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Summary. It is shown that Cech completeness, ultracompleteness and local compactness
can be defined by demanding that certain equivalences hold between certain classes of
Baire measures or by demanding that certain classes of Baire measures have non-empty
support. This shows that these three topological properties are measurable, similarly to
the classical examples of compact spaces, pseudo-compact spaces and realcompact spaces.

1. Introduction. This paper is devoted to the measurability of cer-
tain topological properties, that is, to measure-theoretic characterizations
of some topological properties. Namely, we will show that local compact-
ness, ultracompleteness and Cech completeness are measurable properties.
All spaces are assumed to be Tikhonov, that is, 77 spaces on which every
point z and every closed set F' not containing x are functionally separated.
Let us denote by M(X), My (X), M, (X), and M;(X) the sets of all regular
measures, o-additive measures, T-additive measures and tight measures on a
Tikhonov space X respectively, and by T(X), 7,(X), 7-(X), and D(X) the
sets of all two-valued measures, two-valued o-additive measures, two-valued
T-additive measures and Dirac measures on X respectively. Since the publi-
cation of the paper of V. S. Varadarajan [17] the above sets of measures have
been subjected to much scrutiny. Properties of spaces which can be defined
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by demanding that certain equivalences hold between these sets of measures
were studied by J. J. Dijkstra [5], W. Moran [11-13] and others. Classi-
cal examples of measurable topological properties are pseudo-compactness,
realcompactness and compactness, where the following results are known:

THEOREM 1.1 ([1, 9]). The following conditions are equivalent for a
space X:

(i) X is pseudo-compact.

(i) M(X) = M, (X).

(i) T(X) = T,(X).
THEOREM 1.2 ([10]). X is realcompact if, and only if, T,(X) = D(X).
THEOREM 1.3 ([1]). The following conditions are equivalent for a space X:

(i) X is compact.
(i) M(X) = M, (X).
(iil) T(X) = TA(X).
(iv) T(X) =D(X).
Chapter VIIT.4 of J. Nagata [14] serves as a very good short introduction
to the subject.

2. Basic definitions and lemmas. Some of the terminology used
might be somewhat different from the standard usage and therefore we will
give the definitions. All spaces are assumed to be Tikhonov. The abbrevi-
ations f.i.p. and c.i.p. stand for finite intersection property and countable
intersection property respectively.

DEFINITION 2.1. Let A(X) be the algebra generated by the collection
Z(X) of all zero sets of the space X, i.e. the smallest collection A(X) of
subsets of X satisfying

(i) B1 N By € A(X) whenever By, By € A(X);
(ii) X \ B € A(X) whenever B € A(X);
(iii) Z(X) C A(X).
DEFINITION 2.2. By a measure y1 on A(X) we mean a finitely additive
non-negative real-valued function on A(X).
DEFINITION 2.3. If 11 is a measure on A(X), then the outer measure p*
is defined by
P (A) =inf{u(U): ACU € C(X)} forevery AC X,
where C(X) denotes the collection of all cozero sets of X.

DEFINITION 2.4. A measure p is called regular if p(B) = inf{u(U) :
B C U € C(X)} for each B € A(X). Equivalently, p is regular if u(B) =
sup{u(Z) : BD Z € Z(X)} for each B € A(X).
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From now on by a measure we mean a reqular measure.
DEFINITION 2.5. Let p be a measure on A(X).

(I) w is called o-additive if

w(Um) = um)
i=1 =1

whenever {B; : i = 1,2,...} is a disjoint countable subcollection
of A(X) with |J;2, B; € A(X).

(IT) p is called T-additive if for every open cover U of X by cozero sets
and for every € > 0 there is a finite subcollection V of U such that

n(UV) > u(X) —e.
(III) p is called tight if for every € > 0 there is a compact subset C' of

X such that p*(C) > pu(X) —e.
We denote by M(X), M, (X), M-(X) and M;(X) the sets of all regular mea-

sures, o-additive measures, 7-additive measures, and tight measures on X
respectively.

PROPOSITION 2.1. For any space X we have
Me(X) C MA(X) C My(X) C M(X).

A measure p on X is called a two-valued measure if u(A(X)) = {0,1}.
Let x be a fixed point of X. Then a Dirac measure §, is defined by

1 ifz e B e A(X),
5.(B) :{ 1 x A(X),
0 ifzx¢ Be AX).
We denote by T(X),T,(X),T-(X),T:(X) and D(X) the sets of all two-

valued measures, two-valued o-additive measures, two-valued 7-additive
measures, two-valued tight measures and Dirac measures on X respectively.

PROPOSITION 2.2. For any space X we have
Ti(X) = T-(X) = D(X) € T,(X) C T(X).

DEFINITION 2.6. Let i be a measure on X. Then by the support of u
we mean the set

S(p) = Z € 2(X) : n(2) = p(X)} = X \ [ J{U € e(X) : p(U) = 0}.

We need the following lemmas (see for example [5]). By a zero filter of a
space X we mean a filter in Z(X).

LEMMA 2.3. Let F be a maximal zero filter of a space X. Then the map
p: A(X) — {0,1} defined by n(B) = 1 if, and only if, there exists Z € F
with Z C B is an element of T(X). Moreover, if F has c.i.p., then p is an
element of T5(X).
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LEMMA 2.4. Let pn: A(X) — {0,1} be an element of T(X). Then the
collection F = {Z € Z(X) : uw(Z) = 1} defines a mazimal zero filter of the
space X . Moreover, if u is an element of T,(X), then F has c.i.p.

3. Measurability of Cech completeness, ultracompleteness and
local compactness. In this section we give measure-theoretic criteria for
Cech complete spaces, ultracomplete spaces and locally compact spaces.

DEFINITION 3.1. Let U be a cozero cover of a space X and p a measure
on X. Then p is said to be U-positive if there exists a U € U such that
p(U) > 0.

If 3 is a collection of cozero covers, then p is said to be U-positive if p is
U-positive for every U € L.

REMARK 3.1. One can easily see that any 7-additive measure (and there-
fore any tight measure) is U-positive for any cozero cover U of X. Conse-
quently, any p € M;(X) (or € My(X)) and any Dirac measure is i-positive
for any 4.

DEFINITION 3.2. For a collection U of cozero covers of X we denote
by M(X, 1) (resp. My (X, L)) the set of i-positive measures in M(X) (resp.
My (X)). Similarly, T(X, 4l) (resp. T, (X, 1)) is the set of {-positive measures
in T(X) (resp. T5(X)).

Recall that a space X is said to be Cech complete if it is a Gg-set in
one (equivalently, in all) of its Hausdorff compactifications [4]. By a result of
E. Cech [4], a metrizable space is completely metrizable (i.e., metrizable by a
complete metric, a notion defined by M. Fréchet in 1906 [7]) if and only if it
is Cech complete. The following internal characterization of Cech complete
spaces was established independently by Z. Frolik in 1960 [8] and by A. V.
Arkhangel’skil in 1961 [2].

PROPOSITION 3.1 ([8, 2]). A Tikhonov space X is Cech complete if , and
only if, there is a sequence 3 = {U, : n € N} of open covers of X such
that every U-Cauchy filter base F on X clusters in X, where F is said to be
U-Cauchy if for every U € 3 there exists some U € U such that FF C U for
some F € F.

We will need the following slight modification of Proposition 3.1, the
proof of which slightly differs from that of Proposition 3.1 given in [6, The-
orem 3.9.2].

COROLLARY 3.2. A space X is Cech complete if , and only if , there exists
a sequence U of cozero covers of X such that every zero U-Cauchy filter has
a non-empty intersection.
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Proof. We only need to proof sufficiency. Assume that the space X C X
has a sequence U = {U,, : n € N} of cozero covers with the said property.
Let U, = {U} : a € A,} for every n € N and let V' be an open subset of
BX with Ul = V! N X for every a € A,, and n € N. Evidently,

xc() U v
neNacA,
and to prove that X is Cech complete we need to show that the reverse
inclusion also holds.

Take any = € (,cny Uaea, Var and let N'(z) be the collection of open
neighborhoods of  in 3X. Consider the collection F = {XNV : V € N(x)},
where V is the closure of V in 8X. Note that F is a closed filter base in X.
Now if # € V € N(x), then by regularity of 3X, there exists V' € N'(x) such
that o € V/ € V/ C V. Next, by normality of 3X, there exists a zero set W
in X such that V/ C W C V and W N X is a zero set in X. Let F’ be the
zero filter in X generated by F. We have just seen that (| F = [ F’. Since
for any n € N there exists o € A,, with x € V!, it follows from regularity of
BX that F, and hence F’, is {-Cauchy. By our assumption, X N[ F" # 0
and since (\{V : V € N(z)} = {2}, we conclude that x € X. =

THEOREM 3.3. The following conditions are equivalent for a space X:

(i) X is Cech complete.
(ii) There exists a sequence 4 of cozero covers of X such that every
U-positive two-valued measure on X has a non-empty support.
(iii) There ezists a sequence 4 of cozero covers of X such that T(X, ) =
T (X, 4).

Proof. (i)=(ii). Let X be Cech complete and let 8 = {Uf; : i € N} be
a sequence of cozero covers of X such that every zero U-Cauchy filter has a
non-empty intersection. Let p € T(X,4) and F = {Z € Z(X) : u(2) = 1}.
By Lemma 2.4, F is a maximal zero filter of the space X and it is not difficult
to see that it is {-Cauchy and so has non-empty intersection. If z € (| F
then for every U € C(X) with # € U, we have p(U) = 1 so that p has a
non-empty support.

(ii)=-(iii). Let there exist a sequence il of cozero covers of X such that
the trivial measure 0 is the only -positive two-valued measure on X with an
empty support. Assume that there is a measure p € T(X, ) which is not in
T7(X,4). Then there exists a cozero cover V of X such that p(|J Vi) =0
for every finite subcollection Vi,...,V, of V. In particular, u(V) = 0 for
every V € V and therefore p has an empty support so that p = 0.

(iii)=(i). Let & ={U; : i € N} be a sequence of cozero covers of X such
that T(X,U) = T.(X,U). We show that { is a Cauchy complete sequence
of cozero covers. Assume that it is not; then there exists a zero -Cauchy
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filter with an empty intersection. Let F’ be a maximal zero filter on F and
construct p € T(X) by Lemma 2.3, i.e. pu(Y) = 1 if, and only if, there
exists F € F' with F C Y. Then p is U-positive since F (and so F') is
{-Cauchy. By assumption, (| F’' = () and therefore, V = {X \ F: F € F'} is
a cozero cover of X. Since u(V) = 0 for every V € V, we have u(|JV') =0
for every finite subcollection V' of V. Consequently, u is not 7-additive, a
contradiction. =

Similarly one can prove the following result for uniform spaces. By a
uniformity ${ we mean a uniformity given in terms of coverings.

COROLLARY 3.4. The following conditions are equivalent for a uniform
space (X, ):

(i) X is complete.
(il) T(X, ) = T (X, 4).

(iii) Ewvery -positive two-valued measure on X has a non-empty support.

A similar result can be stated for metric spaces. Indeed, if (X, ) is a
metric space, then a measure 1 € M(X) is said to live on arbitrarily small
sets if for every e > 0 there exists a set Y C X such that diam(Y) < ¢ and
p(Y) > 0. We then have the following result.

COROLLARY 3.5. The following conditions are equivalent for a metric
space (X, 0):

(i) X is complete.
(ii) Ewvery two-valued measure on X that lives on arbitrarily small sets
is T-additive.
(iii) Fvery two-valued measure on X that lives on arbitrarily small sets
has a non-empty support.

A space X is said to be ultracomplete if it has countable character in some
(equivalently, in every) compactification ¢X of the space X, i.e. x(X,cX)
< wp. It is clear from the definition that we have the following implications:

locally compact = ultracomplete = Cech complete.

Examples show that none of the above implications are reversible, even in
the realm of metrizable spaces (see [3, 15, 16]).

The following theorem was proved in [3]. For a collection P of subsets of
a set X, we denote by P¥ the collection of all unions of finite subcollections

from P.

THEOREM 3.6 ([3]). For every Tikhonov space X the following conditions
are equivalent:

(i) X is ultracomplete.
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(ii) There exists a sequence {U, : n € N} of open covers of X such
that, if F is a filter base on X which meshes with some sequence
{U, : Uy, €Uy}, then F clusters in X.

(i) There exists a sequence {Uy : n € N} of open covers of X such
that, for every open cover V of X there exists an n € N satisfying
U, < VT, that is, U, refines V.

Ultracomplete spaces as defined above were termed strongly complete
spaces by V. I. Ponomarev and V. V. Tkachuk in [15] and item (ii) in the
above theorem was given as a definition for cofinally Cech complete spaces
by S. Romaguera in [16].

Before we give a characterization of ultracomplete spaces in terms of mea-
sures we need the following result on compact spaces. The result is similar to
a characterization result for measure-compact spaces given by W. Moran [11].

THEOREM 3.7. The following conditions are equivalent for a space X:

(i) X is compact.
(ii) The trivial measure 0 is the only measure on X with an empty sup-
port.
(iii) The trivial measure 0 is the only two-valued measure on X with an
empty support.

Proof. (i)=-(ii). Assume that X is compact and p € M(X) (= M, (X))
has an empty support. Then there exists a cozero cover U = {V,, : a € A}
such that p(Vy) = 0 for every a € A. For every positive real number &, there
exists a finite subcover V,,, ..., V,, satisfying p(U;, Va,) > n(X) —e. But
p(Uiy Vay) < Dot (V) = 0, so that p(X) = 0 and p is the trivial
measure.

(ii)=-(iii) is obvious.

(iii)=-(i). Assume that X is not compact and F is a maximal zero filter
which does not converge. Define € T(X) by use of Lemma 2.3 and F. For
every v € X there exists a cozero neighborhood V of x such that VN Fy, = ()
for some Fy € F, and therefore, (V') = 0. Consequently, the support of u
is empty and p is not the trivial measure. =

We now give a measure-theoretic characterization for ultracomplete
spaces.

THEOREM 3.8. The following conditions are equivalent for a space X:

(i) X is ultracomplete.
(ii) There exists a sequence 34 of cozero covers of X such that every L-
positive measure on X has a non-empty support.
Proof. (i)=-(ii). Suppose X is ultracomplete and let {{ = {U4; : i € N}
be a sequence of cozero covers of X satisfying property (iii) of Theorem 3.6.
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Let u be a 4-positive measure on X with an empty support. Then there
exists a cozero cover V of X such that u(V) = 0 for every V € V. By our
assumption on Y, there exists an i € N such that ¢; < VI and since p is
{-positive, there exists U € U; such that u(U) > 0. One can find V € V¥
such that U ¢ V = > w1 Vi, where V;, € V for all £ = 1,...,n. Thus
p(U) <> 0 (Vi) =0, a contradiction.

(ii)=(i). Let there exist a sequence 4 = {Uf; : i € N} of cozero covers of
X such that every U-positive measure on X has a non-empty support and
assume that X is not ultracomplete. For every i € N and every x € X there
exist a cozero set V!, a zero set Z% and U’ € U; such that x € V! C Vi C
ZL C Ul Let V; = {V!: 2z € X} for every i € N, so that V; < U;, and let
¥ = {V; : i € N}. Since X is not ultracomplete there exists a cozero cover
W of X such that V; £ WY for every i € N, that is, there exists V’ € V;
such that VN (X \ O) # 0 for every O € WF.

Since X is not compact, by Theorem 3.7 there exists a measure p € T(X)
with an empty support, that is, there exists a cozero cover V of X such that
(V) =0 for every V€ V. Let O =V AW. Then V; £ OF for every i € N
and p(O) = 0 for every O € O. Take any i € N. Since V; £ OF, there exists
Vi = Vi eV such that VN (X \ O) # () for every O € OF and therefore,
ZiN(X\O) # 0 for every O € OF. Consider F; = {Z:N(X\0): 0 € OF}.
Then F; has the f.i.p., consists of zero sets in X and (| F; = 0. Let F/ be a
maximal zero filter on F; in X and construct p; € T(X) by Lemma 2.3, i.e.
wi(Y) = 1if, and only if, there exists F' € F] with F' C Y. Finally, we denote
1 by po and we let m = "2 27%;. Then m(A) < 2 for every A € A(X).

We next show that m has an empty support. Take any O € O. Since
X \ O is a zero set and is in F] for every i € N, we have 1;(X \ O) =1
and therefore 1;(O) = 0. Also, as noted above, 1o(O) = 0. Consequently,
m(0) = 0 for every O € O, which shows that m has an empty support. Since
wi(ZL) = 1, there exists Ul € U; such that u;(UL) = 1 so that m(U%) > 0
and m is U-positive.

We are only left to show that m € M(X). Since each p;, i =0,1,2,...,
is additive, it is evident that m is additive. We now show that m is regular.
Let A € A(X) and let € > 0. Consider m(A4) = > 52,27 u;(A). There exists
N € N such that 32N 27u;(A) > m(A) — /2. For every i = 0,...,N,
there exists Z; € Z(X) such that Z; C A and p;(Z;) > wi(A) — /2. Let
Z = Uf\io Z; € Z(X). Then Z C A and

N N oq e Noq 5
(22 Y g2 > Y ()= §) > 3 ) - § > m(a) -
=0 =0 i=0

Consequently, m(A) = sup{u(Z): Z C A, Z € Z(X)} and m is regular. m

Similarly one can prove the following result for uniform spaces.



Measure-Theoretic Characterizations 107

COROLLARY 3.9. The following conditions are equivalent for a uniform
space (X, 4):

(i) X is ultracomplete (cofinally Cech complete).
(ii) Ewvery U-positive measure on X has a non-empty support.

Finally, we give a measure-theoretic characterization for locally compact
spaces.

THEOREM 3.10. The following conditions are equivalent for a space X:

(i) X is locally compact.
(ii) There exists a cozero cover U of X such that every U-positive mea-
sure on X has a non-empty support.
(iii) There exists a cozero cover U of X such that every U-positive two-
valued measure on X has a non-empty support.

(iv) There exists a cozero cover U of X such that T(X,U) = T(X,U).

Proof. (i)=(ii). Let X be locally compact. For every x € X there exists a
cozero neighborhood U, of z such that U, is compact. Let i = {U, : x € X}
and let p be a U-positive measure with an empty support. There exists a
cozero cover V of X such that u(V) = 0 for every V € V. Since each U, is
compact, we see that & < VI and therefore, pu(U,) = 0 for every z € X,
contradicting the fact that p is U-positive.

(ii)=-(iii) is obvious.

(iii)=-(iv). Let there exist a cozero cover U of X such that the trivial mea-
sure 0 is the only U/-positive two-valued measure on X with an empty sup-
port. Assume that there is a measure p € T(X,U) which is not in T-(X,U).
Then there exists a cozero cover V of X such that pu(|J!", Vi) = 0 for every
finite subcollection Vi, ..., V, of V. In particular, u(V) = 0 for every V € V
and therefore p has an empty support so that u = 0.

(iv)=-(i). Let U be a cozero cover of X such that T(X, ) = T, (X, ). For
every « € X there exists a U € U such that x € U and also a cozero set V,
and a zero set Z, such that xr € V, CV, C Z, CU.Let V = {Vp iz e X}
We prove that V, is compact for all z € X by showing that Z,, is compact for
all x € X. Indeed, suppose there is an x € X such that Z, is not compact.
Then there is a maximal zero filter F in Z, with an empty intersection. Let
G be the subfamily of F defined by G = {Z € F : Z is a zero set in X }.
Then G has the f.i.p. and is non-empty. Let F’ be a maximal zero filter
on G in X and construct p € T(X) by Lemma 2.3, i.e. u(Y) = 1 if, and
only if, there exists F' € F' with FF C Y. Note that Z, € F’ so that u is
U-positive since p(U) = 1, where Z, C U and U € U. We next show that
N F = 0. Indeed, if 7' # 0 and y € (F' then y € Z,. But ((F = 0 so
that there exists some F' € F such that y ¢ F. There exists a cozero set
W, in X such that y € W, and Wy, N F = (. The set Z = X \ W, is a
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zero set in X and F C Z, so that Z € F' (since Z N Z,, € G). Consequently,
V ={X\F: F € F'}is a cozero cover of X. Since u(V) = 0 for every V € V,
we see that (| V') = 0 for every finite subcollection V' of V. Therefore p is
not T-additive, a contradiction. m

In relation to Theorems 3.8 and 3.10 one can pose the following problem:

PrROBLEM 3.11. Evidently, if there exists a sequence il of cozero cov-
ers (resp. one cozero cover U) of X such that M(X, ) = M, (X, ) (resp.
M(X,U) = M-(X,U)) then the same sequence 4l (resp. cozero cover U) is
such that every {U-positive (resp. U-positive) measure on X has a non-empty
support and so X is ultracomplete (resp. locally compact). Does the converse
hold?

The answer to the above question is in the negative, in fact we have the
following result.

THEOREM 3.12. Let {4 be any collection of cozero covers of a space X.
Then M(X, ) = M- (X, ) if, and only if, X is compact.

Proof. We only need to prove the necessity. Suppose X is not compact.
There exists a cozero cover V of X with no finite subcover. Let

F = {X \ UV' : V' is a finite subcollection of V}.

Then (F = (. Let ' be a maximal zero filter on F in X and construct
p € T(X) by Lemma 2.3, i.e. u(Y) =1 if, and only if, there exists F € F’
with ' C Y. Note that pu(V) = 0 for every V € V and u(X) = 1. Take
any Dirac measure 0., where z € X. Then 6, € M(X, ) = M, (X, ).
Consider the measure m = d§; + p € M(X,4). On the one hand, m €
M, (X, 4). On the other hand, for every finite subcollection V' of V we have
3 (UV) < 0,(X) = 1 and p(JV') = 0 while m(|JV') < 1. Therefore,
sup{m(|JV’) : V' is a finite subcollection of V} < 1 < m(X) = 2, so that
m ¢ M (X, 4). =
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