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100 D. Buhagiar et al.
by demanding that ertain equivalenes hold between these sets of measureswere studied by J. J. Dijkstra [5℄, W. Moran [11�13℄ and others. Classi-al examples of measurable topologial properties are pseudo-ompatness,realompatness and ompatness, where the following results are known:Theorem 1.1 ([1, 9℄). The following onditions are equivalent for aspae X:(i) X is pseudo-ompat.(ii) M(X) = Mσ(X).(iii) T(X) = Tσ(X).Theorem 1.2 ([10℄). X is realompat if , and only if , Tσ(X) = D(X).Theorem 1.3 ([1℄). The following onditions are equivalent for a spae X:(i) X is ompat.(ii) M(X) = Mτ (X).(iii) T(X) = Tτ (X).(iv) T(X) = D(X).Chapter VIII.4 of J. Nagata [14℄ serves as a very good short introdutionto the subjet.2. Basi de�nitions and lemmas. Some of the terminology usedmight be somewhat di�erent from the standard usage and therefore we willgive the de�nitions. All spaes are assumed to be Tikhonov. The abbrevi-ations f.i.p. and .i.p. stand for �nite intersetion property and ountableintersetion property respetively.Definition 2.1. Let A(X) be the algebra generated by the olletion
Z(X) of all zero sets of the spae X, i.e. the smallest olletion A(X) ofsubsets of X satisfying(i) B1 ∩ B2 ∈ A(X) whenever B1, B2 ∈ A(X);(ii) X \ B ∈ A(X) whenever B ∈ A(X);(iii) Z(X) ⊂ A(X).Definition 2.2. By a measure µ on A(X) we mean a �nitely additivenon-negative real-valued funtion on A(X).Definition 2.3. If µ is a measure on A(X), then the outer measure µ∗is de�ned by

µ∗(A) = inf{µ(U) : A ⊂ U ∈ C(X)} for every A ⊂ X,where C(X) denotes the olletion of all ozero sets of X.Definition 2.4. A measure µ is alled regular if µ(B) = inf{µ(U) :
B ⊂ U ∈ C(X)} for eah B ∈ A(X). Equivalently, µ is regular if µ(B) =
sup{µ(Z) : B ⊃ Z ∈ Z(X)} for eah B ∈ A(X).
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From now on by a measure we mean a regular measure.Definition 2.5. Let µ be a measure on A(X).(I) µ is alled σ-additive if

µ
( ∞⋃

i=1

Bi

)
=

∞∑

i=1

µ(Bi)whenever {Bi : i = 1, 2, . . . } is a disjoint ountable subolletionof A(X) with ⋃
∞

i=1
Bi ∈ A(X).(II) µ is alled τ -additive if for every open over U of X by ozero setsand for every ε > 0 there is a �nite subolletion V of U suh that

µ(
⋃
V) > µ(X) − ε.(III) µ is alled tight if for every ε > 0 there is a ompat subset C of

X suh that µ∗(C) > µ(X) − ε.We denote by M(X), Mσ(X), Mτ (X) and Mt(X) the sets of all regular mea-sures, σ-additive measures, τ -additive measures, and tight measures on Xrespetively.Proposition 2.1. For any spae X we have
Mt(X) ⊂ Mτ (X) ⊂ Mσ(X) ⊂ M(X).A measure µ on X is alled a two-valued measure if µ(A(X)) = {0, 1}.Let x be a �xed point of X. Then a Dira measure δx is de�ned by

δx(B) =

{
1 if x ∈ B ∈ A(X),
0 if x /∈ B ∈ A(X).We denote by T(X), Tσ(X), Tτ (X), Tt(X) and D(X) the sets of all two-valued measures, two-valued σ-additive measures, two-valued τ -additivemeasures, two-valued tight measures and Dira measures on X respetively.Proposition 2.2. For any spae X we have

Tt(X) = Tτ (X) = D(X) ⊂ Tσ(X) ⊂ T(X).Definition 2.6. Let µ be a measure on X. Then by the support of µwe mean the set
S(µ) =

⋂
{Z ∈ Z(X) : µ(Z) = µ(X)} = X \

⋃
{U ∈ C(X) : µ(U) = 0}.We need the following lemmas (see for example [5℄). By a zero �lter of aspae X we mean a �lter in Z(X).Lemma 2.3. Let F be a maximal zero �lter of a spae X. Then the map

µ : A(X) → {0, 1} de�ned by µ(B) = 1 if , and only if , there exists Z ∈ Fwith Z ⊂ B is an element of T(X). Moreover , if F has .i.p., then µ is anelement of Tσ(X).
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Lemma 2.4. Let µ : A(X) → {0, 1} be an element of T(X). Then theolletion F = {Z ∈ Z(X) : µ(Z) = 1} de�nes a maximal zero �lter of thespae X. Moreover , if µ is an element of Tσ(X), then F has .i.p.3. Measurability of �eh ompleteness, ultraompleteness andloal ompatness. In this setion we give measure-theoreti riteria for�eh omplete spaes, ultraomplete spaes and loally ompat spaes.Definition 3.1. Let U be a ozero over of a spae X and µ a measureon X. Then µ is said to be U-positive if there exists a U ∈ U suh that

µ(U) > 0.If U is a olletion of ozero overs, then µ is said to be U-positive if µ is
U -positive for every U ∈ U.Remark 3.1. One an easily see that any τ -additive measure (and there-fore any tight measure) is U -positive for any ozero over U of X. Conse-quently, any µ ∈ Mτ (X) (or ∈ Mt(X)) and any Dira measure is U-positivefor any U.Definition 3.2. For a olletion U of ozero overs of X we denoteby M(X, U) (resp. Mσ(X, U)) the set of U-positive measures in M(X) (resp.
Mσ(X)). Similarly, T(X, U) (resp. Tσ(X, U)) is the set of U-positive measuresin T(X) (resp. Tσ(X)).Reall that a spae X is said to be �eh omplete if it is a Gδ-set inone (equivalently, in all) of its Hausdor� ompati�ations [4℄. By a result ofE. �eh [4℄, a metrizable spae is ompletely metrizable (i.e., metrizable by aomplete metri, a notion de�ned by M. Fréhet in 1906 [7℄) if and only if itis �eh omplete. The following internal haraterization of �eh ompletespaes was established independently by Z. Frolík in 1960 [8℄ and by A. V.Arkhangel'ski�� in 1961 [2℄.Proposition 3.1 ([8, 2℄). A Tikhonov spae X is �eh omplete if , andonly if , there is a sequene U = {Un : n ∈ N} of open overs of X suhthat every U-Cauhy �lter base F on X lusters in X, where F is said to be
U-Cauhy if for every U ∈ U there exists some U ∈ U suh that F ⊂ U forsome F ∈ F .We will need the following slight modi�ation of Proposition 3.1, theproof of whih slightly di�ers from that of Proposition 3.1 given in [6, The-orem 3.9.2℄.Corollary 3.2. A spae X is �eh omplete if , and only if , there existsa sequene U of ozero overs of X suh that every zero U-Cauhy �lter hasa non-empty intersetion.
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Proof. We only need to proof su�ieny. Assume that the spae X ⊂ βXhas a sequene U = {Un : n ∈ N} of ozero overs with the said property.Let Un = {Un

α : α ∈ Λn} for every n ∈ N and let V n
α be an open subset of

βX with Un
α = V n

α ∩ X for every α ∈ Λn and n ∈ N. Evidently,
X ⊂

⋂

n∈N

⋃

α∈Λn

V n
α ;

and to prove that X is �eh omplete we need to show that the reverseinlusion also holds.Take any x ∈
⋂

n∈N

⋃
α∈Λn

V n
α and let N (x) be the olletion of openneighborhoods of x in βX. Consider the olletion F = {X∩V : V ∈ N (x)},where V is the losure of V in βX. Note that F is a losed �lter base in X.Now if x ∈ V ∈ N (x), then by regularity of βX, there exists V ′ ∈ N (x) suhthat x ∈ V ′ ⊂ V ′ ⊂ V . Next, by normality of βX, there exists a zero set Win βX suh that V ′ ⊂ W ⊂ V and W ∩ X is a zero set in X. Let F ′ be thezero �lter in X generated by F . We have just seen that ⋂

F =
⋂
F ′. Sinefor any n ∈ N there exists α ∈ Λn with x ∈ V n

α , it follows from regularity of
βX that F , and hene F ′, is U-Cauhy. By our assumption, X ∩

⋂
F ′ 6= ∅and sine ⋂

{V : V ∈ N (x)} = {x}, we onlude that x ∈ X.Theorem 3.3. The following onditions are equivalent for a spae X:(i) X is �eh omplete.(ii) There exists a sequene U of ozero overs of X suh that every
U-positive two-valued measure on X has a non-empty support.(iii) There exists a sequene U of ozero overs of X suh that T(X, U) =
Tτ (X, U).Proof. (i)⇒(ii). Let X be �eh omplete and let U = {Ui : i ∈ N} bea sequene of ozero overs of X suh that every zero U-Cauhy �lter has anon-empty intersetion. Let µ ∈ T(X, U) and F = {Z ∈ Z(X) : µ(Z) = 1}.By Lemma 2.4, F is a maximal zero �lter of the spae X and it is not di�ultto see that it is U-Cauhy and so has non-empty intersetion. If x ∈

⋂
Fthen for every U ∈ C(X) with x ∈ U , we have µ(U) = 1 so that µ has anon-empty support.(ii)⇒(iii). Let there exist a sequene U of ozero overs of X suh thatthe trivial measure 0 is the only U-positive two-valued measure on X with anempty support. Assume that there is a measure µ ∈ T(X, U) whih is not in

Tτ (X, U). Then there exists a ozero over V of X suh that µ(
⋃n

i=1
Vi) = 0for every �nite subolletion V1, . . . , Vn of V. In partiular, µ(V ) = 0 forevery V ∈ V and therefore µ has an empty support so that µ = 0.(iii)⇒(i). Let U = {Ui : i ∈ N} be a sequene of ozero overs of X suhthat T(X, U) = Tτ (X, U). We show that U is a Cauhy omplete sequeneof ozero overs. Assume that it is not; then there exists a zero U-Cauhy
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�lter with an empty intersetion. Let F ′ be a maximal zero �lter on F andonstrut µ ∈ T(X) by Lemma 2.3, i.e. µ(Y ) = 1 if, and only if, thereexists F ∈ F ′ with F ⊂ Y . Then µ is U-positive sine F (and so F ′) is
U-Cauhy. By assumption, ⋂

F ′ = ∅ and therefore, V = {X \F : F ∈ F ′} isa ozero over of X. Sine µ(V ) = 0 for every V ∈ V, we have µ(
⋃
V ′) = 0for every �nite subolletion V ′ of V. Consequently, µ is not τ -additive, aontradition.Similarly one an prove the following result for uniform spaes. By auniformity U we mean a uniformity given in terms of overings.Corollary 3.4. The following onditions are equivalent for a uniformspae (X, U):(i) X is omplete.(ii) T(X, U) = Tτ (X, U).(iii) Every U-positive two-valued measure on X has a non-empty support.A similar result an be stated for metri spaes. Indeed, if (X, ̺) is ametri spae, then a measure µ ∈ M(X) is said to live on arbitrarily smallsets if for every ε > 0 there exists a set Y ⊂ X suh that diam(Y ) < ε and

µ(Y ) > 0. We then have the following result.Corollary 3.5. The following onditions are equivalent for a metrispae (X, ̺):(i) X is omplete.(ii) Every two-valued measure on X that lives on arbitrarily small setsis τ -additive.(iii) Every two-valued measure on X that lives on arbitrarily small setshas a non-empty support.A spae X is said to be ultraomplete if it has ountable harater in some(equivalently, in every) ompati�ation cX of the spae X, i.e. χ(X, cX)
≤ ω0. It is lear from the de�nition that we have the following impliations:loally ompat ⇒ ultraomplete ⇒ �eh omplete.Examples show that none of the above impliations are reversible, even inthe realm of metrizable spaes (see [3, 15, 16℄).The following theorem was proved in [3℄. For a olletion P of subsets ofa set X, we denote by PF the olletion of all unions of �nite subolletionsfrom P.Theorem 3.6 ([3℄). For every Tikhonov spae X the following onditionsare equivalent :(i) X is ultraomplete.
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(ii) There exists a sequene {Un : n ∈ N} of open overs of X suhthat , if F is a �lter base on X whih meshes with some sequene

{Un : Un ∈ Un}, then F lusters in X.(iii) There exists a sequene {Un : n ∈ N} of open overs of X suhthat , for every open over V of X there exists an n ∈ N satisfying
Un < VF , that is, Un re�nes VF .Ultraomplete spaes as de�ned above were termed strongly ompletespaes by V. I. Ponomarev and V. V. Tkahuk in [15℄ and item (ii) in theabove theorem was given as a de�nition for o�nally �eh omplete spaesby S. Romaguera in [16℄.Before we give a haraterization of ultraomplete spaes in terms of mea-sures we need the following result on ompat spaes. The result is similar toa haraterization result for measure-ompat spaes given byW. Moran [11℄.Theorem 3.7. The following onditions are equivalent for a spae X:(i) X is ompat.(ii) The trivial measure 0 is the only measure on X with an empty sup-port.(iii) The trivial measure 0 is the only two-valued measure on X with anempty support.Proof. (i)⇒(ii). Assume that X is ompat and µ ∈ M(X) (= Mτ (X))has an empty support. Then there exists a ozero over U = {Vα : α ∈ Λ}suh that µ(Vα) = 0 for every α ∈ Λ. For every positive real number ε, thereexists a �nite subover Vα1

, . . . , Vαn
satisfying µ(

⋃n
i=1

Vαi
) > µ(X)− ε. But

µ(
⋃n

i=1
Vαi

) ≤
∑n

i=1
µ(Vαi

) = 0, so that µ(X) = 0 and µ is the trivialmeasure.(ii)⇒(iii) is obvious.(iii)⇒(i). Assume that X is not ompat and F is a maximal zero �lterwhih does not onverge. De�ne µ ∈ T(X) by use of Lemma 2.3 and F . Forevery x ∈ X there exists a ozero neighborhood V of x suh that V ∩FV = ∅for some FV ∈ F , and therefore, µ(V ) = 0. Consequently, the support of µis empty and µ is not the trivial measure.We now give a measure-theoreti haraterization for ultraompletespaes.Theorem 3.8. The following onditions are equivalent for a spae X:(i) X is ultraomplete.(ii) There exists a sequene U of ozero overs of X suh that every U-positive measure on X has a non-empty support.Proof. (i)⇒(ii). Suppose X is ultraomplete and let U = {Ui : i ∈ N}be a sequene of ozero overs of X satisfying property (iii) of Theorem 3.6.
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Let µ be a U-positive measure on X with an empty support. Then thereexists a ozero over V of X suh that µ(V ) = 0 for every V ∈ V. By ourassumption on U, there exists an i ∈ N suh that Ui < VF and sine µ is
U-positive, there exists U ∈ Ui suh that µ(U) > 0. One an �nd V̂ ∈ VFsuh that U ⊂ V̂ =

∑n
k=1

Vk, where Vk ∈ V for all k = 1, . . . , n. Thus
µ(U) ≤

∑n
k=1

µ(Vk) = 0, a ontradition.(ii)⇒(i). Let there exist a sequene U = {Ui : i ∈ N} of ozero overs of
X suh that every U-positive measure on X has a non-empty support andassume that X is not ultraomplete. For every i ∈ N and every x ∈ X thereexist a ozero set V i

x , a zero set Zi
x and U i

x ∈ Ui suh that x ∈ V i
x ⊂ V i

x ⊂
Zi

x ⊂ U i
x. Let Vi = {V i

x : x ∈ X} for every i ∈ N, so that Vi < Ui, and let
V = {Vi : i ∈ N}. Sine X is not ultraomplete there exists a ozero over
W of X suh that Vi ≮ WF for every i ∈ N, that is, there exists V i ∈ Visuh that V i ∩ (X \ O) 6= ∅ for every O ∈ WF .Sine X is not ompat, by Theorem 3.7 there exists a measure µ ∈ T(X)with an empty support, that is, there exists a ozero over V of X suh that
µ(V ) = 0 for every V ∈ V. Let O = V ∧W . Then Vi ≮ OF for every i ∈ Nand µ(O) = 0 for every O ∈ O. Take any i ∈ N. Sine Vi ≮ OF , there exists
V i = V i

x ∈ Vi suh that V i
x ∩ (X \ O) 6= ∅ for every O ∈ OF and therefore,

Zi
x∩ (X \O) 6= ∅ for every O ∈ OF . Consider Fi = {Zi

x∩ (X \O) : O ∈ OF }.Then Fi has the f.i.p., onsists of zero sets in X and ⋂
Fi = ∅. Let F ′

i be amaximal zero �lter on Fi in X and onstrut µi ∈ T(X) by Lemma 2.3, i.e.
µi(Y ) = 1 if, and only if, there exists F ∈ F ′

i with F ⊂ Y . Finally, we denote
µ by µ0 and we let m =

∑
∞

i=0
2−iµi. Then m(A) ≤ 2 for every A ∈ A(X).We next show that m has an empty support. Take any O ∈ O. Sine

X \ O is a zero set and is in F ′

i for every i ∈ N, we have µi(X \ O) = 1and therefore µi(O) = 0. Also, as noted above, µ0(O) = 0. Consequently,
m(O) = 0 for every O ∈ O, whih shows that m has an empty support. Sine
µi(Z

i
x) = 1, there exists U i

x ∈ Ui suh that µi(U
i
x) = 1 so that m(U i

x) > 0and m is U-positive.We are only left to show that m ∈ M(X). Sine eah µi, i = 0, 1, 2, . . . ,is additive, it is evident that m is additive. We now show that m is regular.Let A ∈ A(X) and let ε > 0. Consider m(A) =
∑

∞

i=0
2−iµi(A). There exists

N ∈ N suh that ∑N
i=0

2−iµi(A) > m(A) − ε/2. For every i = 0, . . . , N ,there exists Zi ∈ Z(X) suh that Zi ⊂ A and µi(Zi) > µi(A) − ε/2. Let
Z =

⋃N
i=0

Zi ∈ Z(X). Then Z ⊂ A and
m(Z) ≥

N∑

i=0

1

2i
µi(Z) >

N∑

i=0

1

2i

(
µi(A) −

ε

2

)
>

N∑

i=0

1

2i
µi(A) −

ε

2
> m(A) − ε.Consequently, m(A) = sup{µ(Z) : Z ⊂ A, Z ∈ Z(X)} and m is regular.Similarly one an prove the following result for uniform spaes.
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Corollary 3.9. The following onditions are equivalent for a uniformspae (X, U):(i) X is ultraomplete (o�nally �eh omplete).(ii) Every U-positive measure on X has a non-empty support.Finally, we give a measure-theoreti haraterization for loally ompatspaes.Theorem 3.10. The following onditions are equivalent for a spae X:(i) X is loally ompat.(ii) There exists a ozero over U of X suh that every U-positive mea-sure on X has a non-empty support.(iii) There exists a ozero over U of X suh that every U-positive two-valued measure on X has a non-empty support.(iv) There exists a ozero over U of X suh that T(X,U) = Tτ (X,U).Proof. (i)⇒(ii). Let X be loally ompat. For every x ∈ X there exists aozero neighborhood Ux of x suh that Ux is ompat. Let U = {Ux : x ∈ X}and let µ be a U -positive measure with an empty support. There exists aozero over V of X suh that µ(V ) = 0 for every V ∈ V. Sine eah Ux isompat, we see that U < VF and therefore, µ(Ux) = 0 for every x ∈ X,ontraditing the fat that µ is U -positive.(ii)⇒(iii) is obvious.(iii)⇒(iv). Let there exist a ozero over U of X suh that the trivial mea-sure 0 is the only U -positive two-valued measure on X with an empty sup-port. Assume that there is a measure µ ∈ T(X,U) whih is not in Tτ (X,U).Then there exists a ozero over V of X suh that µ(

⋃n
i=1

Vi) = 0 for every�nite subolletion V1, . . . , Vn of V. In partiular, µ(V ) = 0 for every V ∈ Vand therefore µ has an empty support so that µ = 0.(iv)⇒(i). Let U be a ozero over of X suh that T(X, U) = Tτ (X, U). Forevery x ∈ X there exists a U ∈ U suh that x ∈ U and also a ozero set Vxand a zero set Zx suh that x ∈ Vx ⊂ V x ⊂ Zx ⊂ U . Let V = {Vx : x ∈ X}.We prove that V x is ompat for all x ∈ X by showing that Zx is ompat forall x ∈ X. Indeed, suppose there is an x ∈ X suh that Zx is not ompat.Then there is a maximal zero �lter F in Zx with an empty intersetion. Let
G be the subfamily of F de�ned by G = {Z ∈ F : Z is a zero set in X}.Then G has the f.i.p. and is non-empty. Let F ′ be a maximal zero �lteron G in X and onstrut µ ∈ T(X) by Lemma 2.3, i.e. µ(Y ) = 1 if, andonly if, there exists F ∈ F ′ with F ⊂ Y . Note that Zx ∈ F ′ so that µ is
U -positive sine µ(U) = 1, where Zx ⊂ U and U ∈ U . We next show that⋂

F ′ = ∅. Indeed, if F ′ 6= ∅ and y ∈
⋂

F ′ then y ∈ Zx. But ⋂
F = ∅ sothat there exists some F ∈ F suh that y /∈ F . There exists a ozero set

Wy in X suh that y ∈ Wy and Wy ∩ F = ∅. The set Z = X \ Wy is a
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zero set in X and F ⊂ Z, so that Z ∈ F ′ (sine Z ∩ Zx ∈ G). Consequently,
V = {X\F : F ∈ F ′} is a ozero over of X. Sine µ(V ) = 0 for every V ∈ V,we see that µ(

⋃
V ′) = 0 for every �nite subolletion V ′ of V. Therefore µ isnot τ -additive, a ontradition.In relation to Theorems 3.8 and 3.10 one an pose the following problem:Problem 3.11. Evidently, if there exists a sequene U of ozero ov-ers (resp. one ozero over U) of X suh that M(X, U) = Mτ (X, U) (resp.

M(X,U) = Mτ (X,U)) then the same sequene U (resp. ozero over U) issuh that every U-positive (resp. U -positive) measure on X has a non-emptysupport and so X is ultraomplete (resp. loally ompat). Does the onversehold?The answer to the above question is in the negative, in fat we have thefollowing result.Theorem 3.12. Let U be any olletion of ozero overs of a spae X.Then M(X, U) = Mτ (X, U) if , and only if , X is ompat.Proof. We only need to prove the neessity. Suppose X is not ompat.There exists a ozero over V of X with no �nite subover. Let
F =

{
X \

⋃
V ′ : V ′ is a �nite subolletion of V}

.Then ⋂
F = ∅. Let F ′ be a maximal zero �lter on F in X and onstrut

µ ∈ T(X) by Lemma 2.3, i.e. µ(Y ) = 1 if, and only if, there exists F ∈ F ′with F ⊂ Y . Note that µ(V ) = 0 for every V ∈ V and µ(X) = 1. Takeany Dira measure δx, where x ∈ X. Then δx ∈ M(X, U) = Mτ (X, U).Consider the measure m = δx + µ ∈ M(X, U). On the one hand, m ∈
Mτ (X, U). On the other hand, for every �nite subolletion V ′ of V we have
δx(

⋃
V ′) ≤ δx(X) = 1 and µ(

⋃
V ′) = 0 while m(

⋃
V ′) ≤ 1. Therefore,

sup{m(
⋃
V ′) : V ′ is a �nite subolletion of V} ≤ 1 < m(X) = 2, so that

m /∈ Mτ (X, U).
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