
Communicating Process Architectures – 2002
James Pascoe, Peter Welch, Roger Loader and Vaidy Sunderam (Eds.)
IOS Press, 2002

135

Cache-Affinity Scheduling for
Fine Grain Multithreading

Kurt DEBATTISTA, Kevin VELLA and Joseph CORDINA
Department of Computer Science and Artificial Intelligence

University of Malta

Msida MSD06, Malta, Europe

Email: {kurt,kvel,jcord }@cs.um.edu.mt

Abstract. Cache utilisation is often very poor in multithreaded applications, due to
the loss of data access locality incurred by frequent context switching. This problem
is compounded on shared memory multiprocessors when dynamic load balancing is
introduced and thread migration disrupts cache content. In this paper, we present a
technique, which we refer to as ‘batching’, for reducing the negative impact of fine
grain multithreading on cache performance. Prototype schedulers running on unipro-
cessors and shared memory multiprocessors are described, and finally experimental
results which illustrate the improvements observed after applying our techniques are
presented.

1 Introduction

Multithreaded applications, particularly those of the fine grain variety, deal a severe blow to
effective cache use. Frequent context switching disrupts the operation of the locality prin-
ciple, on which cache hits depend. This problem manifests itself on uniprocessors as well
as on shared memory multiprocessors, but in the latter case further issues related to thread
migration emerge.

With fine grain threads, descheduling points tend to occur very frequently. The expense
of repopulating the processor’s cache with a newly dispatched thread’s footprint becomes
significant when viewed in relation to the shortened thread dispatch time. To make matters
worse, an individual thread is unlikely to accumulate a significant cache footprint by itself:
only when threads are considered in groups can a long term cache footprint be identified.
Coarse grain threads and operating system processes do not suffer from either of these short-
comings, as their dispatch times are long enough to push this cost into relative insignificance.

On multiprocessors, applications execute well only when all processors are sharing the
work load and running threads are located close to the data they access. A system that
promotes load balancing aims to ensure all processors service an equal workload through the
use of a central or shared run queue. While load balancing is commendable, the shared run
queue will frequently migrate descheduled threads onto processors on which they would have
not recently executed. This will often mean that the newly dispatched thread is unable to find
its data footprint in cache, eventually leading to cache misses in the order of tens to hundreds
of nanoseconds. Furthermore, Andersonet al. [1] note how fine grain multithreading is more
susceptible to thread migration due to the frequency of inter-thread communication and the
large number of threads being executed concurrently.

On the other hand, cache-affinity schedulers traditionally utilise per-processor run queues.
Squillante and Lazowska [2] discuss the benefits of allowing a process to develop affinity to a



136 K. Debattista et al. / Cache-Affinity Scheduling for Fine Grain Multithreading

processor. Markatos and LeBlanc [3] also demonstrate the benefits of locality management.
Subsequently, in [4] they observe that the current imbalance between ever-faster processors
and slow memory technology will induce a move towards locality awareness in scheduler
design. In particular, they propose techniques to improve performance of fine grain thread
scheduling using ‘memory conscious scheduling’ [5], which groups threads that access the
same data areas.

In the light of the above discussion, a conflict between load balancing and locality is evi-
dent. A scheduling algorithm that complies with the load balancing policy would attempt to
migrate threads to balance work load evenly, disregarding the thread’s last dispatch locale.
Conversely, locality conscious scheduling would opt for threads to spend their entire exe-
cution life time on the same processor neglecting that another processor might be left idle.
Ideally, scheduling algorithms should aspire to include both policies.

Through the use of novel scheduling algorithms which group fine grain threads together
into coarser grain entities termed batches [6], we attempt to improve cache exploitation on
uniprocessors. Furthermore, on shared memory multiprocessors, such batching algorithms
maintain data locality and minimise contention for shared scheduler data structures while
still maintaining a balanced workload. In batch schedulers, the scheduled entity becomes
the batch. Processors obtain batches from a common batch pool and service the threads on
the batch for a number of dispatches maintained by a dispatch counter. When the dispatch
counter threshold is considerably larger than the batch size and the entire memory footprint
of the batch fits in the cache, each thread is guaranteed to find the data it requires in the cache
(assuming that the underlying kernel thread is not descheduled by the operating system, a rel-
atively rare event). This is bound to alleviate the memory access locality problem in fine grain
multithreaded applications. On multiprocessors, batching reaps further benefits by decreas-
ing the incidence of false sharing since threads accessing data in a common cache line could
be batched together. Moreover, when balancing load across processors, migrating threads in
batches alleviates the contention that arises when migrating multitudes of individual threads.

2 Related Work

In the context of our discussion, SMP scheduling strategies can be broadly classified into two
camps. On one side are the more commonly used shared run queue schedulers, which make
load balancing their main priority. At the other end there are the per-processor run queue
configurations, which naturally provide cache-conscious scheduling and reduce run queue
contention. In this section we survey work related to thread scheduling using both policies.

Shared run queue schedulers adhere strongly to the load balancing policy since the ap-
proach is ideal for distributing threads equally amongst processors. When a processor is idle
it is assigned a job from the queue, when it is preempted (or the job finishes) it selects an-
other from the shared queue. Shared run queue’s load balancing policies are attractive since
it is easy to ensure that no processor is ever idle when there is work to be done. The shared
run queue strategy unfortunately, neglects the principal of locality, since threads are usually
migrated across processors, without exploiting cache. However, the absence of locality is
not the only issue related to shared run queue schedulers, which traditionally rely on spin
locks as a method of access control for shared data structures. An oft-overlooked alterna-
tive method of synchronisation is available through the considered use of lock-free structures
and algorithms, which dispense with the serialisation of concurrent tasks. Lock-free data
structures rely on powerful hardware atomic primitives and careful ordering of instructions
to protect them from unsafe concurrent access. Valois [7] discusses lock-free techniques
in detail and supplies various definitions of relevance to us. A lock-free data structure is



K. Debattista et al. / Cache-Affinity Scheduling for Fine Grain Multithreading 137

termed non-blocking if an operation on it is guaranteed to complete in finite time. More-
over, if every such operation on the data structure is guaranteed to complete the structure
is said to be wait free. Results appearing in [8] indicate that non-blocking data structures
outperform their lock-based counterparts. Furthermore, when used for thread scheduling and
inter-thread synchronisation, non-blocking data structures have other advantages, including
stronger fault tolerance, deadlock freedom and, in priority-based schedulers, elimination of
priority inversion. Unfortunately, the non-blocking algorithms usually rely on retries to re-
cover from unexpected alterations performed concurrently by other processors. This can
result in unpredictable delays and starvation under high contention. Furthermore, the use
of COMPARE-AND-SWAP in most of the algorithms introduces theABAproblem, which ne-
cessitates the use of costly memory management techniques to avoid it. On the other hand,
wait-free data structures, as discussed by Herlihy [9], do not suffer from theABA problem
and do not ever require retries. As a consequence, starvation is eliminated and the maxi-
mum number of instructions executed in the algorithms is fixed at compile-time. No efficient
wait-free concurrent queue algorithm is available ruling out a shared run queue version of
such an algorithm. We will present a per processor run queue scheduler using wait-free data
structures in Section 6.

Per processor run queue schedulers befit the principle of locality. On NORMAs, Eager
et al. [10] favour per processor run queues due to the high costs associated with migration.
Bellosa [11] arrives at similar conclusions regarding NUMA multiprocessors. However, the
general trend on UMA multiprocessors was to base scheduling policies on shared run queue
models, to balance loads evenly [12, 13]. Andersonet al. [1] observe that the central queue
can be a cause of great contention and find that per processor run queues perform better than
shared run queues when scheduling threads at the user level. Anderson’s scheduling strategy
involves placing new threads on the run queue of the processor on which it was created.
Processors first check their own run queue for threads to execute, if none are found they scan
through other run queues. Threads that are created on one processor generally spend their
entire execution time on that processor’s run queue, thus maintaining cache affinity. Rarely
do threads migrate to other processors. Based on the above results thread packages such as
Filaments [14] and Cilk [15] adopt per processor run queues as the scheduling strategy. Cilk’s
per processor run queue algorithm is based on Arora, Blumofe and Plaxton [16] non-blocking
double-ended queue (deque). Their non-blocking version of the work stealing algorithm
permits processors to access their local deque only by pushing and popping from the bottom
(effectively a local deque functions as a stack), while idle processors acquire work by popping
threads off the top of the queue. Results [15] demonstrate the system to be highly efficient
due to the combination of per processor run queues and non-blocking data structures.

3 Scheduler Design Overview

To investigate the effects of different scheduler configurations on the performance of mul-
tithreaded applications, we have implemented a suite of uniprocessor and multiprocessor
user-level thread schedulers [17] under the collective name ofsmash. All uniprocessor and
SMP smash schedulers borrow many basic ideas, such as active context switching, from
CERN’s uniprocessor MESH [18] as well as uniprocessor CCSP [19]. Of the various unipro-
cessor schedulers we have implemented, we consider two: a basic uniprocessor scheduler
(uni-smash) and a batch based uniprocessor scheduler (unibatch-smash). We also con-
sider three SMP schedulers: a traditional lock-based shared run queue SMP thread scheduler
(shared-smash), a lock-based batch thread scheduler (smpbatch-smash) and our innova-
tive wait-free SMP thread scheduler (wf-smash).



138 K. Debattista et al. / Cache-Affinity Scheduling for Fine Grain Multithreading

Each scheduler takes the form of a C library, and application programs are written in C
and linked to the library. The schedulers provide functionality to create, execute and join
(barrier synchronisation on thread termination) threads, as well as facilities for inter-thread
communication and synchronisation by means of CSP [20] constructs.

Both the uniprocessor and SMP thread schedulers schedule threads entirely at the user
level. A kernel thread is permanently bound to each processor, and user-level threads are
scheduled atop the kernel threads. In the case of the SMP scheduler’s, each processor’s
identity is stored in a reserved register for fast retrieval (thus avoiding the use ofgetpid() ).
Since the schedulers are expected to operate in a multiprogrammed environment, an idle
kernel thread (that is, with no user-level threads to execute) sleeps on a kernel semaphore,
rather than busy-waiting. This is the only instance in which we make use of a system call
within the scheduler (excluding scheduler start-up and shut-down, of course).

uni-smash is our vanilla uniprocessor scheduler composed of a single circular queue
acting as the run queue.shared-smash is based on the designs of SMP KRoC [13] and
the University of Malta’s SMP MESH implementation [12]. Processors acquire threads by
accessing the shared run queue. This scheduling strategy ensures that no processor is idle
when there are threads on the run queue. This methodology favours load balancing at the
expense of minimal cache reuse. Access control to the shared run queue is taken care of by a
spin lock. The shared run queue is the main cause of poor performance when scheduling fine
grained applications.unibatch-smash will be described in Section 4,smpbatch-smash in
Section 5 andwf-smash in Section 6.

4 Uniprocessor Batch Scheduling

It is clear that fine grain multithreading has an adverse impact on locality, and thus on the
ability of cache hardware to have the necessary data in the cache when it is needed. On shared
memory multiprocessors these cache miss problems are compounded by frequent process mi-
gration as well as false sharing, when processes executing on separate processors repeatedly
write to memory addresses on the same cache line. On uniprocessors, we will demonstrate
that performance loss through cache misses alone may be substantial, but can be avoided
through specially designed scheduling policies and algorithms.

We introduce batching as a scheduling strategy which improves cache exploitation in fine
grain multithreading systems in its uniprocessor incarnationunibatch-smash, and analyse
its performance compared touni-smash in Section 7. In Section 5, batching is proposed as
a technique to mitigate efficiency problems associated with fine grain parallelism on shared
memory multiprocessors. Uniprocessor batching, illustrated in Figure 4, consists of organ-
ising runnable threads in queues of queues. The run queue is transformed into a queue of
batches of threads which we will refer to as the batch run queue. Each batch is itself organ-
ised as a queue of (possibly related) runnable threads grouped together into a coarser grain
entity. A batch has two variables associated with it: a size counterBSize and a dispatch
counterBCount . The batching strategy also includes a threshold size,MAXBSIZE, which
BSize cannot exceed. New batches are created by old batches overflowing, and batches
whose constituent threads all terminate are destroyed. Whenever a thread launches a new
thread, the newly created thread is placed on the current batch. However, if the current batch
has met its size limit, the thread is placed onto a temporary batch which we call the overflow
batch. The purpose of the overflow batch is to store excess threads until the overflow batch’s
BSize meets the size threshold. When an overflow batch is full it is placed onto the batch
run queue. When scheduling a new batch, the scheduler picks up the batch at the top of the
batch run queue, making it the current batch. The dispatch time of a batch is much longer



K. Debattista et al. / Cache-Affinity Scheduling for Fine Grain Multithreading 139

U U UU

U U U

U U UU

current batch

current thread

batch run queue

U

U U U U

A

U

U

U

U

overflow
batch

Current batch is full:
place excess thread

onto overflow batch (A)

Overflow batch is full:
place overflow batch

on batch run queue (B)

D

A

B

Figure 1: Scheduler data structures and information flow in uniprocessor batching.

than that of an individual thread, and whenBCount , reaches a threshold,MAXBCOUNT, the
batch is appended to the end of the batch run queue and the next batch is scheduled.

The rationale behind this strategy is that the primary benefactors of caches are threads
which access the same areas of memory repeatedly over a long period of time, and the ones
which are thwarted by multithreading are those which deschedule frequently over their life-
time. This is because intervening threads tend to push the relevant memory areas out of the
cache. If the batch size is limited and the dispatch period for a batch is long enough, threads
in that batch will get rescheduled several times within the batch’s dispatch period, often find-
ing their memory still intact in the cache. This is because the relatively smaller number of
intervening threads will not have managed to wipe out the required cache content. Moreover,
if communicating processes gather onto the same batch, they will both get rescheduled on
that batch time after time, with high probability, and will therefore still be able to benefit
from this scheme.

5 SMP Batch Scheduling

The idea of batching processes increases in relevance on shared memory multiprocessors.
The coarser grain nature of batches (compared to individual threads) in the SMP case helps
not only in improving locality due to cache affinity, but also in reducing false sharing and
decreasing contention for shared resources. We present two algorithms that we use to migrate
batches thus effectively balancing load amongst processors. The first algorithm implemented
in our schedulersmpbatch-smash is described in this section, and only requires the use of a
spinlock construct. The second,wf-smash, described in Section 6, uses powerful atomic
primitives which are not available on all architectures, to construct wait-free data structures
reducing the contention for shared data structures to a minimum.



140 K. Debattista et al. / Cache-Affinity Scheduling for Fine Grain Multithreading

U U UU U U U U

Processor 1 Processor 3Processor 2

A: current batch is full, place excess B: overflow batch is full, move
to shared batch queuethreads in overflow batch

C: processor idle, move batch 
from shared batch queue

U U U

current batch

U

current thread

U U UU

current batch

current thread

overflow batch

U U UU

overflow batch

U U UU

current batch
U

current thread

U U UU

overflow batch C

shared batch queue

head

A

B

spin lock protected access (BQlck)

Figure 2: Scheduler data structures and information flow in shared run queue SMP batching.

5.1 Shared Run Queue Batch Scheduling

smpbatch-smash data structures consist of an overflow batch and current batch, which are
local to each processor and a shared batch queue. A three processor configuration is illus-
trated in Figure 2. As withunibatch-smash each processor maintains a separateBCount
counter, incrementing it every time a new thread from the batch is dispatched, and reinserting
the batch in the batch run queue when it reachesMAXBCOUNT. The batch size is maintained
by incrementing and decrementingBSize as processes join and leave the batch during its
dispatch period.

The shared batch run queue obeys the shared run queue model. Access control is main-
tained by means of a lockBQlck . Idle processors retrieve threads in the form of batches
by first acquiringBQlck then dequeuing a batch from the shared batch queue. Similarly,
processors with excess workloads enqueue overflow batches on to the shared batch queue.

The shared batch queue exhibits the same load balancing properties akin to shared run
queues, and it is easy to ensure that no processor is ever idle when there is a batch on the
shared batch queue. Each processor’s overflow batch is used in very much the same way as
in the uniprocessor batching implementation, to store surplus threads when the current batch
size exceedsMAXBSIZE, without causing frequent expensive accesses to the shared batch
queue. When the overflow queue itself overflows, it is offloaded onto the shared run queue
in the normal manner, acquiringBQlck to protect against concurrent access. Since a batch
footprint is limited in this way, the cache-related improvements that were observed in our
analysis of uniprocessor batching can be preserved here. This time, the improvements are
compounded by the other factors peculiar to SMPs.

This activity reflects the workings of a shared run queue model, albeit at a macro level.
The thread entity has been replaced by the batch, which has a much longer collective dis-
patch time, thus reducing the frequency of shared queue access. The expense of retrieving
batches from the shared queue remains minimal, so locking duration has not been drastically
increased. Accordingly, contention for shared resources should be greatly reduced. In ad-
dition, a thread will get scheduled to execute on the same processor on several successive
occasions, as the time during which a batch is associated with a processor is substantially
longer than the dispatch time of a single thread. There is therefore a greater chance of the



K. Debattista et al. / Cache-Affinity Scheduling for Fine Grain Multithreading 141

thread finding a portion of its working set intact in the processor’s cache on being scheduled,
especially if the combined working set size of the threads in the batch does not exceed the
cache size.

6 Wait-Free Batch Scheduling

As with smpbatch-smash, wf-smash makes use of batches as a coarser grain entity to
reduce contention and enhance locality.wf-smash is particularly scalable in terms of batch
size. In fact results demonstrate the algorithms work well even when migrating single threads
for fine grain multithreaded applications [21]. Sincewf-smash makes use of wait-free data
structures contention is kept at a minimum and batching is used mainly as a vehicle for cache-
coherence, even though batches reduce the frequency at which relatively high latency atomic
operations (likeSWAP and COMPARE AND SWAP) are performed.wf-smash’s scheduling
algorithms are discussed in further detail in [21].

U

U

U

U

U

U

U U U U

U U UU

U U U

U U UU

current batch

current thread current thread

migration
batch

overflow
batch F

current batch

U U U U

migration
batch

overflow
batch

migration
batch

U

U

overflow
batch

U

batch run queue

current batch

batch run queue

U

U U U U

A

Processor 1 Processor 2 Processor 3

current thread

F

D

batch run queue

B: overflow batch is full, try
sender-initiated migration

try sender initiated migration
D: current batch dispatch expires,

batch to batch run queue
C: if B fails, move overflowA: current batch is full, place excess

threads in overflow batch
E: if D fails, try to place batch

on migration queue
F: processor about the become idle,

attempt receiver initiated migration

C

B

E

F

Figure 3: Scheduler data structures and information flow in wait-free SMP batching.

wf-smash data structures consist of a batch run queue and overflow batch for each pro-
cessor which function similarly tounibatch-smash and an additional migration batch. Fig-
ure 3 shows these data structures. To understand the purpose of each structure a brief de-
scription of the scheduling mechanism is required. As withunibatch-smash the current
batch is directly attached to the batch queue. In this case though it also serves to indicate the
processor’s state, since the current batch pointer isNULL if and only if a processor lies idle.
As with other batch schedulers, whenever a thread launches a new thread, the newly created
thread is placed on the current batch and if the current batch’sBSize has metMAXBCOUNT
the thread is placed onto the overflow batch. In this case when the overflow batch becomes
full, an attempt is made to migrate the thread to any idle processor. If sender initiated migra-
tion fails, the overflow batch is placed onto the local batch run queue. The migration batch
is used when a processor has excess workload and wants to offload a batch, but none of the
other processors are currently idle. In this case the excess batch is placed onto that same pro-
cessor’s migration batch. A processor with a reduced workload can hence obtain more work
by scanning the other processors’ migration batches. To improve load balancing, when the



142 K. Debattista et al. / Cache-Affinity Scheduling for Fine Grain Multithreading

// ... launch ARRAY SIZE /GRANULARITY threads running test cache()

cthread threads[ARRAY SIZE /GRANULARITY];

int array[ARRAY SIZE];

void cache test(cthread * ct, int i) {
int j,k,g;

g = GRANULARITY * i;

for (j = 0; j < PROCESSLENGTH; j++) {
for (k = 0; k < GRANULARITY;k++) {

array[g + k]++;

}
cthread yield();

}
}

Figure 4: The benchmark algorithm.

current’s batch dispatch counter,BCount expires and the batch run queue consists of more
than one batch, the current batch can also be migrated.

Batches are migrated in one of two distinct ways. Sender-initiated migration occurs when
a processor has an excess batch, in which case it attempts to migrate a batch onto an idle pro-
cessor. Receiver-initiated migration occurs when a processor runs out of work to do, and
this idle processor attempts to migrate a batch from one of the other processors’ migration
batches. The key to the wait-free algorithms is that the data structures are manipulated locally
before being placed onto the globally accessible shared data structure pointers. The shared
data structures are accessed only by means of atomicCOMPARE AND SWAPandSWAP in-
structions to maintain their integrity. Further details of the wait-free migration algorithms
and other aspects ofwf-smash are available in [21].

7 Results

In this section we analyse the performance of our uniprocessor batch scheduler (unibatch-
smash) and the SMP batching implementations,smpbatch-smash andwf-smash, com-
pared with the standard uniprocessor (uni-smash) and shared run queue implementation
shared-smash.

Tests were performed on a quad-processor machine with 256MB RAM. The processors
were PIII Xeons running at 700MHz, each equipped with 512KB of second-level cache (as
well as 16KB instruction and 16KB data first-level caches). The underlying operating sys-
tem was Linux (kernel version 2.2.12-20). For each of the experiments involvingunibatch-
smash, MAXBSIZEwas set to 32 andMAXBCOUNTwas set to 128.

In order to test the performance of our batching schedulers, we present a benchmark
(Figure 4) which performs a series of operations on the same array data. Three variables are
used, an array size (ARRAYSIZE ) which represents the size of the data that will be handled,
a variable representing the thread’s longevity (PROCESSLENGTH) and a granularity vari-
able (GRANULARITY). Granularity determines the number of computations between each
communication and segments the area of the data to be computed by each thread accord-
ingly. Thus, we can vary the granularity without changing the problem size. Effectively the
number of threads launched would be set toARRAYSIZE /GRANULARITY.



K. Debattista et al. / Cache-Affinity Scheduling for Fine Grain Multithreading 143

0

0.5

1

1.5

2

0 20 40 60 80 100 120

T
im

e 
(s

ec
on

ds
)

Granularity

Process Length 1

uni-smash
unibatch-smash

shared-smash
smpbatch-smash

wf-smash

0

0.02

0.04

0.06

0.08

0.1

20 40 60 80 100 120

T
im

e 
(s

ec
on

ds
)

Granularity

Process Length 1 (Detail)

uni-smash
unibatch-smash

shared-smash
smpbatch-smash

wf-smash

0

0.5

1

1.5

2

0 20 40 60 80 100 120

T
im

e 
(s

ec
on

ds
)

Granularity

Process Length 4

uni-smash
unibatch-smash

shared-smash
smpbatch-smash

wf-smash

0

0.02

0.04

0.06

0.08

0.1

20 40 60 80 100 120

T
im

e 
(s

ec
on

ds
)

Granularity

Process Length 4 (Detail)

uni-smash
unibatch-smash

shared-smash
smpbatch-smash

wf-smash

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120

T
im

e 
(s

ec
on

ds
)

Granularity

Process Length 16

uni-smash
unibatch-smash

shared-smash
smpbatch-smash

wf-smash

0

0.05

0.1

0.15

0.2

0.25

0.3

20 40 60 80 100 120

T
im

e 
(s

ec
on

ds
)

Granularity

Process Length 16 (Detail)

uni-smash
unibatch-smash

shared-smash
smpbatch-smash

wf-smash

0

10

20

30

40

50

60

0 20 40 60 80 100 120

T
im

e 
(s

ec
on

ds
)

Granularity

Process Length 128

uni-smash
unibatch-smash

shared-smash
smpbatch-smash

wf-smash

0

0.5

1

1.5

2

2.5

3

20 40 60 80 100 120

T
im

e 
(s

ec
on

ds
)

Granularity

Process Length 128 (Detail)

uni-smash
unibatch-smash

shared-smash
smpbatch-smash

wf-smash

Figure 5: Benchmark results for an array sizeARRAYSIZE fixed at 262,144. SMP schedulers (shared-smash,
smpbatch-smash andwf-smash utilise four processors, while the uniprocessor schedulers (uni-smash and
unibatch-smash) make use of only one processor.



144 K. Debattista et al. / Cache-Affinity Scheduling for Fine Grain Multithreading

In our experiment,GRANULARITYwas varied from20 (1) through to28 (128), to span
the entire range between very fine granularity, where each increment operation is followed
by a context switch, and coarser granularity.PROCESSLENGTHwas varied between20 (1)
and28 (128), to experiment with both short processes that do not reuse cached data, and very
long processes that repeatedly access the same data.ARRAYSIZE was set to218 (262,144),
representing large data segments that cannot entirely fit in cache. Results are presented in
Figure 5. The different plots represent varying process lengths of 1, 4, 16 and 128, and trace
granularity values of 1 to 128 against execution time. The curves indicate execution time
for normaluni-smash (upper curve),unibatch-smash, shared-smash, smpbatch-smash
andwf-smash (lower curve). The results for the uniprocessor schedulers (uni-smash and
unibatch-smash) were taken utilising only one processor. The SMP scheduler (shared-
smash, smpbatch-smash andwf-smash) results utilised all four processors available on
the system.

For unibatch-smash, improvements of up to 100% have been observed for very fine
granularities when compared touni-smash. As expected, the difference in execution time
tails off asGRANULARITYincreases. ForPROCESSLENGTHfrom 16 upwards improve-
ments can be observed even atGRANULARITYof 64. It can be seen that as process length in-
creases, the improvements very quickly reach larger and more sustained levels, since caching
is better exploited. In fact, an improvement is seen immediately whenPROCESSLENGTH
is raised from 1 to 4. Further experiments, not shown in the graphs, demonstrate that im-
provements can even be seen at aPROCESSLENGTHof 2. These results indicate that on
uniprocessor machines, implicit context switching overheads due to cache misuse are signif-
icantly more pronounced for data sizes that do not fit in the cache.

Comparing the results of the three SMP schedulers for allPROCESSLENGTHs it can be
clearly noted that the performance ofshared-smash suffers when compared tosmpbatch-
smash andwf-smash. For aPROCESSLENGTHof 1, since none of the threads do not
benefit from cache re-use, the improved performance of the batch schedulers compared to
shared-smp is due mainly to the batching scheduler’s reduced contention for shared data
structures. For higher values ofPROCESSLENGTHthe improvement is more pronounced
since when scheduled on any of the SMP batch schedulers threads exploit the cache.

When comparing results of the SMP schedulers to the uniprocessor schedulers, we note
that for aPROCESSLENGTHof 1, no speedup is achieved by any of the SMP schedulers
up to a granularity of 128. Speedup is eventually achieved at higher granularities (not shown
in graph). In the case ofshared-smash, the main reason for poor performance is due to
contention on the run queue. In the case of the SMP batch schedulers, the initial lack of
speedup is due to the use of batches. Since the threads are short lived, not all processors
are serviced with batches constantly. When the maximum batch size (MAXBSIZE) is re-
duced, improvements would be seen at finer granularities, particularly forwf-smash. The
performance ofwf-smash compared tosmpbatch-smash is discussed at length in [17].
For largerPROCESSLENGTHvalues a marked improvement in speedup is clearly visible
for bothsmpbatch-smash andwf-smash due partially to cache exploitation and partially
to the reduction in contention for migration. Results forPROCESSLENGTHs of 16 and 128
demonstrate that both batch schedulers achieve super scalar speedup due to the added advan-
tage of exploiting the caches on each of the four processors. On the other hand,shared-
smash’s performance degrades even further when compared to the other SMP schedulers
due to the high contention for the shared run queue, further accentuated by the lack of cache
exploitation.



K. Debattista et al. / Cache-Affinity Scheduling for Fine Grain Multithreading 145

8 Conclusion and Future Work

We have conducted an investigation into the effectiveness of cache-conscious scheduling
using batches. The experimental results obtained indicate that a significant reduction in exe-
cution times can be gained through the use of such techniques.

However, further experiments with real applications are required to gather information
about performance under more realistic conditions. It should be noted that batch-based thread
scheduling as presented here may be subject to problems when the pre-set batch size limit is
greater than the total number of threads being executed in the application, since all threads
would be serviced by a single processor. While this can be advantageous in identifying
situations where parallel processing is not worth the effort, pathological cases may well occur
in specific applications. Automatic modification of the batch size limit could be envisaged,
whereby the batch limit is dynamically set to match the current application’s needs. At the
moment, threads are grouped into batches by locality and indirectly through communication,
so that threads created on a common processor are placed onto the same batch. An additional
grouping criterion could be based on the frequency of inter-thread communication or rely
on object-affinity [22, 23]. Furthermore, the application programmer could be given the
opportunity to manually specify viable thread groupings to override the automatic batching
arrangements adopted by the scheduler.

The investigations presented here fit into the wider context of a general purpose server-
side parallel processing system composed of a cluster of shared memory multiprocessors
with high speed user-level CSP communication over Gigabit Ethernet between nodes in the
cluster, as well as gigabit speed user-level TCP/IP connectivity to the outside world [24].
Many of the constituent components have already been developed or are at an advanced
stage of development.

References

[1] Anderson, T., Bershad, B., Lazowska, E. and Levy, H.The Performance Implications of Thread
Managment Alternatives for Shared-Memory Multiprocessors.In IEEE Transactions on Computers,
38(12):1631-1644, December 1989.

[2] Squillante M. and Lazowska E.Using Processor-Cache Affinity Information in Shared-Memory Multi-
processor Scheduling. IEEE Transactions on Parallel and Distributed Systems, 4(2):131-143, February
1993.

[3] Markatos, E. and LeBlanc, T.Load Balancing vs. Locality Management in Shared-Memory Multiproces-
sors.Technical Report 399, Computer Science Department, University of Rochester, October 1991.

[4] Markatos E. and LeBlanc T.Shared Memory Multiprocessor Trends and the Implications for Parallel
Program Performance.Technical Report 420, Computer Science Department, University of Rochester,
May, 1992.

[5] Markatos E. and LeBlanc T.Memory Conscious Scheduling in Shared-Memory Multiprocessors.Techni-
cal Report, Computer Science Department, University of Rochester, December, 1991.

[6] Vella, K. Seamless Parallel Computing on Heterogeneous Networks of Multiprocessor Workstations.
Ph.D. Thesis, University of Kent at Canterbury, December 1998.

[7] Valois, J.Lock-Free Data Structures.Ph.D. Thesis, Renesselaer Polytechnic Institute, New York, 1995.

[8] Michael, M. and Scott, M.Non-Blocking Algorithms and Preemption-Safe Locking on Multiprogrammed
Shared Memory Multiprocessors. Journal of Parallel and Distributed Computing, 1998.

[9] Herlihy M. Wait-Free Synchronization.ACM Transactions on Programming Languages and Systems,
11(1):124-149, January 1991.



146 K. Debattista et al. / Cache-Affinity Scheduling for Fine Grain Multithreading

[10] Eager, D., Lazowska, E. and Zahorjan, J.The Limited Performance Benefits of Migrating Active Processes
for Load Sharing.In Proceedings of ACM SIGMETRICS, May 1988.

[11] Bellosa, F.Memory conscious scheduling and processor allocation on NUMA architectures.Technical
Report TR-14-06-95, Computer Science Department, University of Erlangen-Nurnberg, May 1995.

[12] Cordina, J.Fast Multi-Threading on Shared Memory Multiprocessors.B.Sc. I.T. Final Year Project Re-
port, Department of Computer Science and Artificial Intelligence, University of Malta, May 2000.

[13] Vella, K. and Welch, P.CSP/occam on Shared Memory Multiprocessor Workstations.In Proceedings of
WoTUG 22: Architectures, Languages and Techniques, Volume 57 of Concurrent Systems Engineering,
IOS Press, April 1998.

[14] Engler D., Andrews R. and Lowenthal D.Filaments: Efficient Support for Fine-Grain Parallelism.Tech-
nical Report TR 93-13, Department of Computer Science, The University of Arizona, February, 1994.

[15] Randall, K.Cilk: Efficient Multithreaded Computing.Ph.D. Thesis, Massachusettes Institute of Technol-
ogy, June 1998.

[16] Arora, N., Blumofe, R. and Plaxton, G.Thread Scheduling for Multiprogrammed Multiprocessors.ACM
Symposium on Parallel Algorithms and Architectures, pages 119-129, 1998.

[17] Debattista, K.High Performance Thread Scheduling on Shared Memory Multiprocessors.M.Sc. Disser-
tation, University of Malta. February 2001.

[18] Boosten, M., Dobinson, R.W. and van der Stok, P.D.V.Fine-Grain Parallel Processing on Commodity
Platforms.Volume 57 ofConcurrent Systems Engineering, pages 263-275. IOS Press, April 1999.

[19] Moores, J.CCSP - A portable CSP-based run-time system supporting C and occam.Volume 57 ofCon-
current Systems Engineering Series, pages 147-168, IOS Press, April 1999.

[20] Hoare, C.A.R.Communicating Sequential Processes.Prentice-Hall, 1985.

[21] Debattista, K. and Vella, K.High Performance Wait-Free Thread Scheduling on Shared Memory Mul-
tiprocessors.In The 2002 International Conference on Parallel and Distributed Processing Techniques
and Applications, Las Vegas, NV. June 2002.

[22] Chandra, R., Gupta, A. and Hennessy, J.Data locality and load balancing in COOL.In Proceedings of
the Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, May, 1993.

[23] Fowler R. and Kontotnanassis L.Improving Processor and Cache Locality in Fine-Grained Parallel
Computations using Object-Affinity Scheduling and Continuation Passing.Technical Report TR411, De-
partment of Computer Science, University of Rochester, 1992.

[24] Cordina, J.High Performance TCP/IP for Multi-Threaded Servers.M.Sc. Dissertation, University of
Malta. March 2002.


