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Abstract

We prove several facts about cellularity andellularity of A-Lindel6f groups generated by their
k-stable subspaces. For example, if a Lindelof greéufs generated by itg-stable subspace then
«-cellularity (and hence cellularity) af does not exceed. In particular,w1-cellularity (and hence
cellularity) of a Lindeldf group does not exceed if this group is generated by ite1-Lindelof
subspace which is B-space. For any cardingl with » < u < ¢ a Lindel6f groupG is constructed
which is separable (and hence has countable cellularity) whitellularity of G is equal tow.
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1. Introduction

It is well known that cellularity (i.e., the Souslin number)X) of compacta (i.e., com-
pact Hausdorff spaces) may be arbitrarily large but cellularity of any compact group is
countable. Tkéenko [9] proved that cellularity of every-compact group is also count-
able. In particular, it is true for groups generated by their compact subspaces (for example,
for the free topological groups of compacta). Sirceompact groups are Lindelof and
Lindelofness is the nearest property of compactness type to that of compactness, it was
natural (after Tkéenko's result) to find out the behavior of cellularity in the class of Lin-
del6f groups.

The situation for Lindel6f groups is much more complicated than for compact ones.
Generalizing Tkéenko’s result o -compact groups, Uspenskii [12] showed thaF) <
o for any Lindel6f X' -group G (a spaceX is calledLindel6f X if it is a continuous image
of a perfect preimage of a separable metrizable spacefehka [10] and Uspenskii [12]
proved that(G) < 27 for anyz-Lindel6f groupG (a spaceX is calledz-Lindel f if every
open cover ofX has a subcover of cardinality t). Tkatenko [10] constructed a Lindel6f
group G with ¢(G) = wz. In [3], a Lindeldf groupG is presented witle(G) = ¢. The
following problem arose in connection with the results cited above.

Problem 1.When is

(@) c(G) < w;
(b) ¢(G) < w1,

for a Lindel6f (and for an arbitrary) grou@?

A partial answer is contained in Uspenskii’s paper [13] where the notianstébility
of a space is used. Recall that a spAces calledz-stable [1] if nw (Y) < t for any space
Y which is a continuous image of and has aondensation (i.e., a one-to-one map) onto
a space of weight z. Itis completely natural to considerstability in the case of topolog-
ical groups because aty, -neighbourhood (i.e., &, -set) containing the identity element
of an arbitrary topological grou contains a closed subgroup such thatG/H has
a condensation onto a space withr-docally finite base (which will have the weigkt ©
if G is t-Lindeldf or ¢(G) < 7). In [13] (see Theorems 4, 5 and Corollary 1), Uspenskii
gave an upper bound for the cellularity of.a.indel6f group supposing that it is gener-
ated by gu-stable subspace. In particular, he stated ¢b@f) < w; for any Lindel 6f group
G generated by its w-stable subspace. He also showed that the last inequality cannot be
strengthened.

Sometimes it is more productive to consider more strong cardinal functions than cellu-
larity in the theory of topological groups. Recall the corresponding definitions.

A family n of subsets of a spack is calleddense in a family ¢ of subsets ofx if
every element of) is contained in some element &fand clun = clué&. Evidently, the
inequality c(X) < t is equivalent to the property: any family of open sets inX has a
dense irg subfamily of cardinality< z. This observation explains the following definition
(and the term ¢-cellularity”).
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Recall that:

e aG.-set (= aset of type G;) in a spaceX is the intersection of at mostmany open
sets inX;

e aG.-familyin a spaceX is a family of G, -sets inX;

e the r-cdlularity cel, (X) of a spaceX is maxw, min{x: any G,-family &£ in X has a
dense ire subfamily of cardinality< A}).

It seems that the definition of geX was given by M.G. Tké&enko. The case of ¢gll
was considered, for example, in [13].
Evidently,

c(X) <ceh(X) <cel,(X) foria<pu.

Note that Uspenskii [13] proved the inequality g&F) < w for Lindel6f X- (in par-
ticular, for o-compact) groups and Pasynkov [6] stated the inequality(Gel< 2° for
7-Lindel6f groupsG. These results strengthen Teamko's and Uspenskii's ones onG)
cited above. In this paper, a strengthening of Uspenskii’s results from [13] will be obtained
and some additional information will be given even é6) of some Lindel6f groups.

The following problems may be formulated in connection with the cited above results
and Problem 1.

Problem 2.When is

(c) cel,(G) < w;
(d) cel,(G) <wy,

for a Lindel6f (and for any) grou?
Problem 3.Is it true thatc(G) = cel, (G) for all Lindel&f groupsG?

A complete answer to Problem 3 will be obtained in this paper. It will be shown that, for
Lindel6f groups, the difference betwee(G) and cel,(G) may be arbitrary (in possible
limits).

Often the cardinal functiom — cl(X) = min{u: for any G.-family & in X, the closure
cl(lJ &) isaG,-setinX} is considered together with get.

Evidently,

A—clX)<pu—cl(X) fora<u.

Note that the inequality — cl(X) < w which implies, for example, the almost perfect
normality of X [2], is useful in examinations of inductive dimensions [6] and is often
proved together with the inequality ¢glX) < w. The lastinequality is stated by Uspenskii
in [12] for Lindel6f X'-groups. Some upper bounds fer— cl(G) for special Lindelof
groups will be given in this paper.

The proof of the main result of Section 2 (Theorem 1) is based on considering the
inverse spectrumf inverse systemy; defined by a topological grou@, which consists
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of all quotient-spaces&;/H,, where H, is a closed subgroup af. Generally speaking,
this spectrum is not continuous (i.e., for some well-ordered by inclusion family of closed
subgroupsH,, « € A, of G and forH = (\{H,: « € A} the spaces/H may not be the
limit of the inverse spectrum of the spac8gH, ), but sometimes this problem may be
taken care of (see, for example, [6,7]). In this paper, the continuifadé stated in some
places.

2. Cellularity and z-cellularity of A-Lindel6f groups for A <t

Recall that iwX) < t for a spaceX if X has a condensation onto a space of weight
<.

Definition 1. For cardinal numbers andu, A < i, a spaceX will be called(i, w)-stable
if nw(Y) < u for any continuous imagg of X with iw(Y) < A.

Note that the(i, A)-stability coincides withk-stability.

Definition 2. A topological groupG will be called(strongly) algebraically (A, n)-stable,
A < u, if for any closed normal subgroup (for any closed subgraNp)w(G/N) < A
implies nWG/N) < . A group will be called ¢trongly) algebraically A-stable if it is
(strongly) algebraicallya, A)-stable.

Lemma 1.If atopological group is generated by a (&, u)-stable subspace then it is alge-
braically (&, u)-stable.

Proof. Assume that a grougs is generated by itgA, u)-stable subspacd and H is

a closed normal subgroup ¢f such that iWG/H) < A; let p:G — X = G/H be the
canonical map. Then, f&# = pA we have iwWB) < 1 and so nwB) < «. Since NWB") <
uw,n=23, ...,andG/H is a continuous image of a countable discrete union of powers
B",we have nWG/H) <. O

Recall that an inverse spectrusn= {X,, pga; A} is calledr-continuous for an infinite
cardinal numbeh (see, for example, [6]) if, for any monotone mappipg. — A, there
existsy =supjx in A and A{p,;@): 6 € A} is a homeomorphism onto the limit of the
inverse spectruniX ; oy, pju)j©); 0 €A}

The following proposition is a generalization of Theorem 4 from [13] (for a slightly
stronger notion of-continuity than in [13]).

Proposition 1. Assume that A < T and a A-Lindel6f group G is generated by a subspace
X whichis (i, 7)-stable for all © with A < < 7. Then G isthelimit of a A™-continuous
t-directed inverse spectrum S = {G,, pg«; A} of topological groups such that:

(1) nW(Gy) <t forall o e A;
(2) thelimit homomorphisms p, : G — G, are open.
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We need the following lemma to prove Proposition 1.

Lemma 2. Suppose that G isa A-Lindel 6f group and a family n = {N,: « € A} of closed
normal subgroupsof G is A-directed (assuming alsothat @ < B if Ng C Ne); let N = (7.
Then

(1) for any neighbourhood O of the identity e of G, there exists a neighbourhood U of
eanda € AsuchthatU - N, C O - N;

(2) the topological group X = G/N is the limit of the inverse spectrum of topological
groups S = {Xy = G/Nq, pga; A}, Where pg, is the canonical map of Xg onto X,
for 8 > a.

Proof. Let p:G — X and f,:X — X, be the canonical maps. Evidently, is A-
Lindelof.

Take a neighbourhoo@ of e. There exists a neighbourhodtiof e such that/2 c 0.
The familyé ={G \ N,: @ € A} U {U - N} is an open cover of;. SinceG is A-Lindelof,
there exists a subcovéWN,: « € B} U {U - N} of & with B C A, |B| < A. Sincen is
A-centered, there exisg$ € A such that8 > « for any« € B. ThenNg C [(|{Ny: « €
B} =G\ U{(G\ Ny): « € By CU-N.HenceU - Ng =U?%2.NCO-N,so(1)is proved.

LetY be the limit of S andp, : Y — X4, a € A, be its projections. Sincg, = pga o 5
for B > &, a continuous homomorphisyi: X — Y is defined so thaf, = py o f, @ € A.
SinceN = (5, the mapy is a monomorphism. 1§ = {y,}aca € ¥ then the setg 1y,
are closed inX and their family isk-centered (becausé is A-directed). It follows from
ther-Lindeldfness ofX that f 1y = N{f, 1ye: @ € A} # @. Hencef is an epimorphism.
Finally, (1) implies thatf is open and so we may identify andY by means off. O

Proof of Proposition 1. We may suppose (see [4]) th&tis a subgroup of the product
IT of topological groupsG; of weight< A,i e I. LetA ={a C I: |a| < T}; pry be the
restriction toG of the projection of the produd¥ onto the subprodud?, =[[{G;: i € a},
Ny = pr;lea (wheree, is the identity of the groupl,), G, = G/Ng, 7, be the canonical
map ofG ontoG, @ € A; pgo be the canonical map @fz ontoG,, for g > « (i.e., forg D
a), o, B € A. Evidently,we have a t-directed inverse spectrum of topological groups S =
{Gu, ppa; A}. Let H be the limit of S and p, : H — G, be the limit projectionsq € A.
Evidently, for everyr, the groupG,, has a continuous monomorphism to the grép

Let us prove (1).

Let || = v. Take the case when< v < 7. Thenw(l1,) < v < t and, by Lemma 1,
nw(G,) < t. Now letv = t. Take an injective and (strongly) monotone mapping — A
such thatj(9) <« for all 6 € r anda = | J{j(0): 6 € T} =supj(#): 6 € t}. Then the
family of all N ), 0 € 7, is A-directed andV, = |{N,): 6 € t}. Sincew(I1;¢)) < 7,
by Lemma 1, nWG @) < 7, 6 € . Hence, by Lemma 2, n#,) < r. We have
proved (1).

Let us prove tha$ is A*-continuous.

Take a monotone mapping At — A. SinceA™ < 7, we haves = J j(A") € A and
§=supj(AT). LetSs ={Gj©). pjw)j@); 0 € AT}).If § € j(A 1) then, evidently, the group
Gs is the limit of Ss. If § ¢ j(AT) then|§| > 1. Hence the seB = {8 C §: |B| < A} is
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A-directed andVs = (){Ng: 8 € B}. By Lemma 2,G is the limit of the inverse spectrum
Xs ={Gg, pyp; B} and its limit projections coincide with the homomorphispg, g € B.
The homomorphismp;; ) define a continuous homomaorphisgof Gs to the limit Hs
of S5 such thatps;g) = pj) o is, Wherep ;) is the limit projection of the spectruisy,

6 € A1, The surjectivity of allps; ) implies the density ofsG; in Hs. Since, for any
B € B, there exists the minimal numbeé¢s) € A+ such that3 C j(6(B)), the continuous
homomorphisnkg = p;e)sorjep) - Hs — Gg is defined. Since the inequalify> 8,
for y, B € B, implies the inequality (y) > 6(8), we convince ourselves that

kg =Pj©p)soPi@E) =Pi@E)NL O PiO1)i@B) ° Pi@w)
= PyB O Pj®())y © Pj@() = Pyp oky.

Hence a continuous homomorphigmH; — G is defined such thatsg o k = kg for
anyg € B. But since

pspokois=kgois=pjep)s°Pj6@B) °is=Pj@P) ° Psj@O®B) = Psp

for any 8 € B, we conclude that o i; is the identity map of5s. The Hausdorffness dfl;
and the density of;Gs in Hs imply thatis andk are mutually inverse homeomorphisms.
We have proved tha is AT -continuous.

Sincen, = pgy o g for anya, g € A, @ < B, a continuous homomorphism: G —
H is defined such that, = p, o 7, @ € A. The epimorphness of alt, implies that
7 G is dense inH. SinceG is a subspace of7, we conclude thair is a topological
embedding. Finally, for any poirtte H, the familyi* = {1 pyh: « € A} is closed inG
and ist-(and saor-)centered. It follows from the-Lindel6fness ofG that( 2* # @. Since
ﬂ{p;lpah: a € A} = {h}, we haveh € 7G. Hencer is an isomorphism. The openness
of m,, the surjectivity ofr and the relationr, = p, o w give us the openness pf,. O

Theorem 1. Suppose that A < t and a A-Lindel6f group G is generated by a subspace X
whichis (u, )-stablefor all uw with A < < 7. Then

c(X)<cel,(G)<ceL(G)<t and w—cl(G) <t —cl(G) <.

Moreover, for any G.-family & in G, there exist a normal closed subgroup N of G and
aclosed (and G-) family n in H = G/N such that nw(H) < 7, |n| < t and the family
p~1n (where p isthe canonical map of G onto H) isdensein &.

Proof. Let& be aG.-family in G.
Take an inverse spectrush= {G, pgo; A} with the properties such as in Proposition 1.
Sinces is t-directed, we may find a family in G such that its elements are contained
in elements of; for every F € ¢ there exisiu = a(F) € A and a closed seb = @ (F)
in G, such thatF = p1®; | J¢ = |J£. Suppose that there is no densg isubsystem of
cardinality< z. Then, for any ordinal number < ¢, there existx(d) € A, a closed (and
G+-) setdy in Gy (p) and a pointyy € Fy = p;(le)% € ¢ such that

xg € Fp\ (ClU{F: k <0}), 6<t™. (1)

LetCyp={xc: k <0}, 2<0 <1, C={xg: 6 <TF).



D. Buhagiar, B. Pasynkov / Topology and its Applications 153 (2005) 1-9 7

The r-directedness aof allows us to suppose that

ak) <a@®) fork <6 <t™. (2)

Since nWG,) < t for all a € A, there exist®(1) < t+ such thatp,1)Cy (1) is dense in
PayC. Lets(1) = a(8(1)). Itis possible, by means of transfinite induction and using the
r-directedness of andt ™, to choos® (k) < t+ ands(k) € A, k < AT, so that

0y <0() ifk<Il<a™, 8(k)=a(0(k)) and
¢l psy Cor1) =€l psay C, k<A™ 3)

SinceAr™ < 1, we haved (co) = supd(k): k <At} < . It follows from (3) and (2)
that the mapping: AT — A is monotone. Hence, there exisi®o) = sups(k): k < AT}
in A. The setps)Co(oo) IS dense inps)C becauseS is At-continuous. Hence
D5(00)X0(c0) € Cl Psoc)Co(oc)- It follows from the openness opsi) that xgo) €
cl pa_(io)pg(oo)CQ(oo). But (see (2)$(co0) > a (k) for all « < 6(c0). Hence

-1 -1 .
Xg(c0) € cl pB(oo)p‘s(OO)CG(OO) cclu {pa(/c)pa(’()x"' K< 9(00)}
cclu {F,(: K< 9(00)}

But, by (1), this is impossible. Thus there exists a dense subfarndf¢ of cardinality
<.
Since S is r-directed, there exist an indexe A and a closed family; in H = G,
such thatt’ = p;ln. It follows from the openness gi, that clu¢ =clu¢ =clU¢’ =
p(;lC|Un. Since nwWH) < t, we conclude that ¢J and clué areG.-sets inH and in
G respectively. Evidently, the required normal subgreupf G is p(;lea, wheree, is the
identity of the groupH. O

Corollary 1. If a Lindel6f group G is generated by its (w, w1)-stable (in particular, w- or
w1-stable) subspace then

c(G) < cel,(G) <cely, (G) w1 and w—cl(G) <w1 —cl(G) < w;.
This corollary is a generalization and a strengthening of Corollary 2 in [13].

Corollary 2. If a Lindel6f group G is generated by a u-stable subspace, 1 > w, then

c(G)<cel,(G)<cel(G)<pu and w—cl(G) <pu—cl(G) < p.

Recall that a spack is a P-space if everyGs-subset ofX is open inX. Also recall that,
for a discrete spac& and an infinite cardinal number, the one-point -Lindel&fication
L. X is the disjoint union ofX and a point with the topology consisting of all subsets
of X and all sets of typd/} U (X \ L), where|L| < . Evidently, L. X is a r-Lindel6f
P-space. Since every first countable continuous image otgrlyindelof P-space con-
sists of not greater thas#; points, anyws-Lindel6f P-space iS(w, w1)-stable. Thus we
have the following.
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Corollary 3. If a Lindel6f group G is generated by a w1-Lindel6f (in particular, Lindel 6f )
subspace which isa P-space then

c(G) < cel,(G) <cel,(G)<wy and w-—cl(G) <wi—cl(G) <w;.

This corollary is a generalization and a strengthening of Corollary 3 in [13], Theo-
rem 3.8 in [5] and Corollary 4.14 in [11].

3. Lindel6f groups with countable cellularity and arbitrary (possible) w-cellularity

Theorem 2. For any u, o < u < ¢, there exists a Lindel6f separable group F,, with
nwW(F,) = u, iw(F,) =w and (c(F,) = o <) cel,(F,) = n which is (w, u)-stable but
isnot (w, A)-stablefor A < u.

Proof. Let R? be the set of all points of the spaé and7, be the topology oR?.

Following Przimusin’ski [8, Corollary 4], represeRE as the union of two disjoint sets
T1 and 7> so that, for any: € w and any closed iiR?)” setF, the relationF N (T;)" = ¢
for i =1 ori = 2 implies the relationF|, < o (i.e., there exists a countable setc R?
such thatF c | J{(R?)1 x --- x (R?);_1 x A x (R?);11 x --- x (R?),:i=1,...,n}).

Below 7" denotes the topology ofR?)". PutR; = {(x,y) e T;: y=0},i=12.
We may suppose thaiR,| = ¢. Let 7 be a new topology orR? a base of which is
Te U {{(a,0} U {(x,y) € R% (x —a)®>+ (y — €)2 < €°}: (a,0) € Ry, ¢ > 0}). Put
P =(R%,7).

For anyu, w < u < ¢, fix a subsetd,, of R, of cardinality .« and letP, be the set
R%\ (R2\ A,) with the topology induced by~ on it. Evidently, the discrete topology
is induced on4,, in P,. Hence nwP,) > n. Since the spac®, \ A, has a countable
base andA,| = u, we have nWP,) < u. Thus nwP,) = u. It follows from this that
nw((P,)") = u for anyn € w. Since the free topological groug, = F(P,) of the space
P, is a continuous image of a countable discrete union of all finite powers of the Bpace
andF,, containsP,, as a subspace, we have (fy) = .

Evidently, the spac®, is separable. Hence all of its finite powers and the grBujare
also separable and 80F,,) = w.

We now show that the spadg, is (w, u)-stable but notw, A)-stable forx < . The
first assertion follows from the fact that the network weight of all continuous images of
F,, is not greater tham. The second one follows from the inequality (%) > n and
from the fact thatF,, has a condensation onto a separable metrizable space. Ingged,
has a condensation onto a sub@gtof R?. HenceF,, has a continuous isomorphism onto
the free topological groug,, of Q,. The existence of a countable base@p implies
the existence of a countable networkan,. This allows to condens€,, onto a separable
metrizable space. Hence (#,) = w.

We next prove thaf), is Lindelof. It is sufficient for this to prove that all finite powers
of P, are Lindeltf (the method of the proof is similar to one in [8]).

First, we shall prove thap, itself is Lindel6f. Letn be its open cover. Topologi€s
and7 coincide onT;. Hence there exists a countable subfangilgf n coveringTy. The
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set( ¢ contains a neighbourhoad of 7; in the subspac®&?\ (Rz \ A,) ofthe spaceR?.
It follows from this (by the choice of the sef3) that P, \ O is countable. This allows to
choose a countable subcovenpf

Suppose that all powerd, )™, 1 < m < n, are Lindeltf. We show thaX = (P,)" =
[T{(Pk: k=1,...,n} is also Lindeldf. Lety be an open cover ak. As above, there
exists a countable subfamily @f covering some neighbourhoad of (71)" in the sub-
space(R? \ (Rz2 \ A" of the spacegRR?)". By the choice of the set§, there exists a
countable seC in P, such that(P,)" \ O is contained in the union of subprodudi,
k=1,...,n, of the productX such that the factor af7; is contained in(P,)x is C and
other factors coincide with the corresponding factor&offhusX \ O is contained in the
countable union of subsets homeomorphi(:lﬂl’;;g)"‘1 which are Lindelof, by the inductive
assumption. It follows from this that has a countable subcover. We have proved that all
finite powers ofP, and (so)F,, are Lindelof.

Finally we prove the equality Ge(F,,) = . The inequality ceJ(F,,) < u follows from
the relation nwF,) < w. All one-point sets inF,, are of typeGs becauseF,, may be
condensed onto a (separable) metrizable space. $jneea subspace df,, and contains
a discrete (in itself) subspacs, of cardinality i, the Gs-family of all one-point subsets
of A, has no dense subfamily of cardinality. O
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