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Abstract. Recently Flaminio and Montagna, [FlMo], extended the language
of MV-algebras by adding a unary operation, called a state-operator. This
notion is introduced here also for effect algebras. Having it, we generalize the
Loomis–Sikorski Theorem for monotone σ-complete effect algebras with inter-
nal state. In addition, we show that the category of divisible state-morphism
effect algebras satisfying (RDP) and countable interpolation with an order de-
termining system of states is dual to the category of Bauer simplices Ω such
that ∂eΩ is an F-space

1. Introduction

The famous Loomis–Sikorski Theorem was proved independently by two authors,
Sikorski and Loomis, [Sik, Loo], after the Second World War, and nowadays it has
many serious applications in different areas of mathematics. Roughly speaking it
states that every σ-complete Boolean algebra is a σ-algebra of subsets of a set up
to some modulo, or, precisely every σ-complete Boolean algebra is a σ-epimorphic
image of some σ-algebra of subsets. It can be rewritten also in the form that our
σ-algebra is practically an appropriate system of [0, 1]-valued functions; in our case
it is a system of characteristic functions, where the Boolean operations on the set
of functions are defined by points.

This was extended also for σ-complete MV-algebras in [Dvu1, Mun, BaWe] show-
ing that every σ-complete MV-algebra is a σ-epimorphic image of a system of [0, 1]-
valued functions, called a tribe, where again MV-operations on functions in the tribe
are defined by points.

In the Nineties, the theory of quantum structures was enriched by new struc-
tures, called effect algebras, see [FoBe]. They are inspired by the mathematical
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foundations of quantum mechanics (for an overview on effect algebras, see [DvPu])
as well as by many valued features of quantum mechanical measurements. One
of the most important examples of effect algebras studied in quantum mechanics
is the system E(H) of all Hermitian operators A on a Hilbert space H such that
O ≤ A ≤ I, where O and I are the zero and identity operator on H . The category
of effect algebras contains Boolean algebras, orthomodular lattices, orthomodular
posets and orthoalgebras.

The Loomis–Sikorski Theorem was extended also for monotone σ-complete effect
algebras by the present authors in [BCD].

The notion of a state, an analogue of probability measure, is a basic notion for
quantum structures. It is motivated by the notion of a state in quantum mechanics.
The set of all states on an effect algebra can be a good source of information on
the given system, and it will be also deeply used in our paper.

Recently, the notion of a state was generalized by [FlMo] to an algebraically
defined notion for MV-algebras. They enlarged the language of MV-algebras in-
troducing a unary operation, τ, called an internal state or a state-operator. Such
MV-algebras are called state MV-algebras. These algebras are now intensively stud-
ied e.g. in [DiDv, DDL1, DDL2, DDL3].

One of important properties of a state-operator τ on an MV-algebra is τ2 = τ,
idempotency. Inspired by this, in the present paper, we introduce notions of a
(i) state-operator for effect algebras as an endomorphism τ : E → E such that
τ ◦ τ = τ, (ii) a strong state-operator, and (iii) a state-morphism-operator with
some additional properties coming from state MV-algebras. The later two coincide
with ones for MV-algebras. We add it to the language of effect algebras as an
internal state and they will form a so-called state effect algebras. Moreover, given
an integer n, we introduce an n-state-operator as an endomorphism τ : E → E that
in n-potent, i.e., τn = τ, and the couple (E, τ) is said to be n-state effect algebra.

Besides the presentation of basic properties of state effect algebras, we present
the following two main results:

(1) We generalize the Loomis–Sikorski Theorem for monotone σ-complete n-
state effect algebras with the Riesz Decomposition Property ((RDP) for
short) showing that it is always a σ-monotone epimorphic image of an
effect tribe with (RDP), an appropriate system of [0, 1]-valued functions
that is a σ-complete effect algebra with pointwise defined effect algebraic
operations, and with an n-state-operator induced by a function.

(2) We show that the category of divisible state-morphism effect algebras satis-
fying (RDP) and countable interpolation with an order determining system
of states is dual to the category of Bauer simplices whose objects are pairs
(Ω, g), where Ω 6= ∅ is a Bauer simplex such that ∂eΩ is an F-space (any
two disjoint open Fσ subsets of Ω have disjoint closures) and g : Ω → Ω
is a continuous function such that gn = g. This is a Stone Duality Type
Theorem, and it generalizes the famous result by Stone [Sto] that says that
the category of Boolean algebras is dual to the category of Stone spaces (=
compact Hausdorff topological space with a base consisting of clopen sets).

The paper is organized as follows. The basic properties of effect algebras are
gathered in Section 2. The main object of our study, state-operators and n-state-
operators on effect algebras, are introduced in Section 3. Our study will use facts
on Choquet simplices and their connection to effect algebras and this is pointed out
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in Section 4. Section 5 characterizes n-state-operators. Our first goal, the Loomis–
Sikorski Theorem for n-state-operators on monotone σ-complete effect algebras, is
described in Section 6. Finally, Section 7 presents the second main goal, it gives
Stone Type Dualities for some categories of effect algebras and the categories of
Bauer simplices whose boundary is an F-space.

2. Elements of Effect Algebras

An effect algebra is by [FoBe] a partial algebra E = (E; +, 0, 1) with a partially
defined operation + and two constant elements 0 and 1 such that, for all a, b, c ∈ E,

(i) a + b is defined in E if and only if b + a is defined, and in such a case
a+ b = b+ a;

(ii) a + b and (a + b) + c are defined if and only if b + c and a + (b + c) are
defined, and in such a case (a+ b) + c = a+ (b+ c);

(iii) for any a ∈ E, there exists a unique element a′ ∈ E such that a+ a′ = 1;
(iv) if a+ 1 is defined in E, then a = 0.

If we define a ≤ b if and only if there exists an element c ∈ E such that a+c = b,
then ≤ is a partial ordering on E, and we write c := b−a. It is clear that a′ = 1−a
for any a ∈ E.

For a comprehensive source on the theory of effect algebras, we recommend
[DvPu]. A state on an effect algebra E is any mapping s : E → [0, 1] such that
(i) s(1) = 1, and (ii) s(a + b) = s(a) + s(b) whenever a + b is defined in E. We
denote by S(E) the set of all states on E. It can happen that S(E) is empty, see
e.g. [DvPu, Ex 4.2.4]. A state s is said to be extremal if s = λs1 + (1 − λ)s2 for
λ ∈ (0, 1) implies s = s1 = s2. By ∂eS(E) we denote the set of all extremal states of
S(E) on E. We say that a net of states, {sα}, on E weakly converges to a state, s,
on E if sα(a) → s(a) for any a ∈ E. In this topology, S(E) is a compact Hausdorff
topological space and every state on E lies in the weak closure of the convex hull
of the extremal states as it follows from the Krein-Mil’man Theorem, [Goo, Thm
5.17].

Let G = (G; +, 0) be an Abelian po-group (= partially ordered group). An
element u ∈ G is said to be a strong unit if given g ∈ G, there is an integer n ≥ 1
such that g ≤ nu. If we set Γ(G, u) = [0, u] and endow it with the restriction of the
group addition, +, then Γ(G, u) := (Γ(G, u); +, 0, u) is an effect algebra.

An effect algebra that is either of the form Γ(G, u) for some element u ≥ 0 or is
isomorphic with some Γ(G, u) is called an interval effect algebra.

Let u be a positive element of an Abelian po-group G. The element u is said to
be generative if every element g ∈ G+ is a group sum of finitely many elements of
Γ(G, u), and G = G+−G+. Such an element is a strong unit [DvPu, Lem 1.4.6] for
G and the couple (G, u) is said to be a po-group with generative strong unit. For
example, if u is a strong unit of an interpolation po-group G, then u is generative.
The same is true for I and E(H) := Γ(B(H), I).

Let E be an effect algebra and H be an Abelian (po-) group. A mapping p :
E → H that preserves + is called an H-valued measure on E.

Remark 2.1. If E is an interval effect algebra, then there is a po-group G with
a generative strong unit u such that E ∼= Γ(G, u), and every H-valued measure
p : Γ(G, u) → H can be extended to a group-homomorphism φ from G into H. If H
is a po-group, then φ is a po-group-homomorphism. Then φ is unique and (G, u) is
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also unique up to isomorphism of unital (po-) groups, see [DvPu, Cor 1.4.21]; the
element u is said to be a universal strong unit for Γ(G, u) and the couple (G, u) is
said to be a unigroup.

We recall that an effect algebra E satisfies the Riesz Decomposition Property

((RDP) in abbreviation) if x1 + x2 = y1 + y2 implies there exist four elements
c11, c12, c21, c22 ∈ E such that x1 = c11 + c12, x2 = c21 + c22, y1 = c11 + c21, and
y2 = c12 + c22. Equivalently, [DvPu, Lem 1.7.5], E has (RDP) iff x ≤ y1 + y2
implies that there exist two elements x1, x2 ∈ E with x1 ≤ y1 and x2 ≤ y2 such
that x = x1 + x2.

We say that an Abelian po-groupG is an interpolation group, if given x1, x2, y1, y2
in G such that xi ≤ yj for all i, j, there exists z in G such that xi ≤ z ≤ yj for
all i, j. Equivalently, [Goo, Prop 2.1], G is an interpolation group iff an analogous
property as (RDP) for effect algebras holds also for G+ = {g ∈ G : g ≥ 0}.

Remark 2.2. (1) If E is an effect algebra satisfying (RDP), then E is an interval
effect algebra. In such a case, there is a unique (up to isomorphism of unital po-
groups) interpolation unital po-group (G, u) such that E ∼= Γ(G, u). Moreover, u
is a universal strong unit for E. Conversely, if (G, u) is an interpolation unital po-
group, then Γ(G, u) satisfies (RDP), and u is a universal strong unit for Γ(G, u),
see [Rav] ([DvPu, Thm 1.7.17]).

(2) We note that the identity operator I on a Hilbert space H is a universal
strong unit for Γ(B(H), I), [DvPu, Cor 1.4.25] that does not satisfy (RDP).

We recall that anMV-algebra is an algebra (A;⊕,∗ , 0) of signature 〈2, 1, 0〉, where
(A;⊕, 0) is a commutative monoid with neutral element 0, and for all x, y ∈ A

(i) (x∗)∗ = x,
(ii) x⊕ 1 = 1, where 1 = 0∗,
(iii) x⊕ (x⊕ y∗)∗ = y ⊕ (y ⊕ x∗)∗.

We define also two additional total operations ⊙ and ⊖ on A via x ⊙ y :=
(x∗ ⊕ y∗)∗ and x⊖ y = x⊙ y∗.

If (G, u) is an Abelian ℓ-group (= lattice ordered group) with a strong unit
u ≥ 0, then (Γ(G, u);⊕,∗ , 0) is a prototypical example of an MV-algebra, where Γ
is the Mundici functor, where Γ(G, u) := [0, u] is endowed with the MV-operations
g1 ⊕ g2 := (g1 + g2) ∧ u, g∗ := u − g, because by [Mun], every MV-algebra is
isomorphic to some Γ(G, u).

If on an MV-algebra A we define a partial operation, +, by a + b is defined in
A iff a ≤ b∗, and we set then a ⊕ b := a ⊕ b. Then (A; +, 0, 1) is an interval effect
algebra with (RDP).

An ideal of an effect algebra E is a non-empty subset I of E such that (i) x ∈ E,
y ∈ I, x ≤ y imply x ∈ I, and (ii) if x, y ∈ I and x + y is defined in E, then
x + y ∈ I. We denote by I(E) the set of all ideals of E. An ideal I is said to be
a Riesz ideal if, for x ∈ I, a, b ∈ E and x ≤ a + b, there exist a1, b1 ∈ I such that
x = a1 + b1 and a1 ≤ a and b1 ≤ b.

For example, if E has (RDP), then any ideal of E is Riesz.
We say that a poset E is an antilattice if joins and meets exist only for comparable

elements. For example, every linearly ordered set is an antilattice. According to
[Rav, Thm 2.12] or [Dvu2, Thm 7.2], every effect algebra with (RDP) is a subdirect
product of antilattice effect algebras with (RDP).
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For example, if H is a Hilbert space, then B(H) is an antilattice [LuZa], but
E(H) = Γ(B(H), I) is not. In fact, if PM and PN are orthogonal projectors onto
subspacesM and N of H , then PM ∨PN exists in E(H) and equals PM∨N , [Dvu0],
where M ∨N denotes the join in the complete lattice of all closed subspaces of H,
whereas their join in B(H) fails when they are not comparable.

If E = Γ(G, u) for some effect algebra with (RDP), then all joins and meets from
E are the same also in G.

We recall that if (G, u) is an Abelian unital po-group, then a state on it is any
mapping s : G→ R such that (i) s(g) ≥ 0 for any g ≥ 0, (ii) s(g1+g2) = s(g1)+(g2)
for all g1, g2 ∈ G, and (iii) s(u) = 1. A state s is extremal if from s = λs1+(1−λ)s2
for λ ∈ (0, 1) it follows s = s1 = s2. We denote by S(G, u) and by ∂eS(G, u)
the sets of all states and all extremal states on (G, u). We can also introduce the
weak topology on S(G, u). We have that S(G, u) is always nonempty, [Goo, Cor
4.4], whenever u > 0. Due to the Krein–Mil’man Theorem, [Goo, Thm 5.17], every
state on (G, u) is a weak limit of a net of convex combinations of extremal states
on (G, u). If we set Γ(G, u) = [0, u], then the restriction of any state on (G, u)
onto Γ(G, u) is a state on Γ(G, u). We recall that if u is a strong unit and G is
an interpolation group, in particular, an ℓ-group, or more general a unigroup, then
every state on Γ(G, u) can be uniquely extended to a state on (G, u). Moreover,
this correspondence is an affine homeomorphism (affine means that it preserves all
convex combinations).

We say that a po-group G is Archimedean if for x, y ∈ G such that nx ≤ y for
all positive integers n ≥ 1, then x ≤ 0.

Remark 2.3. It is possible to show that a unital group (G, u) is Archimedean iff
G+ = {g ∈ G : s(g) ≥ 0 for all s ∈ S(G, u)}, [Goo, Thm 4.14], or equivalently,
Γ(G, u) has an order determining system of states, S, i.e., f ≤ g iff s(f) ≤ s(g)
for any s ∈ S. In a similar way we define an order determining system of states
on an effect algebra E. If E = Γ(G, u) and (G, u) is a unigroup, then E has an
order determining system of state iff (G, u) has it. In particular, ∂eS(E) is order
determining iff so is S(E).

An analogous result holds also for some effect algebras, see Proposition 4.1 below.

3. State-Operators and n-State-Operators on Effect Algebras

In this section we introduce state-operators, n-state-operators, strong state-
operators, and state-morphism-operators on effect algebras and we present their
basic properties. We show that in the case of MV-algebras, a strong state-operator
and a state-morphism-operator coincide with state-operators and state-morphism-
operators defined for MV-algebras, Propositions 3.5–3.6.

Let E and F be two effect algebras. A mapping h : E → F is said to be a
homomorphism if (i) h(a+ b) = h(a) + h(b) whenever a+ b is defined in E, and (ii)
h(1) = 1. In particular, we have h(a′) = h(a)′ for each a ∈ E, h(0) = 0, h(a) ≤ h(b)
whenever a ≤ b and then h(b− a) = h(b)−h(a). A bijective homomorphism h such
that h−1 is a homomorphism is said to be an isomorphism of E and F .

Let E be an effect algebra. An endomorphism τ : E → E such that τ2 = τ is
said to be a state-operator or an internal state and the couple (E, τ) is said to be
a state effect algebra with internal state.
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An endomorphism τ : E → E such that

τ(τ(a) ∨ τ(b)) = τ(a) ∨ τ(b) (3.1)

whenever τ(a) ∨ τ(b) is defined in E is said to be a strong state-operator on E, and
the couple (E, τ) is called a strong state effect algebra.

From (3.1) we see that, for any a ∈ E, τ2(a) = τ(τ(a)∨τ(a)) = τ(a)∨τ(a) = τ(a),
i.e., any strong state-operator is a state-operator on E.

If a strong-state-operator τ satisfies also τ(a ∨ b) = τ(a) ∨ τ(b) whenever a ∨ b
is defined in E, τ it is called a state-morphism-operator on E, and the couple
(E, τ) is said to be a state-morphism effect algebra. An endomorphism τ is a state-
morphism-operator iff τ2 = τ and τ preserves all existing joins in E.

Finally, we generalize the just defined notions as follows. Given an integer n ≥ 1,
an endomorphism τ : E → E is said to be an n-state-operator if τ is n-potent, i.e.
τn = τ. The couple (E, τ) is said to be an n-state effect algebra. An n-state-operator
τ is said to be an n-state-morphism-operator if τ preserves all existing joins in E,
and the couple (E, τ) is said to be an n-state-morphism effect algebra.

We recall that a state s on E is discrete if there is an integer n ≥ 1 such that
s(E) ⊆ {0, 1/n, . . . , n/n}.

We have that if s ∈ S(E), then s ◦ τ ∈ S(E), and if s is discrete, so is s ◦ τ.
We say that a state-operator τ satisfies the extremal state property, (ESP) for

short, if s ◦ τ ∈ ∂eS(E), for any s ∈ ∂eS(E), and we say also that (E, τ) satisfies
(ESP).

Let τ be an endomorphism on E. We denote by

Ker(τ) = {a ∈ E : τ(a) = 0}

the kernel of τ. An endomorphism τ is faithful if Ker(τ) = {0}. An ideal I of E is
said to be a τ-ideal if τ(I) ⊆ I. For example, Ker(τ) is a τ -ideal.

Example 3.1. (1) The couple (E, idE) is a state-morphism effect algebra with
(ESP).

(2) Let F be an effect algebra and let E = F × F. We define two operators on
E by

τ1(a, b) = (a, a), and τ2(a, b) = (b, b), (a, b) ∈ F × F.

Then τ1 and τ2 are state-morphism-operators on E that preserve all joins and meets
existing in E:

In fact, if ∂eS(F ) = ∅, then ∂eS(E) = ∅ and both τ1 and τ2 trivially satisfy
(ESP).

Assume that ∂eS(F ) = {st : t ∈ T } for some index set T 6= ∅. Define m1
t (a, b) =

st(a) and m2
t (a, b) = st(b) for all (a, b) ∈ F × F and each t ∈ T. If m is an

extremal state on E, then either m(1, 0) = 1 or m(0, 1) = 1. In the first case,
s(a) := m(a, 0) is a state on F. It is extremal, otherwise, s(a) = λ1s1(a)+λ2s2(a) for
some states s1, s2 on E. If we define mi(a, b) := si(a), then m1,m2 are states on E
andm(a, b) = λ1m1(a, b)+λ2m2(a, b) which is impossible, hence s(a) is an extremal
state on F so that s = st for some t ∈ T, and m(a, b) = m(a) = st(a) = m1

t (a, b).
Similarly, in the second case, m = m2

t for some t ∈ T. Consequently, ∂eS(E) =

{mj
t : t ∈ T, j = 1, 2}.
Check: m1

t (τ1(a, b)) = m1
t (a, a) = st(a) = m1

t (a, b) andm
2
t (τ1(a, b)) = m2

t (a, a) =
st(a) = m1

t (a, b). Therefore, τ1 as well as τ2 are state-morphism-operators with
(ESP).
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Lemma 3.2. Let τ be an endomorphism of an effect algebra E such that τ2 = τ.
Then

(i) If τ is a strong state-operator, then τ preserves all existing meets from E
of the form τ(a) ∧ τ(b).

(ii) The set τ(E) is an effect subalgebra, τ(E) = {a ∈ E : τ(a) = a}, and τ
on τ(E) is the identity on τ(E). If τ is also a strong state-operator, then if

τ(a) ∨ τ(b) ∈ E, then τ(a) ∨ τ(b) ∈ τ(E).
(iii) If E satisfies (RDP), then so does τ(E).
(iv) If τ is faithful, then a < b entails τ(a) < τ(b).
(v) If τ is faithful, then either τ(a) = a or τ(a) and a are not comparable.

(vi) If E is linear and τ faithful, then τ(a) = a for any a ∈ E.
(vii) If E is an antilattice effect algebra, then τ preserves all existing meets and

joins.

(viii) If τ : E → E is faithful then τ is a strong state-operator.

Proof. (i) Passing to negation, we see that τ preserves all existing meets in τ(a) ∧
τ(b) ∈ E.

(ii) Since a ∈ τ(E) iff a = τ(b) for some b ∈ E, we have τ(a) = τ(τ(b)) = τ(b) =
a.

Let τ(a) + τ(b) be defined in E. Then τ(τ(a) + τ(b)) = τ(τ(a)) + τ(τ(b)) =
τ(a)+ τ(b) ∈ τ(E). It is clear now that the restriction of τ onto τ(E) is the identity
on τ(E).

Now if τ is a strong state-operator, the statement follows from (3.1).
(iii) Let E satisfy (RDP) and let τ(a1) + τ(a2) = τ(b1) + τ(b2). There are

four elements c11, c12, c21, c22 ∈ E such that τ(a1) = c11 + c12, τ(a2) = c21 +
c22, τ(b1) = c11 + c21 and τ(b2) = c12 + c22. Then τ(a1) = τ(τ(a1)) = τ(c11 +
c12) = τ(c11) + τ(c12), similarly for τ(a2), τ(b1), τ(b2) proving that the elements
τ(c11), τ(c12), τ(c21), τ(c22) ∈ τ(E) yield that τ(E) satisfies (RDP).

(iv) Suppose that a < b and τ(a) = τ(b). Then τ(b − a) = τ(b) − τ(a) =
τ(a)− τ(a) = 0 giving b− a = 0 so that a = b, a contradiction.

(v) Assume that τ(a) 6= a and let τ(a) and a be comparable. Then either
a < τ(a) or τ(a) < a. By (iv) we have τ(a) < τ(a) that is impossible.

(vi) It follows directly from (v).
(vii) Let a ∨ b be defined in E. Then a and b are comparable. So are τ(a) and

τ(b) so that τ(a∨ b) = τ(a)∨ τ(b). Going to negations, we see that τ preserves also
meets.

(viii) Assume that d = τ(a)∨τ(b) is defined in E.We show that τ(d) = d. Check,
τ(d) ≥ τ(τ(a)) = τ(a) and τ(d) ≥ τ(τ(b)) = τ(b). This yields τ(d) ≥ τ(a)∨τ(b) = d.
Hence, we have τ(τ(d)−d) = τ(τ(d))−τ(d) = 0, i.e. τ(d)−d = 0 and τ(d) = d. �

Proposition 3.3. Let E = Γ(G, u) be an interval effect algebra, where (G, u) is a

unital po-group with universal strong unit for E. Let n be a fixed integer.

Every endomorphism τ with τn = τ on E can be uniquely extended to an n-potent
po-group homomorphism τu on (G, u), i.e. τnu = τu. Conversely, the restriction of

any n-potent po-group homomorphism of (G, u) to E gives an n-potent endomor-

phism on E.

Proof. Let τ be an n-potent endomorphism on E. Since E = Γ(G, u), the mapping
τ : E → E is in fact a G-valued measure on E. By Remark 2.1, there is a unique
extension, τu : G→ G of τ that is a po-group-homomorphism.



8 DAVID BUHAGIAR1, EMMANUEL CHETCUTI1, AND ANATOLIJ DVUREČENSKIJ2

Now we show that τnu = τu. Since every element x ∈ G+ is expressible via
x = x1 + · · ·+ xn, where x1, . . . , xn ∈ E, we have τnu (x) = τnu (x1) + · · ·+ τnu (xn) =
τn(x1) + · · ·+ τn(xn) = τ(x1)+ · · ·+ τ(xn) = τu(x1) + · · ·+ τu(xn). Every element
x ∈ G is of the form x = x1−x2, where x1, x2 ∈ G+, then τnu (x) = τnu (x1)−τ

n
u (x2) =

τu(x1)− τu(x2) = τu(x). �

Proposition 3.4. If E is a linear effect algebra with (RDP), then every endomor-

phism on E preserves joins and if s is an extremal state, then s ◦ τ is an extremal

state on E.

Proof. Suppose that E = Γ(G, u) for some unital po-group (G, u). Then (G, u) is a
unital ℓ-group and a state s on E is extremal iff its extension on (G, u), denoted also
by s, is extremal. By [Goo, Thm 12.18 ], s is extremal iff s(g∧h) = min{s(g), s(h)}
for all g, h ∈ G+ iff s(g ∧ h) = min{s(g), s(h)} for all g, h ∈ E.

Since E is linear, τ trivially preserves all joins and meets in E. Hence, if s is an
extremal state on E, then s ◦ τ((a ∧ b)) = s(τ(a) ∧ τ(b)) = min{s(τ(a)), s(τ(b))}
proving that s ◦ τ is an extremal state on E. �

According to [FlMo], a state MV-algebra is a couple (A, τ), where A is an MV-
algebra and τ is a unary operator on A (an internal state or an MV-state-operator)
satisfying for each x, y ∈ A:

(1)MV τ(0) = 0,
(2)MV τ(x∗) = (τ(x))∗,
(3)MV τ(x ⊕ y) = τ(x) ⊕ τ(y ⊙ (x⊙ y)∗),
(4)MV τ(τ(x) ⊕ τ(y)) = τ(x) ⊕ τ(y).

In [FlMo] it is shown that for any state MV-algebra we have (i) τ(τ(x)) = τ(x),
(ii) τ(1) = 1, (iii) if x 6 y, then τ(x) 6 τ(y), (iv) τ(x ⊕ y) ≤ τ(x) ⊕ τ(y), (v)
τ(x+ y) = τ(x) + τ(y), (vi) τ(τ(x) ∨ τ(y)) = τ(x) ∨ τ(y), and (vii) the image τ(A)
is the domain of an MV-subalgebra of A and (τ(A), τ) is a state MV-subalgebra of
(A, τ).

According to [DiDv], anMV-state-morphism-operator on an MV-algebraA is any
endomorphism τ : A→ A such that τ2 = τ. Every MV-state-morphism-operator is
a state-operator.

Proposition 3.5. Let A be an MV-algebra. If τ is an MV-state-operator on the

MV-algebra A, then τ is a strong state-operator on A taken as an effect algebra

with the partial addition + derived from ⊕.
Conversely, if τ is a strong state-operator on the derived effect algebra A, then

τ is an MV-state-operator on the MV-algebra A.

Proof. Let τ be an MV-state-operator on the MV-algebra A. Due to the basic
properties of τ described just before this proposition, we see that τ is a strong
state-operator on the effect algebra A derived from the MV-algebraic structure.
Moreover, τ preserves all joins and meets in τ(A).

Conversely, let τ be a strong state-operator on the effect algebra A. Then (1)MV

and (2)MV hold.
We have x⊕y = x+((x⊕y)⊖x) = x+(y∧x∗) so that τ(x⊕y) = τ(x)+τ(y∧x∗) =

τ(x) ⊕ τ(y ⊙ (x⊙ y)∗) that gives (3)MV .
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In addition, τ(τ(x)⊕ τ(y)) = τ(τ(x) + τ(y) ∧ τ(x)∗) = τ(τ(x) + τ(y) ∧ τ(x∗)) =
τ(τ(x)) + τ(τ(y) ∧ τ(x∗)) = τ(x) + τ(y) ∧ τ(x∗) = τ(x) ⊕ τ(y) and this proves
(4)MV . �

Proposition 3.6. Let A be an MV-algebra. If τ is an MV-state-morphism-operator

on the MV-algebra A, then τ is a state-morphism-operator with (ESP) on A taken

as an effect algebra with the partial addition + derived from ⊕.
Conversely, if τ is a state-morphism-operator on the effect algebra derived from

an MV-algebra A, then τ is an MV-state-morphism-operator on the MV-algebra A.
In addition, τ is with (ESP) on the effect algebra A.

Proof. Let τ be an MV-state-morphism-operator on A. Due to Proposition 3.5, τ
is a strong state-operator on the effect algebra A that preserves all joins and meets.

Let s be an extremal state, that s◦τ is also an extremal state because s◦τ(a∧b) =
s(τ(a ∧ b)) = s(τ(a) ∧ τ(b)) = min{s(τ(a)), s(τ(b))} for all a, b ∈ A.

Conversely, let τ be a state-morphism-operator on the effect algebra A. Then τ
preserves all joins and meets in A, so that τ is an MV-state-morphism-operator on
the MV-algebra A. Due to the first part of the present proof, τ satisfies (ESP) on
the effect algebra A. �

4. Effect-Clans and Choquet Simplices

In this section, we show a close connection between the state spaces of effect
algebras and Choquet simplices.

An effect-clan is a system E of [0, 1]-valued functions on Ω 6= ∅ such that (i)
1 ∈ E , (ii) f ∈ E implies 1 − f ∈ E , and (iii) if f, g ∈ E and f(ω) ≤ 1 − g(ω) for
any ω ∈ Ω, then f + g ∈ E . Then the effect-clan E is an effect algebra that is not
necessarily a Boolean algebra nor an MV-algebra.

If E is an effect-clan of characteristic functions on Ω, then E satisfies (RDP)
iff E0 = {A ⊆ Ω : χA ∈ E} is an algebra of subsets of Ω. For example, if Ω is a
finite set with an even number of elements, the set of all characteristic functions of
subsets of Ω with an even number of subsets is an effect-clan where (RDP) fails:
χ{1,2}, χ{1,3} ∈ E but χ{1} /∈ E.

Proposition 4.1. Let E = Γ(G, u), where (G, u) is a unigroup. The following

statements are equivalent:

(i) S(E) is order determining.

(ii) E is isomorphic to some effect-clan.

(iii) G is Archimedean.

Proof. (i) ⇒ (ii). Given a ∈ E, let â be a function from S(E) into the real interval

[0, 1] such that â(s) := s(a) for any s ∈ S(E), and let Ê = {â : a ∈ E}. We

endow Ê with pointwise addition, so that Ê is an effect-clan. Since S(E) is order

determining, the mapping a 7→ â is an isomorphism and Ê is Archimedean.

(ii) ⇒ (iii). Let Ê be any effect-clan isomorphic with E, and let a 7→ â be such

an isomorphism. Let G(Ê) be the po-group generated by Ê. Then G(Ê) consists of

all functions of the form â1 + · · ·+ ân − b̂1 − · · · − b̂m, and 1̂ is its strong unit. Due
to the categorical equivalence, (G, u) and (G(Ê), 1̂) are isomorphic. But (G(Ê), 1̂)
is Archimedean, so is (G, u).
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(iii) ⇒ (i). Due to [Goo, Thm 4.14], G+ = {g ∈ G : s(g) ≥ 0 for all s ∈ S(G, u)},
which means that S(G, u) is order determining. Hence, the restrictions of all states
on (G, u) onto E = Γ(G, u) imply S(E) is order determining. �

We say a poset E is monotone σ-complete provided that for every ascending
(descending) sequence x1 ≤ x2 ≤ · · · (x1 ≥ x2 ≥ · · · ) in E which is bounded above
(below) in E has a supremum (infimum) in E.

An effect-tribe on a set Ω 6= ∅ is any system T ⊆ [0, 1]Ω such that (i) 1 ∈ T , (ii)
if f ∈ T , then 1 − f ∈ T , (iii) if f, g ∈ T , f ≤ 1 − g, then f + g ∈ T , and (iv) for
any sequence {fn} of elements of T such that fn ր f (pointwise), then f ∈ T , i.e.
if fn(ω) ր f(ω) for every ω ∈ Ω, then f ∈ T . It is evident that any effect-tribe is
a monotone σ-complete effect algebra.

Now let Ω be a compact Hausdorff space. Then C(Ω), the system of all real-
valued continuous functions on Ω, is an ℓ-group (we recall that, for f, g ∈ C(Ω),
f ≤ g iff f(x) ≤ g(x) for any x ∈ Ω), and it is Dedekind σ-complete iff Ω is basically
disconnected (the closure of every open Fσ subset of Ω is open), see [Goo, Lem 9.1].
In such a case,

C1(Ω) := Γ(C(Ω), 1Ω)

is a σ-complete MV-algebra with respect to the MV-operations that are defined by
points.

Let Ω be a convex subset of a real vector space V. A point x ∈ Ω is said to be
extreme if from x = λx1 + (1 − λ)x2, where x1, x2 ∈ Ω and 0 < λ < 1 we have
x = x1 = x2. By ∂eΩ we denote the set of extreme points of Ω.

Let Ω and Ω1 be convex spaces. A mapping f : Ω → Ω1 is said to be affine if,
for all x, y ∈ Ω and any λ ∈ [0, 1], we have f(λx+(1− λ)y) = λf(x) + (1− λ)f(y).

Given a compact convex set Ω 6= ∅ in a topological vector space, we denote by
Aff(Ω) the collection of all real-valued affine continuous functions on Ω. Of course,
Aff(Ω) is a po-subgroup of the po-group C(Ω) of all continuous real-valued functions
on Ω, hence it is an Archimedean unital po-group with the strong unit 1.

We recall that a convex cone in a real linear space V is any subset C of V such
that (i) 0 ∈ C, (ii) if x1, x2 ∈ C, then α1x1+α2x2 ∈ C for any α1, α2 ∈ R+. A strict

cone is any convex cone C such that C ∩ −C = {0}, where −C = {−x : x ∈ C}.
A base for a convex cone C is any convex subset Ω of C such that every non-zero
element y ∈ C may be uniquely expressed in the form y = αx for some α ∈ R+ and
some x ∈ Ω.

We recall that in view of [Goo, Prop 10.2], if Ω is a non-void convex subset of V,
and if we set

C = {αx : α ∈ R+, x ∈ Ω},

then C is a convex cone in V, and Ω is a base for C iff there is a linear functional f
on V such that f(Ω) = 1 iff Ω is contained in a hyperplane in V which misses the
origin.

Any strict cone C of V defines a partial order ≤C via x ≤C y iff y− x ∈ C. It is
clear that C = {x ∈ V : 0 ≤C x}. A lattice cone is any strict convex cone C in V
such that C is a lattice under ≤C .

A simplex in a linear space V is any convex subset Ω of V that is affinely isomor-
phic to a base for a lattice cone in some real linear space. A simplex Ω in a locally
convex Hausdorff space is said to be (i) Choquet if Ω is compact, and (ii) Bauer if
Ω and ∂eΩ are compact.
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Choquet and Bauer simplices are very important for our study because (i) if E
is with (RDP), then S(E) is a Choquet simplex, [Goo, Thm 10.17]; if Ω is a convex
compact subset of a locally convex Hausdorff space, then (ii) Ω is a Choquet simplex
iff (Aff(Ω), 1) is an interpolation po-group, [Goo, Thm 11.4], (iii) S(E) is a Bauer
simplex whenever E is an MV-algebra (Example 4.2 below gives an effect algebra
with (RDP) that is not MV-algebra), and (iv) Ω is a Bauer simplex iff (Aff(Ω), 1)
is an ℓ-group, [Goo, Thm 11.21].

Let S(E) 6= ∅. Given a ∈ E, we define the mapping â : S(E) → [0, 1] by

â(s) := s(a), s ∈ S(E), and let Ê := {â : a ∈ A}. Then Ê is an effect-clan if, e.g.,
S(E) is order determining (see Remark 2.3 and Proposition 4.1; in such a case, E

and Ê are isomorphic), or E is an MV-algebra, or E is a monotone σ-complete
effect algebra with (RDP), see Theorem 5.2 below, and in these cases the natural

mapping ψ(a) := â, (a ∈ E) is a homomorphism of E onto Ê.

In general, Ê is not necessarily an effect-clan:

Example 4.2. There is an effect algebra with (RDP) such that Ê is not an effect-

clan.

Proof. Let Q be the set of all rational numbers and let G = Q × Q be ordered by
the strict ordering, i.e. (g1, g2) ≤ (h1, h2) iff g1 < h1 and g2 < h2 or g1 = h1 and
g2 = h2. If we set u = (1, 1), (G, u) is a unital po-group with interpolation.

If we set s0(g, h) := h and s1(g, h) := g, then s0 and s1 are states on (G, u). We
claim ∂eS(G, u) = {s0, s1}.

Let s ∈ ∂eS(G, u). Since s(1, 1) = 1, we have 1 = s(k
k
, k
k
) = ks( 1

k
, 1
k
), i.e.,

s( 1
k
, 1
k
) = 1

k
for any integer k ≥ 1. Hence, s(g, g) = g for any g ∈ Q+ and conse-

quently for any g ∈ Q.
Now let g < h be two rational numbers. Take a sequence of rational numbers

{δi} ց 0. Then

s(g − δi, g − δi) ≤ s(g, h) ≤ s(h+ δi, h+ δi),

g − δi ≤ s(g, h) ≤ h− δi,

so that

g ≤ s(g, h) ≤ h.

In a similar way, g ≤ s(h, g) ≤ h. Therefore, 1 = s(1, 1) = s(1, 0) + s(0, 1) and
λ := s(1, 0) and 1− λ = s(0, 1) are positive numbers.

If λ = 0, then s(1/k, 0) = 0 for each integer k ≥ 1, so that s(g, 0) = 0 for any
g ∈ Q+ and for any g ∈ Q. Hence, s(g, h) = s(0, h) = h = s0(g, h). In a similar way,
if λ = 1, then s(g, h) = g = s1(g, h). If 0 < λ < 1, we define s′0(g, h) = s(0, h)/λ
and s′1(g, h) := s(g, 0)/(1−λ), s′0 and s′1 are states on (G, u) such that s′0 = s0 and
s′1 = s1 and s = sλ := λs0 + (1− λ)s1, λ ∈ [0, 1], so that ∂eS(G, u) = {s0, s1}.

Let us set E = Γ(G, u). Then E is an effect algebra with (RDP), and S(E) =

{s′λ : λ ∈ [0, 1]} where s′λ is the restriction of sλ to E. We next define Ê = {â : a ∈

E}. We assert that this Ê is not an effect-clan.
Indeed, let a = (0.3, 0.3), b = (0.7, 0.4). Then â(s′λ) = 0.3λ+ 0.3(1− λ) = 0.3 ≤

1 − b̂(s′λ) = 0.3λ + 0.6(1 − λ) for any λ ∈ [0, 1], but there is no c ∈ E such that

ĉ = â+ b̂ because â(s′0) + b̂(s′0) = 1 and â(s′1) + b̂(s′1) = 0.7. �
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We note that the former example shows that S(E) is a Bauer simplex that is not
order determining but it is separating, i.e. s(a) = s(b) for any state s on E implies
a = b. In addition, (G, u) is not Archimedean, see Proposition 4.1.

Let us define

A(S(E)) := Γ(Aff(S(E)), 1).

Hence, A(S(E)) is an effect algebra with (RDP) whenever S(E) is a Choquet
simplex, in particular E satisfies (RDP), and E can be converted into an MV-
algebra when S(E) is a Bauer simplex.

Nevertheless not every state space S(E) is a Bauer simplex, we recall that ac-
cording to a delicate result of Choquet [Alf, Thm I.5.13], ∂eS(E) is always a Baire
space in the relative topology induced by the topology of S(E), i.e. the Baire
Category Theorem holds for ∂eS(E).

The following lemma [BSW, Lem 7], [Wri, Cor 3] will play a crucial role in our
investigation for the Loomis–Sikorski Theorem.

Lemma 4.3. Let {ai} be a monotone descending sequence of nonnegative functions

in Aff(Ω), where Ω is a convex compact set and let a(x) = limi ai(x) for any x ∈ Ω.
Then

∧
i ai = 0 in Aff(Ω) if and only if {x ∈ ∂eΩ : a(x) > 0} is a meager subset

in the relative topology of ∂eΩ.

5. Characterization of n-State-Operators on Effect Algebras

We remind the reader that a state s on E is discrete if there is an integer n ≥ 1
such that s(E) ⊆ {0, 1/n, . . . , n/n}.

Proposition 5.1. Let E be an effect algebra with S(E) 6= ∅ and let τ be an n-
state-operator on E. Then there is an affine continuous function g : S(E) → S(E)
such that gn = g, and g(s)(E) ⊆ s(E) for any discrete state s ∈ S(E).

Let

A(E) = {f ∈ Γ(Aff(S(E)), 1) : f(s) ∈ s(E) for all discrete s ∈ ∂eS(E)}. (4.1)

Then A(E) is an effect-clan and the mapping τg : A(E) → A(E) defined by τg(f) =
f ◦ g, f ∈ A(E), is an n-state-operator on A(E).

Suppose that Ê is an effect algebra. If we define τ̂ as a mapping from Ê into

itself such that τ̂ (â) := τ̂(a) (a ∈ E), then τ̂ is a well-defined n-state-operator on

Ê that is the restriction of τg.
Conversely, if g : S(E) → S(E) is an arbitrary affine and continuous function

such that gn = g, and g(s)(E) ⊆ s(E) for any discrete state s ∈ S(E), then the

mapping τg : A(E) → A(E), defined by τg(f) := f ◦ g, f ∈ A(E), is an n-state-
operator.

Proof. If s ∈ S(E), then s ◦ τ ∈ S(E). Therefore, the mapping g : S(E) → S(E)
defined by g(s) = s ◦ τ, s ∈ S(E), is a well-defined mapping and affine.

Moreover, g is continuous because if sα → s, then we have limα g(sα)(a) =
limα sα(τ(a)) = s(τ(a)) = g(s)(a) for any a ∈ E.

¿From the construction of g we have gn = g because if n = 1, this is clear and if
n ≥ 2, gn(s) = gn−1(g(s)) = gn−1(s ◦ τ) = s ◦ τn = s ◦ τ = g(s).

Let s be a discrete state on E. Then s(E) ⊆ {0, 1/n, . . . , n/n} for some n ≥ 1
and whence s(τ(E)) ⊆ {0, 1/n, . . . , n/n}.
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It is clear that A(E) is an effect-clan. Take f ∈ A(E). Then f is a continuous
function taking values in the interval [0, 1]. To verify that τg(f) ∈ A(E) we have to
show that τg(f)(s) ∈ s(E) for any discrete extremal state s on E. Check: τg(f)(s) =
f(g(s)) = f(s ◦ τ) ∈ (s ◦ τ)(E)) ⊆ s(E) due to the just above proved statement.
Hence, τg(f) is again an element of A(E). It is easy to verify that τg is an n-potent
endomorphism from A(E) into itself.

Now we show that τ̂ is a well-defined operator on Ê. Assume â = b̂. This means
s(a) = s(b) for any s ∈ S(E). Hence, s(τ(a)) = g(s)(a) = g(s)(b) = s(τ(b)), so that

τ̂(a) = τ̂(b) and finally τ̂ (â) = â◦ g = b̂◦ g = τ̂ (b̂). Since Ê is a subalgebra of A(E),
τ̂ is the restriction of τg.

Finally, let g : S(E) → S(E) be an affine and continuous function such that
gn = g, g(s)(E) ⊆ s(E) for any discrete state s ∈ S(E). If f ∈ A(E), then τg(f) :=
f ◦ g ∈ Aff(S(E)). If s is an extremal discrete state, then f(g(s)) ∈ g(s)(E) ⊆ s(E)
for any discrete state s ∈ ∂eS(E) so that τg(f) ∈ A(E) and τg is an n-state-operator
on A(E). �

The following principal representation theorem for monotone σ-complete effect
algebras with (RDP) follows from [Goo, Cor 16.15] and using the Ravindran rep-
resentation theorem [Rav], see also Remark 2.2.

Theorem 5.2. Let E be a nontrivial monotone σ-complete effect algebra with

(RDP). Then E is isomorphic with A(E) defined by (4.1) and Ê = A(E).

We say that an effect algebra E is weakly divisible, if given an integer n ≥ 1,
there is an element v ∈ E such that n · v := v + · · · + v = 1. In such a case, E
has no extremal discrete state. We notice that according to (4.1), if E is a weakly
divisible effect algebra that is monotone σ-complete, it has no discrete extremal
state, therefore, E is divisible, that is, given a ∈ E and n ≥ 1, there is an element
v ∈ E such that n·v = a. Consequently, for monotone σ-complete effect algebras, E,
with (RDP) the notions of weak divisibility and divisibility, as well as the property
that E admits no discrete (extremal) state, coincide.

We say that an n-state-operator τ on an effect algebra E is monotone σ-complete

if whenever ai ր a, that is ai ≤ ai+1 for any i ≥ 1 and a =
∨

i ai, then τ(a) =∨
i τ(ai). We recall that if τ is a monotone σ-complete n-state-morphism-operator,

then it preserves all existing countable suprema and infima existing in E, and we
call it a σ-complete n-state-morphism-operator.

Let f : S(E) → [0, 1] be any function; we set N(f) := {s ∈ ∂eS(E) : f(s) 6= 0}.
Now we present a characterization of σ-complete n-state-operators on monotone

σ-complete effect algebras with (RDP).

Theorem 5.3. Let τ be a monotone σ-complete n-state-operator on a monotone σ-
complete effect algebra E with (RDP). Then there is an affine continuous function

g defined on S(E) into itself such that gn = g, g(s)(E) ⊆ s(E) for any discrete

extremal state s on E and τ̂ (â) = â ◦ g, a ∈ E.
Conversely, let g be an affine continuous function on S(E) into itself such that

gn = g, g(s)(E) ⊆ s(E) for any discrete extremal state s. Then the mapping τg
defined on Ê by τg(â) := â ◦ g, a ∈ E, is a monotone σ-complete n-state-operator

on Ê.
In addition, if τ̃g is defined on E via τ̃g(a) = τg(â), a ∈ E, then τ̃g is a monotone

σ-complete n-state-operator on E, and g(s) = s ◦ τ̃g, s ∈ S(E).
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Proof. Since E is monotone σ-complete, due to Theorem 5.2, E is isomorphic to
A(E) as defined by (4.1). By Proposition 5.1, there is an affine and continuous
function g : S(E) → S(E) such that gn = g and g(s)(E) ⊆ S(E) for any discrete
extremal state s on E, and the mapping τg : A(E) → A(E) defined by τg(f) := f ◦g,
f ∈ A(E), is an n-state-operator on A(E).

In what follows, we show that τg is monotone σ-complete.
Assume that a =

∨
i ai, for ai ր a, or equivalently, â =

∨
i âi. Then âi ◦ g ≤

âi+1 ◦ g ≤ â ◦ g.
If a0(s) = limi âi(s), s ∈ S(E), i.e. a0 is a point limit of continuous functions on

a compact Hausdorff space, due to Lemma 4.3, the set N(a0 − â) is a meager set.
Similarly, N(â ◦ g − a0 ◦ g) is a meager set. If h =

∨
i âi ◦ g, then h ≤ â ◦ g. Since

N(h− â ◦ g) ⊆ N(h− a0 ◦ g) ∪N(a0 ◦ g − â ◦ g), this yields that N(h− â ◦ g) is a
meager set. Due to the Baire Category Theorem that says that no non-empty open
set of a compact Hausdorff space can be a meager set, we have N(h − â ◦ g) = ∅,
that is h = â ◦ g.

Finally, let a ∈ E and s ∈ S(E). Then (s ◦ τ̃g)(a) = s(τ̃g(a)) = s(τg(â)) =
â(g(s)) = g(s)(a), that is g(s) = s ◦ τ̃g for any s ∈ S(E). �

6. Loomis–Sikorski Theorem for n-State Effect Algebras

In the present section we will formulate and prove the first main result of the
paper.

Let E be a monotone σ-complete effect algebra with (RDP). By Theorem 5.2,

Ê = A(E) but Ê is not necessarily an effect-tribe. Let T (E) be the effect-tribe of

functions from [0, 1]S(E) generated by Ê = A(E).

Proposition 6.1. Let E be a monotone σ-complete effect algebra with (RDP) and
let g be an affine continuous function on S(E) into itself such that gn = g and

g(s) ∈ s(E) for any discrete s ∈ ∂eS(E). Then the operator Tg defined on T (E) by
Tg(f) = f ◦ g, f ∈ T (E), is a monotone σ-complete n-state-operator on T (E) and

is the unique extension of the monotone σ-complete n-state-operator τg on A(E)
defined by τg(f) = f ◦ g, f ∈ A(E).

Proof. First of all we show that Tg is a well-defined operator on T (E), that is,
if f ∈ T (E), then f ◦ g ∈ T (E). Let T ′ be the set of all f ∈ T (E) such that

f ◦ g ∈ T (E). Then T ′ contains A(E) = Ê and if f ∈ T ′, then 1 − f ∈ T ′.
Now let f1, f2 ∈ T ′ be such that f1 ≤ f ′

2, then f1 + f2 belongs to T ′. Hence, if
{fi} is a sequence of monotone functions from T ′, then, for f = limi fi, we have
f ◦ g = limi fi ◦ g ∈ T ′. This implies that T ′ is an effect-tribe generated by A(E),
consequently, T ′ = T (E) and Tg is a monotone σ-complete n-state-operator on
T (E) that is an extension of τg.

Now if τ is any monotone σ-complete n-state-operator on T (E) that is an ex-
tension of τg, then again the set of elements f ∈ T (E) such that τ(f) = Tg(f) is a
tribe containing A(E). Thus, it has to be T (E) and τ = Tg. �

Let (E1, τ1) and (E2, τ2) be n-state effect algebras. A homomorphism h : E1 →
E2 is said to be a state-homomorphism if h ◦ τ1 = τ2 ◦ h. Similarly, we define a
monotone σ-complete state-homomorphism if (E1, τ1) and (E2, τ2) are monotone σ-
complete state effect algebras and h is a state-homomorphism such that if ai ր a,
then h(ai) ր h(a).
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We now generalize the Loomis–Sikorski Theorem for monotone σ-complete n-
state effect algebras.

Theorem 6.2 (Loomis–Sikorski Theorem). Let (E, τ) be a monotone σ-complete

n-state effect algebra with (RDP). Then there are a monotone σ-complete n-state
effect algebra (T , Tg), where T is an effect-tribe of functions from [0, 1]Ω satisfying

(RDP), a function g : Ω → Ω such that gn = g and f ◦ g ∈ T for any f ∈ T ,
such that Tg(f) := f ◦ g, f ∈ T , is a monotone σ-complete n-state-operator on T .
Moreover, there is a monotone σ-complete state-homomorphism h from T onto E
such that h ◦ Tg = τ ◦ h.

Proof. Let E be a monotone σ-complete effect algebra with a monotone σ-complete

n-state-operator τ. We isomorphically embed E onto Ê. We set Ω = S(E), then

Ω is a compact Hausdorff topological space and Ê = A(E) by Theorem 5.2. Let

T (E) be the effect-tribe of functions from [0, 1]Ω that is generated by Ê. According
to Theorem 5.3, the function g : S(E) → S(E) defined by g(s) = s ◦ τ, s ∈ S(E), is
continuous and gn = g. The mapping Tg : T (E) → T (E) defined by Tg(f) = f ◦ g,
f ∈ T (E), is by Proposition 6.1 a monotone σ-complete n-state-operator on T (E)
and by the same Proposition, it is a unique extension of the monotone σ-complete
n-state-operator τg on E defined by τg(â) = â ◦ g, a ∈ E.

Let us denote by T the class of all functions f ∈ [0, 1]S(E) such that there is an
element a ∈ E with a meager set N(f − â) := {s ∈ ∂eS(E) : f(s) 6= â(s)}; in which
case we write f ∼ a.

If a1 and a2 are two elements of E such that f ∼ a1 and f ∼ a2, thenN(â1−â2) ⊆
N(f − â1) ∪ N(f − â2) proving that N(â1 − â2) is a meager set. â1 and â2 are
continuous functions, and due to the Baire Category Theorem, we have â1 = â2.

Therefore, the mapping h : T → E defined by h(f) = a if f ∼ a is a well-defined
mapping.

In what follows, we show that T is an effect-clan with (RDP) such that T = T (E)
and h is a monotone σ-complete n-state-homomorphism on A(E).

Let f1 and f2 be two functions from T with f1 ≤ f2. Choose b1, b2 ∈ E such
that fi ∼ bi for i = 1, 2. We assert that b1 ≤ b2.

Indeed, we have {s ∈ ∂eS(E) : 0 < b̂1(s)− b̂2(s)} ⊆ N(f1 − b̂1) ∪N(f2 − b̂2).
The Baire Category Theorem applied to ∂eS(E) implies that no nonempty open

set of ∂eS(E) can be a meager set, whence s(b1) ≤ s(b2) for any s ∈ ∂eS(E),
and consequently ŝ(b2 − b1) ≥ 0 for any s ∈ S(E). Because our Aff(∂eS(E), 1)
is Archimedean, this yields that the set ∂eS(E) is order determining that entails
b1 ≤ b2.

It is clear that the set T is closed under the formation of complements f 7→ 1−f ,
and it contains {â : a ∈ E}.

If f, g ∈ T , f ≤ 1 − g, and N(f − â), N(g − b̂) are meager subsets of ∂eS(E),

then a ≤ b′, so that a+ b ∈ E. Hence, N(f + g− (̂a+ b)) is meager, i.e., f + g ∈ T ,
and T is an effect-clan.

To show that T is an effect-tribe it is necessary to verify that T is closed under
limits of non-decreasing sequences from T . Let {fi} be a non-decreasing sequence

of elements from T . For any fi, choose by (i) a unique bi ∈ E such that N(fi − b̂i)
is a meager subset of ∂eS(E).
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Denote by f = limi fi, b =
∨∞

i=1 bi, b0 = limi b̂i. Then b ∈ E and b̂ ∈ T . We have

N(f − b̂) ⊆ N(f − b0) ∪N(b̂− b0)

and N(f − b0) = {s ∈ ∂eS(E) : f(s) < b0(s)} ∪ {s ∈ ∂eS(E) : b0(s) < f(s)}.
If s ∈ {s ∈ ∂eS(E) : f(s) < b0(s)}, then there is an integer i ≥ 1 such that

f(s) < b̂i(s) ≤ b0(s). Hence fi(s) ≤ f(s) < b̂i(s) ≤ b0(s) so that s ∈ {s ∈ ∂eS(E) :

fi(s) < b̂i(s)}.
Similarly we can prove that if s ∈ {s ∈ ∂eS(E) : b0(s) < f(s)}, then there is an

integer i ≥ 1 such that s ∈ {s ∈ ∂eS(E) : b̂i(s) < fi(s)}.
These two cases yield

N(f − b0) ⊆
∞⋃

i=1

N(b̂i − fi)

which is a meager subset of ∂eS(E).
Since b =

∨∞
i=1 bi, we conclude that

∧
i b

′
i = b′ and

∧
i(b

′
i − b′) = 0. Due to

Lemma 4.3, we have that N(b̂− b0) is a meager subset of ∂eS(E). Hence, f ∈ T .
Consequently, we have proved that T is an effect-tribe. Since T contains A(E),

we have T = T (E).
Now we concentrate to show that T satisfies (RDP). Let f ≤ g + h, i.e., f(s) ≤

g(s) + h(s) for any s ∈ S(E). By (ii) and (i) there are unique elements a, b, c ∈ E
such that f ∼ a, g ∼ b and h ∼ c, and a ≤ b + c. Since E satisfies (RDP),
there are two elements b1, c1 ∈ E such that a = b1 + c1 and b1 ≤ b and c1 ≤ c.

Consequently, there is a meager set K of ∂eS(E) such that f(s) = â(s), g(s) = b̂(s)
and h(s) = ĉ(s) for any s ∈ S(E) \K. For the functions f |K , g|K and h|K defined
on K (i.e. the system of all [0, 1]-valued functions on K), (RDP) trivially holds,
i.e., there are two functions g0 and h0 defined on K such that f(s) = g0(s)+h0(s),
g0(s) ≤ g(s) and h0(s) ≤ h(s) for any s ∈ K. Let us define functions g1 and h1
on S(E) by g1(s) = b̂1(s), h1(s) = ĉ1(s) for any s ∈ S(E) \K and g1(s) = g0(s),
h1(s) = h0(s) for any s ∈ K. Then f = g1 + h1, g1 ≤ g and h1 ≤ h, and g1 ∼ a1
and h1 ∼ b1, which proves that T has (RDP).

Due to the definition of T and the previous steps, the mapping h : T → E defined
by h(f) = b iff f ∼ b is a surjective and monotone σ-complete homomorphism from
T onto E.

Finally, let f ∈ T and a ∈ E be such h(f) = a. Then f ∼ a so that N(f − â) is
a meager set. Then N(f ◦ g − â ◦ g) = g−1(N(f − â)) is also meager. By Theorem
5.3, we have h(Tg(f)) = τ(a) = τ(h(f)). �

7. Stone Dualities and F-spaces

We present the second main result of the paper, Stone Dualities between some
categories of effect algebras and F-spaces, Theorem 7.9.

We say that a topological space Ω is an F-space if any two disjoint open Fσ subsets
of Ω have disjoint closures. For example, every basically disconnected compact
Hausdorff space is an F-space.

We say that a poset E satisfies the countable interpolation property provided
that for any two sequences {xi} and {yj} of elements of E such that xi ≤ yj for all
i, j, there exists an element z ∈ E such that xi ≤ z ≤ yj for all i, j.

Theorem 7.1. Let Ω be a Bauer simplex. The following statements are equivalent.
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(i) Γ(Aff(Ω), 1) is a weakly divisible effect algebra with countable interpolation.

(ii) Γ(C(∂eΩ), 1) is a weakly divisible effect algebra with countable interpolation

(iii) ∂eΩ is an F-space.

Proof. It is clear that both Γ(Aff(Ω), 1) and Γ(C(Ω), 1) are weakly divisible as well
as divisible effect algebras.

(i) ⇒ (ii). Assume that {fn} and {gm} are two sequences of continuous functions

from Γ(C(∂eΩ), 1) such that fn ≤ gm. Let f̃n and g̃m be unique extensions to affine

continuous functions on Ω of fn and gm, respectively. Then f̃n ≤ g̃m for all n,m.
The countable interpolation on Γ(Aff(Ω), 1) yields that there is an affine function

h ∈ Γ(Aff(Ω), 1) such that f̃n ≤ h ≤ g̃m for all n,m. If h0 is the restriction of h
onto ∂eΩ, then fn ≤ h0 ≤ gm for all n,m so that Γ(C(∂eΩ), 1) satisfies countable
interpolation.

(ii) ⇒ (i). Since Ω is a Bauer simplex, and consequently a Choquet one, Aff(Ω)
is an interpolation group, [Goo, Thm 11.4]. Let {fn} and {gm} be two sequences of
continuous affine functions from Γ(Aff(Ω), 1) such that fn ≤ gm for each n,m. Since
the functions are continuous, there is a continuous function h ∈ C(∂eΩ) such that
fn(x) ≤ h(x) ≤ gm(x) for all n,m and x ∈ ∂eΩ. By the Tietze Theorem, [Alf, Prop

II.3.13], h can be uniquely extended to an affine function h̃. Since fn(x) ≤ h̃(x) ≤
gm(x) for all x ∈ ∂eΩ, by [Goo, Cor 5.20], this implies fn(x) ≤ h̃(x) ≤ gm(x) for
any x ∈ Ω.

(ii) ⇔ (iii) According to [See, Thm 1.1], a compact Hausdorff topological space
K is an F-space iff C(K) satisfies countable interpolation. By [Goo, Prop 16.3],
Γ(C(∂eΩ), 1) satisfies countable interpolation iff (C(∂eΩ), 1) satisfies countable in-
terpolation. �

Remark 7.2. Here it is necessary to point out that not every MV-algebra satisfying
countable interpolation is σ-complete. Due to the Nakano Theorem [Goo, Cor 9.3],
if Ω is a compact Hausdorff space, then the MV-algebra Γ(C(Ω), 1) is σ-complete
iff Ω is basically disconnected. Every such a basically disconnected space Ω can be
expressed as a union of two nonempty clopen subsets, so that Ω is not connected.
But due to [GiHe] or [Goo, p. 280], there exists an F-space, Ω0, that is connected,
so that it is not basically disconnected. By [See], Γ(C(Ω0), 1) is an MV-algebra
that satisfies countable interpolation, but due to the Nakano Theorem it is not
σ-complete.

If K is a compact Hausdorff topological space, let B(K) be the Borel σ-algebra of
K generated by all open subsets of K. Let M+

1 (K) denote the set of all probability
measures, that is, all positive regular σ-additive Borel measures µ on B(K). We
recall that a Borel measure µ is called regular if

inf{µ(O) : Y ⊆ O, O open} = µ(Y ) = sup{µ(C) : C ⊆ Y, C closed}

for any Y ∈ B(K).
Let x ∈ K and let δx be the Dirac measure concentrated at the point x ∈ K, i.e.,

δx(Y ) = 1 iff x ∈ Y , otherwise δx(Y ) = 0; then every Dirac measure is a regular
Borel probability measure. Moreover, [Goo, Prop 5.24], the mapping

ǫ : x 7→ δx (7.1)

gives a homeomorphism of K onto ∂eM
+
1 (K).
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Hence, if K is an F-space that is connected, see Remark 7.2, then Ω := M+
1 (K)

gives a Bauer simplex whose boundary ∂eΩ is a connected compact Hausdorff F-
space. Moreover, Γ(Aff(Ω), 1) gives by Theorem 7.1 a divisible lattice ordered effect
algebra satisfying monotone interpolation and (RDP) that has an order determining
system of states but Γ(Aff(Ω), 1) is not monotone σ-complete, see [DDL3, Thm 4.2].

Theorem 7.3. Let E be an effect algebra with (RDP) and with countable interpola-

tion such that E has an order determining system of states. Then E is isomorphic

to A(E), where A(E) is defined by (4.1), E is lattice ordered and ∂eS(E) is an

F-space.

Proof. If E has an order determining system of states, S, then S(E) is also order
determining. Moreover, E = Γ(G, u) for some interpolation unital po-group (G, u).
In view of Remark 2.3, S(G, u) is also order determining, so that G is Archimedean.
Applying [Goo, Thm 16.19(b)], we have that G is an ℓ-group so that E is a lattice.
Due to [Goo, Thm 16.14], E is isomorphic with A(E). Hence, S(E) is a Bauer
simplex and by [Goo, Thm 16.22], ∂eS(E) is an F-space. �

Remark 7.4. Under the assumptions of Theorem 7.3, we see that E is in fact a
semisimple MV-algebra (equivalently this means that S(E) is order determining)
with countable interpolation whose boundary ∂eS(E) is an F-space, and vice-versa.
Every semisimple MV-algebra satisfying countable interpolation satisfies the con-
dition of Theorem 7.3.

Let n ≥ 1 be a fixed integer. Let DSMEAn be the category of (weakly) divisible
state-morphism effect algebras whose objects are couples (E, τ), where E is an effect
algebra satisfying (RDP) and countable interpolation with an order determining
system of states, and τ is an n-state-morphism-operator on E; and a morphism
from (E1, τ1) to (E2, τ2) is any homomorphism h : E1 → E2 that preserves all
existing meets and joins in E1 such that h ◦ τ1 = τ2 ◦ h. We note that DSMEAn is
a category.

Let BSFn be the category of Bauer simplices whose objects are pairs (Ω, g),
where Ω 6= ∅ is a Bauer simplex such that ∂eΩ is an F-space, and g : Ω → Ω
is an affine continuous function such that gn = g, g : ∂eΩ → ∂eΩ. Morphisms
from (Ω1, g1) into (Ω2, g2) are continuous affine functions p : Ω1 → Ω2 such that
p : ∂eΩ1 → ∂eΩ2 and p ◦ g1 = g2 ◦ p. Then BSFn is also a category.

Now we reformulate the substantial part of Proposition 5.1 for state-morphism-
operators on lattice ordered effect algebras with (RDP) and with an ordering system
of states.

Proposition 7.5. Let τ be an n-state-morphism on a lattice ordered effect algebra

satisfying (RDP) and countable interpolation and with an ordering system of states.

Then τ satisfies (ESP) and there is an affine continuous function g from S(E) into
itself such that it maps ∂eS(E) into itself, gn = g, g(s)(E) ⊆ S(E) for any discrete

state s on E. Moreover, the mapping τg : A(E) → A(E) defined by τg(f) = f ◦ g,
f ∈ A(E), where A(E) is defined by (4.1), is an n-state-morphism-operator on

A(E). In addition, (E, τ) and (A(E), τg) are isomorphic n-state-morphism effect

algebras.

Proof. The mapping ψ : a 7→ â, defined by â(s) := s(a), a ∈ E, (s ∈ S(E)) is by
Theorem 7.3 an isomorphism from E into the effect-clan A(E) defined by (4.1).
Since E is in fact an MV-algebra, τ satisfies (ESP) property, and by Proposition
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5.1, the mapping g : S(E) → S(E), defined by g(s) := s ◦ τ, s ∈ S(E), is affine and
continuous, gn = g, and it maps any extremal state on E into an extremal state.
Moreover, g(s)(E) ⊆ s(E) for any discrete extremal state s.

The mapping ψ is an isomorphism of effect algebras. We show that it also
preserves all existing meets and joins in E.We know already from Theorem 7.3 and
Remark 7.4 that E is in fact an MV-algebra. Then for any discrete state s on E we
have ψ(a ∧ b)(s) = s(a ∧ b) = min{s(a), s(b)} = min{ψ(a)(s), ψ(b)(s)} due to basic
properties of extremal states on MV-algebras. Hence (ψ(a)∧ψ(b))(s) = ψ(a∧ b)(s)
for any discrete state s. Since ψ(a)∧ψ(b) ∈ A(E), we have that (ψ(a)∧ψ(b))(s) =
ψ(a ∧ b)(s) for any state s on E.

Therefore, the mapping τg is a well-defined state-operator on A(E). For all
f1, f2 ∈ A(E) we have (f1 ∧ f2)(s) = min{f1(s), f2(s)} for any s ∈ S(E). Hence,
(τg(f1 ∧ f2))(s) = (f1 ∧ f2)(g(s)) = min{f1(g(s)), f2(g(s))} = (τg(f1) ∧ τg(f2))(s).
So that τg is an n-state-morphism-operator on A(E).

Now it is easy to verify that ψ ◦ τ = τg ◦ψ proving that (E, τ) and (A(E), τg) are
isomorphic n-state-morphism effect algebras because ψ preserves all existing meets
and joins in E. �

Define a morphism S : DSMEAn → BSFn by S(E, τ) = (S(E), g), where g is
an affine continuous function from S(E) → S(E) such that g(s) = s ◦ τ, s ∈ S(E),
gn = g that is guaranteed by Proposition 7.5.

Proposition 7.6. The function S : DSMEAn → BSFn defined by S(E, τ) =
(S(E), g) is a contravariant functor from DSMEAn into BSFn.

Proof. Let (E, τ) be an object from DSMEAn. By Theorem 7.3, (E, τ) is isomor-
phic with (A(E), τg), where A(E) is defined by (4.1) and g is an affine continuous
function on Ω := S(E) into itself such that it maps ∂eS(E) into itself, gn = g and
g(s) := s ◦ τ for any s ∈ S(A).

Let h be any morphism from (E, τ) into (E′, τ ′). Define a mapping S(h) :
S(E′) → S(E) by S(h)(s′) := s′ ◦ h, s′ ∈ S(E′). Then S(h) is affine, continuous
and g ◦ S(h) = S(h) ◦ g′. Indeed, let s′ ∈ S(E′). Then S(h) ◦ g′ ◦ s′ = (g′ ◦ s′) ◦ h =
g′ ◦ (s′ ◦ h) = s′ ◦ h ◦ τ = s′ ◦ τ ′ ◦ h = S(h) ◦ s′ ◦ τ ′ = S(h) ◦ g′. �

Given an convex compact Hausdorff topological space Ω 6= ∅, let

E(Ω) := Γ(Aff(Ω), 1). (7.2)

Then E(Ω) is a weakly divisible effect algebra with a determining system of states.
Define a morphism T : BSFn → DSMEAn via T (Ω, g) = (E(Ω), τg), where

E(Ω) = Γ(Aff(Ω), 1), τg(f) := f ◦ g, f ∈ E(Ω), and if p : (Ω, g) → (Ω′, g′), then
T (p)(f) : E(Ω′) → E(Ω) is defined by T (p)(f) := f ◦ p, f ∈ E(Ω′).

Proposition 7.7. The function T : BSFn → DSMEAn is a contravariant functor

from BSFn to DSMEAn.

Proof. If (Ω, g) is an object from DSMEAn, then E(Ω) is a (weakly) divisible effect
algebra satisfying (RDP) and with an ordering system of states. In addition, by
Theorem 7.1, E(Ω) satisfies countable interpolation. The mapping τg(f) := f ◦ g,
f ∈ E(Ω), is by Proposition 7.5 a state-morphism-operator on E(Ω). Therefore,
T (Ω, g) = (E(Ω), τg) ∈ DSMEAn.

Now let p : (Ω, g) → (Ω′, g′) be a morphism, i.e. an affine continuous function
p : Ω → Ω′ such that p : ∂eΩ → ∂eΩ

′ and p◦g = g′◦p.We assert τg◦T (p) = T (p)◦τg′ .
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Check: for any f ∈ E(Ω′), we have τg ◦ T (p) ◦ f = τg ◦ (T (p) ◦ f) = τg ◦ (f ◦ p) =
(f ◦p)◦ g = f ◦ (p◦ g) = f ◦ (g′ ◦p) = (f ◦ g′)◦p = T (p)◦ (f ◦ g′) = T (p)◦ (τg′ ◦ f) =
T (p) ◦ τg′ ◦ f. �

Remark 7.8. It is worthy to remark that due to [Goo, Thm 7.1], if Ω is a compact
convex subset of a locally convex Hausdorff space, then the evaluation mapping
p : Ω → S(E(Ω)) defined by p(x)(f) = f(x) for all f ∈ E(Ω) (x ∈ Ω) is an affine
homeomorphism of Ω onto S(E(Ω)).

Theorem 7.9 (Stone Duality Theorem). The categories BSFn and DSMEAn are

dual.

Proof. We show that the conditions of [Mac, Thm IV.1] are fulfilled, i.e. T ◦
S(E, τ) ∼= (E, τ) and S ◦ T (Ω, g) ∼= (Ω, g) for all (E, τ) ∈ DSMEAn and (Ω, g) ∈
BSFn.

(i) Propositions 7.6–7.7 entail that if (E, τ) ∈ DSMEAn, then T ◦ S(E, τ) =
T (S(E), g) = (E(S(E)), τg) ∼= (E, τ).

(ii) Now let (Ω, g) be any object from BSFn. By Remark 7.8, Ω and S(E(Ω))
are affinely homeomorphic under the evaluation mapping p : Ω → S(E(Ω)). We
assert p ◦ g = g′ ◦ p.

Let x ∈ Ω and f ∈ E(Ω) be arbitrary. Then s = p(x) is a state from S(E(Ω)).
The function g′ : S(E(Ω)) → S(E(Ω)) is defined by the property g′(s) = s ◦ τg.
Since g′(s) = g′(p(x)), we get

(g′ ◦ p)(x)(f) = g′(p(x))(f) = (g′(s))(f) = (s ◦ τg)(f)

= p(x) ◦ (τg(f)) = p(x) ◦ (f ◦ g) = f(g(x)).

On the other hand,

(p ◦ g)(x)(f) = p(g(x))(f) = f(g(x))

that proves p ◦ g = g′ ◦ p. Hence, the categories BSFn and DSMEAn are dual. �
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