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Abstract

In this paper we define and studyMT-maps, which are the fibrewise topological analogue of
metrizable spaces, i.e., the extension of metrizability from the categoryTop to the categoryTopY .
Several characterizations and properties ofMT-maps are proved. The notion of anMT-space as an
MT-map preimage of a metrizable space is introduced. Examples ofMT-spaces and their relation
with M-spaces are given. Finally it is deduced that anMT-space with aGδ -diagonal is metrizable.
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1. Preliminaries

Fibrewise General Topology or General Topology of Continuous Maps is concerned
most of all in extending the main notions and results concerning spaces to continuous
maps. In this way one can see some well-known results in a new and clearer light and
one can also be led to further developments which otherwise would not have suggested
themselves. This is usually done in the following way.

For an arbitrary topological spaceY one considers the categoryTopY , the objects of
which are continuous maps into the spaceY , and for the objectsf :X→ Y andg :Z→ Y ,
a morphism fromf into g is a continuous mapλ :X→ Z with the propertyf = g ◦ λ.
This is denoted byλ :f → g. We note that this situation is a generalization of the category

∗ Corresponding author. E-mail: miwa@riko.shimane-u.ac.jp.
1 B.A. Pasynkov was supported by the Russian Fund of Fundamental Investigations, under grant 96-01 00728.

0166-8641/99/$ – see front matter 1999 Published by Elsevier Science B.V. All rights reserved.
PII: S0166-8641(98)00010-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/83022337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


32 D. Buhagiar et al. / Topology and its Applications 96 (1999) 31–51

Top (of topological spaces and continuous maps as morphisms), since the categoryTop is
isomorphic to the particular case ofTopY in which the spaceY is a singleton set.

In defining properties of a continuous mapf :X→ Y one does not directly involve
any properties on the spacesX andY (except the existence of a topology). Such were the
definitions given in [3,4,14,16] for the separation axioms, compactness, paracompactness,
weight and others. In most cases there is some choice in defining these properties and one
usually prefers the simplest and the one that gives the most complete generalization of the
corresponding results in the categoryTop. It would be beneficial to have a more systematic
way of extending definitions and results from the categoryTop to the categoryTopY and
some hope is provided by the link between fibrewise topology and topos theory [7,8,10,
11]. Unfortunately, as was noted in [6], this approach has several drawbacks.

Research in the general topology of continuous maps showed a strong analogy in the
behaviour of spaces and maps and it was possible to extend the main notions and results
of spaces to that of maps. Most of the results obtained so far in this field can be found in
[3,4,6,9,14,15], where one can also find an extensive bibliography on the subject.

Unless otherwise stated,Y is a fixed topological space with topologyτ . The collection
of all neighborhoods (nbd(s)) of a pointy ∈ Y is denoted byN(y). A morphismλ :f → g

is called surjective, closed, perfect, etc., if, respectively, such is the mapλ :X→ Z. If
[λX] = Z then the morphismλ is said to be dense and ifλ :X→ Z is a homeomorphism
then the morphismλ is said to be an isomorphism. Here by[ · ] or [ · ]X we mean the
closure operator in the respective space.

We now give some definitions and results concerning maps. For more details one can
consult [6] and [15].

Definition 1.1. A continuous mapf :X→ Y is called aTi -map, i = 0,1,2, if for all
x, x ′ ∈ X such thatx 6= x ′, f x = f x ′ the following condition is, respectively satisfied:

i = 0: at least one of the pointsx, x ′ has a nbd inX not containing the other point;

i = 1: each of the pointsx, x ′ has a nbd inX not containing the other point;

i = 2: the pointsx andx ′ have disjoint nbds inX.

A T2-map is also called Hausdorff. We note that fori = 0,1 the property for a map
f :X→ Y to be aTi -map, is equivalent to the property that all the fibersf−1y, y ∈ Y , are
Ti -spaces. This is not the case forT2-maps.

Definition 1.2. The subsetsA andB of the spaceX are said to be, respectively:
(a) nbd separated inU ⊂X,
(b) functionally separated inU ⊂X,

if the setsA∩U andB ∩U
(a) have disjoint nbds inU ,
(b) are functionally separated inU (i.e., there exists a continuous functionφ :U →
[0,1] such thatA∩U ⊂ φ−1(0) andB ∩U ⊂ φ−1(1)).
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Definition 1.3. A continuous mapf :X→ Y is called completely regular (regular), if for
every pointx ∈X and every closed setF in X, x /∈ F , there exists a nbdO ∈N(f x), such
that the sets{x} andF are functionally separated (nbd separated) inf−1O . A completely
regular (regular)T0-map is called Tychonoff orT31

2
- (T3-) map.

It can be easily verified that everyTj -map is aTi -map forj, i = 0,1,2,3,31
2 andi 6 j .

Definition 1.4. A continuous mapf :X→ Y is called functionally prenormal (prenormal)
if for everyy ∈ Y and every two disjoint, closed setsF andH in X, there existsO ∈N(y)
such thatF andH are functionally separated (nbd separated) inf−1O . If for every
O ∈ τ , the mapf |f−1O :f−1O → O is functionally prenormal (prenormal) thenf is
called functionally normal (normal). A normalT3-map is called aT4-map.

Remark 1.5. In [6] a functionally prenormal (prenormal) map in the sense of Defini-
tion 1.4 is called a functionally normal (normal) map. We will use the terminology of
Definition 1.4 as is [15].

The following results can be found in [15].

Proposition 1.6. If a mapf :X→ Y is closed we have:
(a) If for everyy ∈ Y , everyx ∈ f−1y and every closed(in f−1y) setA, such that

x /∈A, the sets{x} andA are nbd separated inX, thenf is regular.
(b) If for everyy ∈ Y , every two disjoint, closed(in f−1y) sets are nbd separated inX,

thenf is normal.

Remark 1.7. The above proposition shows that a closed normalT1-map isT3 and thusT4.

Proposition 1.8. If a spaceX is (a) a Ti -space,i = 0,1,2, (b) regular, (c) completely
regular, then a continuous mapf :X → Y is, respectively(a) a Ti -map, i = 0,1,2,
(b) regular,(c) completely regular.

Proposition 1.9. A continuous map of a(a) normal space is functionally prenormal,
(b) hereditary normal space is functionally normal.

Proposition 1.10. If a spaceY and the mapf :X→ Y are: (a) a Ti -space and aTi -
map, respectivelyi = 0,1,2, (b) regular, (c) completely regular, then the spaceX will be,
respectively(a)a Ti -space,i = 0,1,2, (b) regular,(c) completely regular.

Finally we give the definition of submaps and compact maps [16].

Definition 1.11. The restriction of the mapf :X→ Y on a (closed, etc.) subset of the
spaceX is called a (closed, etc.) submap of the mapf .
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Definition 1.12. By a compact map is meant a perfect (i.e., continuous, closed and
fibrewise compact) map.

Note that a closed submap of a compact map is compact.

2. MT-maps: definition, characterizations and invariance

We first give some results and definitions with respect to paracompact maps which one
can find in [3].

Let f :X→ Y be a continuous map of a topological spaceX into a topological space
(Y, τ ). For y ∈ Y , a collection of subsets ofX is said to bey-locally finite if for every
x ∈ f−1y, there exists a nbdOx of x in X, such thatOx meets finitely many elements of
the collection. If the collectionU = {Uα: α ∈A} is ay-locally finite open inX collection,
thenU is locally finite in

⋃
x∈f−1y Ox , i.e., for everyz ∈⋃x∈f−1y Ox , z has a nbd inX

which meets finitely many elements ofU . In particular, iff is closed andU coversf−1y,
then there exists a nbdOy ∈ N(y) such thatU is a cover off−1Oy and is locally finite
in f−1Oy , that is for everyz ∈ f−1Oy , z has a nbd inf−1Oy (and so inX) such that it
intersects finitely many elements ofU .

Definition 2.1. A continuous mapf :X → Y is said to be paracompact if for every
point y ∈ Y and every open (inX) cover U = {Uα: α ∈ A} of the fibre f−1y (i.e.,
f−1y ⊂⋃{Uα: α ∈ A}), there exists a nbdOy of y such thatf−1Oy is covered byU
and(f−1Oy ∧ U) has ay-locally finite open refinement.

Note that iff is paracompact then it is a closed map and is fibrewise paracompact, i.e.,
for everyy ∈ Y , f−1y is paracompact. The converse of this statement is not true even for
Tychonoff maps, that is there is a closed Tychonoff map with paracompact fibers which
is not paracompact (Example 2.10). Also every compact map is paracompact, and every
closed submap of a paracompact map is paracompact.

Proposition 2.2. A paracompactT2-map is regular and normal(and so is aT4-map).

Definition 2.3. Let f :X→ Y be a continuous map andy ∈ Y . Let U be an open (inX)
cover off−1y. The collectionV of subsets ofX is said to be ay-star refinement ofU if
V ∩f −1y 6= ∅ for everyV ∈ V and there exists a nbdOy ∈N(y) such that

⋃
V = f−1Oy ,

U coversf−1Oy and{St(V ,V): V ∈ V}< U ∧ f−1Oy .

We finally give some characterizations of paracompact maps obtained in [3] which we
will need below.

Theorem 2.4. For a T1-mapf :X→ Y the following are equivalent:
(i) The mapf is paracompactT2.
(ii) For everyy ∈ Y and every open(in X) coverU of the fibref−1y, there exists an

openy-star refinementV .
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(iii) The mapf is regular and for everyy ∈ Y and every open(in X) coverU of the
fibre f−1y, there exists a nbdOy ∈ N(y) such thatf−1Oy is covered byU and
(f−1Oy ∧ U) has ay-σ -discrete open refinement.

We now define collectionwise normality for maps.

Definition 2.5. A T1-mapf is said to becollectionwise prenormalif for every discrete
collection{Fs : s ∈ S} of closed subsets ofX and for everyy ∈ Y , there existOy ∈ N(y)
and a collection of open subsets{Us : s ∈ S}, such thatFs ∩ f−1Oy ⊂ Us andUs are
discrete inf−1Oy . The mapf is said to becollectionwise normalif for everyO ∈ τ , the
mapf |f−1O :f−1O→O is collectionwise prenormal.

Proposition 2.6. A T1-mapf is collectionwise normal if and only if for everyO ∈ τ , every
closed discrete(in f−1O) collection{Fs : s ∈ S} and everyy ∈O , there existsOy ∈N(y),
Oy ⊂O such that{Fs ∩ f−1Oy : s ∈ S} are nbd separated.

Proof. Let O ∈ τ and{Fs : s ∈ S} a discrete collection of closed subsets off−1O . Let
y ∈ O . There exists an open setOy ⊂O such that{Fs ∩ f−1Oy} are nbd separated, say
by {Us : s ∈ S}. Let

A=
⋃
s∈S
(Fs ∩ f−1Oy) and B = f−1Oy \

⋃
s∈S

Us.

These two sets are closed and disjoint inf−1Oy and so, sincef is normal, there exists open
setsU andV inX, and an open setO ′y in Y such that,A′ ⊂U ⊂ f−1O ′y ,B ′ ⊂ V ⊂ f−1O ′y
andV ∩U = ∅, whereA′ =A∩f−1O ′y andB ′ = B∩f−1O ′y . Now considerVs = Us∩U .

We have thatFs ∩ f−1O ′y ⊂ Vs and the collection{Vs : s ∈ S} is discrete inf−1O ′y . 2
Proposition 2.7. Every paracompactT1-map is collectionwise normal.

Proof. Let f :X→ Y be a paracompact map and letO ∈ τ . Consider the restriction
f |f−1O :f−1O→ O and let{Fs : s ∈ S} be a discrete inf−1O collection of closed (in
f−1O) subsets off−1O . Take an arbitrary pointy ∈ O . For everyx ∈ f−1y choose
a nbdHx ⊂ f−1O of x which meets at most one set of the collection{Fs : s ∈ S}.
Let H = {Hx: x ∈ f−1y}, thenH is an open (inf−1O and so inX) cover of f−1y.
Let V be an openy-star refinement ofH. One can assume thatV consists of open
subsets off−1O , sayV = {Vt : t ∈ T }. Thus, there existsOy ⊂ O , Oy ∈ N(y) such
that {St(Vt ,V): t ∈ T } < H ∧ f−1Oy . We show that every element ofV meets at most
one element of the collection{Gs : s ∈ S}, whereGs = St(Fs,V). For everyt ∈ T ,
there exists anx ∈ f−1y such that St(Vt ,V) ⊂ Hx ∩ f−1Oy and so ifVt ∩Gs 6= ∅ then
Hx ∩Fs 6= ∅. 2
Definition 2.8. The sequenceW1,W2, . . . of open (inX) covers off−1y, y ∈ Y , is said
to be ay-developmentif for every x ∈ f−1y and every nbdU(x) of x in X, there exist
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i < ω andO ∈ N(y) such thatx ∈ St(x,Wi ) ∩ f−1O ⊂ U(x). One can assume that
Wi = {Wiα : α ∈ Ai}, whereWiα ∩ f−1y 6= ∅, for every i < ω and for everyα ∈ Ai .
The mapf is said to have anf -developmentif it has ay-development for everyy ∈ Y .

We now give our definition of a metrizable type map.

Definition 2.9. A closed mapf :X→ Y is said to be anMT-mapif it is collectionwise
normal and has anf -development.

We thus see that anMT-mapf is closed,T4 and has metrizable fibers. We now give an
example of aT31

2
closed map with metrizable fibers which is not anMT-map.

Example 2.10. Let L be the Niemytzki plane and letL1 ⊂ L be the liney = 0. Then
L1 is closed inL and so the quotient mapq :L→ L/L1 is a closed map. The mapq is
Tychonoff sinceL is Tychonoff and every fibre ofq is metrizable. Since there exist closed
in L subsetsA ⊂ L1 andB ⊂ L1 which are not nbd separated, we have thatq is not a
prenormal map, and so cannot be anMT-map.

Definition 2.11. A collectionBy of open sets ofX is said to be abase aty for the map
f , y ∈ Y , if for everyx ∈ f−1y and every open nbdU(x) of x there existO ∈N(y) and
B ∈ By such thatx ∈ B ∩ f−1O ⊂ U(x). One can assume that for everyB ∈ By we have
B ∩ f−1y 6= ∅.

ThusBf = {By: y ∈ Y }, whereBy is a base aty for f , will give a base for the mapf .
Conversely, ifBf is a base forf , by takingBf (y)= {B ∈ Bf : B ∩ f−1y 6= ∅} one gets a
base aty ∈ Y for the mapf .

Theorem 2.12.For a continuous mapf :X→ Y the following are equivalent:
(1) f is an MT-map;
(2) f is a closedT3-map with ay-σ -discretey-base for everyy ∈ Y ;
(3) f is a closedT3-map with ay-σ -locally finitey-base for everyy ∈ Y .

Proof. We prove only implication (1)⇒ (2). The implication (2)⇒ (3) is trivial and
(3)⇒ (1) follows on the same footsteps as the proof of the analogous result in the category
Top.

We need to show that everyMT-map f has ay-σ -discretey-base for everyy ∈ Y .
We first show that everyMT-map is paracompact. Lety be an arbitrary point ofY and
{Us : s ∈ S} be an open cover off−1y. Take a well-ordering relation≺ on the setS and
let

Fs,i =X \
{

St(X \Us,Wi )∪
⋃
s ′≺s

Us ′
}
,

whereWi , i < ω is ay-development. The setsFs,i are closed inX. Consider

F ′s,i = Fs,i ∩
(⋃

Wi

)
⊂Us ∩

(⋃
Wi

)
.
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Fix an i < ω. There exists an open (inY ) setOy(i) ∈N(y) such thatf−1Oy(i)⊂⋃Wi .
ThenF ′i = {F ′s,i ∩ f−1Oy(i): s ∈ S} is a collection of closed (inf−1Oy(i)) sets. We

now show that it is ay-discrete collection. Letx ∈ f−1y and denote bys(x) the smallest
element inS such thatx ∈Us(x). Consider the nbd ofx,Us(x)∩St(x,Wi). This nbd meets
only one element of the collectionF ′i , namely the setF ′s(x),i ∩ f−1Oy(i). ThusF ′i is y-
discrete.

Now take anO ′y(i) ∈ N(y) such thatf−1O ′y(i) ⊂
⋃{Us(x) ∩ St(x,Wi): x ∈ f−1y}

with O ′y(i) ⊂ Oy(i). ThenF ′′i = F ′i ∩ f−1O ′y(i) is a discrete and closed (inf−1O ′y(i))
collection and so, by collectionwise normality, there exist open setsUs,i such thatF ′s,i ∩
f−1O ′y(i)⊂Us,i ⊂Us∩f −1O ′y(i), for s ∈ S andi < ω, and the collection{Us,i: s ∈ S} is
y-discrete for everyi < ω. Since{F ′s,i: s ∈ S, i < ω} forms a cover of the subsetf−1y, we
get that{Us,i: s ∈ S, i < ω} is ay-σ -discrete open refinement of{Us : s ∈ S}. Therefore,
f is a paracompact map.

Finally, by taking ay-σ -discrete open refinement ofWi for every i < ω, one gets a
y-σ -discretey-base. 2

Note that in the proof of Theorem 2.12 we proved that anMT-map is paracompact.
We now turn to other characterizations ofMT-maps analogous to characterizations of
metrizable spaces in terms of strong and normal developments. We first give some
definitions.

Definition 2.13. The sequenceW1,W2, . . . of open (inX) covers off−1y, y ∈ Y , is said
to be astrongy-developmentif for every x ∈ f−1y and every nbdU(x) of x in X, there
exist a nbdV (x) of x in X, i < ω andO ∈ N(y) such thatx ∈ St(V (x),Wi ) ∩ f−1O ⊂
U(x). One can assume thatWi = {Wiα : α ∈Ai}, whereWiα ∩ f−1y 6= ∅, for everyi < ω
and for everyα ∈Ai . The mapf is said to have astrongf -developmentif it has a strong
y-development for everyy ∈ Y .

Definition 2.14. Let W1,W2, . . . be a y-development fory ∈ Y . If Wi+1 is a y-star
refinement ofWi for every i < ω, then they-development is said to be anormal y-
development. The mapf is said to have anormal f -developmentif it has a normaly-
development for everyy ∈ Y .

Theorem 2.15.For a continuous mapf :X→ Y the following are equivalent:
(1) f is an MT-map;
(2) f is a closedT0-map with a strongf -development;
(3) f is a closedT0-map with a normalf -development.

Proof. (1) ⇒ (3) We have already proved that anMT-map is paracompact and so the
f -development can be arranged into a normalf -development.

(3) ⇒ (2) Take an arbitraryy ∈ Y and letWi , i < ω, be a normaly-development.
Then for everyx ∈ f−1y and every nbdU(x) of x, there exists anO ∈ N(y) andi < ω
such thatx ∈ St(x,Wi )∩ f−1O ⊂U(x). We also have that{St(W,Wi+1): W ∈Wi+1}<
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Wi ∧ f−1O ′, for someO ′ ∈ τ . ConsiderO ′′ =O ∩O ′ and anyV ∈Wi+1, x ∈ V . Then
we get thatx ∈ St(V ,Wi+1)∩ f−1O ′′ ⊂W ∩ f−1O ′′ ⊂U(x), for someW ∈Wi .

(2)⇒ (1) Let f :X→ Y be a closedT0-map with a strongf -development. We show
that in this casef is collectionwise normal. We first note that since each fibre is metrizable
we have thatf is a T1-map. Now letO ∈ τ andF = {Fs : s ∈ S} a closed discrete (in
f−1O) collection. Take anyy ∈O ⊂ Y . We may assume thatWi+1 refinesWi ∧f−1O(i)

for everyi < ω, whereO(i) ∈ N(y) andO(i + 1) ⊂ O(i). Also, since{Wi} is a strong
y-development, we have the following condition: For everyx ∈ f−1y and every nbdU(x)
of x, there exist ani(x) < ω andO ′ ⊂O(i(x)) such that

St2(x,Wi(x))∩ f−1O ′ ⊂U(x),
where St2(x,Wi )= St(St(x,Wi),Wi ).

Now for Fs ∈ F andx ∈ Fs ∩ f−1y, let i(x) be such that St2(x,Wi(x)) ∩ f−1O(x),
O(x)⊂O(i(x)), does not meet anyFs ′ ∈F , s 6= s′. Let

V (x)= St(x,Wi(x))∩ f−1O(x).

Then if x ∈ Fs and x ′ ∈ Fs ′ 6= Fs , we get thatV (x) ∩ V (x ′) = ∅. Since if V (x ′) =
St(x ′,Wi(x ′))∩f−1O(x ′) and say, without loss of generality, thati(x ′)> i(x), we get that
O(x ′) ⊂ O(i(x ′)) ⊂ O(i(x)). Thus, if sayz ∈ V (x) ∩ V (x ′), we havez ∈ f−1O(i(x))

andz ∈W ′ ∈Wi(x ′), x ′ ∈W ′. But W ′ ⊂W ∩ f−1O(i(x)), for someW ∈Wi(x), which
implies thatz ∈W ∩V (x)=W ∩St(x,Wi(x))∩f−1O(x) 6= ∅ and sox ′ ∈ St2(x,Wi(x))∩
f−1O(x), which is a contradiction. Now let

U(Fs)=
⋃{

V (x): x ∈ Fs ∩ f−1y
}

and for everyx ∈ f−1y \⋃F let U(x) be a nbd ofx which does not meet anyFs ∈ F .
Sincef is closed we conclude that there exists a nbdO∗ ∈ N(y) such thatO∗ ⊂O and
{Fs} are nbd separated inf−1O∗. 2

The following four theorems follow easily from the corresponding results in the theory
of general topological spaces, that is in the categoryTop.

Theorem 2.16. If f :X→ Y is an MT-map, then the following are equivalent:
(1) f has a countabley-base for everyy ∈ Y ;
(2) f is a Lindelöf map, that is a closedT3-map with finally compact fibers[3];
(3) f−1y is separable for everyy ∈ Y .

Theorem 2.17. If f :X→ Y is an MT-map, then the following are equivalent:
(1) f is compact;
(2) f−1y is countably compact for everyy ∈ Y ;
(3) f−1y is sequentially compact for everyy ∈ Y .

Thus every compactMT-map has separable fibers.

Theorem 2.18.A compactT2-map is an MT-map if and only if it has a countabley-base
for everyy ∈ Y .
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Theorem 2.19.A mapf with a countabley-base for everyy ∈ Y is an MT-map if and
only if it is closed andT3.

We now prove that theMT-property is invariant under perfect morphisms.

Proposition 2.20. Let f :X→ Y be an MT-map andg :Z→ Y a continuous map. Then
if λ :f → g is a perfect morphism off ontog, g is also an MT-map.

Proof. In [3] it is proved that under the above hypothesis the mapg is paracompactT2

(and soT4 and closed). We now construct ay-σ -discrete base ing−1y for an arbitrary
pointy ∈ Y .

Let {Gi : i < ω} be a normaly-development inf−1y. For an arbitrary pointz ∈ g−1y

considerUi(z) = St(λ−1z,Gi ), Wi(z) = Z \ λ(X \ Ui(z)) and Vi(z) = λ−1(Wi(z)) ⊂
Ui(z). It follows from definition thatUj(z) ⊂ Ui(z) if j > i. The collectionWi =
{Wi(z): z ∈ g−1y} is an open (inZ) cover ofg−1y.

Let V be an open nbd ofz ∈ g−1y, thenλ−1z ⊂ λ−1V . Sinceλ−1z is compact and
the y-development is a normal sequence, we have that there exists ani < ω for which
St(λ−1z,Gi )∩f−1O ⊂ λ−1V for some nbdO ∈N(y). This implies thatWi(z)∩g−1O ⊂
V and so{Wi(z): i < ω} is a nbdf -base for eachz ∈ g−1y. We now show that for each
Wi(z) there exists aj < ω such that⋃{

Wj(p): z ∈Wj(p)
}⊂Wi(z).

There exist anO ∈N(y) and aj > i+1 such thatUj(z)∩f−1O ⊂ Vi+1(z)⊂Ui+1(z).
Consider a pointp ∈ g−1y such thatz ∈ Wj(p). We have thatλ−1z ⊂ λ−1Wj(p) =
Vj (p) ⊂ Uj (p) = St(λ−1p,Gj ). Thus for everyx ∈ λ−1z, there exists aG(x) ∈ Gj
with x ∈ G(x) andG(x) ∩ λ−1p 6= ∅. This implies thatUj(z) ∩ λ−1p 6= ∅ and that
λ−1p ⊂ Vi+1(z), sinceVi+1(z) containsλ−1λx if it containsx.

Now let q ∈ Wj(p). Sinceλ−1q ⊂ Uj(p) we have that for everyx ∈ λ−1q there
exists aG(x) ∈ Gj , x ∈ G(x), G(x) ∩ λ−1p 6= ∅. We have already showed thatλ−1p ⊂
Vi+1(z)⊂ Ui+1(z); and so there exists anH ∈ Gi+1 with G(x)∩H 6= ∅ andH ∩ λ−1z 6=
∅. Since j > i + 1 we have thatx ∈ Ui(z), which implies thatλ−1q ⊂ Ui(z) and
soq ∈Wi(z). 2

In some cases, if a certain subspaceZ ⊂ Y has a certain topological property and the
mapf :X→ Y has the same property, then so does the subspacef−1Z ⊂X. For example,
if Z is aTi -space andf a Ti -map, fori = 0,1,2,3,31

2, then so does the subspacef−1Z

[15]. This is also true whenZ andf are compact (paracompact), that is in this case the
subspacef−1Z is compact [5] (paracompact [3]). The next example shows that this is not
the case for anMT-map, that is theMT-map preimage of a metrizable space does not have
to be metrizable.

Example 2.21. Consider the setX = I × I , where I = [0,1], equipped with the
lexicographic order and order topology. ThenX is hereditary paracompact, compact LOTS
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which is not metrizable. Now letf :X→ Y , whereY = I with standard metric topology,
be the mapf (u, v) = u, (u, v) ∈ X. Then the mapf is continuous and closed. Also
f is collectionwise normal (since it is paracompact andT1) and one can check that it
has anf -development. Thusf is an MT-map onto a metrizable space, whileX is not
metrizable.

With respect to Example 2.21, it will be interesting to see if there is an internal
characterization of topological spaces that can be mapped by anMT-map onto a metrizable
space. Such a characterization is given in Section 4 of this paper. To this end we now give
an example of a closed map with metrizable fibers from a spaceX onto a metrizable space
Y which is not anMT-map.

Example 2.22. Consider the set

D = {(x, y): (x, y) ∈R2, y > 0
}

and letD1 ⊂ D be the liney = 0 andD2 = D \ D1. Let Un = {(x, y): 0< y < 1
n
} for

everyn < ω, and forx ∈D1 putVn(x)= {x} ∪Un. LetB1= {Vn(x): x ∈D1, n < ω} and
B2 the collection of all sets open in the usual topology of the plane and lying inD2. It is
not difficult to see thatB = B1 ∪ B2 is a base for a topology onD and thatD1 is closed in
D (with respect to this topology). Thus the quotient mapq :D→D/D1 is a closed map
with metrizable fibers. It is also not difficult to see that the spaceD/D1 is metrizable and
thatq is not a prenormal map, for the same reason as that for Example 2.10. Thusq is not
anMT-map. Note that the spaceD has aGδ-diagonal but is not aT2-space.

3. Fibrewise products ofMT-maps

We begin by the definition of fan products (see, for example, [1]). Fan products and
their projections (≡ fibrewise products of maps) have the same role in the categoryTopY ,
as Tychonoff products of spaces have in the categoryTop.

Definition 3.1. For the collection of continuous mapspα :Pα→ Y , α ∈A, the subspace

P =
{
t = {tα} ∈

∏
{Pα: α ∈A}: pαtα = pβtβ, ∀α,β ∈A

}
of the Tychonoff product

∏ =∏{Pα : α ∈ A} is called the fan product of the spacesPα
with respect to the mapspα , α ∈A and is denoted by

∏{Pα rel pα: α ∈A}.
For the projectionprα :

∏→ Pα of the product
∏

onto the factorPα , the restrictionπα
onP will be called the projection of the fan product onto the factorPα , α ∈A. From the
definition of fan product we have that,pα ◦ πα = pβ ◦ πβ for everyα andβ in A. Thus
one can define a mapp :P → Y , called the projection of the fan product, by

p = pα ◦ πα, α ∈A.
Obviously, the projectionsp andπα , α ∈A, are continuous.
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The projectionp is also called the fibrewise product of the mapspα , α ∈A (since for
every pointy ∈ Y , the inverse imagep−1y is homeomorphic to the Tychonoff product of
the fibersp−1

α y, α ∈A). The fact thatp is the fibrewise product of the mapspα , α ∈A,
will be denoted byp =∏{pα: α ∈A}.

In particular, the fan productP of the spacesX and Z with respect to the maps
f :X→ Y and g :Z→ Y will be denoted byXf ×g Z and the projectionsπα by πX
andπZ .

We now turn to fibrewise products ofMT-maps.

Proposition 3.2. Let the mapspi :Pi→ Y, i < ω, be MT-maps. Consider the projection
p :P =∏{Pi rel pi : i < ω}→ Y . If p is closed then it is an MT-map. In other words,p
has a normalp-development and is aT0-map.

Proof. We know that for every pointy ∈ Y , the inverse imagep−1y is homeomorphic
to the Tychonoff product of the fibersp−1

i y, i < ω. Let W i
k , k < ω, be a normaly-

development for the mappi for everyi < ω and consider the sequence

Wk =
{(∏

i<ω

Vi

)
∩P : Vi 6= Pi for i 6 k, in which caseVi ∈W i

k

}
of open (inP ) covers ofp−1y.

Now letUt be an open inP nbd of some pointt = {ti : i < ω} ∈ p−1y. Thenpiti = y
for everyi < ω and there exists a canonical open nbdGt =∏Ui , with Ui 6= Pi for only
a finite number of indicesα(i), i = 1, . . . , n, such thatt ∈ Gt ∩ P ⊂ Ut . There exists
anO ∈ N(y) and ak < ω such that St(tα(i),Wα(i)

k ) ∩ p−1
α(i)O ⊂ Uα(i), i = 1, . . . , n. Let

m = max{k,α(i): i = 1, . . . , n}. From this it follows that St(t,Wm) ∩ p−1O ⊂ Gt ∩ P .
We thus see thatWk , k < ω, is ay-development for the mapp.

The fact thatWk is a normal sequence follows from the fact that eachW i
k is a normal

sequence, and the fact thatp is aT0-map follows from the following two facts: (i) a map
is a T0-map if and only if the fibers areT0-spaces, (ii) theT0-property for spaces is a
multiplicative property. 2

With respect to Proposition 3.2 we are interested to know if, at least, the fibrewise
product of twoMT-maps is a closed map. We give an example to show that in general
the fibrewise product of two closed maps is not a closed map.

Example 3.3. Let Xi , i = 1,2, be countably compact spaces such that their product
is not countably compact and letA be the one-point compactification of a countable
discrete space. Let the mapsfi be the projections of the productsXi × A ontoA, for
i = 1,2. Thenfi , i = 1,2, are closed maps but their fibrewise product is not since it
coincides with the projection of the productX1 ×X2× A ontoA (see [5, Exercise 3.10
A(b)]).

Nevertheless we have the following results for the above mentioned problem.
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Corollary 3.4. If f is a compact MT-map andg is an MT-map, then the fibrewise product
p :Xf×g Z→ Y is an MT-map.

Proof. This follows from the fact that in the above hypothesis the mapp is a paracompact
map and so is closed [3, Theorem 4.5].2
Proposition 3.5. If f :X→ Y is the fibrewise product of continuous mapsfα :Xα→ Y ,
α ∈A, then

Frf−1y ⊂
∏{

Frf−1
α y: α ∈A}, for everyy ∈ Y.

Proof. Evidently, the set

Intf−1
α y ×

∏{
Xβ : β ∈A \ {α}} ∩X

is open inX and is contained in

f−1y =
∏
{f−1
α y: α ∈A}. 2

Let us recall that a continuous mapf :X→ Y is said to beperipherically compact
(peripherically countably compact) if Fr f−1y is compact (countably compact) for every
y ∈ Y .

Corollary 3.6. The fibrewise product of closed peripherically compact maps onto aT1-
space is also closed and peripherically compact.

Proof. Let Y be a T1-space andf :X → Y be the fibrewise product of closed
peripherically compact mapsfα :Xα → Y , α ∈ A. It follows from Proposition 3.5 that
f is peripherically compact.

Let F be a closed subset ofX andy /∈ fF . This means that

F ∩
(
f−1y =

∏
{f−1
α y: α ∈A}

)
= ∅.

The spacesCα = Frf−1
α y, α ∈A, are compact and so we can find a finite subsetB of A

and nbdsOα of Cα, α ∈ B, such that

F ∩
(∏
{Oα: α ∈ B} ×

∏
{Xα : α ∈A \ B}

)
= ∅.

Since (
Intf−1

α y ×
∏{

Xβ : β ∈A \ {α}})∩X
⊂
∏
{f−1
α y: α ∈A} = f−1y, α ∈A,

the nbdU =∏{Oα∪ Intf−1
α y: α ∈ B}×∏{Xα: α ∈A\B} of f−1y does not intersectF .

Now we can take a nbdV of y such thatf−1
α V ⊂ Oα ∪ Intf−1

α y, α ∈ B. Then
f−1V ⊂X ∩U ⊂X \F . 2
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Remember that a pointx of a spaceX is aq-point if there exist nbdsUi of x, i < ω,
such that

every sequencexi ∈X, xi ∈ Ui, i < ω, has a cluster point inX. (∗)
A space is called aq-spaceif all of its points areq-points. It can be easily seen that

x ∈ X is aq-point if there exist a countably compact setC ⊂ X and its nbdsUi, i < ω,
such thatx ∈ C and for every nbdU of C there exists ani < ω with Ui ⊂ U . Thus all
M-spaces in the sense of Morita [12,13], and all spaces of countable type (in particular, all
1st-countable spaces and allČech complete spaces) areq-spaces.

Also, recall that a spaceX is said to beisocompactif every closed countably compact
subset is compact.

Corollary 3.7. LetY be a regularT1- andq-space, the continuous mapsfα :Xα→ Y, α ∈
A, be regular, prenormal, closed and all the fibersf−1

α y, y ∈ Y , α ∈ A, be isocompact.
Then the fibrewise product offα , α ∈A, is closed and peripherically compact.

Proof. In Theorem 5.4 and Corollary 5.5 it will be proved that under the above hypothesis,
the mapsfα , α ∈A, are peripherically compact.2
Corollary 3.8. LetY be a regularT1- andq-space and all the mapsfi :Xi→ Y , i < ω, be
MT-maps. Then the fibrewise product offi , i < ω, is a peripherically compact MT-map.

4. MT-map preimages of metrizable spaces

In this paragraph we give an internal characterization of those spaces that can be mapped
by anMT-map onto a metrizable space.

Definition 4.1. A map f :X → Y is called aMoore map if it is T3 and has anf -
development.

Definition 4.2. A T3-spaceX is called aDT -spaceif there exists a sequence{Gn: n ∈ ω}
of open covers ofX such that:

(1) for eachn < ω, Gn+1 star refinesGn;
(2) the sequence{St(x,Gn): n < ω} is a base forCx =⋂n<ω St(x,Gn), that is every

open set containingCx contains some St(x,Gn);
(3) for everyx ∈ X there exists a sequence{Wn(x): n < ω} of open (inX) covers of

Cx such that for everyy ∈ Cx and every nbdU(y) of y in X, there exists ann < ω
such thaty ∈ St(y,Wn(x))⊂U(y).

If (3) is strengthened to
(3)∗ property (3) plusWn+1(x) star refinesWn(x)∧ (⋃Wn+1(x)) for everyn < ω and

everyx ∈X,
then the spaceX is said to be anMT-space.

https://www.researchgate.net/publication/243123986_A_survey_of_the_theory_of_M-spaces?el=1_x_8&enrichId=rgreq-ad94f36d11c11a1e80ac43d620379e15-XXX&enrichSource=Y292ZXJQYWdlOzI0Mjk5MzgzNjtBUzoxNDc3MzI1NDcyNDgxMjlAMTQxMjIzMzU5MjU0OQ==
https://www.researchgate.net/publication/242974802_Products_of_normal_spaces_with_metric_spaces?el=1_x_8&enrichId=rgreq-ad94f36d11c11a1e80ac43d620379e15-XXX&enrichSource=Y292ZXJQYWdlOzI0Mjk5MzgzNjtBUzoxNDc3MzI1NDcyNDgxMjlAMTQxMjIzMzU5MjU0OQ==
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Theorem 4.3. A T3-spaceX is aDT -space if and only if there exists a metric spaceM
and a Moore mapf ofX ontoM.

Proof. It is a well known result that from property (1) follows the existence of a pseudo-
metricρ onX with the following properties:

(i) ρ(x, z)= 0 if and only if z ∈⋂n<ω St(x,Gn), and
(ii) the setU is open in the topology generated byρ if and only if x ∈U ⇒ St(x,Gn)⊂

U for somen < ω.
We now define an equivalence relation onX as follows:x ∼ z if and only if ρ(x, z)= 0.

Let Y be the quotient spaceX/ ∼ and define the functiond :Y × Y → R+ by d(x̃, z̃) =
ρ(x, z). It is not difficult to check thatd is a metric onY . We are left to show that the
quotient mapf :X→ Y is an Moore map. Sincef−1Bd(x̃, ε)= Bρ(x, ε) andBρ(x, ε) is
open inX by (ii) above, we have thatf is continuous. Also, since by the construction ofρ

we have thatBρ(x,1/2n+1)⊂ St(x,Gn), we get from property (2) thatf is a closed map.
Finally, from the fact that for an arbitraryy = x̃ ∈ Y ,

f−1y =
⋂
n<ω

St(x,Gn),

from (3) we have thatf has ay-development. Therefore,f is a Moore map.
The converse is not difficult to prove and follows directly from the definitions.2

Theorem 4.4. For a T3-spaceX the following are equivalent:
(1) the spaceX is a paracompactDT -space;
(2) the spaceX is an MT-space;
(3) there exists a metric spaceM and an MT-mapf ofX ontoM.

Proof. (1) ⇒ (2) follows from the fact that property (3) of Definition 4.2 can be
strengthened to (3)∗ by the paracompactness ofX. (2)⇒ (3) follows from the fact that
if X is anMT-space, the mapf constructed in the proof of Theorem 4.3 is anMT-map.
Finally, for (3)⇒ (1), we only need to show thatX is paracompact, and this follows from
the already mentioned result that the paracompact preimage of a paracompact space is
paracompact [3]. 2

As is seen above, the definition ofMT-spaces follows on the same lines as that of
paracompactM-spaces [12,13]. As we shall see later neither of these classes are contained
in each other. For the moment let us stop to consider spaces which are at the same timeM-
andMT-spaces.

Definition 4.5. A spaceX is said to be aCMT-spaceif it is the compactMT-map preimage
of a metric space.

Note that aCMT-space is anM-space and also anMT-space (and so paracompactT4

and 1st-countable). The next proposition shows that the converse is also true, that is a space
X which is anM- andMT-space is also aCMT-space. Example 2.21 gives aCMT-space
which is not metrizable.

https://www.researchgate.net/publication/243123986_A_survey_of_the_theory_of_M-spaces?el=1_x_8&enrichId=rgreq-ad94f36d11c11a1e80ac43d620379e15-XXX&enrichSource=Y292ZXJQYWdlOzI0Mjk5MzgzNjtBUzoxNDc3MzI1NDcyNDgxMjlAMTQxMjIzMzU5MjU0OQ==
https://www.researchgate.net/publication/242974802_Products_of_normal_spaces_with_metric_spaces?el=1_x_8&enrichId=rgreq-ad94f36d11c11a1e80ac43d620379e15-XXX&enrichSource=Y292ZXJQYWdlOzI0Mjk5MzgzNjtBUzoxNDc3MzI1NDcyNDgxMjlAMTQxMjIzMzU5MjU0OQ==
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Proposition 4.6. If a spaceX is anM- and MT-space then it is also a CMT-space.

Proof. The following result is known: If the mapsf1, f2, . . . , fk , wherefi :X→ Yi are
closed,Y1 is a T1-space andY2, . . . , Yk areT3-spaces, then the diagonalf = f1 M f2 M
· · ·M fk is closed (see, for example, [5, Proposition 2.3.30]).

Therefore, iff1 :X→ M1 is an MT-map andf2 :X→ M2 is a compact map, then
f1 M f2 :X→ M1 ×M2 is a compact map. It is also not difficult to see that it has an
f1M f2-development and so is a compactMT-map. 2

We now turn to products ofCMT-spaces.

Proposition 4.7. If the spacesXn, n < ω, are CMT-spaces then the product
∏
n<ω Xn is

also a CMT-space.

Proof. Let fn :Xn→Mn be compactMT-maps onto metrizable spaces. It is known that
the product map

f =
∏
n<ω

fn :X =
∏
n<ω

Xn→M =
∏
n<ω

Mn

is a compact map (see, for example, [5]). We will now show that for an arbitrary point
y = {yn} ∈M, the mapf has a countabley-base.

Let Wn = {Wn(k): k < ω} be a countableyn-base for the mapfn and consider
the collectionW = {∏n<ω Wn: Wn 6= Xn for only a finite number of indices, in which
caseWn = Wn(kn) ∈Wn}. This collection is a countable collection of open sets inX.
We now show that it is ay-base. Take an arbitrary open nbdV of a pointx = {xn} ∈ X,
wherex ∈ f−1y. There exists a canonical nbdU =∏Un of x such thatx ∈U ⊂ V . Then
Un 6= Xn for only a finite number of indices, sayn(1), . . . , n(s). Let Wn(p)(kn(p)) and
On(p)(yn(p)) ∈N(yn(p)) be such thatxn(p) ∈Wn(p)(kn(p))∩f −1

n(p)
On(p)(yn(p))⊂Un(p) for

p = 1, . . . , s. Then we get thatx ∈∏Wn ∩ f−1∏On ⊂ U , whereWn(p) =Wn(p)(kn(p))

andOn(p) =On(p)(yn(p)) whenevern= n(p) for somep = 1, . . . , s, otherwiseWn =Xn
andOn =Mn. This shows that the collectionW is a y-base for the mapf and so by
Theorem 2.18,f is anMT-map. 2

The proof of the above proposition follows from the fact that iffn, n < ω, are compact
MT-maps, then so is the product

∏
n<ω fn. This is not the case forMT-maps. Consider the

following example:

Example 4.8. Let f1 = idR :R→ R andf2 :R→ {0} ⊂ R, that isf2 is a constant map.
Thenf1 andf2 areMT-maps butf1× f2 :R×R→ R× {0} is not a closed map (and so
is not anMT-map).

Note that in the above exampleR×R is still anMT-space. This leaves us with the open
question of whether the product of twoMT-spaces is anMT-space.

Next, as mentioned above, we show that the class ofMT-spaces and the class of
paracompactM-spaces are distinct from each other and none of the two contains the other.
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Any compact space which is not 1st-countable (for example,βN or the LOTS[0,ω1]), is a
paracompactM-space (≡ paracompactp-space) which is not anMT-space. We now give
an example of anMT-space which is not anM-space.

Example 4.9. Let Ω = [0,ω] and R have the usual order and letX = R × Ω have
the lexicographic order. Let the topology ofX be the order topology plus the following
sets as open{[(y,ω),→[ : y ∈ R}. ThusX is a GO-space. Consider the projection
f = prR :X→ Y = R, that isf (y,n) = y. One can see that for everyy ∈ Y we have
thatf−1y is a discrete countable spaceΩd(y). It is clear thatf is continuous.

Let us show thatf is a closed map. LetF be closed inX and sayy ∈ Y , y /∈ f (F ). Then
f−1y ∩ F = ∅ and so there exists ay1< y with ](y1,0), (y,1)[∩F = ∅ and ay2> y with
](y,ω), (y2,ω)[∩F = ∅. This implies thaty ∈]y1, y2[⊂ Y and]y1, y2[∩f (F ) = ∅ and
sof is closed.

Sincef is a closedT3-map with finally compact fibers, it is a Lindelöf map and so is
paracompact [3]. This also shows thatX is a Lindelöf space (one can also show thatX has
a σ -minimal base and so is hereditary paracompact). To show thatf is anMT-map we
are left with constructing ay-development for an arbitraryy ∈ Y . Let y ∈ Y and consider
Ωd(y). For eachk < ω we construct an open (inX) coverGk(y) ofΩd(y). Let us consider
the following cases:

(i) for (y,n) ∈Ωd(y), 0< n< ω letUk((y,n))= {(y,n)},
(ii) for (y,0) ∈Ωd(y) letUk((y,0))= ](y \ 1/k,ω), (y,0)], and
(iii) for (y,ω) ∈Ωd(y) letUk((y,ω))= [(y,ω), (y + 1/k,0)[.

Now letGk(y)= {Uk((y,n)): 06 n6 ω} and letG(y)= {Gk(y): k < ω}. It is not difficult
to see thatG(y) is ay-development and sof is anMT-map andX anMT-space.

We now show thatX is not anM-space. We do this by showing that ifX is anM-space
then it has aGδ-diagonal, which would contradict the fact thatX is not metrizable.

So, assume thatX is a paracompactM-space, then there exists a compact (≡ perfect)
map g from X onto some metrizable spaceM. There exists a sequence{Hn: n ∈ ω}
of open covers ofX such that: (i) for eachn < ω, Hn+1 star refinesHn, (ii) the se-
quence{St(x,Hn): n < ω} is a base forCx =⋂n<ω St(x,Hn) and (iii) Cx = g−1gx is
compact. ThusCx ∩ Ωd(y) is finite for everyy ∈ Y . We denote byH′n the open cover
of X obtained by taking convex components of all the elements ofHn. We further de-
composeH′n in the following way: (i) if the setU ∈ H′n and U = [(y,n1), (y,n2)],
0< n1 < n2 < ω, then we decomposeU into singleton sets{(y,n1)}, . . . , {(y,n2)} and
(ii) if the setU ∈H′n andU =](y1,∗), (y,n)], y1< y, 0< n< ω, then we decomposeU
into the sets](y1,∗), (y,0)], {(y,1)}, . . ., {(y,n)}. Denote the new open covers byH′′n. We
now show that{H′′n: n ∈ ω} is aGδ-diagonal sequence.

Take an arbitraryx ∈ X. Thenx ∈ Cx =⋂St(x,Hn) and sayx ∈ Ωd(yx). We will
consider three cases:

(i) if x = (yx, n), 0< n < ω then, sinceCx ∩Ωd(yx) is finite, there is a maximum
element(yx, nmax) and a minimum element(yx, nmin) in Cx ∩Ωd(yx). Take the
convex component ofCx containingx, and say it is[(yx, n′min), (yx, n

′
max)]. One

can now easily see that in this case there exists ak < ω such that St(x,H′′k )= {x},
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(ii) if x = (yx,0) and the maximum element inCx ∩Ωd(yx) is (yx, nmax), then take
the convex component ofCx containingx, say[(yx,0), (yx, n′max)]. Then again, it
is not difficult to see that in this case we have

⋂
k<ω St(x,H′′k)= {x},

(iii) finally, if x = (yx,ω), there must be annx < ω such that](yx, nx), (yx,ω)[ ∩Cx =
∅. Then again, it is not difficult to see that

⋂
k<ω St(x,H′′k)= {x}.

This shows that{H′′n: n < ω} is aGδ-diagonal sequence which contradicts the fact thatX

is not metrizable.

Finally, it is not difficult to see that a closed subspace of anMT-space is again anMT-
space but this is not true for an arbitrary subspace. This can be seen by proving that the
Sorgenfrey LineS is not anMT-space, sinceS is a subspace of the spaceX in Example 4.9.
That the spaceS is not anMT-space can also be deduced from the fact that anMT-space
with aGδ-diagonal is metrizable, which will be shown in the next paragraph. Still, we give
a direct proof of this fact as it is interesting in itself.

Proposition 4.10. The Sorgenfrey lineS is not an MT-space.

Proof. We begin by showing that any metrizable subsetN of S is countable. The spaceS is
hereditary separable and soN is a separable metrizable space. ThusN is second countable
and any second countable subspace ofS must be countable.

Say there exists anMT-mapf :S→M, whereM is a metrizable space. In particular,
for everyy ∈M, f−1y is a closed metrizable subspace ofS and so is countable. We next
show that for everyy ∈M one can choose anxy ∈ f−1y such that there exists ancy ∈ S,
cy < xy with ]cy, xy[∩f−1y = ∅. For this we take anya, b ∈ f−1y, a < b. There exists
somec with a < c < b andc /∈ f−1y, which implies that[c, c+ ε[∩f−1y = ∅ for some
ε > 0. Consider the pointx = inf{z ∈ f−1y: z > c + ε}. Sincef−1y is closed inS we
have thatx ∈ f−1y. By takingxy = x andcy = c we have that]cy, xy[∩f−1y = ∅. Now
let P = {xy : y ∈M}, thenP is an uncountable subset ofS. We now show thatP has a
development which would contradict the fact that it is not metrizable.

Consider the development{Wn = {Bρ(y,1/n): y ∈M}: n < ω} in M, whereρ is a
compatible metric inM. LetGn = f−1Wn and letĜn be the cover consisting of the convex
components of all the elements ofGn. We now show that{Ĝn∧P : n < ω} is a development
for P .

Take an arbitrary elementp ∈ P and letUp be any nbd ofp in P , sayUp = [p,q[∩P .
Let p ∈ f−1y(p), that isp = xy(p). One can take the elementq such thatq /∈ f−1y(p)

and so there exists aq ′ such that[q, q ′[ ∩f−1y(p) = ∅. For everyx ∈ f−1y(p), x < p
we have thatx < cy(p). In this case letUx = [x, cy(p)[. For everyx ∈ f−1y(p), p < x < q
takeUx = [x, q[. Finally, for everyx ∈ f−1y(p), x > q (and sox > q ′) takeUx = [x,→[.
Now denote by

V =
⋃{

Ux : x ∈ f−1y(p)
}
,

this is an open set containingf−1y(p). Sincef is closed, there exists ak < ω such
thatf−1y(p)⊂ f−1St(y(p),Wk)⊂ V . Therefore,p ∈ St(p, Ĝk)⊂ [p,q[. Consequently,
{Ĝn ∧ P : n < ω} is a development forP . 2
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5. MT-maps and theGδ-diagonal

In this paragraph we give some results connected withMT-maps and theGδ-diagonal.
In particular, as a corollary to our results, we have that anMT-space with aGδ-diagonal
is metrizable. This result can also be deduced from a result obtained in [2], namely that a
normal spaceX with aGδ-diagonal is metrizable if it is the preimage of a metrizable space
under a closed, continuous map having metrizable fibers (cf. Example 2.22).

Lemma 5.1. Let a continuous mapf :X→ Y be regular,y ∈ Y and a collection of points
xi ∈ f−1y, i < ω, be discrete inf−1y. Then there exist disjoint nbdsGi of xi in X, i < ω.

Proof. By the regularity off , we can find disjoint nbdsVi of xi andWi of {xj : j < ω,
j 6= i} in X, i < ω. Then the nbdsG1 = V1, Gi = Vi ∩⋂{Wj : j < i}, i > 1, are the
desirable nbds sinceGi ∩Gi+k ⊂ Vi ∩Wi = ∅, 16 k. 2
Lemma 5.2. If in addition to the conditions of Lemma5.1, Y is a T1-space andf is
prenormal then we can find a nbdO of y and nbdsHi of xi, Hi ⊂ f−1O , i < ω, such that
the collection{Hi: i < ω} is discrete inf−1O .

Proof. Since the setF = {xi : i < ω} is closed inX andG =⋃{Gi : i < ω} is its nbd,
there exists a nbdO of y and disjoint nbdsH of F andU of f−1O \G in f−1O . Then
the nbdsHi =H ∩Gi of xi , i < ω, form the desirable collection.2
Lemma 5.3. If in addition to the conditions of Lemma5.2, Y is regular then we can
assume the system{Hi: i < ω} to be discrete inX.

Proof. Indeed, ifV is a nbd ofy and[V ] ⊂O then we can takeHi ∩f−1V instead ofHi ,
i < ω. 2
Theorem 5.4. Let a continuous mapf :X→ Y be regular, prenormal and closed andY
be a regularT1- andq-space. Thenf is peripherically countably compact.

Proof. Suppose that there existy ∈ Y and a discrete in Frf−1y collection of pointsxi ,
i < ω. Take nbdsOi of y, i < ω, having property (∗). By Lemma 5.3, we can take a
discrete inX collection of nbdsHi of xi , i < ω. Sincexi ∈ Frf−1y andY is a regular
T1-space, we can findti ∈Hi and nbdsVi+1 of y, i < ω, such that

f t1 ∈O1 \ {y}, [Vi+1] ⊂Oi+1 \ {f t1, . . . , f ti}, f ti+1 ∈ Vi+1 \ {y}, i < ω.
Then the setA = {ti : i < ω} is discrete inX, fA has a cluster pointt and, evidently,
t ∈⋂{[Vi+1]: i < ω}. Thust /∈ fA and so the setfA is not closed. But this contradicts the
discreteness ofA and the closedness off since[A] ⊂⋃{f−1f ti : i < ω} = f−1fA. 2
Corollary 5.5. Under the conditions of Theorem5.4, if all the fibers are isocompact(in
particular, metrizable) thenf is peripherically compact.
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Since anyMT-map is closed, regular, prenormal and all of its fibers are metrizable we
have:

Corollary 5.6. Let f :X→ Y be an MT-map andY be a regularT1- andq-space. Then
f is peripherically compact.

Below, for a continuous mapf :X → Y and E ⊂ Y , we denote byIf (E) =⋃{Intf−1y: y ∈ E} and byY0 = {y ∈ Y : Intf−1y 6= ∅}. We say thatIf = If (Y ) has
propertyP if it contains anFσ -setF such thatF ∩ f−1y 6= ∅ for everyy ∈ Y0. Note that
if the spaceX is perfect thenIf has propertyP .

Lemma 5.7. If f :X→ Y is an MT-map from a spaceX with a Gδ-diagonal onto a
metrizable spaceY , thenIf has propertyP .

Proof. From Corollary 5.6 we have thatf is peripherically compact. Choose a pointx(y)

for everyy ∈ Y0 and consider the subspaceX0 = (X \ If ) ∪ {x(y): y ∈ Y0}. ThenX0 is
closed inX andf0= f |X0 is a perfect map fromX0 ontoY . Therefore, the subspaceX0

is anM-space with aGδ-diagonal and so is metrizable. ThusF = {x(y): y ∈ Y0} is an
Fσ -set inX0 and so inX. 2
Lemma 5.8. If a continuous mapf :X→ Y is closed and the setIf has propertyP , then
f If is the union of a countable collection of closed and discrete inY sets.

Proof. Let F ⊂ If satisfy the hypothesis of the lemma. ThenF is the union of closed in
X setsFi , i < ω. LetDi = fFi . ThenDi , i < ω, are closed inY and for everyE ⊂Di ,
the setsG= Fi ∩ f−1E = Fi ∩ If (E) andFi \G= Fi ∩ f−1(Di \E)= Fi ∩ If (Di \E)
are open inFi and so are closed in it and inX. Consequently,E is closed inDi . We have
just proved thatf If = fF =⋃{Di : i < ω} and thatDi , i < ω are closed and discrete in
Y . 2

Let us recall that a spaceX is perfect if every open subset ofX is anFσ -set.

Corollary 5.9. If a continuous mapf :X→ Y is closed and the spaceX is perfect then
f If is the union of a countable collection of closed and discrete inY sets.

Proposition 5.10. Let a continuous mapf :X→ Y be closed and peripherically compact,
all of its fibers be metrizable andIf has propertyP . Then there exist a metrizable space
M and a perfect mapg :X→ Y ×M such thatf = p ◦ g (wherep is the projection of
the productY ×M onto its factorY ), gIf ∩ g(X \ If ) = ∅ and the restrictiong|If and
p|g(X\If ) are topological embeddings.

Proof. By Lemma 5.8, the setD = f If is the union of closed and discrete inY setsDi ,
i < ω. Let Ii = If (Di). Evidently, the spaceKi = f−1Di is closed inX and is metrizable.
Let %i be some metric onKi such that%i(f−1y,f−1y ′) > 1 if y, y ′ ∈Di , y 6= y ′.
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Let Mi = {Oi} ∪ Ii and take the system of all open inIi sets and the setsOin =
{Oi} ∪ Iin, where

Iin =
{
x ∈ Ii : %(x,Ki \ Ii)6 1

n

}
, n < ω,

as a base of the topology inMi . It is clear thatMi is a regularT1-space with aσ -locally
finite base and soMi is metrizable. Evidently, the mapϕi :X→Mi coinciding with the
identity map ofIi on Ii and withϕix =Oi for all x ∈X \ Ii is continuous.

Let g :X→ Y ×M, whereM =∏i<ω Mi , be the diagonal product off andϕi , i < ω.
Theng is continuous. Note that the spaceM is metrizable. Letp be the projection of
the productY × M onto its factorY . It is not difficult to see thatg|If and p|g(X\If )
are embeddings. Evidently, the fibers ofg are either singleton sets or coincide with the
boundaries of fibers off and so are compact. It remains to prove thatg is closed.

Let z ∈ Y × M and V be a nbd ofg−1z. We must find a nbdW of z such that
g−1W ⊂ V . If pz ∈ Y \ fX then we can takeW = p−1(Y \ fX). If pz ∈ fX \D then
f−1pz= g−1p−1pz= g−1z⊂ V . By the closedness off , we can find a nbdU of pz such
thatf−1U ⊂ V . Then we can putW = p−1U . Finally, letpz ∈Di for somei < ω. Then
V ∪ Intf−1pz is a nbd off−1pz and so there exists a nbdU of pz such thatf−1U ⊂ V .
We can assume thatU ∩ Di = {pz}. Since the space Frf−1pz is compact, there exists
n < ω such thatIin ∩ f−1pz ⊂ V . Then we can takeW = p−1U ∩ q−1

i Oin, whereqi is
the projection of the productY ×∏i<ω Mi onto the factorMi . 2
Corollary 5.11. A perfect MT-space is a CMT-space.

Corollary 5.12. A countable product of MT-spaces having propertyP is a CMT-space.

Since the product of anM-space and a metric space is anM-space and the preimage of
anM-space under a perfect map is anM-space we have the following result.

Corollary 5.13. If f :X→ Y is an MT-map onto aT1- andM-space andIf has property
P (in particular, if X is perfect) thenX is also anM-space.

Finally, since a TychonoffM-space with aGδ-diagonal is metrizable, we have:

Corollary 5.14. An MT-space with aGδ-diagonal is metrizable.
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