level to the macro level.

Using Equations (1) and (5), the strain e1 along the Ox1

direction can be written as:

"1 ¼ dOx1

X1
¼ shzl2sin2ðuÞ

12EsIcosðuÞ
(8)

and using the standard definition of the Young’s modulus,

and substituting for I, it follows that:

E1 ¼ s1

"1
¼ t

l

� �3 l

h

� �
EscosðuÞ
sin2ðuÞ (9)

This equation for the Young’s modulus is similar to the

equivalent equation derived by Gibson and Ashby for the

re-entrant and non re-entrant honeycombs since both

J. N. Grima et al./Hexagonal Honeycombs with Zero Poisson’s Ratios and . . .

Fig. 5. Definition of the keypoints used to calculate strains.
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Fig. 6. (a) A unit–cell under a tensile stress and (b) deformation of the inclined ribs.
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equations suggest that the moduli tend to infinity as u

approaches 08 and zero as u approaches 908. There are also

similarties in the way the Poisson’s ratio varies with t, h, and l.

Results and Discussion

The simulated Young’s moduli and Poisson’s ratio for the

various structures are shown in Table 1 where they are

compared to the equivalent properties as predicted by the

analytical expressions (when available). In the case of the

conventional and re-entrant honeycombs, these measure-

ments of the Poisson’s ratio and Young’s moduli clearly show

that the results of the simulations are in excellent agreement

with the predictions made by Gibson and Ashby. This is

particularly true for the Poisson’s ratio where the difference

between the FEM data and the predicted values from the

equations was always less than 1%. This is very important as it

validates the FEM simulation methodology employed in this

paper.

In the case of the novel semi re-entrant honeycombs, the

measurements of the Poisson’s and Young’s moduli for

stretching in the Ox1 direction were also found to be in

excellent agreement with the analytical predictions made in

this paper and confirm the zero Poisson’s ratios for all

conformations of the honeycombs when the system is loaded

in the Ox1 direction. This result is of considerable practical

significance in view of the fact that systems with zero

Poisson’s ratio are useful in various practical applications

ranging from substitutes to naturally occurring cork which

also exhibits zero Poisson’s ratio to the manufacture of smart

tubes which have variable diameter without changing the

length of the tube. This is due to the fact that if such

honeycombs are formed in the shape of cylinders (tubes) with

the Ox2 direction corresponding to the height of the cylinder,

then the zero Poisson’s ratio for stretching in the Ox1 direction

will give the cylinder the ability to increase or decrease in

diameter without changing the height.

In the case of loading in the Ox2 direction, we note that the

simulated moduli E2 of the semi re-entrant honeycombs are

always significantly larger than the moduli of the more

traditional honeycombs where the increment in the Young’s

modulus is dependent on the geometry of the system. In fact,

as illustrated in Figure 7, we note that for any particular u, h,

and l combination used in our simulations, the simulated

moduli in the Ox2 direction for the semi re-entrant, ESR
2 , is up

to a factor of 8.5 greater than Ea-c-max
2 which we define as the

maximum from E2 of the auxetic re-entrant honeycomb and E2

of the conventional non re-entrant honeycomb having the

same values of u, h, and l and up to 16.5 times greater than

Ea-c-mix
2 which we define as the value of E2 that would have

been obtained if the rule of mixtures had to be applied to E2 of

the re-entrant honeycomb and E2 of non re-entrant honey-

comb having the same values of u, h, and l. Note that bigger

enhancements are expected if other u, h, and l combinations

are also used. Once again, this finding that such honeycombs

exhibit high values of the Young’s moduli is of obvious

considerable practical significance.[26,27]

We also analyzed the extent of increase of the Young’s

modulus in the Ox2 direction as a function of Dn21, the

difference in the Poisson’s ratio for loading in the Ox2

direction between the fully conventional and the fully auxetic

re-entrant honeycombs. As illustrated in Figure 8, we found

that for any particular h/l combination, the extent of increase

of the Young’s modulus increases as the difference in the

J. N. Grima et al./Hexagonal Honeycombs with Zero Poisson’s Ratios and . . .

Table 1. Table showing the FEM results compared to those predicted by the analytical equations (AM) derived by Gibson and Ashby for the auxetic and conventional honeycombs and
in this paper for the semi re-entrant honeycombs.

l, h (mm) u Loading in Ox1 direction Loading in Ox2 direction

n12 E1 (kPa) n21 E2 (kPa)

Auxetic Conv. Semi
re-entrant

Auxetic Conv. Semi
re-entrant

Auxetic Conv. Auxetic Conv. Semi
re-entrant

100, 180 308 FEM �1.153 0.651 0.000 224 122 159 �0.864 1.530 163 312 1420

AM �1.154 0.652 213 120 154 �0.867 1.533 160 283

458 FEM �0.647 0.282 0.000 113 46 66 �1.538 3.532 260 629 4430

AM �0.647 0.282 104 45 63 �1.546 3.546 247 567

608 FEM �0.309 0.108 0.000 68 21 33 �3.203 9.165 676 1940 16500

100, 250 AM �0.309 0.108 57 20 30 �3.235 9.235 598 283

308 FEM �0.749 0.499 0.000 146 93 114 �1.328 1.993 118 405 1070

AM �0.750 0.500 139 92 111 �1.333 2.000 246 370

458 FEM �0.394 0.220 0.000 69 36 48 �2.520 4.513 426 801 3210

AM �0.394 0.220 63 35 45 �2.536 4.536 406 726

608 FEM �0.177 0.086 0.000 39 17 24 �5.589 11.544 250 2440 12000

125, 250 AM �0.177 0.086 33 16 21 �5.660 11.660 1050 2150

308 FEM �0.999 0.599 0.000 99 57 73 �0.998 1.664 95 173 664

AM �1.000 0.600 95 57 71 �1.000 1.667 95 158

458 FEM �0.547 0.261 0.000 48 22 30 �1.822 3.818 155 346 2070

AM �0.547 0.261 45 21 29 �1.828 3.828 150 314

608 FEM �0.255 0.101 0.000 28 10 15 �3.902 9.876 407 106 7880

AM �0.255 0.101 24 10 14 �3.928 9.928 372 939
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Poisson’s ratio between the fully conventional and the fully

auxetic re-entrant honeycombs increases. This result conforms

with the predictions made by Kocer et al. who studied a class

of hypothetical composite materials made from one layer of

auxetic isotropic material and one layer of conventional

isotropic materials which was shown through FE modeling to

exhibit Young’s moduli in the direction orthogonal to that of

the layers which were significantly higher than that predicted

by the rule of mixtures. In fact, in their simulations, Kocer et al.

note that the highest enhancement in the Young’s modulus is

shown when the differences in the Poisson’s ratio approaches

that of 1.5, the limit imposed by the thermodynamics limits

that the Poisson’s ratios of isotropic materials must range

within the bounds �1�n�þ 0:5. We note that the Poisson’s

ratios of the component honeycombs presented here are not

bound by these strict limits since such honeycombs are free to

adopt any Poisson’s ratio values ranging from �1 (a limit

approached by the re-entrant honeycomb

when �u!�90�) to þ1 (a limit approached

by the conventional honeycomb when

u!90�). In fact, the equations for the moduli

as derived by Gibson and Ashby[1] may be

used to derive an equation for the difference

in the Poisson’s ratio in the Ox2 directions

between the fully auxetic and the conven-

tional honeycombs which is given by:

Dn21 ¼
2hsinðuÞ
lcos2ðuÞ

an expression which may take values ranging

from zero (as u!0�) to þ1 (as u!90�). This

equation also suggests that for any particular

value of u, the actual value of Dn21 may be fine

tuned through careful choice of the h/l ratio

where higher differences of the Poisson’s

ratios may be obtained for higher h/l ratios.

However, it should be emphasized that as clearly

illustrated in Figure 8, the relationship between Dn21 and

the extent of increase in the Young’s moduli E2 for the

structures presented here is not a simple one and the ratio h/l

also seems to play an important role in determining the extent

of increase. In fact, as illustrated in Figure 8, our simulations

suggest that for particular values of Dn21, the maximum

enhancements are obtained for lower h/l ratios, i.e., systems

which have short vertical ribs. This may be explained through

analysis of the deformed structures following stretching in

Ox2. As Figure 4 clearly illustrates, strains in the Ox2 direction

need to be accompanied by flexure of the vertical ribs which

can occur more easily in systems with longer (and more

slender) vertical ribs. Such flexure is required to accommodate

the changes in the horizontal dimensions between layers

having the ‘‘re-entrant’’ set of inclined ribs which expand

laterally in the Ox1 when the honeycomb is stretched in Ox2

and the ‘‘non re-entrant’’ set of inclined ribs

which shrinks laterally in the Ox1 when the

honeycomb is stretched in Ox2. In other

words, the net Young’s modulus in the Ox2

direction increases as the extent of flexure of

the vertical ribs decreases, something which

may be achieved by using low h/l ratios.

However, given the fact that the factor h/l is

also involved in the term Dn21 where, from the

aspect of Dn21 alone, higher h/l result in larger

Dn21 values which in turn result in higher

enhancements of the net Young’s modulus in

the Ox2 direction, one should seek to optimize

the values of the h/l ratios in such a way to

obtain maximum stiffness enhancements. In

this respect, from the range of structures

reported in this paper we note that if the

analysis had to be performed against the

geometric parameters u and h/l, we clearly

note that providing that the honeycombs are

J. N. Grima et al./Hexagonal Honeycombs with Zero Poisson’s Ratios and . . .
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within the range of u and h/l analyzed here, maximum

enhancements of the Young’s moduli when stretching the

semi re-entrant honeycombs in the Ox2 directions (as

compared to stretching of the conventional/re-entrant

honeycombs), occurs for larger values of u and higher h/l

ratios.

Before we conclude, we would like to highlight that in

addition to the obvious use of such honeycombs in

applications which would require no change in the lateral

direction when the honeycomb is uniaxially stretched or

compressed, by having a zero Poisson’s ratio, the honeycomb

presented here, which has a thickness Z in the third

dimension, has the ability to form cylindrical shaped surface

(tubes), something which as illustrated in Figure 9, neither

the conventional nor the auxetic re-entrant equivalent can

do. (Conventional honeycombs tend to form saddle shaped

surfaces and auxetic re-entrant honeycombs tend to form

dome shaped surfaces.) The reason for this is that if one

tries to form a cylindrical shape or a tube from a conventional

honeycomb sheet of dimensions X�Y�Z in such a way that

Y will become the length of the tube and X will become

the neutral axis along the circumference of the tube, then

one will note that the circumference on the inner side of

the tube is 2pZ shorter than the outer circumference.

This puts the outer surface under radial tension and the

inner surface under radial compression. As a consequence

of the positive Poisson’s ratio, the outer surface contracts

along the longitudinal direction, while the inner one expands

forcing the cylinder to adopt a curve in the opposite direction

to the direction of bending, thereby causing the tube to

appear with a ‘‘concave’’ shape as illustrated in Figure 9(b).

Similarly, a tube made from an auxetic honeycomb will

appear ‘‘convex’’ as illustrated in Figure 9(c). However, such

differences between the inner and outer lengths will not

appear if the honeycomb has a zero Poisson’s ratio with the

result that such honeycombs (or materials having a zero

Poisson’s ratio) are fully amenable to form cylinders or tubes.

This feature is particularly useful for honeycombs which

have to be used as the core of sandwich composites for use

in applications where the sandwich will be morphed into

cylindrical shapes.

Conclusions

In this paper we have presented a novel type of honeycomb

which can be considered as a semi re-entrant composed from

elements pertaining to the more traditional conventional and

auxetic hexagonal honeycombs (i.e., both re-entrant and non

re-entrant features) which exhibit three extremely useful

mechanical properties namely:

– zero Poisson’s ratio for loading in the Ox1 direction, a

property which is found to be scale independent, i.e.,

manifestable at any scale of structure ranging from the

nano (molecular) level to the macroscale;

– very high Young’s moduli for loading in the Ox2 direction

when compared to the traditional re-entrant and non

re-entrant honeycombs; and

– a natural tendency to form cylindrical or tubular shaped

objects.

Given these benefits, we envisage that this work will

stimulate further research into these types of honeycombs

with the hope that the models presented here may form the

basis for the synthesis and or manufacture of such honey-

combs exhibiting the properties predicted here.
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