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Abstract

In this paper we define and studyT-maps, which are the fibrewise topological analogue of
metrizable spaces, i.e., the extension of metrizability from the catefppyo the categorylopy .
Several characterizations and propertied/df-maps are proved. The notion of MT-space as an
MT-map preimage of a metrizable space is introduced. Exampld$Te$paces and their relation
with M-spaces are given. Finally it is deduced thatMifrspace with &G s-diagonal is metrizable.
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1. Preliminaries

Fibrewise General Topology or General Topology of Continuous Maps is concerned
most of all in extending the main notions and results concerning spaces to continuous
maps. In this way one can see some well-known results in a new and clearer light and
one can also be led to further developments which otherwise would not have suggested
themselves. This is usually done in the following way.

For an arbitrary topological spadé one considers the categofpp,, the objects of
which are continuous maps into the spacend for the objectg: X — Y andg:Z — Y,

a morphism fromf into g is a continuous map: X — Z with the propertyf = g o A.
This is denoted by.: f — g. We note that this situation is a generalization of the category

* Corresponding author. E-mail: miwa@riko.shimane-u.ac.jp.
1BA. Pasynkov was supported by the Russian Fund of Fundamental Investigations, under grant 96-01 00728.

0166-8641/99/% — see front matter1999 Published by Elsevier Science B.V. All rights reserved.
PIl: S0166-8641(98)00010-8


https://core.ac.uk/display/83022337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

32 D. Buhagiar et al. / Topology and its Applications 96 (1999) 31-51

Top (of topological spaces and continuous maps as morphisms), since the caieg®y
isomorphic to the particular case ®py in which the spac# is a singleton set.

In defining properties of a continuous mgp X — Y one does not directly involve
any properties on the spac&sandY (except the existence of a topology). Such were the
definitions given in [3,4,14,16] for the separation axioms, compactness, paracompactness,
weight and others. In most cases there is some choice in defining these properties and one
usually prefers the simplest and the one that gives the most complete generalization of the
corresponding results in the categdnp. It would be beneficial to have a more systematic
way of extending definitions and results from the categlmyto the categoryiop, and
some hope is provided by the link between fibrewise topology and topos theory [7,8,10,
11]. Unfortunately, as was noted in [6], this approach has several drawbacks.

Research in the general topology of continuous maps showed a strong analogy in the
behaviour of spaces and maps and it was possible to extend the main notions and results
of spaces to that of maps. Most of the results obtained so far in this field can be found in
[3,4,6,9,14,15], where one can also find an extensive bibliography on the subject.

Unless otherwise stated, is a fixed topological space with topology The collection
of all neighborhoods (nbd(s)) of a pointe Y is denoted by (y). A morphismi: f — g
is called surjective, closed, perfect, etc., if, respectively, such is theimap— Z. If
[AX] = Z then the morphism is said to be dense andiif X — Z is a homeomorphism
then the morphism is said to be an isomorphism. Here py] or [ - ]x we mean the
closure operator in the respective space.

We now give some definitions and results concerning maps. For more details one can
consult [6] and [15].

Definition 1.1. A continuous mapf : X — Y is called aT;-map,i =0, 1, 2, if for all
x,x” € X such thatx # x/, fx = fx’ the following condition is, respectively satisfied:

i =0: atleast one of the poinis x’ has a nbd irX not containing the other point;
i =1: each of the points, x" has a nbd inX not containing the other point;

i =2: the pointst andx’ have disjoint nbds irX .

A To-map is also called Hausdorff. We note that foe 0, 1 the property for a map
f:X — Y to be aT;-map, is equivalent to the property that all the fibgrs'y, y e Y, are
T;-spaces. This is not the case frmaps.

Definition 1.2. The subsetg and B of the spaceX are said to be, respectively:
(&) nbd separated il C X,
(b) functionally separated iti C X,
ifthe setsANU andBNU
(a) have disjoint nbds i/,
(b) are functionally separated i (i.e., there exists a continuous functignU —
[0,1] suchthad NU c ¢~ 1(0)andBNU c ¢~1(1)).
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Definition 1.3. A continuous magyf : X — Y is called completely regular (regular), if for
every pointx € X and every closed sét in X, x ¢ F, there exists anb® € N(fx), such
that the set$x} and F are functionally separated (nbd separatedj it 0. A completely
regular (regularYo-map is called Tychonoff ng%- (73-) map.

It can be easily verified that evefyy-map is al;-map forj,i = 0,1, 2, 3, 3% andi < j.

Definition 1.4. A continuous magf : X — Y is called functionally prenormal (prenormal)
if for every y € Y and every two disjoint, closed sefsandH in X, there exist® € N(y)
such thatF and H are functionally separated (nbd separated)fintO. If for every
O €1, the mapf|;ip: f~t0 — 0 is functionally prenormal (prenormal) thefi is
called functionally normal (normal). A norm@}-map is called &4-map.

Remark 1.5. In [6] a functionally prenormal (prenormal) map in the sense of Defini-
tion 1.4 is called a functionally normal (normal) map. We will use the terminology of
Definition 1.4 as is [15].

The following results can be found in [15].

Proposition 1.6. Ifamap f : X — Y is closed we have
(a) If for everyy e Y, everyx € f~1y and every closedin f~1y) setA, such that
x ¢ A, the setdx} and A are nbd separated iX, then f is regular.
(b) Iffor everyy € Y, every two disjoint, close@in f~'y) sets are nbd separated K,
then f is normal.

Remark 1.7. The above proposition shows that a closed norfaahap is73 and thusly.
Proposition 1.8. If a spaceX is (a) a T;-space,i = 0,1, 2, (b) regular, (c) completely
regular, then a continuous map: X — Y is, respectively(a) a T;-map,i = 0, 1, 2,

(b) regular, (c) completely regular.

Proposition 1.9. A continuous map of ga) normal space is functionally prenormal,
(b) hereditary normal space is functionally normal.

Proposition 1.10. If a spaceY and the mapf: X — Y are: (a) a T;-space and ;-
map, respectively =0, 1, 2, (b) regular, (c) completely regular, then the spa&ewill be,
respectivelya) a T;-spacej =0, 1, 2, (b) regular, (c) completely regular.

Finally we give the definition of submaps and compact maps [16].

Definition 1.11. The restriction of the mag': X — Y on a (closed, etc.) subset of the
spaceX is called a (closed, etc.) submap of the map
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Definition 1.12. By a compact map is meant a perfect (i.e., continuous, closed and
fibrewise compact) map.

Note that a closed submap of a compact map is compact.

2. MT-maps: definition, characterizations and invariance

We first give some results and definitions with respect to paracompact maps which one
can find in [3].

Let f: X — Y be a continuous map of a topological spaténto a topological space
(Y, 7). Fory e Y, a collection of subsets of is said to bey-locally finite if for every
x € f~1y, there exists a nb@, of x in X, such that0, meets finitely many elements of
the collection. If the collectioty = {U,: « € A} is ay-locally finite open inX collection,
thent/ is locally finite in{J, < ;-1, Ox, i.e., for everyz € |, s-1, Ox, z has a nbd inX
which meets finitely many elementsf In particular, if f is closed and/ coversf 1y,
then there exists a nb@l, € N(y) such that/ is a cover off—loy and is locally finite
in f~10,, thatis for every; € f~10y,, z has a nbd inf =10, (and so inX) such that it
intersects finitely many elementsft

Definition 2.1. A continuous mapf:X — Y is said to be paracompact if for every
point y € ¥ and every open (irX) coverld = {Uy: « € A} of the fibre =1y (i.e.,
fty ¢ U{Us: « € A)), there exists a nbd, of y such thatf—10y is covered byi/
and(f 10, AlU) has ay-locally finite open refinement.

Note that if f is paracompact then it is a closed map and is fibrewise paracompact, i.e.,
for everyy e Y, f~1y is paracompact. The converse of this statement is not true even for
Tychonoff maps, that is there is a closed Tychonoff map with paracompact fibers which
is not paracompact (Example 2.10). Also every compact map is paracompact, and every
closed submap of a paracompact map is paracompact.

Proposition 2.2. A paracompact>-map is regular and normgland so is als-map.

Definition 2.3. Let f: X — Y be a continuous map ande Y. Leti/ be an open (inX)
cover of f~1y. The collection) of subsets ofX is said to be a-star refinement off if
VN f~ly + ¢ for everyV e V and there exists a nbd, € N(y) suchthat JV = f’lOy,
U coversf~1o, and{StV,V): V eV} <U A fL0,.

We finally give some characterizations of paracompact maps obtained in [3] which we
will need below.

Theorem 2.4. For a T1-map f : X — Y the following are equivalent
(i) The mapf is paracompacty.
(i) Foreveryy e Y and every opeffin X) coverl/ of the fibref 1y, there exists an
openy-star refinemenv.
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(i) The mapf is regular and for every € Y and every opelfin X) coverl{ of the
fibre f~1y, there exists a nb@, € N(y) such thatf ~10, is covered by/ and
(f*loy AU) has ay-o-discrete open refinement.

We now define collectionwise normality for maps.

Definition 2.5. A T1-map f is said to becollectionwise prenormaf for every discrete
collection{F;: s € S} of closed subsets of and for everyy € Y, there existO, € N(y)
and a collection of open subsdts;: s € S}, such thatFy N f*lOy C Us and Uy are
discrete inf—10y. The mapf is said to becollectionwise normaiff for every O € t, the
map fs-1p: f~10 — 0 is collectionwise prenormal.

Proposition 2.6. A T1-mapf is collectionwise normal if and only if for evety € t, every
closed discretén f~10) collection{F;: s € S} and everyy € O, there exist®, € N(y),
Oy C O such that{ F; N f—10y: s € S} are nbd separated.

Proof. Let O € t and{F;: s € S} a discrete collection of closed subsetsfofl0. Let
y € 0. There exists an open sé&, C O such that{F; N f*loy} are nbd separated, say
by {U;: s € S}. Let

A=JEnf oy and B=fto,\ | JUs.
seS seS
These two sets are closed and disjoinfint O, and so, sinc¢ is normal, there exists open
setsU andV in X, and an open s, in Y suchthatA’ cU ¢ f~10},B'cV c f~t0;
andVNU = ¢, whered’ = Ar\f—10; andB’ = B mf—lo_;. Now consideV, = U;NU.
We have thatry N f‘lo; C Vi and the collectiodVi: s € S} is discrete inf‘lo;. O

Proposition 2.7. Every paracompacti-map is collectionwise normal.

Proof. Let f:X — Y be a paracompact map and lete r. Consider the restriction
flg-10: f~10 — 0 and let{F;: s € S} be a discrete irf ~10 collection of closed (in
f~10) subsets off 10. Take an arbitrary point € O. For everyx € f~1y choose
anbd H, ¢ f~10 of x which meets at most one set of the collectipfi: s € S}.
Let H = {H,: x € f~1y}, then’H is an open (inf~10 and so inX) cover of f~1y.
Let ¥V be an openy-star refinement of{. One can assume that consists of open
subsets off =10, sayV = {V;: r € T}. Thus, there exist®), C 0, 0, € N(y) such
that{St(V;,V): t e T} <H A f*loy. We show that every element df meets at most
one element of the collectiofiG,: s € S}, where G, = St(F, V). For everyr € 7,
there exists an € f~1y such that St,, V) c H, N f~10, and so ifV; N G, # @ then
HiNF;#£@. O

Definition 2.8. The sequenc&Vy, Wh, ... of open (inX) covers off~1y, y € ¥, is said
to be ay-developmenif for every x € f~1y and every nbd/ (x) of x in X, there exist
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i <w and O € N(y) such thatx € St(x, W;) N f~10 c U(x). One can assume that
W; = {Wiq: a € A;}, whereW;, N f~1y £ @, for everyi < w and for everya € A;.
The mapy is said to have arf-developmerif it has ay-development for every € Y.

We now give our definition of a metrizable type map.

Definition 2.9. A closed mapf : X — Y is said to be amMT-mapif it is collectionwise
normal and has api-development.

We thus see that adT-map f is closed,7; and has metrizable fibers. We now give an
example of ars% closed map with metrizable fibers which is notlm-map.

Example 2.10. Let L be the Niemytzki plane and ldgt; C L be the liney = 0. Then
L1 is closed inL and so the quotient map: L — L/Lj is a closed map. The mapis
Tychonoff sincel is Tychonoff and every fibre af is metrizable. Since there exist closed
in L subsetsA c L and B C L1 which are not nbd separated, we have thas not a
prenormal map, and so cannot beMif-map.

Definition 2.11. A collection B, of open sets o is said to be @ase aty for the map
f,yeY,ifforeveryx e f~1y and every open nbli (x) of x there existO € N(y) and
B € B, such thatt € BN f~10 c U(x). One can assume that for eveye B, we have
BN f~ly +£4.

ThusB; ={B,: y € Y}, whereB, is a base ap for f, will give a base for the ma.
Conversely, if3 is a base forf, by takingB,(y) = {B € By: BN f~1y # 3} one gets a
base aty € Y for the mapf.

Theorem 2.12. For a continuous mayf : X — Y the following are equivalent
(1) fisanMT-map
(2) f is aclosedrs-map with ay-o-discretey-base for every € Y;
(3) f is aclosedrz-map with ay-o-locally finite y-base for every € Y.

Proof. We prove only implication (1= (2). The implication (2)= (3) is trivial and
(3) = (1) follows on the same footsteps as the proof of the analogous result in the category
Top.
We need to show that eveiT-map f has ay-o-discretey-base for every € Y.
We first show that everfT-map is paracompact. Let be an arbitrary point o¥ and
{Us: s € S} be an open cover of ~1y. Take a well-ordering relatior on the setS and
let

Foi=X\ {St<X\US,W,»> ulJ U}
s'<s

whereW;, i < w is ay-development. The sefs ; are closed in. Consider

Flo=Fan(Uw) cun (Umw).
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Fix ani < w. There exists an open (in) setO, (i) € N(y) such thatf_10y(i) cUwi.
ThenF/ = {F]; N f~10,(i): s € S} is a collection of closed (irf 10, (i) sets. We
now show that it is av-discrete collection. Let € f~1y and denote by (x) the smallest
elementinS such thate € Uy(,). Consider the nbd of, U,(,) N St(x, W;). This nbd meets
only one element of the collectiafi/, namely the sef; , ;N f710y(). ThusF is y-
discrete.

Now take an0} (i) € N(y) such thatf*lo;(i) C UlUsoy) N Stx, Wy): x € f~1y)
with 0 (i) C Oy(i). ThenF = F/ N f~10; (i) is a discrete and closed (if~10; (i)
collection and so, by collectionwise normality, there exist open&gtssuch thatF;yi N
7o) c Uy cUsn f710} (i), fors € S andi < w, and the collectiofUs ;: s € S} is
y-discrete for every < w. Since{EY”l.: s €S, i <w)forms acover of the subsgt 1y, we
getthat{U; ;: s €S, i < w} is ay-o-discrete open refinement §F/;: s € S}. Therefore,
f is a paracompact map.

Finally, by taking ay-o-discrete open refinement of; for everyi < w, one gets a
y-o-discretey-base. O

Note that in the proof of Theorem 2.12 we proved thatMifi-map is paracompact.
We now turn to other characterizations MfT-maps analogous to characterizations of
metrizable spaces in terms of strong and normal developments. We first give some
definitions.

Definition 2.13. The sequencky, Wa, ... of open (inX) covers of f 1y, y e Y, is said
to be astrong y-developmenit for every x € f~1y and every nbdJ(x) of x in X, there
exist a nbdV (x) of x in X, i <w andO € N(y) such thatx € St(V(x), W))n f~10 c
U(x). One can assume thil; = {W;,: o € A;}, whereW,, N f 1y #£ ¢, for everyi < w
and for everyr € A;. The mapf is said to have atrong f-developmerit it has a strong
y-developmentfor every e Y.

Definition 2.14. Let Wi, Wh, ... be ay-development fory € Y. If W;;1 is a y-star
refinement ofW; for everyi < w, then they-development is said to be rormal y-
developmentThe mapy is said to have aormal f-developmenif it has a normaly-
development for every e Y.

Theorem 2.15. For a continuous mag : X — Y the following are equivalent
(1) fisan MT-map
(2) f is aclosedlp-map with a strongf-development
(3) f is aclosedlp-map with a normalf -development.

Proof. (1) = (3) We have already proved that 8iT-map is paracompact and so the
f-development can be arranged into a norrhalevelopment.

(3) = (2) Take an arbitraryy € Y and letW;, i < w, be a normaly-development.
Then for everyx € f~1y and every nbd/(x) of x, there exists a® € N(y) andi < w
such thatc € St(x, W) N f~10 c U(x). We also have thaSt(W, Wiy1): W e Wiy1} <
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Wi A f710/, for someO’ € t. Consider0” = 0 N O’ and anyV € W1, x € V. Then
we get thate € S(V, W, 11) N f~10” c WN f~10” c U(x), for someW e W,.

(2) = (1) Let f: X — Y be a closedlp-map with a strongf-development. We show
that in this cas¢g is collectionwise normal. We first note that since each fibre is metrizable
we have thatf is a T1-map. Now letO € t and F = {F;: s € S} a closed discrete (in
f~10) collection. Take any € O C Y. We may assume thaw; .1 refinesw; A f=10(i)
for everyi < w, whereO (i) e N(y) andO(i + 1) C O(i). Also, since{W;} is a strong
y-development, we have the following condition: For every £ ~1y and every nbd/ (x)
of x, there exist an(x) < w and 0’ C O (i(x)) such that

SE(x, W) N f 10 cU®x),

where St(x, W) = St(St(x, W;), W)).
Now for F; € F andx € F; N f~1y, leti(x) be such that Stx, W) N f~10(x),
O(x) C O(i(x)), does not meet ang, € F, s # 5. Let

V(x) = St(x, Wir) N O ().

Then if x € F; andx’ € Fy # F;, we get thatV(x) N V(x’) = @. Since if V(x') =
St(x’, Wian) N f~1o(x’) and say, without loss of generality, that’) > i (x), we get that
O(x') C 0(i(x") C O(i(x)). Thus, if sayz € V(x) N V(x'), we havez € f~10(i(x))
andz e W e W), x' € W.But W c Wn f~10(i(x)), for someW e W), which
implies thatz € WNV (x) = WNSt(x, W) N f~10(x) # ¥ and sax’ € SE(x, Wiy N
f~10(x), which is a contradiction. Now let

UF) = J{v): xe Fnfty)

and for everyx € f~1y \ |JF let U(x) be a nbd oft which does not meet an¥; € F.
Since f is closed we conclude that there exists a bde N (y) such thatO* ¢ O and
{F,} are nbd separated if"10*. O

The following four theorems follow easily from the corresponding results in the theory
of general topological spaces, that is in the catedory

Theorem 2.16.If f: X — Y is an MT-map, then the following are equivalent
(1) f has acountable-base for every € Y;
(2) f is aLindel6f map, thatis a closefs-map with finally compact fibef8];
(3) £~y is separable for every e Y.

Theorem 2.17.1f f: X — Y is an MT-map, then the following are equivalent
(1) f is compact
(2) £~y is countably compact for evesye Y;
(3) f~1ly is sequentially compact for evepye Y.

Thus every compadiT-map has separable fibers.

Theorem 2.18. A compact>-map is an MT-map if and only if it has a countabidase
foreveryy eY.
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Theorem 2.19. A map f with a countabley-base for every € Y is an MT-map if and
only if it is closed and’s.

We now prove that thT-property is invariant under perfect morphisms.

Proposition 2.20. Let f: X — Y be an MT-map ang : Z — Y a continuous map. Then
if »: f — g is a perfect morphism of ontog, g is also an MT-map.

Proof. In [3] it is proved that under the above hypothesis the mag paracompact»
(and soTy and closed). We now constructyas-discrete base ig~1y for an arbitrary
pointy € Y.

Let {G;: i < w} be a normaly-development inf~1y. For an arbitrary point € g~y
considerU;(z) = St(x 1z, G;), Wi(zx) = Z \ A(X \ Ui(z)) and V;(z) = 2" (Wi(2)) C
Ui(z). It follows from definition thatU;(z) C U;(z) if j > i. The collectionW; =
{W;(z): z € g1y} is an open (inZ) cover ofg~1y.

Let V be an open nbd of € g1y, thenr=1z c A~1V. Sincer'z is compact and
the y-development is a normal sequence, we have that there existscam for which
Sta~1z,G) N f~10 c A=V for some nbd? € N(y). This implies that¥; (z) Ng~10 c
V and so{W;(z): i < w} is a nbdf-base for each € g~1y. We now show that for each
Wi (z) there exists § < w such that

U{Wi(p): ze Wi(p)} c Wi2).

There existarO € N(y) and aj > i +1 such thal;(z) N0 C Vis1(z) C Uisa(z).
Consider a poinp € g~1y such thatz € W;(p). We have that. =1z ¢ A71W;(p) =
Vilp) C Uj(p) = St()\,_lp,gj). Thus for everyx € A~1z, there exists aG(x) € G;
with x € G(x) and G(x) N A~1p # @. This implies thatU;(z) N A~1p # ¢ and that
A~1p € Vip1(2), sinceV;,1(z) containsy~Lix if it containsx.

Now let ¢ € W;(p). Sincer™1g C U;(p) we have that for every € 1~1g there
exists aG(x) € Gj, x € G(x), G(x) N A~1p # (. We have already showed that!p c
Vis1(z) C Ui4+1(2); and so there exists aff € Gj.1 With G(x) N H # @ andH N Ax "1z #
@. Since j > i + 1 we have thatx € U;(z), which implies thatA~1¢ c U;(z) and
soqg € Wi(z). O

In some cases, if a certain subspate Y has a certain topological property and the
map f : X — Y has the same property, then so does the subspat® c X. For example,
if Zis aT;-space andf aT;-map, fori =0, 1, 2, 3, 3%, then so does the subspagelz
[15]. This is also true wheX and f are compact (paracompact), that is in this case the
subspace ~1Z is compact [5] (paracompact [3]). The next example shows that this is not
the case for aMT-map, that is thé1T-map preimage of a metrizable space does not have
to be metrizable.

Example 2.21. Consider the setX = I x I, where I = [0, 1], equipped with the
lexicographic order and order topology. ThEris hereditary paracompact, compact LOTS
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which is not metrizable. Now lef : X — Y, whereY = I with standard metric topology,
be the mapf(u,v) = u, (u,v) € X. Then the mapf is continuous and closed. Also
f is collectionwise normal (since it is paracompact a@njl and one can check that it
has anf-development. Thug is anMT-map onto a metrizable space, whiteis not
metrizable.

With respect to Example 2.21, it will be interesting to see if there is an internal
characterization of topological spaces that can be mapped/iamap onto a metrizable
space. Such a characterization is given in Section 4 of this paper. To this end we now give
an example of a closed map with metrizable fibers from a sjaoeto a metrizable space
Y which is not anMT-map.

Example 2.22. Consider the set
D={(x,y): (x,y)€ R?, y> 0}

and letD; C D be the liney =0 andDz = D \ D1. Let U, = {(x,y): 0 <y < 1} for
everyn < w, and forx € Dy putV,(x) ={x} U U,. LetB1 ={V,(x): x € D1,n < w} and
B> the collection of all sets open in the usual topology of the plane and lyidgpirit is
not difficult to see thats = 51 U B2 is a base for a topology ob and thatD1 is closed in
D (with respect to this topology). Thus the quotient gD — D/ D1 is a closed map
with metrizable fibers. It is also not difficult to see that the spBg®; is metrizable and
thatg is not a prenormal map, for the same reason as that for Example 2.10g Thuost
anMT-map. Note that the spad2 has aG-diagonal but is not d>-space.

3. Fibrewise products ofMT-maps

We begin by the definition of fan products (see, for example, [1]). Fan products and
their projections £ fibrewise products of maps) have the same role in the catéigmy;
as Tychonoff products of spaces have in the cate@opy

Definition 3.1. For the collection of continuous maps : P, — Y, a € A, the subspace
P= {t ={t,} € H{Pa: a € A): paty = ppts, Ya, B € A}

of the Tychonoff producf] = [[{P«: @ € A} is called the fan product of the spacBs
with respect to the maps,, @ € A and is denoted by[{ P, rel py: o € A}.

For the projectiorpry : [ = P, of the producf | onto the factor?,, the restrictionz,
on P will be called the projection of the fan product onto the fadir o € A. From the
definition of fan product we have that, o 7o = pg o wg for everyo andg in A. Thus
one can define a mgp: P — Y, called the projection of the fan product, by

P=PpaoTy, acA.

Obviously, the projectiong andny, @ € A, are continuous.
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The projectionp is also called the fibrewise product of the maps « € A (since for
every pointy € Y, the inverse imagg 'y is homeomorphic to the Tychonoff product of
the fibersp; 1y, a € A). The fact thatp is the fibrewise product of the maps, « € A,
will be denoted byp = [[{ps: o € A}.

In particular, the fan producP of the spacesX and Z with respect to the maps
f:X — Y andg:Z — Y will be denoted byX s x, Z and the projections, by mx
andry.

We now turn to fibrewise products MT-maps.

Proposition 3.2. Let the mapy; : P — Y, i < w, be MT-maps. Consider the projection
p:P=T[{P rel p;: i <w}— Y.If pisclosed then it is an MT-map. In other worgs,
has a normalp-development and is &-map.

Proof. We know that for every poiny € Y, the inverse image 'y is homeomorphic
to the Tychonoff product of the fiberpi_ly, i <w. Let W,ﬁ, k < w, be a normaly-
development for the map; for everyi < w and consider the sequence

Wi = {(H%) NP:V;#P fori <k, in which caseV; eW,ﬁ}
1<w
of open (inP) covers ofp~1y.

Now let U, be an open inP nbd of some point = {;: i <w} € p~1y. Thenp;t; =y
for everyi < w and there exists a canonical open rd= [ U;, with U; # P; for only
a finite number of indices (i), i = 1,...,n, such thatr € G, N P C U;. There exists
an 0 € N(y) and ak < » such that S(ta(i),W,f‘“)) N p;é)O C Uyt i=1,...,n. Let
m =maxk,«(i): i =1,...,n}. From this it follows that St, W,,) N p~10 c G, N P.
We thus see thatVk, k < w, is ay-development for the map.

The fact thatVy is a normal sequence follows from the fact that emz,bis a normal
sequence, and the fact thatis a To-map follows from the following two facts: (i) a map
is a To-map if and only if the fibers ar&p-spaces, (ii) thelp-property for spaces is a
multiplicative property. O

With respect to Proposition 3.2 we are interested to know if, at least, the fibrewise
product of twoMT-maps is a closed map. We give an example to show that in general
the fibrewise product of two closed maps is not a closed map.

Example 3.3. Let X;, i = 1,2, be countably compact spaces such that their product
is not countably compact and let be the one-point compactification of a countable
discrete space. Let the mays be the projections of the producks x A onto A, for
i=12 Thenf;, i =1,2, are closed maps but their fibrewise product is not since it
coincides with the projection of the produkt x X x A onto A (see [5, Exercise 3.10

A(b)))-

Nevertheless we have the following results for the above mentioned problem.
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Corollary 3.4. If f is acompact MT-map anglis an MT-map, then the fibrewise product
p:XyxgZ—YisanMT-map.

Proof. This follows from the fact that in the above hypothesis the mapa paracompact
map and so is closed [3, Theorem 4.5[1

Proposition 3.5. If f: X — Y is the fibrewise product of continuous mafis X, — Y,
a € A, then

Frftyc[[{Frfity:ae A}, foreveryyev.

Proof. Evidently, the set
Int £ty x ]_[{X,g: peA\{a}} NX

is open inX and is contained in
=Tty ecA. o

Let us recall that a continuous magp: X — Y is said to beperipherically compact
(peripherically countably compagif Fr =1y is compact (countably compact) for every
yeY.

Corollary 3.6. The fibrewise product of closed peripherically compact maps orifg-a
space is also closed and peripherically compact.

Proof. Let Y be a Ti-space andf:X — Y be the fibrewise product of closed
peripherically compact map§g,: X, — Y, @ € A. It follows from Proposition 3.5 that
f is peripherically compact.

Let F be a closed subset &f andy ¢ f F. This means that

Fn (f—ly ~[Ttstyae A}) —g.

The space€, = Fr £, 1y, a € A, are compact and so we can find a finite sulgef A
and nbds0,, of C,, « € B, such that

FO(TTt0u: @eBy x [[(Xa: @ € A\ B)) =0.
Since
(Intfa_ly x [T1Xs: B e A\{oc}}) nx
c[[tfityacdy=r1y, acA,

the nbdU = [[{0, UInt £, 1y: @ € B} x [[{Xo: « € A\ B} of f~1y does not intersedt.
Now we can take a nbd& of y such thatf,; 1V c 0, U Intf; 1y, « € B. Then
flVcXnNnUcCX\F. O



D. Buhagiar et al. / Topology and its Applications 96 (1999) 31-51 43

Remember that a point of a spaceX is ag-pointif there exist nbd€J; of x, i < w,
such that

every sequence € X, x; € U;, i < w, has a cluster pointiX. (%)

A space is called g-spaceif all of its points areg-points. It can be easily seen that
x € X is ag-point if there exist a countably compact €&t X and its nbddJ;, i < w,
such thatr € C and for every nbdJ of C there exists an < o with U; C U. Thus all
M-spaces in the sense of Morita [12,13], and all spaces of countable type (in particular, all
1st-countable spaces and @ich complete spaces) arespaces.

Also, recall that a spac¥ is said to basocompacitf every closed countably compact
subset is compact.

Corollary 3.7. LetY be aregularTi- andg-space, the continuous mafig: X, — Y, @ €
A, be regular, prenormal, closed and all the fibefsty, y € ¥, a € A, be isocompact.
Then the fibrewise product ¢f,, « € A, is closed and peripherically compact.

Proof. In Theorem 5.4 and Corollary 5.5 it will be proved that under the above hypothesis,
the mapsf,, « € A, are peripherically compact.O

Corollary 3.8. LetY be aregularT;- andg-space and allthe mapg: X; — Y,i < w, be
MT-maps. Then the fibrewise productffi < w, is a peripherically compact MT-map.

4. MT-map preimages of metrizable spaces

In this paragraph we give an internal characterization of those spaces that can be mapped
by anMT-map onto a metrizable space.

Definition 4.1. A map f:X — Y is called aMoore mapif it is 73 and has anf-
development.

Definition 4.2. A Tz-spaceX is called aDT -spaceif there exists a sequen¢é,: n € w}
of open covers ok such that:
(1) foreachn < w, G,+1 star refinesy,;
(2) the sequencéSt(x, G,): n < w} is a base folC, =)
open set containing, contains some &t, G,);
(3) for everyx € X there exists a sequen¢®/,(x): n < w} of open (inX) covers of
C, such that for every € C, and every nbd/(y) of y in X, there exists an < w
such thaty € St(y, W,,(x)) C U(y).
If (3) is strengthened to
(3)* property (3) plusV,11(x) star refinesV, (x) A ((J W,+1(x)) for everyn < w and
everyx € X,
then the spac# is said to be atMT-space

St(x, G,), that is every

n<w
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Theorem 4.3. A T3-spaceX is a DT-space if and only if there exists a metric spade
and a Moore mapy of X ontoM.

Proof. Itis a well known result that from property (1) follows the existence of a pseudo-
metric p on X with the following properties:
(i) p(x,z)=0ifandonlyifz €(),_, Stx,G,), and
(ii) the setU is open in the topology generated pyf and only if x € U = St(x, G,,) C
U for somen < w.

We now define an equivalence relation¥ras follows:x ~ z if and only if p(x, z) = 0.
Let Y be the quotient spack/ ~ and define the functiod:Y x Y — Rt by d(x,2) =
p(x,z). Itis not difficult to check that/ is a metric onY. We are left to show that the
quotient mapf : X — Y is an Moore map. Sincg 1By (%, ¢) = By(x,g) andB,(x, ¢) is
open inX by (ii) above, we have thaf is continuous. Also, since by the constructionpof
we have that,, (x, 1/2"*+1) C St(x, G,), we get from property (2) thaf is a closed map.
Finally, from the fact that for an arbitrary=x € Y,

£y =[St G,
from (3) we have thaf has ay-development. Thereforg, is a Moore map.
The converse is not difficult to prove and follows directly from the definitions.

Theorem 4.4. For a T3-spaceX the following are equivalent
(1) the spaceX is a paracompacDT -space
(2) the spaceX is an MT-spacp
(3) there exists a metric spadé and an MT-mapf of X ontoM.

Proof. (1) = (2) follows from the fact that property (3) of Definition 4.2 can be
strengthened to (3)by the paracompactness &f. (2) = (3) follows from the fact that

if X is anMT-space, the mag constructed in the proof of Theorem 4.3 is [iT-map.

Finally, for (3)= (1), we only need to show that is paracompact, and this follows from

the already mentioned result that the paracompact preimage of a paracompact space is
paracompact [3]. O

As is seen above, the definition MT-spaces follows on the same lines as that of
paracompacM -spaces [12,13]. As we shall see later neither of these classes are contained
in each other. For the moment let us stop to consider spaces which are at the saMe time
andMT-spaces.

Definition 4.5. A spaceX is said to be £MT -spacéf it is the compacMT-map preimage
of a metric space.

Note that aCMT-space is anv-space and also adT-space (and so paracompdat
and 1st-countable). The next proposition shows that the converse is also true, that is a space
X which is anM- andMT-space is also EMT-space. Example 2.21 give<CMT-space
which is not metrizable.
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Proposition 4.6. If a spaceX is an M- and MT-space then it is also a CMT -space.

Proof. The following result is known: If the map#, fo, ..., fx, wheref; : X — Y; are
closed,Y1 is aTy-space and’, ..., Y are Tz-spaces, then the diagongl= f1 A fo A
.-+ A fr is closed (see, for example, [5, Proposition 2.3.30]).

Therefore, if f1: X — M1 is anMT-map andf>: X — M> is a compact map, then
f1A f2:X — My x My is a compact map. It is also not difficult to see that it has an
f1 A fo-developmentand so is a compdT-map. O

We now turn to products adEMT-spaces.

Proposition 4.7. If the spacesX,,, n < w, are CMT-spaces then the prodydt,_,, X, is
also a CMT -space.

Proof. Let f, : X,, > M, be compacMT-maps onto metrizable spaces. It is known that
the product map
f=l]frx=]x>Mm=]] M,
n<w n<w n<w
is a compact map (see, for example, [5]). We will now show that for an arbitrary point
vy ={yn} € M, the mapf has a countablg-base.

Let W, = {W,(k): k < w} be a countabley,-base for the mapf, and consider
the collectionW = ([],_, Wa: W, # X, for only a finite number of indices, in which
caseW, = W, (k,) € W, }. This collection is a countable collection of open setsXin
We now show that it is a-base. Take an arbitrary open nkidof a pointx = {x,} € X,
wherex € ffly. There exists a canonical ntbl= [ U, of x such thatt € U C V. Then
U, # X, for only a finite number of indices, say(1), ..., n(s). Let W) (kn(p)) and
On(p) On(p)) € N () b€ SUCh thatt, ) € Wa(p) k() N fr( ) Onp) W) C Unp) for
p=1,...,s. Then we getthat € [[W, N f L[] 0, C U, WhereW, ) = Wu(p) (kn(p))
and Oy, py = On(p)(Yn(p)) Wheneven = n(p) for somep =1,...,s, otherwiseW, = X,,
and 0, = M,.. This shows that the collection/ is a y-base for the mag’ and so by
Theorem 2.18f isanMT-map. O

The proof of the above proposition follows from the fact thatif n < w, are compact
MT-maps, then so is the prodJdt, _,, /.. This is not the case faMT-maps. Consider the
following example:

Example 4.8. Let f1 =idr:R — R and f2: R — {0} C R, that is f> is a constant map.
Then f1 and f2 areMT-maps butf; x f2:R x R — R x {0} is not a closed map (and so
is not anMT-map).

Note that in the above examplex R is still anMT-space. This leaves us with the open
question of whether the product of tWéT-spaces is aMT-space.

Next, as mentioned above, we show that the clasMdfspaces and the class of
paracompactM -spaces are distinct from each other and none of the two contains the other.
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Any compact space which is not 1st-countable (for exangifeor the LOTS[O, w1]), is a
paracompacM -space £ paracompacp-space) which is not amT-space. We now give
an example of aMT-space which is not am/-space.

Example 4.9. Let 2 = [0, w] and R have the usual order and léf = R x £2 have
the lexicographic order. Let the topology &f be the order topology plus the following
sets as oper[(y,w), —[: y € R}. Thus X is a GO-space. Consider the projection
f=prr:X — Y =R, thatis f(y,n) = y. One can see that for evegye Y we have
that 1y is a discrete countable spagg(y). It is clear thatf is continuous.

Let us show thaf is a closed map. Lef be closedinX andsayy € Y,y ¢ f(F). Then
f~1y n F =@ and sothere existsya < y with [(y1, 0), (v, D[N F =@ and ay; > y with
1(y, w), (y2, w)[NF = @. This implies thaty € Jy1, y2[ C Y and]y1, y2[ N f(F) =¥ and
so f is closed.

Since f is a closedr's-map with finally compact fibers, it is a Lindel6f map and so is
paracompact [3]. This also shows tHais a Lindel6f space (one can also show tRahas
a o-minimal base and so is hereditary paracompact). To showfthiatan MT-map we
are left with constructing a-development for an arbitrarye Y. Lety € Y and consider
£2,4(y). For eachk < w we construct an open (iki) covergGy (y) of £2;(y). Let us consider
the following cases:

(i) for (v.n) € 24(»), 0<n <o let Ux((y, n)) = (v, )},

(i) for (v,0) € 24(y) letUx((y,0)) =1(y \ 1/k, ), (¥, 0)], and

(iii) for (v, @) € 24(y) let Ux((y, @) = [(y, w), (y + 1/k, O)[.

Now letGy (y) = {Ur((v,n)): 0<n < w}andletG(y) ={Gr(y): k < w}. Itis not difficult
to see thafi(y) is ay-development and s@ is anMT-map andX anMT-space.

We now show thakX is not anM-space. We do this by showing that¥fis an M-space
then it has aGs-diagonal, which would contradict the fact th¥tis not metrizable.

So, assume that is a paracompaa¥-space, then there exists a compagetgerfect)
map ¢ from X onto some metrizable spadé. There exists a sequené¢el,: n € w}
of open covers ofX such that: (i) for eaclh < w, H,+1 Star refinesH,, (ii) the se-
quence{St(x, H,): n < w} is a base foiC, =, _, St(x, H,) and (i) Cx = g lgx is
compact. Thug®, N £24(y) is finite for everyy € Y. We denote byH,, the open cover
of X obtained by taking convex components of all the elements/,of We further de-
composeH,, in the following way: (i) if the setU € H), and U = [(y, n1), (y,n2)],
0 < n1 < n2 < w, then we decompos¥ into singleton set$(y, n1)}, ..., {(y,n2)} and
(ii) if the setU € H,, andU =](y1, %), (y,n)], y1 <y, 0 < n < w, then we decompodé
into the setg(y1, %), (v, 01, {(y, D}, ..., {(y,n)}. Denote the new open coversbf/. We
now show tha{H,!: n € w} is aGs-diagonal sequence.

Take an arbitraryc € X. Thenx € C, = (| St(x, H,) and sayx € £24(yx). We will
consider three cases:

() if x = (yx,n), 0<n < wthen, sinceC, N 24(yy) is finite, there is a maximum
element(yy, nmax) and a minimum elemertty,, nmin) in Cx N 24(yy). Take the
convex component of, containingx, and say it is[(yx, 717,i), (Vx» Tmay1- ONe
can now easily see that in this case there exigtsca» such that Str, 7)) = {x},
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(i) if x = (yx, 0) and the maximum element @i, N 24(yx) IS (Vx, nmax), then take
the convex component @f, containingx, say[(yx, 0), (yx, nma0]- Then again, it
is not difficult to see that in this case we hgvg_ , St(x, ) = {x},
(iii) finally, if x = (yy, ®), there must be am, < w such thaf(yy, ny), (yx, @) [ NCy =
@. Then again, it is not difficult to see th@y, _, St(x, 1)) = {x}.
This shows thafH),: n < w} is aG;-diagonal sequence which contradicts the fact that
is not metrizable.

Finally, it is not difficult to see that a closed subspace ofVainspace is again aliT-
space but this is not true for an arbitrary subspace. This can be seen by proving that the
Sorgenfrey Lines is notanMT-space, sincé is a subspace of the spagen Example 4.9.
That the spacé is not anMT-space can also be deduced from the fact thdflarspace
with a Gs-diagonal is metrizable, which will be shown in the next paragraph. Still, we give
a direct proof of this fact as it is interesting in itself.

Proposition 4.10. The Sorgenfrey ling is not an MT-space.

Proof. We begin by showing that any metrizable subgeif S is countable. The spaces
hereditary separable and 8bis a separable metrizable space. Thus second countable
and any second countable subspac# pfust be countable.

Say there exists aMT-map f: S — M, whereM is a metrizable space. In particular,
for everyy e M, f~1y is a closed metrizable subspacesoénd so is countable. We next
show that for every € M one can choose ar, € f~1y such that there exists an € S,
¢y < xy With Jey, x,[N f~1y = @. For this we take any, b € f~1y, a < b. There exists
somec with a < ¢ < b ande ¢ f~1y, which implies tha{c, ¢ + ¢[N f~1y = ¢ for some
e > 0. Consider the point = inf{z € f~1y: z > ¢ + ¢}. Since f 1y is closed inS we
have thatx € f~1y. By takingx, = x andc, = ¢ we have thalcy, x,[ N f~1y = @. Now
let P = {x,: y € M}, thenP is an uncountable subset 8f We now show tha? has a
development which would contradict the fact that it is not metrizable.

Consider the developmefitV, = {B,(y,1/n): y € M}: n < w} in M, wherep is a
compatible metric inv. LetG, = f‘lw,, and Iet@, be the cover consisting of the convex
components of all the elements@f. We now show thatG, A P: n < w}is a development
for P.

Take an arbitrary elemente P and letU, be any nbd op in P, sayU, =[p,q[NP.
Let p e f~1y(p), thatisp = x,(,). One can take the elemegqtsuch thayy ¢ f~1y(p)
and so there exists @ such thatg, '[N f~1y(p) = @. For everyx € f~1y(p), x < p
we have thak < ¢y (p). Inthis case leU, =[x, cy(p)[. For everyx e f_ly(p), p<x<gq
takeU, = [x, q[. Finally, for everyx € f_ly(p), x > g (and sax > ¢’) takeU, =[x, — [.
Now denote by

v=J{U:x ey}

this is an open set containing~1y(p). Since f is closed, there exists &< w such
that f~1y(p) C f~1St(y(p). Wi) C V. Thereforep € St(p. Gi) C [p. g[. Consequently,
{Gn A P: n <w}is adevelopmentfoP. O
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5. MT-maps and theG;-diagonal

In this paragraph we give some results connected Mithmaps and th&s-diagonal.
In particular, as a corollary to our results, we have thalAnspace with aGs-diagonal
is metrizable. This result can also be deduced from a result obtained in [2], namely that a
normal space&X with a Gs-diagonal is metrizable if it is the preimage of a metrizable space
under a closed, continuous map having metrizable fibers (cf. Example 2.22).

Lemma 5.1. Let a continuous maf : X — Y be regular,y € Y and a collection of points
xi € f~1y,i < w, be discrete inf ~1y. Then there exist disjoint nbds; of x; in X, i < w.

Proof. By the regularity off, we can find disjoint nbd¥; of x; andW; of {x;: j < w,
j#i}in X, i <w. Then the nbd$s1 = V1, G, =V, N[ {W;: j <i}, i > 1, are the
desirable nbds sind@; NG;.x CV,NW; =0, 1<k. O

Lemma 5.2. If in addition to the conditions of Lemm&l, Y is a Ti-space andf is
prenormal then we can find a nls@ of y and nbdsH; ofx;, H; ¢ f~10,i < w, such that
the collection{H;: i < w} is discrete inf~10.

Proof. Since the se¥ = {x;: i < w} is closed inX andG = | J{G;: i < w} is its nbd,
there exists a nbd of y and disjoint nbdsH of F andU of =10\ G in f~10. Then
the nbdsH; = H N G; of x;, i < w, form the desirable collection.O

Lemma 5.3. If in addition to the conditions of Lemm&a2, Y is regular then we can
assume the systef#;: i < w} to be discrete inX.

Proof. Indeed, ifV is a nbd ofy and[V] c O then we can takéf; N f~1V instead ofH;,
i<w. O

Theorem 5.4. Let a continuous mag : X — Y be regular, prenormal and closed ard
be a regularTy- andg-space. Thery is peripherically countably compact.

Proof. Suppose that there existe Y and a discrete in Ff~1y collection of pointsx;,

i < w. Take nbdsO; of y, i < w, having property £). By Lemma 5.3, we can take a
discrete inX collection of nbdsH; of x;, i < w. Sincex; € Frf—ly andY is a regular
T1-space, we can find € H; and nbdsV; ;1 of y,i < w, such that

fte 01\ {y}, [VizalC Oiya\{fnrr,..., fti}, ftizaeVipa\{y}, i <o.

Then the setd = {t;: i < w} is discrete inX, fA has a cluster point and, evidently,
t € ({[Vi+1]: i <w}. Thust ¢ f A and so the sef A is not closed. But this contradicts the
discreteness oA and the closedness gfsince[A] c | J{f 1 fti: i <w}=f1fA. O

Corollary 5.5. Under the conditions of Theoref4, if all the fibers are isocompadin
particular, metrizabl@ then f is peripherically compact.
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Since anyMT-map is closed, regular, prenormal and all of its fibers are metrizable we

have:

Corollary 5.6. Let f: X — Y be an MT-map and be a regularT;- and g-space. Then
f is peripherically compact.

Below, for a continuous mapf:X — Y and E C Y, we denote byl;(E) =
Ufintf~ty: y e E} and byYo = {y € Y: Int f~1y £ ¢J}. We say thatl; = I¢(Y) has
property P if it contains anF,-setF such thatF N f~1y = ¢ for everyy € Yo. Note that
if the spaceX is perfect therl s has propertyP.

Lemmab.7.If f:X — Y is an MT-map from a spac& with a Gs-diagonal onto a
metrizable spac&, theni/; has propertyP.

Proof. From Corollary 5.6 we have thatis peripherically compact. Choose a poiiy)
for everyy € Yo and consider the subspa&g = (X \ Ir) U {x(y): y € Yo}. ThenXg is
closed inX and fop = f|x, is a perfect map fronXp ontoY. Therefore, the subspaci
is an M-space with aGs-diagonal and so is metrizable. This= {x(y): y € Yo} is an
Fy-setinXpgandsoinX. O

Lemma 5.8. If a continuous magf : X — Y is closed and the sdi has propertyP, then
f 1y is the union of a countable collection of closed and discretg sets.

Proof. Let F C Iy satisfy the hypothesis of the lemma. ThEris the union of closed in
X setsF;, i <w. LetD; = fF;. ThenD;, i < w, are closed ir¥ and for everyE C D;,
thesetG =F,NfE=FNIf(E)andF; \G=F, N f~YD;\E)=F; N1;(D;\E)
are open inF; and so are closed in it and Xi. ConsequentlyE is closed inD;. We have
just proved thaif I = fF = | J{Di: i <} andthatD;, i < w are closed and discrete in
Y. O

Let us recall that a space is perfect if every open subset &fis an F,, -set.

Corollary 5.9. If a continuous magf : X — Y is closed and the spack is perfect then
f 1y is the union of a countable collection of closed and discretg sets.

Proposition 5.10. Let a continuous map : X — Y be closed and peripherically compact,
all of its fibers be metrizable anti has propertyP. Then there exist a metrizable space
M and a perfect mag: X — Y x M such thatf = p o ¢ (wherep is the projection of
the productY’ x M onto its factorY), g/y N g(X \ Iy) = @ and the restrictiorg|;, and
plg(x\1,) are topological embeddings.

Proof. By Lemma 5.8, the seb = f; is the union of closed and discrete¥nsetsD;,
i <w.Letl; =1y(D;). Evidently, the spack; = flei is closed inX and is metrizable.
Let o; be some metric o&; such thap; (f 1y, f~1y)>1ify,y e Di, y #y'.
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Let M; = {0,} U I; and take the system of all open i sets and the set®;, =
{0;} U I;;,, where

1
Iin={x€1i3 Q(X,Ki\li)é—}, n<o,
n

as a base of the topology M;. It is clear thatM; is a regularTi-space with a -locally
finite base and s@4; is metrizable. Evidently, the map : X — M; coinciding with the
identity map off; on I; and withg;x = O; for all x € X \ [; is continuous.

Letg:X — Y x M, whereM =[];_, M;, be the diagonal product ¢f andy;, i < w.
Theng is continuous. Note that the spaé¢ is metrizable. Letp be the projection of
the productY x M onto its factorY. It is not difficult to see thayg|1f and Pleox\ip)
are embeddings. Evidently, the fibers phre either singleton sets or coincide with the
boundaries of fibers of and so are compact. It remains to prove tha closed.

LetzeY x M and V be a nbd ofg~'z. We must find a nbd¥ of z such that
g W CV.If pzeY\ fX then we can takdV = p~1(Y \ fX). If pze fX\ D then
flpz=g"1p~1pz =g 1z c V.Bythe closedness gf, we can find a nbd@ of pz such
that f~1U c V. Then we can putV = p~1U. Finally, let pz € D; for somei < w. Then
V UlIntf~1pzis a nbd off ~1pz and so there exists a nlid of pz such thatf U c V.
We can assume thdf N D; = {pz}. Since the space Fr1pz is compact, there exists
n < o such thatl, N f~1pz C V. Then we can takéV = p~1U N ¢, 0;,, whereg; is
the projection of the produdt x [[; _,, M; onto the factoi;. O
Corollary 5.11. A perfect MT-space is a CMT -space.

Corollary 5.12. A countable product of MT-spaces having propdrtys a CMT -space.

Since the product of ai-space and a metric space isnspace and the preimage of
an M-space under a perfect map is Afispace we have the following result.

Corollary 5.13. If f:X — Y isan MT-map onto &1- and M-space and y has property
P (in particular, if X is perfecj thenX is also anM-space.

Finally, since a TychonofM -space with & s-diagonal is metrizable, we have:

Corollary 5.14. An MT -space with & s-diagonal is metrizable.
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