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Abstract
We show that a mechanically driven magnetocaloric effect (MCE) in magneto-auxetic systems
(MASs) in the vicinity of room temperature is possible and the effect can be colossal. Even at
zero external magnetic field, the magnetic entropy change in this reversible process can be a few
times larger in magnitude than in the case of the giant MCE discovered by Pecharsky and
Gschneidner in Gd5(Si2Ge2). MAS represent a novel class of metamaterials having magnetic
insertions embedded within a non-magnetic matrix which exhibits a negative Poisson’s ratio.
The auxetic behaviour of the non-magnetic matrix may either enhance the magnetic ordering
process or it may result in a transition to the disordered phase. In the MAS under consideration, a
spin 1/2 system is chosen for the magnetic component and the well-known Onsager solution for
the two-dimensional square lattice Ising model at zero external magnetic field is used to show
that the isothermal change in magnetic entropy accompanying the auxetic behaviour can take a
large value at room temperature. The practical importance of our findings is that MCE materials
used in present engineering applications may be further enhanced by changing their geometry
such that they exhibit auxetic behaviour.
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1. Introduction

The magnetocaloric effect (MCE) is a phenomenon related to
the heating of a magnetic material upon the application of a
magnetic field, and conversely, its cooling after the removal
of a magnetic field. MCE was first discovered in iron by
Warburg in 1881 [1] and since then, a vast number of studies
have been carried out on this phenomenon [2, 3]. MCE is an
intrinsic property of magnetic materials but it is usually too
weak to be used in everyday magnetic cooling applications
operating at around room temperature. Exceptions to this are
gadolinium (Gd), which has a critical temperature of
Tc = 294 K, various compounds based on manganites, and

related compounds of rare earth metals [3]. Significant pro-
gress concerning new MCE materials has been noted since the
discovery of giant MCE in Gd5(Si2Ge2) by Pecharsky and
Gschneidner [4]. In this study, we show how magneto-auxetic
systems (MASs), systems which exhibit auxetic behaviour,
can also demonstrate an MCE.

Auxetic [5] materials exhibit a negative Poisson’s ratio
[6], that is they expand laterally when uniaxially stretched.
The first papers on auxetic materials and structures appeared
more than 20 years ago [5, 7–10] however only recently were
they studied for their magnetic properties. Such studies
include investigations on the magnetic properties of auxetic
foams [11, 12], magnetic ferrogels [13, 14], CoFe2O4
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epitaxial thin films [15], magnetostrictive iron–gallium alloys
galfenol [16] and MASs [17]. Wave propagation was also
investigated in magneto-elastic lattices [18].

MAS are systems which have magnetic insertions
embedded within a non-magnetic auxetic matrix such that an
external magnetic field can control both their mechanical and
magnetic properties [17]. In this study, we suggest the pos-
sibility of achieving a large mechanically driven MCE at
around room temperature by using an MAS. These systems
can also exhibit MCE at zero external magnetic field. In such
a case, the mechanical deformation of MAS subjected to
external stresses couples the rotational and translational
motion of its auxetic units and it becomes the counterpart of
the application of an external magnetic field. In addition to a
mechanical deformation, an application of an external mag-
netic field enhances the MCE proportionally to the strength of
the magnetic field, as occurs in classical MCE materials.

It should be noted that the concept of MCE occurring at
zero external magnetic field has already been introduced [3],
as has the concept of mechanical deformations affecting the
MCE [16, 19]. In particular, Tishin and Spichin introduced
the concept of an elastocaloric effect which arises by chan-
ging the external pressure at a constant (or zero) magnetic
field [3]. A study by Mosca et al showed that strain can tune
MCE related to the magneto-structural phase transition in
MnAs [19]. It was found that the critical temperature of the
strained epilayers of MnAs depends on the mean strain ε as
T T (1 2 )c 0 κε= + for some adjustable parameters T0 and κ. In
a paper by Paes and Mosca, the effect of an applied
mechanical stress on galfenol was discussed and it was shown
that magnetostriction and magnetoelastic interactions can be
responsible for auxeticity in galfenol [16]. Below, a simple
theoretical model for a MAS is introduced to show that the
mechanical deformation of such a system can generate
colossal changes in magnetic entropy compared to clas-
sic MCE.

2. MCE in magneto-auxetics and discussion

In [17], a novel class of metamaterials having a permanent
magnetic insertion embedded within a non-magnetic auxetic
matrix was introduced. The matrix was made up from
N Nx y× perfectly rigid rotating rectangles of dimensions
a b× connected at their vertices by means of hinges [20].
The magnetic insertion was represented by a finite set of
magnetic dipoles. To prove the possibility of emergence of
the MCE in MAS around room temperature, the two-dimen-
sional magneto-mechanical model [17] is converted into a
microscopic spin 1/2 system which can exhibit phase transi-
tions. For the sake of simplicity, a = b (squares) and
N N Nx y= = is chosen. Magnetic moments are represented
by Ising spins s 1ij = ± which are located at the centre of mass

rij
→ of the squares (i, j) where i j N, 1, 2, ,= … . A schematic
representation of a MAS consisting of 3 × 3 square units is
presented in figure 1. The centres of mass of the squares

create a two-dimensional square lattice where
L L L aN [cos ( ) sin ( )]x y θ θ= = = + .

The nearest-neighbour Ising model Hamiltonian [21] is
used to describe magnetic interactions as follows:

H J s s H s , (1)
ij kl

ij kl ij kl

i j

N

ijexact
IM

,

, B
, 1

∑ ∑μ= − −
=

where the angular brackets denote summation over the
nearest-neighbour lattice pairs, H is the external magnetic
field measured in Teslas, Bμ is the Bohr magneton, Jij kl, is the
exchange integral which depends on the distance rij kl, between
the nearest-neighbour sites (i, j) and (k, l). It is assumed that
J J rij kl ij kl, 0 ,

3= and J 00 > (ferromagnetic interaction). For the

squares as in figure 1, the distance ( )r a 2 sinij kl, 4
θ= + π .

The auxetic deformation does not change the symmetry of the
magnetic Hamiltonian because the centres of mass of the
rotating squares are represented by a square lattice for any
value of θ.

In a closed thermodynamic system of localized magnetic
moments, the total entropy S depends on the temperature T,
pressure p, and external magnetic field H. The full differential
of the entropy can be written as:

S
S

T
T

S

p
p

S

H
Hd d d d . (2)

p H T H T p, , ,

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠= ∂

∂
+ ∂

∂
+ ∂

∂

The MCE phenomenon is represented by the isobaric-
isothermal process ( p Td 0, d 0= = ) where:

S
S

H
Hd d (3)

T p,

⎜ ⎟⎛
⎝

⎞
⎠= ∂

∂

and usually it can be expressed in two ways:
(i) by the temperature increase T T T 0f iΔ = − > of the

magnetic material after a change in the magnetic field
H H H 0f iΔ = − > , from the initial value Hi to the final

value Hf, which is applied adiabatically through a thermo-
dynamically reversible process,

(ii) by the decrease of the magnetic part SM of the total
entropy S after the magnetic field Hf (H Hf i> ) is applied

Figure 1. Magneto-auxetic system of 3 × 3 squares of dimension
a a× with the exemplary configuration of Ising spins s 1= ±
denoted by ‘+’ and ‘−’ respectively, located at center of mass of the
squares. Lx and Ly denote linear size of the system in the x and y
directions respectively.
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isothermally at temperature T, that is

( ) ( )S S T H S T H, , 0. (4)M M f M iΔ = − <

There is another possibility of obtaining an entropy change
equation (2) and this occurs through the isothermal process at
constant magnetic field ( T Hd 0, d 0= = )

S
S

p
pd d . (5)

T H,

⎛
⎝⎜

⎞
⎠⎟= ∂

∂

The elastocaloric effect [3] is an example of such a process. In
MAS, the infinitesimally small uniaxial stress d iσ for loading
in the direction i (e.g. x or y) substitutes the infinitesimally
small isotropic pressure change dp in equation (5). The
stress d iσ can be expressed in terms of Young’s modulus Ei

and the strain iε for loading in the direction i, i.e., Ed di i iσ ε= .
In the particular case of figure 1, d iε is equal for loading

in the x and y direction, d i
L

L

L

L

L

L

d d dx

x

y

y
ε = = = where L ad =

[cos( ) sin( )]dθ θ θ− . The full differential of the entropy from
equation (5) can thus be expressed as:

S
S

d d . (6)
T H,

⎜ ⎟⎛
⎝

⎞
⎠θ

θ= ∂
∂

A more general process is possible whereby the external
magnetic field is changed from the initial field Hi to the final
field Hf (H Hi f< ) concurrent to an applied strain. In this case,
the entropy decrease SMΔ by the MCE during the isothermal
process is given by:

( ) ( )S S T H S T H, , , , 0, (7)M M f f M i iΔ θ θ= − <

where iθ and fθ represent the initial and final values of θ for
which the distance between the magnetic moments decreases.

To be close to the experimental values concerning
materials with an MCE near room temperature [3], the value
of J0 in the Hamiltonian of equation (1) is chosen to be equal
to 0.01116 eV. This value is such that T 293.9 Kc = for

90θ = ° and T 103.9 Kc = for 45θ = °. The magnetic entropy
isothermal change SMΔ after the deformation f iΔθ θ θ= −
can be easily determined with the help of the well-known
Onsager solution [22–24] for the two-dimensional square
lattice Ising model at zero magnetic field (H = 0). The entropy
per site s S kM M B= is calculated as s F T( ( , 0))M β ϵ= − .

For the Ising model, the magnetic energy per site fϵ = −
β

∂
∂

and

the free energy per site reduced by temperature f F T( , 0)β=
can be found [23]. It must be noted that the rotating squares
system is used in order to have the exact Onsager solution for
the Ising model, however there are other rotating rigid units
systems which can be effectively used as a non-magnetic
matrix.

In figure 2, the dependence of s S kM M BΔ Δ= per site on
temperature is shown for different values of iθ and fθ with no
external magnetic field present. The characteristic feature of the
plotted magnetic entropy difference sMΔ is that its full width at
half maximum is determined by the difference TΔ =
T T( ) ( )f ic cθ θ− of the critical temperatures for the deformation

f iΔθ θ θ= − . In the model, ( )T T a 2 sin( )c c
sq

4

3
θ= + π

where Tc
sq is the critical temperature for the square lattice Ising

model with the unit lattice constant and it includes magneto-
volume coupling through the deformation parameter θ. Hence,
there is a direct analogy with the dependence of the critical
temperature on strain [19] and on the lattice volume as in the
Bean–Rodbell model [25].

In the case of a spin 1/2 model being taken into con-
sideration, the maximum value of the reduced magnetic
entropy sMΔ− cannot exceed the value of log(2) 0.693≈ as
for the Ising model. In figure 2, the largest value of the change
in magnetic entropy is observed for the deformation from

45iθ = ° to 90fθ = ° where it is about 85% of the maximum
possible value. The deformation of 1° from 89iθ = ° to

90fθ = ° (or equivalently from 1iθ = ° to 0fθ = °) corre-
sponds to a s 15MΔ ≈ % of the maximum entropy.

If Gd atoms (where the total angular momentum of an
atom J 7 2= ) are substituted for the Ising atoms, then,
the maximum change in the magnetic entropy cannot
exceed the value of log(8) 2.079≈ . After multiplication
with the gas constant for Gd atoms, this maximum value
would correspond to 17.3 J mol−1 K or 110.02 J kg−1 K [3].
In this case, the entropy change by 15% of the maximum
entropy value would result in 16.50 J kg−1 K. This latter
value is more than three times larger than the maximum
entropy change for Gd after an application of a magnetic
field of 2 T (Hi = 0 T, Hf = 2 T) and it is of the same
order of magnitude as in Gd5(Si2Ge2) for the same para-
meters (refer to figure 4 in the paper by Pecharsky and
Gschneidner [4]).

The question arises whether such magnetic materials as
in figure 1 exist in nature or not. The linear size L of such a
system can increase up to 41% under a uniaxial strain applied
in the x or y direction and an increase in area of up to 100%.
In one of the three-dimensional versions of this auxetic sys-
tem, its volume can increase by up to ≈180%. This can be
compared to present MCE materials where often only a small

Figure 2. Temperature dependence of the isothermal entropy change
sMΔ for MAS deformed from iθ to fθ at zero magnetic field. The

plots representing deformations 89 90° → °, 80 90° → °, 70 90° → °,
45 90° → ° are shown (units in degrees). The vertical lines indicate
location of Tc for a given value of iθ and fθ .
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volume expansion V V 0.1Δ < % is observed at Tc due to a
magnetoelastic transition. In some MCE materials, such as the
intermetallic compound MnAs, which has a first-order phase
transition, the volume expansion can be of the order of 2%
[26]. A volume decrease of about 8% is observed in the phase
transition of samarium from fcc to dhcp after an application of
a pressure of 7 108× Pa at room temperature [3]. Comparing
the volume changes of MCE materials with that of the model
illustrated in figure 1 suggests that this model cannot be used
to represent current MCE materials but is a new concept of
how MCE can be achieved.

The strain driven, giant and reversible MCE in
La Ca MnO0.7 0.3 3 epitaxial ferromagnetic films [27] shows that
the use of new MCE materials, instead of tuning existing
magnetic materials, is nowadays common in the investigation
of MCE. Recent discussion on magnetocaloric and electro-
caloric effect by Moya et al can be found in [28]. The studies
on nanoscale lanthanides and their alloys [29], as well as on
ferrite nanoparticles [30] which represent a competitive
alternative to conventional bulk MCE materials also show this
current trend. In particular, single-domain magnetic nano-
particles are promising because of their superparamagnetic
property above the blocking temperature Tb, their large area
for heat exchange, as well as the possibility of placing them
into another host material which material can be non-mag-
netic. Each magnetic nanoparticle acts as a single superspin
which can interact with the surrounding superspins through
dipolar interactions [31]. In the relatively dense ensemble of
magnetic nanoparticles they can show collective behaviour
typical of spin-glass or superferromagnetic systems [31–34].
In particular, in [31] the thin layers of Co80Fe20 nanoparticles
which are embedded in a diamagnetic Al2O3 matrix were
investigated and when the nominal thickness of the nano-
particles concentration exceeded the value of 1.1 nm, super-
ferromagnetic ordering was observed with the magnetic
domain structure of the nanoparticles’ magnetic moments
analogous to that observed in ferromagnets.

In fact, if one were to substitute the Ising spins found at
the nodes of the lattice system being considered in the MAS
model with the magnetic moments of single-domain magnetic
nanoparticles of Fe3O4, one can show the extent of MCE. The
magnetic moment per f.u. of the compound Fe3O4 is equal to

f.u. 4.33 Bμ μ= [35]. Then, if for example the magnetic
nanoparticles are considered to have a dimension of 5 nm, the
magnetic moment of nanoparticle can be estimated as

3831 Bμ μ≈ . Moreover, if the centre-to-centre distance
between two adjacent magnetic moments (or superspins as
they were termed in [31]) is defined as d then, the potential
energy of the superspin–superspin interaction can be deter-
mined as a function of d. Thus, assuming that d = 5 nm (i.e.
the nanoparticles are touching each other) the ineraction
potential energy is of E k 73B ≈ K. If we were to consider the
four-nearest-neighbours interaction approach (that is the
given superspin interacts with its four nearest neighbours) for
d = 5 nm the total value of dipolar interaction energy is equal
to E k 293B ≈ K. On the other hand, if the distance is of
d = 10 nm the value of the energy including the four-nearest-

neighbours interaction drastically decreases to E k 37B ≈ K.
This result clearly indicates that a change in energy is
occuring on changing the distance between the magnetic
nanoparticles and it can be significant at room temperature.
Similarly magnetic nanoparticles embedded within an MAS
will undergo a change in their separation distance when a
strain is applied to the system. This clearly indicates the
extent of the MCE which arises when modifying the geo-
metry of the system.

It has been confirmed experimentally that magnetic
nanoparticles can be higly concentrated in a non-magnetic
host matrix, even for small dimensions. In particular, iron
oxide nanoparticles with an average diameter of 2–2.5 nm
synthesized in mesoporous silica MCM-41 and MSS by
means of a co-precipitation method were recently obtained
experimentally [36].

3. Conclusions

It has been shown that a colossal MCE, which may occur
around room temperature, is an intrinsic property of magneto-
auxetic systems. This MCE can be driven by a mechanical
strain at zero external magnetic field. On applying an external
magnetic field, this MCE is further enhanced. This new
concept of MCE can be of importance especially in applica-
tions where a large magnetic field cannot be used. Apart from
this, the MCE proposed here can also be obtained from
relatively cheap materials and thus increasing viability and
practicality of technologies which make use of MCE. Due to
the versatility of this MCE concept, it can be used in refrig-
eration technologies ranging from low temperatures to room
temperatures and in coolers for nano and microelec-
tromechanical devices.
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