
A CATEGORY OF CONTINUOUS MAPS

D.BUHAGIAR

1. INTRODUCTION

The study of General Topology is usually concerned with the cat-
egory $\mathcal{T}\mathrm{t}9^{t}P$ of topological spaces as objects, and continuous maps as
morphisms. The concepts of space and map are equally important and
one can even look at a space as a map from this space onto a singleton
space and in this manner identify these two concepts. With this in
mind, a branch of General Topology which has become known as Gen-
eral Topology of Continuous Maps, or Fibrewise General Topology, was
initiated. This field of research is concerned most of all in extending
the main notions and results concerning topological spaces to those of
continuous maps. In this way one can see some well-known results in a
new and clearer light and one can also be led to further developments
which otherwise would not have suggested themselves. The fibrewise
viewpoint is standard in the theory of fibre bundles, however, it has
been recognized relatively recently that the same viewpoint is also as
important in other areas such as General Topology.

For an arbitrary topological
,
$\mathrm{s}$pace $Y$ one considers the category

$\mathcal{T}\mathrm{t}9^{t}y_{Y}$ , the objects of which are continuous maps into the space $Y$ , and
for the objects $f$ : $Xarrow \mathrm{Y}$ and $g$ : $Zarrow \mathrm{Y}$ , a morphism from $f$ into
$g$ is a continuous map $\lambda$ : $Xarrow Z$ with the property $f=g\circ\lambda$ . This
situation is a generalization of the category $\mathcal{T}\mathrm{t}9’P$ , since the category
$\mathcal{T}\mathrm{t}9\varphi$ is isomorphic to the particular case of $\mathcal{T}\mathrm{t}9\varphi_{Y}$ in which the space
$\mathrm{Y}$ is a singleton space.

The carried out research showed a strong analogy in the behaviour
of spaces and maps and it was possible to extend the main notions
and results of spaces to that of maps. Since the considered case is of
a wider generality (compared to that of spaces), the results obtained
for maps are technically more complicated. Moreover, there are mo-
ments which are specific to maps. For example, there is no analogue
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to Urysohn’s Lemma for maps and so normality and functional nor-
mality do not $\mathrm{c}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{i}\mathrm{d}\mathrm{e}\cdot \mathrm{a}\mathrm{n}\mathrm{d}$ as a consequence, there exist two theories
of compactifications, one for Hausdorff compactifications and one for
Tychonoff compactifications.

Some results in the General Topology of Continuous Maps were ob-
tained quite some time ago. For example, in 1947, $\mathrm{I}.\mathrm{A}$ .Vainstein [23]
proposed the name of compact maps to perfect maps, $\mathrm{G}.\mathrm{T}$.Whyburn
in 1953 $[25, 26]$ , as did $\mathrm{G}.\mathrm{L}$ .Cain, N.Krolevets, $\mathrm{V}.\mathrm{M}$.Ulyanov [22] and
others, considered compactifications of maps. In the meantime, until
quite recently, there wasn’t a connected unified theory for maps. One
of the main reasons might have been the lack of separation axioms for
maps, especially that of Tychonoffness (and complete regularity) and
also that of (functional) normality and collectionwise normality.

Completely regular and Tychonoff maps, as well as (functionally)
normal maps, were defined by $\mathrm{B}.\mathrm{A}$ .Pasynkov in 1984 [18]. These def-
initions made it possible to generalize and obtain an analogue to the
theorem on the embedding of Tychonoff spaces of weight $\tau$ into $I^{\mathcal{T}}$ and
to the existence of a compactification for a Tychonoff space having the
same weight (see Theorem 1.4). It was also possible to construct a
maximal Tychonoff compactification for a Tychonoff map (i.e. con-
struct an analogue to the Stone-\v{C}ech compactification). Collectionwise
normal maps were defined by the author [7] and enabled the definition
of metrizable type maps, giving a satisfactory fibrewise version of the
theory of metrizable spaces.

In most cases there is some choice in defining properties on maps
and one usually prefers the simplest and the one that giyes the mcst
complete generalization of the corresponding results in the category
$\mathcal{T}\mathrm{t}9\mathfrak{R}$ . It would be beneficial to have a more systematic way of ex-
tending definitions and results from the category $\mathcal{T}\mathrm{t}9\varphi$ to the category
$\mathcal{T}\mathrm{t}9\varphi_{\mathrm{Y}}$ and some hope is provided by the link between Fibrewise Topol-
ogy and Topos Theory [11, 12, 14, 15]. Unfortunately, as was noted in
[10], this approach has several drawbacks. In defining compact maps
[19, Proposition 2.2 ($\mathrm{V}.\mathrm{P}$.Norin)], paracompact maps [5], metacompact
maps, subparacompact maps, submetacompact maps [6] and metrizable
type maps [7], one can see a systematic method in defining notions
in the category $\mathcal{T}\mathrm{t}9\mathfrak{R}_{Y}$ (or more general in the category $\mathrm{M}A\mathfrak{R}$ ) corre-
sponding to definitions which involve coverings or bases of topologi-
cal spaces. This construction gave satisfactory definitions which can
be seen from the results obtained for such maps [5, 6, 7, 19]. One
can also add that the definitions of paracompact maps, metacompact
maps, subparacompact maps and submetacompact maps strengthened
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the result that paracompactness, metacompactness, subparacompact-
ness and submetacompactness are all inverse invariant of perfect maps.
Namely, it was proved that the inverse image of a paracompact $T_{2}$

(resp. subparacompact, metacompact, submetacompact) space by a
paracompact $T_{2}$ (resp. subparacompact, metacompact, submetacom-
pact) map is paracompact $T_{2}$ (resp. subparacompact, metacompact,
submetacompact) $[5, 6]$ .

One of the most important operations on objects in $\mathcal{T}\mathit{0}\mathcal{P}$ is the Ty-
chonoff product which gives rise to many interesting results and ex-
amples. In particular, results concerning universal spaces. Recall that
a space $X$ is said to be universal for all spaces having a topological
property $P$ if the space $X$ has property $P$ and every space having
property $\prime \mathrm{p}$ is homeomorphically embeddable in $X$ . Universal spaces
are very useful since they reduce the study of a class of spaces hav-
ing some topological property $P$ to the study of subspaces of a fixed
space. We are interested in obtaining analogues in the category $\mathrm{M}A\varphi$

to the following three results obtained respectively by A.Tychonoff [21],
P.S.Alexandroff [1] and N.Vedenissoff [24].

Theorem 1.1. The Tychonoff cube $I^{\mathfrak{m}}$ is universal for all Tychonoff
spaces of weight $\mathrm{m}\geq\aleph_{0}$ .

Theorem 1.2. The Alexandroff cube $F^{\pi\iota}$ is universal for all $T_{0}$ -spaces
of weight $\mathrm{m}\geq\aleph_{0}$ .

Theorem 1.3. The Cantor cube $D^{\mathrm{m}}$ is universal for all zero-dimensional
spaces of weight $\mathrm{m}\geq\aleph_{0}$ .

As is the case in $\mathcal{T}\mathrm{t}9\varphi$, one of the most important operations on
objects in the category $\mathcal{T}\mathrm{t}9\varphi_{\mathrm{Y}}$ is the fibrewise product of maps defined
by $\mathrm{B}.\mathrm{A}$ .Pasynkov [16, 17, 18]. As was mentioned above, the definitions
of completely regular and Tychonoff maps made it possible to generalize
and obtain an analogue to Theorem 1.1 in the category $\mathcal{T}\mathrm{t}9\varphi_{Y}[18]$ .

Theorem 1.4. A Tychonoff map $f$ : $Xarrow \mathrm{Y}$ has weight $\mathfrak{M}(f)\leq \mathrm{m}$

$(\mathrm{m}\geq\aleph_{0})$ if and only $if_{f}$ the map $f$ is homeomorphically embeddable into
the projection $p$ of a partial topological product $P=P(Y,$ $\{Z_{\alpha}\},$ $\{O_{\alpha}\}$ :
$\alpha\in A),$ where $Z_{\alpha}=I$ for every $\alpha\in A$ and $|A|\leq \mathrm{m}$ .

The following result was also given as a corollary to Theorem 1.4 in
[18].

Corollary 1.5. A continuous map is Tychonoff if and only if it is
homeomorphically embeddable into the projection of a partial topological
product, all the fibres of which are segments.
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For more details and undefined terms on the General Topology of
Continuous Maps one can consult [5, 2, 3, 4, 6, 7, 9, 10, 13, 18, 19].

2. THE CATEGORY MAy

A category of maps $\mathrm{M}A\varphi$ in which one does not restrain oneself
with a fixed base space $Y$ was introduced by the author in [2]. The
objects of MAy are continuous maps from any topological space into
any topological space. For two objects $f_{1}$ : $X_{1}arrow \mathrm{Y}_{1}$ and $f_{2}$ : $X_{2}arrow \mathrm{Y}_{2}$ ,
a morphism from $f_{1}$ into $f_{2}$ is a pair of continuous maps $\{\lambda_{T}, \lambda_{B}\}$ ,
where $\lambda_{T}$ : $X_{1}arrow X_{2}$ and $\lambda_{B}$ : $\mathrm{Y}_{1}arrow \mathrm{Y}_{2}$ , such that the diagram

$X_{1}arrow\lambda_{T}X_{2}$

$f_{1}\downarrow$ $\downarrow f_{2}$

$\mathrm{Y}_{1}rightarrow\lambda_{B}Y_{2}$

is commutative. It is not difficult to see that this definition of a mor-
phism in MAy satisfies the necessary axioms that morphisms should
satisfy in any category (see, for example, [20]).

Let $P_{T}$ and $’\rho_{B}$ be two $\mathrm{t}\mathrm{o}\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}/\mathrm{s}\mathrm{e}\mathrm{t}$ theoretic properties of maps
(for example: closed, open, 1-1, onto, etc.). If $\lambda_{T}$ has property $P_{T}$

and $\lambda_{B}$ has property $P_{B}$ then we say that $\{\lambda_{T}, \lambda_{B}\}$ is a $\{P_{T}, P_{B}\}-$

morphism. If $P_{T}$ is the continuous property, then we say that $\{\lambda_{T}, \lambda_{B}\}$

is a $\{*, P_{B}\}$ -morphism, similarly for $P_{B}$ . Therefore, a $\{*, *\}$-morphism
is just a morphism. Also, if $P_{T}=P_{B}=P$ then a $\{P_{T}, P_{B}\}$-morphism
is called a P-morphism.

As noted in the introduction, separation axioms for maps have al-
ready been defined in the category $\mathcal{T}\mathrm{t}9\varphi_{\mathrm{Y}}$ and since these axioms involve
only one map, they have also been defined for the category MAy.

We now give the definition of a submap as an analogue of subspace.
Since we do not restrict ourselves to a fixed base space $Y$ our defini-
tion slightly differs from that given in the category $\tau \mathrm{o}y_{Y}[18]$ . This
definition was introduced in [2].

Definition 2.1. The map 9 : $Aarrow B$ is said to be a (closed, open,
everywhere dense, etc.) submap of the map $f$ : $Xarrow Y$ , if $g$ is the
restriction of the map $f$ on the (closed, open, everywhere dense, etc.)
subset $A$ of the space $X$ and $g(A)=f(A)\subset B\subset Y_{\backslash }$ .

Remember that in MAy (as in $\mathcal{T}\mathrm{t}9y_{Y}$ ), by a compact map we mean
a perfect map, namely, a closed map with compact fibres. It is evident
that a closed submap of a compact map is compact.
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Finally, we give the definitions of base and weight for a continuous
map, both given by B.A.Pasynkov $[16, 18]$ .
Definition 2.2. Let $f$ : $Xarrow \mathrm{Y}$ be a map of topological spaces. A set
$U\subset X$ is said to be $f$ -functionally open, if there exists an open subset
$O$ of $Y$ such that $U\subset f^{-1}O$ and $U$ is functionally open in $f^{-1}O$ .

Definition 2.3. Let $f$ : $Xarrow \mathrm{Y}$ be a map of topological spaces. A
collection $\mathfrak{B}_{f}$ of open (resp. $f$-functionally open, functionally open)
subsets of $X$ is called a base (resp. $f$ -functionally open base, func-
tionally open base), for the map $f$ if for every point $x\in X$ and every
neighborhood $U_{x}$ of $x$ in $X$ there exists a neighborhood $O_{y}$ of the point
$y=f(x)$ in $\mathrm{Y}$ and an element $V\in \mathfrak{B}_{f}$ such that $x\in f^{-1}O_{y}\cap V\subset U_{x}$ .

Definition 2.4. The minimal cardinal number of the form $|\mathfrak{B}_{f}|$ , where
$\mathfrak{B}_{f}$ is a base (resp. $f$-functionally open base, functionally open base) for
the map $f$ (if such bases exist), is called the weight (resp. f-functional
weight, functional weight) of the continuous map $f$ and is denoted by
$\mathfrak{w}(f)$ (resp. $\mathfrak{W}(f),$ $\mathfrak{M}’(f)$ ).

A proof for the following propostion can be found in [19].

Proposition 2.1. The map $f$ : $Xarrow Y$ is completely regular if and
only if there exists an $f$ -functionally open base of $f$ .

The above proposition shows in particular that for a Tychonoff map
$f$ , the weight $\mathfrak{M}(f)$ is defined.

3. $\mathrm{E}\mathrm{L}\mathrm{E}\mathrm{M}\mathrm{E}\mathrm{N}\mathrm{T}\mathrm{A}\mathrm{R}_{\wedge}^{\mathrm{V}}$ PARTIAL TOPOLOGICAL PRODUCTS

The notion of elementary partial topological product was introduced
by $\mathrm{B}.\mathrm{A}$ .Pasynkov in 1964 $[16, 17]$ . By taking fan products of elemen-
tary partial topological products, which are called partial topological
products, he proved Theorem 1.4, the analogue of Theorem 1.1 in the
category $\mathcal{T}\mathrm{t}9\mathcal{P}_{Y}$ . In this section we give the definition of elementary
partial topological products, as given by $\mathrm{B}.\mathrm{A}$ .Pasynkov, and in the fol-
lowing sections we go on to define partial topological products for both
the Tychonoff product of maps and fan product relative to an inverse
system [3], the two types of products in the category $\mathrm{M}A\varphi$ introduced
in [2]. In the following sections we use these definitions to obtain ana-
logues of Theorems 1.1, 1.2 and 1.3 (and so also Theorem 1.4) in the
category MAy. The proofs of the results in $\mathrm{t}\mathrm{h},\mathrm{e}$ following sections are
found in [3].

Definition 3.1. Let $\mathrm{Y}$ and $Z$ be topological spaces and let $O$ be an
open subset of $Y$ . Consider the disjoint union $D$ of the sets $Y\backslash O$ and
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$O\cross Z$ and define a map $p:Darrow Y$ by letting $p(y)=y$ if $y\in Y\backslash O$ and
$p(y, z)=y$ if $(y, z)\in O\cross Z$ . Let $\Omega_{Y}$ and $\Omega_{O\mathrm{x}Z}$ be the topologies of $Y$

and $O\cross Z$ respectively. The elementary partial topological product $(\equiv$

EPTP) with base space $Y$ , fibre $Z$ and open set $O$ is the set $D$ endowed
with the topology generated by the base $p^{-1}\Omega_{Y}\cup\Omega_{O\mathrm{x}Z}$ and is denoted
by $P(Y, Z, O)$ . The continuous map $p:P(Y, Z, O)arrow Y$ is called the
projection of the EPTP $P(Y, Z, O)$ . The projection $q$ of the product
$O\cross Z\subset P(\mathrm{Y}, Z, O)$ onto the factor $Z$ is called the side projection of
the EPTP $P(\mathrm{Y}, Z, O)$ .

Thus, the EPTP $P(\mathrm{Y}, Z, O)$ induces on $O\cross Z$ the topology of the
topological product $O\cross Z$ , and on $\mathrm{Y}\backslash O$ , the subspace topology as
a subspace of Y. Also, the projection $p$ is continuous, open and its
restriction on $\mathrm{Y}\backslash O$ is a homeomorphic embedding. The following result
can be found in [19].

Proposition 3.1. The projection $p$ : $Parrow \mathrm{Y}$ of the EPTP $P=$
$P(Y, Z, O)$ satisfies the inequality $\mathfrak{w}(p)\leq \mathfrak{w}(Z)+1$ . If the fibre $Z$ is
a $T_{i}$ -space, then the projection $p$ is a $T_{i}$ -map, for $i\leq 3$ . If the fibre
$Z$ is completely $regular_{f}$ then the projection $p$ is completely regular and
$\mathfrak{M}(p)=\mathrm{t}\mathfrak{v}(Z)+1$ . If $moreover_{f}$ the set $O\subset Y$ is functionally open,
then the weight $\mathfrak{M}’(p)$ is defined and $\mathfrak{M}’(p)=\mathfrak{M}(p)$ .

4. TYCHONOFF PRODUCTS

Tychonoff products of maps is taken to be the Tychonoff product
of objects in the category $\mathrm{M}\mathcal{A}y[2,3]$ . Recently, Tychonoff products
of maps were used to obtain an analogue in the category MAy, of
the Tamano Theorem on an external characterization for paracompact
spaces [4]. We recall the definition.
Definition 4.1. Let $\{f_{\alpha} : \alpha\in A\}$ be a collection of continuous maps,
where $f_{\alpha}$ : $X_{\alpha}arrow Y_{\alpha}$ . The Tychonoff product of the maps $\{f_{\alpha} : \alpha\in A\}$ ,
which is denoted by $\prod\{f_{\alpha} : \alpha\in A\}$ , is the continuous map which
assigns to the point $x= \{x_{\alpha}\}\in\prod\{X_{\alpha} : \alpha\in A\}$ the point $\{f_{\alpha}(x_{\alpha})\}\in$

$\prod\{\mathrm{Y}_{\alpha} : \alpha\in A\}$ .
If $pr_{T}^{\alpha}$ : $\prod\{X_{\alpha} : \alpha\in A\}arrow X_{\alpha}$ and $pr_{B}^{\alpha}$ : $\prod\{\mathrm{Y}_{\alpha} : \alpha\in A\}arrow \mathrm{Y}_{\alpha}$ are

the projections, then the diagram

$\prod\{X_{\alpha} : \alpha\in A\}rightarrow pr_{T}^{\alpha}X_{\alpha}$

$\Pi\{f_{\alpha}:\alpha\in A\}\downarrow$ $\downarrow f_{\alpha}$

$\prod\{\mathrm{Y}_{\alpha}:\alpha\in A\}arrow pr_{B}^{\alpha}Y_{\alpha}$
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is commutative. Therefore, the pair $\{pr_{T}^{\alpha},pr_{B}^{\alpha}\}$ is a {onto, $\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{o}$} $-$

morphism of $\prod\{f_{\alpha} : \alpha\in A\}$ into $f_{\alpha}$ .
We now introduce and define Tychonoff partial topological products.

Definition 4.2. . Let $P_{\alpha}=P(Y_{\alpha}, Z_{\alpha}, O_{\alpha})$ be an EPTP with base
space $Y_{\alpha}$ , fibre $Z_{\alpha}$ and open set $O_{\alpha}$ for every $\alpha$ in some indexing set $A$

and let $p_{\alpha}$ : $P_{\alpha}arrow Y_{\alpha}$ be the corresponding projection of the EPTP $P_{\alpha}$ .
The Tychonoff product $\prod P_{\alpha}\equiv\prod\{P_{\alpha} : \alpha\in A\}$ is called the Tychonoff
partial topological product ($\equiv$ TPTP) of the EPTPs $P_{\alpha},$ $\alpha\in A$ . The
Tychonoff product $\prod p_{\alpha}\equiv\prod\{p_{\alpha} : \alpha\in A\}$ of the projections $p_{\alpha}$ is
called the projection of the TPTP $\prod P_{\alpha}$ onto its base. The projection
of the TPTP $\prod P_{\alpha}$ onto the EPTP $P_{\alpha}$ is denoted by $pr_{\alpha}$ .

Next, we formulate the main theorem of this section, an analogue of
Theorem 1.1 in the category MAy with respect to Tychonoff products.
By $I$ we denote the unit interval $[0,1]\subset \mathbb{R}$ .

Theorem 4.1. For a Tychonoff map $f$ : $Xarrow \mathrm{Y}$ the following are
equivalent:

1. The map $f$ has weight $\mathfrak{M}(f)\leq \mathrm{m}(\mathrm{m}\geq\aleph_{0})_{f}$
.

2. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a TPTP $\prod\{P_{\alpha} : \alpha\in A\}$ , where the EPTP
$P_{\alpha}=P(Y, I, O_{\alpha})$ and $|A|\leq \mathrm{m}_{f}$

.
3. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a TPTP $\prod\{P_{\alpha} : \alpha\in A\}$ , where the EPTP
$P_{\alpha}=P(\mathrm{Y}_{\alpha}, I, O_{\alpha})$ and $|A|\leq \mathrm{m}$ .

We can write down the following corollaries to the above theorem.
Since a $T_{2\frac{1}{2}}$ compact map is Tychonoff, we have:

Corollary 4.2. For a $T_{2\frac{1}{2}}$ compact map $f$ : $Xarrow Y$ into a Hausdorff
space $Y$ the following are equivalent:

1. The map $f$ has weight $\mathfrak{M}(f)\leq \mathrm{m}(\mathrm{m}\geq\aleph_{0})_{j}$

2. There exists a {closed homeomorphic embedding, homeomorphic
$embedding\}- morphism$ of the map $f$ into the projection of a TPTP
$\prod\{P_{\alpha} : \alpha\in A\}$ , where the EPTP $P_{\alpha}=P(Y, I, O_{\alpha})$ and $|A|\leq \mathrm{m}_{f}$

.

3. There exists a {closed homeomorphic $embedding_{f}$ homeomorphic
$embedding\}- morphism$ of the map $f$ into the projection of a TPTP
$\prod\{P_{\alpha} : \alpha\in A\}_{f}$ where the EPTP $P_{\alpha}=P(Y_{\alpha}, I, O_{\alpha})and|A|\leq \mathrm{m}$ .

Corollary 4.3. For a continuous map $f$ : $Xarrow Y$ the following are
equivalent:

1. The map $f$ is Tychonoff,$\cdot$
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2. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a TPTP $\prod\{P_{\alpha} : \alpha\in A\}$ , where the EPTP
$P_{\alpha}=P(\mathrm{Y}, I, O_{\alpha})_{i}$

3. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a TPTP $\prod\{P_{\alpha} : \alpha\in A\}_{f}$ where the EPTP
$P_{\alpha}=P(\mathrm{Y}_{\alpha}, I, O_{\alpha})$ .

Corollary 4.4. For a continuous map $f$ : $Xarrow \mathrm{Y}$ into a Hausdorff
space $Y$ the following are equivalent:

1. The map $f$ is $T_{2\frac{1}{2}}$ and $compact_{i}$

2. There exists a {closed homeomorphic embedding, homeomorphic
$embedding\}- morphism$ of the map $f$ into the projection of a TPTP
$\prod\{P_{\alpha} : \alpha\in A\}_{f}$ where the EPTP $P_{\alpha}=P(Y, I, O_{\alpha})$ ;

3. There exists a {closed homeomorphic $embedding_{f}$ homeomorphic
$embedding\}- morphism$ of the map $f$ into the projection of a TPTP
$\prod\{P_{\alpha} : \alpha\in A\}_{f}$ where the EPTP $P_{\alpha}=P(Y_{\alpha}, I, O_{\alpha})$ .

We end this section by a universal type theorem for $T_{0}$-maps in MAy,
an analogue to Theorem 1.2 in $\mathcal{T}\mathrm{t}9y$ . By the space $F$ we denote the
two point set $\{0,1\}$ with the topology consisting of the empty set, the
set $\{0\}$ and the whole space.
Theorem 4.5. For a $T_{0}$ -map $f$ : $Xarrow Y$ the following are equivalent:

1. The map $f$ has weight tn $(f)\leq \mathrm{m}(\mathrm{m}\geq\aleph_{0})_{i}$

2. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a TPTP $\prod\{P_{\alpha} : \alpha\in A\}$ , where the EPTP
$P_{\alpha}=P(\mathrm{Y}, F, \mathrm{Y})$ and $|A|\leq \mathrm{m}_{f}$

.
3. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a TPTP $\prod\{P_{\alpha} : \alpha\in A\}$ , where the EPTP
$P_{\alpha}=P(\mathrm{Y}_{\alpha}, F, O_{\alpha})$ and $|A|\leq \mathrm{m}$ .

Corollary 4.6. For a continuous map $f$ : $Xarrow Y$ the following are
equivalent:

1. The map $f$ is $T_{0i}$

2. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a TPTP $\prod\{P_{\alpha} : \alpha\in A\}$ , where the EPTP
$P_{\alpha}=P(\mathrm{Y}, F, Y)$ ;

3. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a TPTP $\prod\{P_{\alpha} : \alpha\in A\}_{f}$ where the EPTP
$P_{\alpha}=P(\mathrm{Y}_{\alpha}, F, O_{\alpha})$ .

5. FAN PRODUCTS

We recall the definition of fan product with respect to a collection
of maps and an inverse system, introduced in [2].
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Suppose we are given a collection of maps $f_{\sigma}$ : $X_{\sigma}arrow Y_{\sigma}$ for every
$\sigma\in\Sigma$ , where the indexing set $\Sigma$ is directed by the relation $\leq$ . We
further suppose that we are given an inverse system $\{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}$ . We
denote by $P$ , the subspace of the Tychonoff product $\prod\{X_{\sigma} : \sigma\in\Sigma\}$

given by

{ $\{x_{\sigma}\}$ : $\lambda_{\rho}^{\sigma}(f_{\sigma}x_{\sigma})=f_{\rho}x_{\rho}$ for every $\sigma,$ $\rho\in\Sigma$ satisfying $\rho\leq\sigma$ }.
We call this space, the fan product of the spaces $X_{\sigma}$ with respect to

the maps $f_{\sigma}$ and the inverse system $\{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}$ . The space $P$ is denoted
by $\prod\{X_{\sigma}, f_{\sigma}, \{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}\}$ .

For every $\sigma\in\Sigma$ , the restriction of the projection $pr_{\sigma}$ : $\prod\{X_{\sigma}$ :
$\sigma\in\Sigma\}arrow X_{\sigma}$ on the subspace $P$ will be denoted by $\pi_{\sigma}$ and is called
the projection of the fan product $P$ to $X_{\sigma}$ . From the definition of fan
product we have $\lambda_{\rho}^{\sigma}\circ f_{\sigma}\circ\pi_{\sigma}=f_{\rho}\circ\pi_{\rho}$ for every $\sigma,$ $\rho\in\Sigma$ satisfying
$\rho\leq\sigma$ . In this way one can define a map $p$ : $P arrow\lim_{arrow}\{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}$ , called

the projection of the fan product $P$ to the limit of the inverse system
$\{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}$ , by

$p= \prod\{f_{\sigma}\mathrm{o}\pi_{\sigma} : \sigma\in\Sigma\}$ .
It is evident that the projections $p$ and $\pi_{\sigma},$

$\sigma\in\Sigma$ , are continuous
maps. The projection $p$ is called the fibrewise product of the maps
$f_{\sigma}$ with respect to the inverse system $\{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}$ and is denoted by
$\prod\{f_{\sigma}, \{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}\}$ . It is not difficult to see that for every point
$y= \{y_{\sigma}\}\in\lim_{arrow}\{\mathrm{Y}_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}$ , the preimage $p^{-1}y$ is homeomorphic to the

Tychonoff product of the fibres $f_{\sigma}^{-1}y_{\sigma}$ , that is $\prod\{f_{\sigma}^{-1}y_{\sigma} : \sigma\in\Sigma\}$ .
Fan partial topological products were introduced in [3].

Definition 5.1. . Let $P_{\sigma}=P(Y_{\sigma}, Z_{\sigma}, O_{\sigma})$ be an EPTP with base
space $Y_{\sigma}$ , fibre $Z_{\sigma}$ and open set $O_{\sigma}$ for every $\sigma$ in some directed set $\Sigma$

and let $p_{\sigma}$ : $P_{\sigma}arrow Y_{\sigma}$ be the corresponding projection of the EPTP $P_{\sigma}$ .
Also, let there be given an inverse system $\{\mathrm{Y}_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}$ . The fan product
$P= \prod\{P_{\sigma},p_{\sigma}, \{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}\}$ is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ the Fan partial topological product
$(\equiv FPTP)$ of the EPTPs $P_{\sigma},$ $\sigma\in\Sigma_{f}$ with respect to the inverse system

$\{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}$ . The fibrewise product $p= \prod\{p_{\sigma}, \{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}\}$ of the pro-
jections $p_{\sigma}$ with respect to the inverse system $\{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}$ is called the
projection of the FPTP $P$ onto its base. The projection of the FPTP
$P$ onto the EPTP $P_{\sigma}$ is denoted by $\pi_{\sigma}$ .

We now formulate the main theorem of this section, an analogue of
Theorem 1.1 in the category MAy with respect to fan products. Recall
that in the above context, if $\mathrm{Y}_{0}$ is a topological space and $Y_{\sigma}=Y_{0}$

for every $\sigma\in\Sigma$ , and we further have the binding maps $\lambda_{\rho}^{\sigma}=\mathrm{i}\mathrm{d}_{\mathrm{Y}_{0}}$ for
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every $\sigma,$ $\rho\in\Sigma$ satisfying $\rho\leq\sigma$ , then the inverse system $S(Y_{0}, \Sigma)--$

$\{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}$ is called the constant inverse system of the space $Y_{0}$ on the
set $\Sigma$ and we have that the limit $\lim_{arrow}\{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}$ is homeomorphic to $Y_{0}$ .

Theorem 5.1. For a Tychonoff map $f$ : $Xarrow Y$ the following are
equivalent:

1. The map $f$ has weight $\mathfrak{M}(f)\leq \mathrm{m}(\mathrm{m}\geq\aleph_{0})_{j}$

2. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a FPTP $P= \prod\{P_{\sigma},p_{\sigma}, S(Y, \Sigma)\}$ , where the
EPTP $P_{\sigma}=P(Y, I, O_{\sigma})$ and $|\Sigma|\leq \mathrm{m}$;

3. There exists a homeomorphic embedding-morphism of the map’ $f$

into the projection of a FPTP $P= \prod\{P_{\sigma},p_{\sigma}, \{\mathrm{Y}_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}\}$ , where
the EPTP $P_{\sigma}=P(Y_{\sigma}, I, O_{\sigma})$ and $|\Sigma|\leq \mathrm{m}$ .

We have the following corollaries to the above theorem. Since a $T_{2\frac{1}{2}}$

compact map is Tychonoff, we have:

Corollary 5.2. For a $T_{2\frac{1}{2}}$ compact map $f$ : $Xarrow Y$ the following are
equivalent:

1. The map $f$ has weight $\mathfrak{W}(f)\leq \mathrm{m}(\mathrm{m}\geq\aleph_{0})_{j}$

2. There exists a {closed homeomorphic embedding, homeomorphic
$embedding\}- morphism$ of the map $f$ into the projection of a FPTP
$P= \prod\{P_{\sigma},p_{\sigma}, S(Y, \Sigma)\}$ , where the EPTP $P_{\sigma}=P(Y, I, O_{\sigma})$ and
$|\Sigma|\leq \mathrm{m}$;

3. There exists a {closed homeomorphic embedding, homeomorphic
$embedding\}- morphism$ of the map $f$ into the projection of a FPTP
$P= \prod\{P_{\sigma},p_{\sigma}, \{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}\}$, where the EPTP $P_{\sigma}=P(Y_{\sigma}, I, O_{\sigma})$

and $|\Sigma|\leq \mathrm{m}$ .

Corollary 5.3. For a continuous map $f$ : $Xarrow Y$ the following are
equivalent:

1. The map $f$ is $Tychonoff_{f}$.
2. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a FPTP $P= \prod\{P_{\sigma},p_{\sigma}, S(Y, \Sigma)\}$ , where the
EPTP $P_{\sigma}=P(Y, I, O_{\sigma})_{i}$

3. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a FPTP $P= \prod\{P_{\sigma},p_{\sigma}, \{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}\}$ , where
the EPTP $P_{\sigma}=P(\mathrm{Y}_{\sigma}, I, O_{\sigma})$ .

Corollary 5.4. For a continuous map $f$ : $Xarrow \mathrm{Y}$ the following are
equivalent:

1. The map $f$ is $T_{2\frac{1}{2}}$ and $compact_{i}$
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2. There exists a {closed homeomorphic embedding, homeomorphic
$embedding\}- morphism$ of the map $f$ into the projection of a FPTP
$P= \prod\{P_{\sigma},p_{\sigma}, S(Y_{0}, \Sigma)\}$ , where the EPTP $P_{\sigma}=P(\mathrm{Y}, I, O_{\sigma})$ ;

3. There exists a {closed homeomorphic embedding, homeomorphic
$embedding\}- morphism$ of the map $f$ into the projection of a FPTP
$P= \prod\{P_{\sigma},p_{\sigma}, \{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}\}$ , where the EPTP $P_{\sigma}=P(Y_{\sigma}, I, O_{\sigma})$ .

Remark 5.1. One can note that contrary to Corollaries 4.2 and 4.4, in
Corollaries 5.2 and 5.4 the Hausdorffness of the space $Y$ is not necessary
to ensure closedness of the top homeomorphic embedding.

Finally, we end this section by a universal type theorem for $T_{0}$-maps
in MAy for fan poducts corresponding to Theorem 4.5. This is an
analogue of Theorem 1.2 in the category MAJP with respect to fan
$\mathrm{p}\mathrm{r}o$ducts.

Theorem 5.5. For a $T_{0}$ -map $f$ : $Xarrow Y$ the following are equivalent:

1. The map $f$ has weight $\mathfrak{w}(f)\leq \mathrm{m}(\mathrm{m}\geq\aleph_{0})_{f}$
.

2. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a FPTP $P= \prod\{P_{\sigma},p_{\sigma}, S(\mathrm{Y}, \Sigma)\}$ , where the
EPTP $P_{\sigma}=P(Y, F, Y)$ and $|\Sigma|\leq \mathrm{m}$;

3. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a FPTP $P= \prod\{P_{\sigma},p_{\sigma}, \{\mathrm{Y}_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}\}$ , where
the EPTP $P_{\sigma}=P(Y_{\sigma}, F, O_{\sigma})$ and $|\Sigma|\leq \mathfrak{m}$ .

Corollary 5.6. For a continuous map $f$ : $Xarrow Y$ the following are
equivalent:

1. The map $f$ is $T_{0;}$
.

2. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a FPTP $P= \prod\{P_{\sigma},p_{\sigma}, S(Y, \Sigma)\}$ , where the
EPTP $P_{\sigma}=P(Y, F, \mathrm{Y})$ ;

3. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a FPTP $P= \prod\{P_{\sigma},p_{\sigma}, \{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}\}_{f}$ where
the EPTP $P_{\sigma}=P(Y_{\sigma}, F, O_{\sigma})$ .

6. ZERO-DIMENSIONAL MAPS

Zero-dimensional maps were defined by the author in [3]. We note
that this definition of zero-dimensional maps differs from that given
in [8]. Using this definition, it was shown in [3] that many properties
of zero-dimensional spaces can be generalized from the category $\tau \mathrm{o}y$

to the category MAy. Below we will mainly concern ourselves with a
universal type theorem for zero-dimensional maps.
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Definition 6.1. Let there be given a continuous map $f$ : $Xarrow Y$ . A
set $U\subset X$ is said to be $frightarrow closed$-open($f$ -clopen), if there exists an
open subset $O$ of $Y$ such that $U\subset f^{-1}O$ and $U$ is clopen in $f^{-1}O$ .

Definition 6.2. Let there be given a continuous map $f$ : $Xarrow Y$ ,
where $X\neq\emptyset$ . The map $f$ is called zero-dimensionaI if it is a $T_{1}$-map
and has a base $\mathfrak{B}_{f}$ consisting of $f$-clopen sets, where a map $f$ : $Xarrow Y$

is said to be a $T_{1}$-map if for every two distinct points $x,$ $x’\in X$ lying in
the same fibre, each of the points $x,x’$ has a neighborhood in $X$ which
does not contain the other point.

Note that if the set $U$ is $f$-clopen then it is also open in $X$ but is
not necessarily closed in $X$ . It is not difficult to see that every zero-
dimensional map is Tychonoff.

Theorem 6.1. If $f$ : $Xarrow Y$ is a zero-dimensional $map_{f}$ then so is
any submap $g:Aarrow B$, where $A\neq\emptyset$ .

We have the following results concerning Tychonoff products and
fibrewise products of zero-dimensional maps.

Proposition 6.2. The Tychonoff product $f= \prod\{f_{\alpha} : \alpha\in A\}$ : $X=$
$\prod\{X_{\alpha} : \alpha\in A\}arrow Y=\prod\{\mathrm{Y}_{\alpha} : \alpha\in A\}_{f}$ where $A\neq\emptyset$ and $X_{\alpha}\neq\emptyset$

for every $\alpha\in A$, is zero-dimensional if and only if all the maps $f_{\alpha}$ are
zero-dimensional.

Proposition 6.3. Let $p:P= \prod\{X_{\sigma}, f_{\sigma}, \{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}\}arrow\lim_{arrow}\{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}$

be the fibrewise product of the maps $f_{\sigma}$ with respect to the inverse sys-
$tem\{\mathrm{Y}_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}$ , where $\lim_{arrow}\{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}\neq\emptyset$ . If all the maps $f_{\sigma}$ are
zero-dimensional then the map $p$ is also zero-dimensional.

The following is a universal type theorem for zero-dimensional maps.
This is an analogue of Theorem 1.3 in the category MAy. By the space
$D$ we understand the two point set $\{0,1\}$ with the discrete topology.

Theorem 6.4. For a zero-dimensional map $f$ : $Xarrow Y$ the following
are equivalent:

1. The map $f$ has weight $\mathfrak{M}(f)\leq \mathrm{m}(\mathrm{m}\geq\aleph_{0})_{f}$.
2. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a TPTP $\prod\{P_{\alpha} : \alpha\in A\}_{f}$ where the EPTP
$P_{\alpha}=P(\mathrm{Y}, D, O_{\alpha})$ and $|A|\leq \mathrm{m}_{i}$

3. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a TPTP $\prod\{P_{\alpha} : \alpha\in A\}$ , where the EPTP
$P_{\alpha}=P(\mathrm{Y}_{\alpha}, D, O_{\alpha})$ and $|A|\leq \mathrm{m}$;
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4. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a FPTP $P= \prod\{P_{\sigma},p_{\sigma}, S(Y, \Sigma)\}_{f}$ where the
EPTP $P_{\sigma}=P(Y, D, O_{\sigma})$ and $|\Sigma|\leq \mathrm{m}_{i}$

5. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a FPTP $P= \prod\{P_{\sigma},p_{\sigma}, \{Y_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}\}$ , where
the EPTP $P_{\sigma}=P(Y_{\sigma}, D, O_{\sigma})$ and $|\Sigma|\leq \mathrm{m}$ .

We can write down the following corollary to the above theorem.

Corollary 6.5. For a continuous map $f$ : $Xarrow Y_{f}$ where $X\neq\emptyset$ , the
following are equivalent:

1. The map $f$ is zero-dimensional;
2. There exists a homeomorphic embedding-morphism of the map $f$

$—- in\overline{t}o^{-}The$ projeciion of a $\overline{\mathit{1}}\hat{F}\overline{\mathit{1}}\overline{F}\overline{11}\{^{r}\overline{r}_{\alpha} : \alpha\in \mathcal{A}\}_{f}wr’\iota ere$ the $\overline{B}\overline{F}\overline{\mathit{1}}\mathrm{i}^{\geq}$

$P_{\alpha}=P(Y, D, O_{\alpha})_{i}$

3. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a TPTP $\prod\{P_{\alpha} : \alpha\in A\}$ , where the EPTP
$P_{\alpha}=P(Y_{\alpha}, D, O_{\alpha})_{\mathrm{i}}$

4. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a FPTP $P= \prod\{P_{\sigma},p_{\sigma}, S(Y, \Sigma)\}$ , where the
EPTP $P_{\sigma}=P(Y, D, O_{\sigma})_{i}$

5. There exists a homeomorphic embedding-morphism of the map $f$

into the projection of a FPTP $P= \prod\{P_{\sigma},p_{\sigma}, \{\mathrm{Y}_{\sigma}, \lambda_{\rho}^{\sigma}, \Sigma\}\}$, where
the EPTP $P_{\sigma}=P(\mathrm{Y}_{\sigma}, D, O_{\sigma})$ .

Finally, the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}$ result concerning Tychonoff $\mathrm{c}o$mpactifications
was also given in [3]. Recall that a compact map $bf$ : $b_{f}Xarrow Y$ is
said to be a compactification of $f$ : $Xarrow Y$ if there exists a {dense
homeomorphic $\mathrm{e}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{d}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}$ } $- \mathrm{m}\mathrm{o}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}\mathrm{s}\mathrm{m}\{\lambda, \mathrm{i}\mathrm{d}_{Y}\}$ : $farrow bf[25,26]$ . In
this situation we usually identify $X$ with $\lambda(X)$ and so $b_{f}X=[X]_{b_{f}X}$

and $f=bf|_{X}$ , where by $[X]_{b_{f}X}$ we mean the closure of $X$ in $b_{f}X$ . For
details concerning compactifications of Tychonoff maps, in particular
the construction of $\beta f$ , one can consult [18, 19, 13].

Theorem 6.6. Every zero-dimensional map $f$ : $Xarrow Y$ of weight
$\mathfrak{M}(f)=\mathrm{m}\geq\aleph_{0}$ has a zero-dimensional compactification $bf$ : $b_{f}Xarrow Y$

of weight $\mathfrak{M}(bf)=\mathrm{m}$ .
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