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Measure-Theoreti
 Chara
terizations of CertainTopologi
al PropertiesbyD. BUHAGIAR, E. CHETCUTI and A. DVURE�ENSKIJPresented by Czesªaw BESSAGA
Summary. It is shown that �e
h 
ompleteness, ultra
ompleteness and lo
al 
ompa
tness
an be de�ned by demanding that 
ertain equivalen
es hold between 
ertain 
lasses ofBaire measures or by demanding that 
ertain 
lasses of Baire measures have non-emptysupport. This shows that these three topologi
al properties are measurable, similarly tothe 
lassi
al examples of 
ompa
t spa
es, pseudo-
ompa
t spa
es and real
ompa
t spa
es.1. Introdu
tion. This paper is devoted to the measurability of 
er-tain topologi
al properties, that is, to measure-theoreti
 
hara
terizationsof some topologi
al properties. Namely, we will show that lo
al 
ompa
t-ness, ultra
ompleteness and �e
h 
ompleteness are measurable properties.All spa
es are assumed to be Tikhonov, that is, T1 spa
es on whi
h everypoint x and every 
losed set F not 
ontaining x are fun
tionally separated.Let us denote by M(X), Mσ(X), Mτ (X), and Mt(X) the sets of all regularmeasures, σ-additive measures, τ -additive measures and tight measures on aTikhonov spa
e X respe
tively, and by T(X), Tσ(X), Tτ (X), and D(X) thesets of all two-valued measures, two-valued σ-additive measures, two-valued
τ -additive measures and Dira
 measures on X respe
tively. Sin
e the publi-
ation of the paper of V. S. Varadarajan [17℄ the above sets of measures havebeen subje
ted to mu
h s
rutiny. Properties of spa
es whi
h 
an be de�ned2000 Mathemati
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by demanding that 
ertain equivalen
es hold between these sets of measureswere studied by J. J. Dijkstra [5℄, W. Moran [11�13℄ and others. Classi-
al examples of measurable topologi
al properties are pseudo-
ompa
tness,real
ompa
tness and 
ompa
tness, where the following results are known:Theorem 1.1 ([1, 9℄). The following 
onditions are equivalent for aspa
e X:(i) X is pseudo-
ompa
t.(ii) M(X) = Mσ(X).(iii) T(X) = Tσ(X).Theorem 1.2 ([10℄). X is real
ompa
t if , and only if , Tσ(X) = D(X).Theorem 1.3 ([1℄). The following 
onditions are equivalent for a spa
e X:(i) X is 
ompa
t.(ii) M(X) = Mτ (X).(iii) T(X) = Tτ (X).(iv) T(X) = D(X).Chapter VIII.4 of J. Nagata [14℄ serves as a very good short introdu
tionto the subje
t.2. Basi
 de�nitions and lemmas. Some of the terminology usedmight be somewhat di�erent from the standard usage and therefore we willgive the de�nitions. All spa
es are assumed to be Tikhonov. The abbrevi-ations f.i.p. and 
.i.p. stand for �nite interse
tion property and 
ountableinterse
tion property respe
tively.Definition 2.1. Let A(X) be the algebra generated by the 
olle
tion
Z(X) of all zero sets of the spa
e X, i.e. the smallest 
olle
tion A(X) ofsubsets of X satisfying(i) B1 ∩ B2 ∈ A(X) whenever B1, B2 ∈ A(X);(ii) X \ B ∈ A(X) whenever B ∈ A(X);(iii) Z(X) ⊂ A(X).Definition 2.2. By a measure µ on A(X) we mean a �nitely additivenon-negative real-valued fun
tion on A(X).Definition 2.3. If µ is a measure on A(X), then the outer measure µ∗is de�ned by

µ∗(A) = inf{µ(U) : A ⊂ U ∈ C(X)} for every A ⊂ X,where C(X) denotes the 
olle
tion of all 
ozero sets of X.Definition 2.4. A measure µ is 
alled regular if µ(B) = inf{µ(U) :
B ⊂ U ∈ C(X)} for ea
h B ∈ A(X). Equivalently, µ is regular if µ(B) =
sup{µ(Z) : B ⊃ Z ∈ Z(X)} for ea
h B ∈ A(X).
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From now on by a measure we mean a regular measure.Definition 2.5. Let µ be a measure on A(X).(I) µ is 
alled σ-additive if

µ
( ∞⋃

i=1

Bi

)
=

∞∑

i=1

µ(Bi)whenever {Bi : i = 1, 2, . . . } is a disjoint 
ountable sub
olle
tionof A(X) with ⋃
∞

i=1
Bi ∈ A(X).(II) µ is 
alled τ -additive if for every open 
over U of X by 
ozero setsand for every ε > 0 there is a �nite sub
olle
tion V of U su
h that

µ(
⋃
V) > µ(X) − ε.(III) µ is 
alled tight if for every ε > 0 there is a 
ompa
t subset C of

X su
h that µ∗(C) > µ(X) − ε.We denote by M(X), Mσ(X), Mτ (X) and Mt(X) the sets of all regular mea-sures, σ-additive measures, τ -additive measures, and tight measures on Xrespe
tively.Proposition 2.1. For any spa
e X we have
Mt(X) ⊂ Mτ (X) ⊂ Mσ(X) ⊂ M(X).A measure µ on X is 
alled a two-valued measure if µ(A(X)) = {0, 1}.Let x be a �xed point of X. Then a Dira
 measure δx is de�ned by

δx(B) =

{
1 if x ∈ B ∈ A(X),
0 if x /∈ B ∈ A(X).We denote by T(X), Tσ(X), Tτ (X), Tt(X) and D(X) the sets of all two-valued measures, two-valued σ-additive measures, two-valued τ -additivemeasures, two-valued tight measures and Dira
 measures on X respe
tively.Proposition 2.2. For any spa
e X we have

Tt(X) = Tτ (X) = D(X) ⊂ Tσ(X) ⊂ T(X).Definition 2.6. Let µ be a measure on X. Then by the support of µwe mean the set
S(µ) =

⋂
{Z ∈ Z(X) : µ(Z) = µ(X)} = X \

⋃
{U ∈ C(X) : µ(U) = 0}.We need the following lemmas (see for example [5℄). By a zero �lter of aspa
e X we mean a �lter in Z(X).Lemma 2.3. Let F be a maximal zero �lter of a spa
e X. Then the map

µ : A(X) → {0, 1} de�ned by µ(B) = 1 if , and only if , there exists Z ∈ Fwith Z ⊂ B is an element of T(X). Moreover , if F has 
.i.p., then µ is anelement of Tσ(X).
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Lemma 2.4. Let µ : A(X) → {0, 1} be an element of T(X). Then the
olle
tion F = {Z ∈ Z(X) : µ(Z) = 1} de�nes a maximal zero �lter of thespa
e X. Moreover , if µ is an element of Tσ(X), then F has 
.i.p.3. Measurability of �e
h 
ompleteness, ultra
ompleteness andlo
al 
ompa
tness. In this se
tion we give measure-theoreti
 
riteria for�e
h 
omplete spa
es, ultra
omplete spa
es and lo
ally 
ompa
t spa
es.Definition 3.1. Let U be a 
ozero 
over of a spa
e X and µ a measureon X. Then µ is said to be U-positive if there exists a U ∈ U su
h that

µ(U) > 0.If U is a 
olle
tion of 
ozero 
overs, then µ is said to be U-positive if µ is
U -positive for every U ∈ U.Remark 3.1. One 
an easily see that any τ -additive measure (and there-fore any tight measure) is U -positive for any 
ozero 
over U of X. Conse-quently, any µ ∈ Mτ (X) (or ∈ Mt(X)) and any Dira
 measure is U-positivefor any U.Definition 3.2. For a 
olle
tion U of 
ozero 
overs of X we denoteby M(X, U) (resp. Mσ(X, U)) the set of U-positive measures in M(X) (resp.
Mσ(X)). Similarly, T(X, U) (resp. Tσ(X, U)) is the set of U-positive measuresin T(X) (resp. Tσ(X)).Re
all that a spa
e X is said to be �e
h 
omplete if it is a Gδ-set inone (equivalently, in all) of its Hausdor� 
ompa
ti�
ations [4℄. By a result ofE. �e
h [4℄, a metrizable spa
e is 
ompletely metrizable (i.e., metrizable by a
omplete metri
, a notion de�ned by M. Fré
het in 1906 [7℄) if and only if itis �e
h 
omplete. The following internal 
hara
terization of �e
h 
ompletespa
es was established independently by Z. Frolík in 1960 [8℄ and by A. V.Arkhangel'ski�� in 1961 [2℄.Proposition 3.1 ([8, 2℄). A Tikhonov spa
e X is �e
h 
omplete if , andonly if , there is a sequen
e U = {Un : n ∈ N} of open 
overs of X su
hthat every U-Cau
hy �lter base F on X 
lusters in X, where F is said to be
U-Cau
hy if for every U ∈ U there exists some U ∈ U su
h that F ⊂ U forsome F ∈ F .We will need the following slight modi�
ation of Proposition 3.1, theproof of whi
h slightly di�ers from that of Proposition 3.1 given in [6, The-orem 3.9.2℄.Corollary 3.2. A spa
e X is �e
h 
omplete if , and only if , there existsa sequen
e U of 
ozero 
overs of X su
h that every zero U-Cau
hy �lter hasa non-empty interse
tion.
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Proof. We only need to proof su�
ien
y. Assume that the spa
e X ⊂ βXhas a sequen
e U = {Un : n ∈ N} of 
ozero 
overs with the said property.Let Un = {Un

α : α ∈ Λn} for every n ∈ N and let V n
α be an open subset of

βX with Un
α = V n

α ∩ X for every α ∈ Λn and n ∈ N. Evidently,
X ⊂

⋂

n∈N

⋃

α∈Λn

V n
α ;

and to prove that X is �e
h 
omplete we need to show that the reversein
lusion also holds.Take any x ∈
⋂

n∈N

⋃
α∈Λn

V n
α and let N (x) be the 
olle
tion of openneighborhoods of x in βX. Consider the 
olle
tion F = {X∩V : V ∈ N (x)},where V is the 
losure of V in βX. Note that F is a 
losed �lter base in X.Now if x ∈ V ∈ N (x), then by regularity of βX, there exists V ′ ∈ N (x) su
hthat x ∈ V ′ ⊂ V ′ ⊂ V . Next, by normality of βX, there exists a zero set Win βX su
h that V ′ ⊂ W ⊂ V and W ∩ X is a zero set in X. Let F ′ be thezero �lter in X generated by F . We have just seen that ⋂

F =
⋂
F ′. Sin
efor any n ∈ N there exists α ∈ Λn with x ∈ V n

α , it follows from regularity of
βX that F , and hen
e F ′, is U-Cau
hy. By our assumption, X ∩

⋂
F ′ 6= ∅and sin
e ⋂

{V : V ∈ N (x)} = {x}, we 
on
lude that x ∈ X.Theorem 3.3. The following 
onditions are equivalent for a spa
e X:(i) X is �e
h 
omplete.(ii) There exists a sequen
e U of 
ozero 
overs of X su
h that every
U-positive two-valued measure on X has a non-empty support.(iii) There exists a sequen
e U of 
ozero 
overs of X su
h that T(X, U) =
Tτ (X, U).Proof. (i)⇒(ii). Let X be �e
h 
omplete and let U = {Ui : i ∈ N} bea sequen
e of 
ozero 
overs of X su
h that every zero U-Cau
hy �lter has anon-empty interse
tion. Let µ ∈ T(X, U) and F = {Z ∈ Z(X) : µ(Z) = 1}.By Lemma 2.4, F is a maximal zero �lter of the spa
e X and it is not di�
ultto see that it is U-Cau
hy and so has non-empty interse
tion. If x ∈

⋂
Fthen for every U ∈ C(X) with x ∈ U , we have µ(U) = 1 so that µ has anon-empty support.(ii)⇒(iii). Let there exist a sequen
e U of 
ozero 
overs of X su
h thatthe trivial measure 0 is the only U-positive two-valued measure on X with anempty support. Assume that there is a measure µ ∈ T(X, U) whi
h is not in

Tτ (X, U). Then there exists a 
ozero 
over V of X su
h that µ(
⋃n

i=1
Vi) = 0for every �nite sub
olle
tion V1, . . . , Vn of V. In parti
ular, µ(V ) = 0 forevery V ∈ V and therefore µ has an empty support so that µ = 0.(iii)⇒(i). Let U = {Ui : i ∈ N} be a sequen
e of 
ozero 
overs of X su
hthat T(X, U) = Tτ (X, U). We show that U is a Cau
hy 
omplete sequen
eof 
ozero 
overs. Assume that it is not; then there exists a zero U-Cau
hy



104 D. Buhagiar et al.
�lter with an empty interse
tion. Let F ′ be a maximal zero �lter on F and
onstru
t µ ∈ T(X) by Lemma 2.3, i.e. µ(Y ) = 1 if, and only if, thereexists F ∈ F ′ with F ⊂ Y . Then µ is U-positive sin
e F (and so F ′) is
U-Cau
hy. By assumption, ⋂

F ′ = ∅ and therefore, V = {X \F : F ∈ F ′} isa 
ozero 
over of X. Sin
e µ(V ) = 0 for every V ∈ V, we have µ(
⋃
V ′) = 0for every �nite sub
olle
tion V ′ of V. Consequently, µ is not τ -additive, a
ontradi
tion.Similarly one 
an prove the following result for uniform spa
es. By auniformity U we mean a uniformity given in terms of 
overings.Corollary 3.4. The following 
onditions are equivalent for a uniformspa
e (X, U):(i) X is 
omplete.(ii) T(X, U) = Tτ (X, U).(iii) Every U-positive two-valued measure on X has a non-empty support.A similar result 
an be stated for metri
 spa
es. Indeed, if (X, ̺) is ametri
 spa
e, then a measure µ ∈ M(X) is said to live on arbitrarily smallsets if for every ε > 0 there exists a set Y ⊂ X su
h that diam(Y ) < ε and

µ(Y ) > 0. We then have the following result.Corollary 3.5. The following 
onditions are equivalent for a metri
spa
e (X, ̺):(i) X is 
omplete.(ii) Every two-valued measure on X that lives on arbitrarily small setsis τ -additive.(iii) Every two-valued measure on X that lives on arbitrarily small setshas a non-empty support.A spa
e X is said to be ultra
omplete if it has 
ountable 
hara
ter in some(equivalently, in every) 
ompa
ti�
ation cX of the spa
e X, i.e. χ(X, cX)
≤ ω0. It is 
lear from the de�nition that we have the following impli
ations:lo
ally 
ompa
t ⇒ ultra
omplete ⇒ �e
h 
omplete.Examples show that none of the above impli
ations are reversible, even inthe realm of metrizable spa
es (see [3, 15, 16℄).The following theorem was proved in [3℄. For a 
olle
tion P of subsets ofa set X, we denote by PF the 
olle
tion of all unions of �nite sub
olle
tionsfrom P.Theorem 3.6 ([3℄). For every Tikhonov spa
e X the following 
onditionsare equivalent :(i) X is ultra
omplete.
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(ii) There exists a sequen
e {Un : n ∈ N} of open 
overs of X su
hthat , if F is a �lter base on X whi
h meshes with some sequen
e

{Un : Un ∈ Un}, then F 
lusters in X.(iii) There exists a sequen
e {Un : n ∈ N} of open 
overs of X su
hthat , for every open 
over V of X there exists an n ∈ N satisfying
Un < VF , that is, Un re�nes VF .Ultra
omplete spa
es as de�ned above were termed strongly 
ompletespa
es by V. I. Ponomarev and V. V. Tka
huk in [15℄ and item (ii) in theabove theorem was given as a de�nition for 
o�nally �e
h 
omplete spa
esby S. Romaguera in [16℄.Before we give a 
hara
terization of ultra
omplete spa
es in terms of mea-sures we need the following result on 
ompa
t spa
es. The result is similar toa 
hara
terization result for measure-
ompa
t spa
es given byW. Moran [11℄.Theorem 3.7. The following 
onditions are equivalent for a spa
e X:(i) X is 
ompa
t.(ii) The trivial measure 0 is the only measure on X with an empty sup-port.(iii) The trivial measure 0 is the only two-valued measure on X with anempty support.Proof. (i)⇒(ii). Assume that X is 
ompa
t and µ ∈ M(X) (= Mτ (X))has an empty support. Then there exists a 
ozero 
over U = {Vα : α ∈ Λ}su
h that µ(Vα) = 0 for every α ∈ Λ. For every positive real number ε, thereexists a �nite sub
over Vα1

, . . . , Vαn
satisfying µ(

⋃n
i=1

Vαi
) > µ(X)− ε. But

µ(
⋃n

i=1
Vαi

) ≤
∑n

i=1
µ(Vαi

) = 0, so that µ(X) = 0 and µ is the trivialmeasure.(ii)⇒(iii) is obvious.(iii)⇒(i). Assume that X is not 
ompa
t and F is a maximal zero �lterwhi
h does not 
onverge. De�ne µ ∈ T(X) by use of Lemma 2.3 and F . Forevery x ∈ X there exists a 
ozero neighborhood V of x su
h that V ∩FV = ∅for some FV ∈ F , and therefore, µ(V ) = 0. Consequently, the support of µis empty and µ is not the trivial measure.We now give a measure-theoreti
 
hara
terization for ultra
ompletespa
es.Theorem 3.8. The following 
onditions are equivalent for a spa
e X:(i) X is ultra
omplete.(ii) There exists a sequen
e U of 
ozero 
overs of X su
h that every U-positive measure on X has a non-empty support.Proof. (i)⇒(ii). Suppose X is ultra
omplete and let U = {Ui : i ∈ N}be a sequen
e of 
ozero 
overs of X satisfying property (iii) of Theorem 3.6.
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Let µ be a U-positive measure on X with an empty support. Then thereexists a 
ozero 
over V of X su
h that µ(V ) = 0 for every V ∈ V. By ourassumption on U, there exists an i ∈ N su
h that Ui < VF and sin
e µ is
U-positive, there exists U ∈ Ui su
h that µ(U) > 0. One 
an �nd V̂ ∈ VFsu
h that U ⊂ V̂ =

∑n
k=1

Vk, where Vk ∈ V for all k = 1, . . . , n. Thus
µ(U) ≤

∑n
k=1

µ(Vk) = 0, a 
ontradi
tion.(ii)⇒(i). Let there exist a sequen
e U = {Ui : i ∈ N} of 
ozero 
overs of
X su
h that every U-positive measure on X has a non-empty support andassume that X is not ultra
omplete. For every i ∈ N and every x ∈ X thereexist a 
ozero set V i

x , a zero set Zi
x and U i

x ∈ Ui su
h that x ∈ V i
x ⊂ V i

x ⊂
Zi

x ⊂ U i
x. Let Vi = {V i

x : x ∈ X} for every i ∈ N, so that Vi < Ui, and let
V = {Vi : i ∈ N}. Sin
e X is not ultra
omplete there exists a 
ozero 
over
W of X su
h that Vi ≮ WF for every i ∈ N, that is, there exists V i ∈ Visu
h that V i ∩ (X \ O) 6= ∅ for every O ∈ WF .Sin
e X is not 
ompa
t, by Theorem 3.7 there exists a measure µ ∈ T(X)with an empty support, that is, there exists a 
ozero 
over V of X su
h that
µ(V ) = 0 for every V ∈ V. Let O = V ∧W . Then Vi ≮ OF for every i ∈ Nand µ(O) = 0 for every O ∈ O. Take any i ∈ N. Sin
e Vi ≮ OF , there exists
V i = V i

x ∈ Vi su
h that V i
x ∩ (X \ O) 6= ∅ for every O ∈ OF and therefore,

Zi
x∩ (X \O) 6= ∅ for every O ∈ OF . Consider Fi = {Zi

x∩ (X \O) : O ∈ OF }.Then Fi has the f.i.p., 
onsists of zero sets in X and ⋂
Fi = ∅. Let F ′

i be amaximal zero �lter on Fi in X and 
onstru
t µi ∈ T(X) by Lemma 2.3, i.e.
µi(Y ) = 1 if, and only if, there exists F ∈ F ′

i with F ⊂ Y . Finally, we denote
µ by µ0 and we let m =

∑
∞

i=0
2−iµi. Then m(A) ≤ 2 for every A ∈ A(X).We next show that m has an empty support. Take any O ∈ O. Sin
e

X \ O is a zero set and is in F ′

i for every i ∈ N, we have µi(X \ O) = 1and therefore µi(O) = 0. Also, as noted above, µ0(O) = 0. Consequently,
m(O) = 0 for every O ∈ O, whi
h shows that m has an empty support. Sin
e
µi(Z

i
x) = 1, there exists U i

x ∈ Ui su
h that µi(U
i
x) = 1 so that m(U i

x) > 0and m is U-positive.We are only left to show that m ∈ M(X). Sin
e ea
h µi, i = 0, 1, 2, . . . ,is additive, it is evident that m is additive. We now show that m is regular.Let A ∈ A(X) and let ε > 0. Consider m(A) =
∑

∞

i=0
2−iµi(A). There exists

N ∈ N su
h that ∑N
i=0

2−iµi(A) > m(A) − ε/2. For every i = 0, . . . , N ,there exists Zi ∈ Z(X) su
h that Zi ⊂ A and µi(Zi) > µi(A) − ε/2. Let
Z =

⋃N
i=0

Zi ∈ Z(X). Then Z ⊂ A and
m(Z) ≥

N∑

i=0

1

2i
µi(Z) >

N∑

i=0

1

2i

(
µi(A) −

ε

2

)
>

N∑

i=0

1

2i
µi(A) −

ε

2
> m(A) − ε.Consequently, m(A) = sup{µ(Z) : Z ⊂ A, Z ∈ Z(X)} and m is regular.Similarly one 
an prove the following result for uniform spa
es.
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Corollary 3.9. The following 
onditions are equivalent for a uniformspa
e (X, U):(i) X is ultra
omplete (
o�nally �e
h 
omplete).(ii) Every U-positive measure on X has a non-empty support.Finally, we give a measure-theoreti
 
hara
terization for lo
ally 
ompa
tspa
es.Theorem 3.10. The following 
onditions are equivalent for a spa
e X:(i) X is lo
ally 
ompa
t.(ii) There exists a 
ozero 
over U of X su
h that every U-positive mea-sure on X has a non-empty support.(iii) There exists a 
ozero 
over U of X su
h that every U-positive two-valued measure on X has a non-empty support.(iv) There exists a 
ozero 
over U of X su
h that T(X,U) = Tτ (X,U).Proof. (i)⇒(ii). Let X be lo
ally 
ompa
t. For every x ∈ X there exists a
ozero neighborhood Ux of x su
h that Ux is 
ompa
t. Let U = {Ux : x ∈ X}and let µ be a U -positive measure with an empty support. There exists a
ozero 
over V of X su
h that µ(V ) = 0 for every V ∈ V. Sin
e ea
h Ux is
ompa
t, we see that U < VF and therefore, µ(Ux) = 0 for every x ∈ X,
ontradi
ting the fa
t that µ is U -positive.(ii)⇒(iii) is obvious.(iii)⇒(iv). Let there exist a 
ozero 
over U of X su
h that the trivial mea-sure 0 is the only U -positive two-valued measure on X with an empty sup-port. Assume that there is a measure µ ∈ T(X,U) whi
h is not in Tτ (X,U).Then there exists a 
ozero 
over V of X su
h that µ(

⋃n
i=1

Vi) = 0 for every�nite sub
olle
tion V1, . . . , Vn of V. In parti
ular, µ(V ) = 0 for every V ∈ Vand therefore µ has an empty support so that µ = 0.(iv)⇒(i). Let U be a 
ozero 
over of X su
h that T(X, U) = Tτ (X, U). Forevery x ∈ X there exists a U ∈ U su
h that x ∈ U and also a 
ozero set Vxand a zero set Zx su
h that x ∈ Vx ⊂ V x ⊂ Zx ⊂ U . Let V = {Vx : x ∈ X}.We prove that V x is 
ompa
t for all x ∈ X by showing that Zx is 
ompa
t forall x ∈ X. Indeed, suppose there is an x ∈ X su
h that Zx is not 
ompa
t.Then there is a maximal zero �lter F in Zx with an empty interse
tion. Let
G be the subfamily of F de�ned by G = {Z ∈ F : Z is a zero set in X}.Then G has the f.i.p. and is non-empty. Let F ′ be a maximal zero �lteron G in X and 
onstru
t µ ∈ T(X) by Lemma 2.3, i.e. µ(Y ) = 1 if, andonly if, there exists F ∈ F ′ with F ⊂ Y . Note that Zx ∈ F ′ so that µ is
U -positive sin
e µ(U) = 1, where Zx ⊂ U and U ∈ U . We next show that⋂

F ′ = ∅. Indeed, if F ′ 6= ∅ and y ∈
⋂

F ′ then y ∈ Zx. But ⋂
F = ∅ sothat there exists some F ∈ F su
h that y /∈ F . There exists a 
ozero set

Wy in X su
h that y ∈ Wy and Wy ∩ F = ∅. The set Z = X \ Wy is a
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zero set in X and F ⊂ Z, so that Z ∈ F ′ (sin
e Z ∩ Zx ∈ G). Consequently,
V = {X\F : F ∈ F ′} is a 
ozero 
over of X. Sin
e µ(V ) = 0 for every V ∈ V,we see that µ(

⋃
V ′) = 0 for every �nite sub
olle
tion V ′ of V. Therefore µ isnot τ -additive, a 
ontradi
tion.In relation to Theorems 3.8 and 3.10 one 
an pose the following problem:Problem 3.11. Evidently, if there exists a sequen
e U of 
ozero 
ov-ers (resp. one 
ozero 
over U) of X su
h that M(X, U) = Mτ (X, U) (resp.

M(X,U) = Mτ (X,U)) then the same sequen
e U (resp. 
ozero 
over U) issu
h that every U-positive (resp. U -positive) measure on X has a non-emptysupport and so X is ultra
omplete (resp. lo
ally 
ompa
t). Does the 
onversehold?The answer to the above question is in the negative, in fa
t we have thefollowing result.Theorem 3.12. Let U be any 
olle
tion of 
ozero 
overs of a spa
e X.Then M(X, U) = Mτ (X, U) if , and only if , X is 
ompa
t.Proof. We only need to prove the ne
essity. Suppose X is not 
ompa
t.There exists a 
ozero 
over V of X with no �nite sub
over. Let
F =

{
X \

⋃
V ′ : V ′ is a �nite sub
olle
tion of V}

.Then ⋂
F = ∅. Let F ′ be a maximal zero �lter on F in X and 
onstru
t

µ ∈ T(X) by Lemma 2.3, i.e. µ(Y ) = 1 if, and only if, there exists F ∈ F ′with F ⊂ Y . Note that µ(V ) = 0 for every V ∈ V and µ(X) = 1. Takeany Dira
 measure δx, where x ∈ X. Then δx ∈ M(X, U) = Mτ (X, U).Consider the measure m = δx + µ ∈ M(X, U). On the one hand, m ∈
Mτ (X, U). On the other hand, for every �nite sub
olle
tion V ′ of V we have
δx(

⋃
V ′) ≤ δx(X) = 1 and µ(

⋃
V ′) = 0 while m(

⋃
V ′) ≤ 1. Therefore,

sup{m(
⋃
V ′) : V ′ is a �nite sub
olle
tion of V} ≤ 1 < m(X) = 2, so that

m /∈ Mτ (X, U).
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