
Towards an Information Driven Software Development

Life Cycle

Dr. Ernest Cachia, Mr. Mark Micallef

Department of Computer Science, Faculty of ICT, University of Malta, Msida, Malta

Abstract - Abstract--- Although software engineering has

matured greatly over the years, a large number of ICT

projects continue to fail[1][2] . Studies continue to identify

non-technical issues such as poor communication, shifting

requirements and poor executive involvement as the main

causes of these failures. This paper identifies such well known

causes and poses the question as to why currently available

software development life cycles fall short of dealing with

them. Drawing on results from a research exercise carried out

by the authors, a link is made between the quality of

information used throughout the development life cycle and

the quality of the resultant product. Consequently, it is

proposed that organisations knowingly or unknowingly

maintain a knowledge context and the quality of this

knowledge context has direct impact on product quality.

Furthermore, it is proposed that a software development life

cycle be developed in which participants do not focus

explicitly on the traditional phases of software development.

Rather, a conscious decision is made to focus instead on

information which is being created, manipulated and utilised

throughout the lifetime of a product. If a link can be

established between the quality of the knowledge context and

the quality of a finished product, then it is sound to argue that

if one nurtures a high quality knowledge context, a high-

quality product will naturally follow.

Keywords: Quality Assurance, Software Development Life

Cycles, Software Engineering

1 Introduction

 It could be said that the research area of development

life cycles is indeed mature. Since the early days of software

engineering, this area has seen the development of a number

of models and methodologies ranging from the generic

waterfall model [3] to the more recent agile techniques [4][5].

Different approaches function to varying degrees of success

depending on the scenario at hand. However, given that ICT

projects persistently continue to be late and even of

insufficient quality [1], one is compelled to consider the

possibility that the software engineering community may have

taken a wrong turn at some point. One must explore the

possibility of developing an altogether different way of

thinking by which high quality systems could be engineered

within budget and on time.

Traditionally, a software development life cycle has been

perceived as a structured process imposed on the development

of a product. In so doing, the development process focuses

explicitly on the product thus putting it through a number of

phases before finally delivering it in its finished form. At its

core, a particular life cycle differs from others in the way it

guides a product through transitions between these different

phases. Throughout this paper, such life cycles will be

referred to as product-oriented life cycles. Due to the fact that

the primary goal is usually that of delivering a product, the

thinking behind product-oriented life cycles inherently seems

to make sense. However, perceiving software engineering as

simply being all about the product may be misleading.

Software is after all, an intangible artifact conceived entirely

from knowledge and at its core, exists solely to facilitate the

use of information and knowledge. Furthermore, the nature of

modern software engineering environments gives rise to a

whole new genre of problems which directly or indirectly

affect product quality and project timeliness. Due to issues

such as high expectations of software, constricting time lines,

increased staff turnover, engineers' intra-project mobility and

the dynamic nature of all information related to a product,

problems such as cognitive overload, information anxiety and

duplication of effort amongst others have been observed.

These problems are discussed further in section 2 but are

being mentioned here to highlight a problem which is not

explicitly dealt with by product-oriented development life

cycles.

In this paper, it is being proposed and hypothesized that every

organization, knowingly or unknowingly maintains a

knowledge context. We define this knowledge context as

being the knowledge, technical or otherwise, held by any of

the organization's stakeholders at a particular point in time.

It is being proposed that the quality of a product is directly

related to the quality of the knowledge context used to create

it. Consequently, this knowledge context should be nurtured

and maintained so as to ensure the timely delivery of high

quality products. Finally, it is being proposed that a new type

of software development life cycle be developed whereby the

focal point is the development and maintenance of a high

quality knowledge context. If the proposals put forward here

are true, it is felt that a high quality product will naturally

follow.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by OAR@UM

https://core.ac.uk/display/83021558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.researchgate.net/publication/242350998_Extreme_Programming_Explained_Embrace_Change?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==

2 Modern Software Engineering

Environments

 This section describes typical characteristics of the

modern work place which give rise to problems effecting

project timeliness and/or product quality. The problems

described here tend to go beyond the problem domains

handled by traditional development life cycles and serve to

illustrate the benefits of maintaining a high quality knowledge

context within an organisation.

Over the years, expectations of ICT systems have gone from

storage and retrieval of data to complex functionality which

automates and complements business processes in an attempt

to gain a competitive edge. Due to market pressures, this

increasing functionality is being demanded in shorter spans of

time [6]. Whereas in the past it may have been common to

have software development projects go on for over a year,

today delivery dates of between four to twelve weeks are

more common place [6]. Compounding this increased

complexity and time restrictions, modern systems are also

highly susceptible to an onslaught of external factors

manifested in the form of changing requirements, conflicting

decisions, changing directions, experimental technologies, and

so on. In essence, the software engineering process no longer

exists in a convenient bubble which enables engineers to

ignore an evolving world whilst engineering a product which

caters for a freeze-frame of that dynamic world.

Putting technical merits aside for the time being, this constant

onslaught of new or changing information in a diversity of

formats from across the spectrum of quality has lead to the

observation of cognitive overload in the work place [7]. A

study amongst Fortune 1000 workers indicates that workers

now work in environments of increased complexity, saturated

with multi-tasking, interruption, and profound information

overload [8]. A number of studies claim that consequences of

such environments include information anxiety, social tension,

job dissatisfaction, ill health, increased staff turnover, and

consequently poor quality of work [8].

Another characteristic of the software engineering

environment resulting from all this is the increase in inter-

project mobility. An engineer can expect to be shifted

between projects on a regular basis depending on a number of

factors such as customer priorities, project schedules, funding

and so on. When an engineer switches projects in this way,

she needs time to adjust to the new context. This may involve

familiarising herself with the project, technologies being used,

design architectures being utilised, decisions which were

taken, and so on. During this adjustment period, the engineer

may also distract other employees from their work because of

her need to ask questions and understand project-specific

issues. All being said, one realises that there is a certain

amount of time after a switch during which the engineer is

minimally productive at best or counter productive to the

team's efforts at worst. Given the shortening project

schedules, this is not a desirable situation.

A somewhat related concept refers to staff turnover, a

recurring concern with ICT companies where annual turnover

rates can rise above 10% [9]. With this regular flow of staff

leaving and new staff joining, one's challenge is two-fold.

Firstly, one must somehow retain the knowledge held by

departing staff for use in current and future projects.

Secondly, one needs a strategy for transferring all required

knowledge to new staff as quickly and effectively as possible

so as to enable them to be productive.

Finally, we examine a situation stemming from the

independant way in which teams within the same company

seem to operate. It is not uncommon for a development team

to spend a considerable amount of time (typically days)

solving a problem with (for example) a third-party component

only to realise a few weeks later that the same problem had

already been solved by another team in the same company.

This discovery would understandably result in frustration on

the engineers' side for having wasted time reinventing the

wheel, as well as on the management's side due to the waste in

time and money that unnecessary duplication of efforts

causes.

With all this information and knowledge being created,

modified, used, and retired on a daily basis, one needs to

develop ways to effectively manage this information and

focus it towards achieving the goals at hand. It is the opinion

of the authors of this paper that the formalisation of the

concept of a knowledge context would be a concrete first step

in dealing with these situations. Take the example whereby

engineers are likely to be shifted around projects regularly. In

this situation, the organisation in question would do well to

somehow ensure that all engineers had a certain minimal

knowledge about most (if not all) ongoing projects in the

company. If this was achieved, switching engineers between

projects would be smoother. Similarly, the concept of

duplication of work would be virtually eliminated if an

engineer could be notified that the problem which he is

currently working on has already been solved and was

somehow pointed to the solution.

When considering the whole concept of knowledge context

and how it may be used, one is undoubtedly inundated with

questions about how a number of issues would be solved. For

example, in the case of duplicated effort, one must certainly

be aware of the difficulties inherent in keeping everyone

informed about everything all the time. This would surely

only compound the problem of cognitive overload. At this

point, the scope is to put forward the concept of the

knowledge context and the benefits which its formalisation

would bring. It is beyond the immediate scope to delve into

the details of how to actually build, maintain and use such a

context.

https://www.researchgate.net/publication/220724149_Towards_a_RAD_Framework_for_E-Commerce_Systems?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==
https://www.researchgate.net/publication/220724149_Towards_a_RAD_Framework_for_E-Commerce_Systems?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==
https://www.researchgate.net/publication/236005269_A_Few_Thoughts_on_Cognitive_Overload?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==
https://www.researchgate.net/publication/236005269_A_Few_Thoughts_on_Cognitive_Overload?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==
https://www.researchgate.net/publication/289771149_Towards_an_optimal_resolution_to_information_overload_An_infomediary_approach?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==
https://www.researchgate.net/publication/221644075_Internal_labor_market_strategies_and_turnover_of_information_technology_professionals?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==

3 The Knowledge Context

 In section 1, a knowledge context is defined as being the

knowledge, technical or otherwise, held by any of the

organisation's stakeholders at a particular point in time. This

definition, although concise, illustrates the importance of

three particular issues. Firstly, it puts forward the concept that

all relevant knowledge, be it technical or not, is important to a

project's success. That is to say that although sound technical

knowledge (specifications, design, programming language

knowledge, etc) is essential when delivering quality software,

non-technical information is just as essential. Examples of

non-technical knowledge include things such as the client's

future business aspirations, legislation relating to the product

being developed, staff vacation plans and so on. Secondly, the

definition makes reference to all stakeholders of the company.

This is important because communication problems have been

shown to considerably influence the success of a project [10].

Therefore, there needs to be a constant flow of relevant

information between all levels of the organisation's hierarchy

as well as any external stakeholders. Finally, the definition

makes reference to the temporal aspect of knowledge and

information. Different information may be required by the

same person at different points in time. The temporal

information requirements may be as obvious as the engineer

needing specifications during the design phase and needing

design documents during the development phase. However, it

is often the case that one may need access to the same

knowledge albeit it from a different perspective or maybe

using information with different characteristics (finer

granularity, different media, etc). People will accumulate a

certain level of knowledge over time and placing the right

information in the right peoples' hands at the right time will

facilitate better product quality in all its aspects.

At this point, it is useful to explicitly distinguish between

knowledge and information. This is necessary because these

two terms are sometimes used interchangeably and the

difference between the two is key to the concepts presented in

this paper. Knowledge refers to one's acquaintance with facts,

principles, concepts, theories and so on. Information on the

other hand, refers to the transfer of knowledge in some way,

shape or form.

4 Knowledge used in Software

Engineering

 In order to delve deeper into the abstract concept of a

knowledge context, the authors of this paper carried out a

research exercise with the participation of development

professionals, management professionals and entrepreneurs

who have had experience commissioning ICT systems. The

scope of this exercise was to identify information which is

used throughout software development, classify it into a

number of manageable knowledge areas and discuss the

impact which the quality of this information would have on a

finished product.

4.1 Research Methods

 The research exercise consisted of a number of group

discussion sessions with participants followed up by a

research questionnaire resulting from the sessions. The

questionnaire was deemed important because it merged the

ideas resulting from the separate group sessions and also

helped lay the foundations for future development of metrics

and measures related to the subject at hand.

The face-to-face sessions involved the participation of five

groups, each consisting of four participants. The four

participants consisted of two development professionals, one

management professional and one entrepreneur. The reason

for having two development professionals in a group hinges

on the fact that such professionals are likely to specialise in

different areas of software development and may require

different information. For example, a technical architect

would probably require and use different information than that

which a test engineer might utilise. Each group session lasted

around one hour and consisted of three parts. The first part

consisted of an introduction to the research being carried out

and how the session would proceed. Following that, a brain

storming session was held in order to identify what knowledge

is required during a project's lifetime. Finally, a discussion

was held in order to identify what effect particular items of

knowledge or information have on the quality of a developed

product.

Following the face-to-face sessions, results were analysed and

a questionnaire was put together for participants to answer.

This questionnaire consisted of questions targeted at

identifying what effect (if any) the quality of particular

information would have on the quality of the resulting

product.

4.2 Research Results

 The group discussions identified thirty-two items of

knowledge which participants claimed influence a product's

development. It is acknowledged that some of these items may

overlap and that this number may fluctuate from one

organisation to another. It was also noted that some of the

items mentioned were relevant only in particular development

methodologies. For example, burndown charts are used in the

Scrum development process. Nevertheless, the scope of this

research was to obtain an adequate sample of different

knowledge items which influence a product's development.

The items are listed below in alphabetical order.

Table 1 – Information used in Software Engineering

Bug Reports Relevant Legislation

Burndown Charts Requirements

Business Studies Risk Assessments

Client Profiles Source Code

Company Goals Specifications

Company Policies Spring Backlog

Decisions Staff Morale

Designs Staff Profiles

Feasibility Studies Staff Project Allocation

Hardware Allocation Staff Sickness Tendencies

Peer Review Results Staff Vacation Plans

Product Backlog Static Code Analysis

Results

Project Budgets System Architecture

Project Status Technical Issues and

Solutions

Project Timelines Test Plans

Quality Metric Readings Training Needs

After further discussion and analysis, it resulted that these

knowledge items could each be placed in one of three

categories. The first category is the Technical Knowledge

category. This refers to knowledge which is related to the

technical aspect of building a software product. Examples

from this category include product requirements, architectural

designs, test plans, metrics readings, and solutions to past

technical problems. Thirteen (41%) of the items identified fell

into this category.

The second category is the Resource Knowledge category and

refers to knowledge related to the resources required to carry

out a project. This includes knowledge such as staff training

needs, staff project allocation, staff vacation plans, hardware

availability, staff tendency to be sick, and so on. Ten (31%) of

the items identified were classified as being in this category.

Finally, a third category emerged and was named the

Constraining Knowledge category. As the name suggests,

knowledge in this category would lead to stakeholders having

to make decisions and take actions within certain boundaries,

even if this sometimes means going against sound technical

principles. Some examples of knowledge in this category

include company goals and policies, decisions, time lines,

market status, legislation and project budgets. Nine (28%) of

the identified items were deemed to be in this category.

5 Information and product quality

 One of the original goals of the research leading up to

this paper was that of establishing a link between the quality

of information used throughout product development and the

quality of the resulting product. Results from the research

exercise discussed in section 4.1 indicate that this is indeed

the case. At this point, our research is only concerned with

linking information quality to product quality. Although a

future research goal would involve quantifying what aspects

of product quality are influenced by particular aspects of

information quality, this is not yet within our scope. As such,

instead of analysing each individual knowledge item and the

information associated with it, it suffices to analyse the three

knowledge categories identified in section 4.2. This section

categorised all knowledge information as being technical,

resource-related or constricting. Each of these categories is

examined in turn below.

Participants in our research exercise claimed the quality of the

technical information used throughout a development process

was paramount to the resulting solution. It may sound obvious

that, for example, creating code based on a design which was

in turn based on conflicting and inaccurate specifications will

result in a product of questionable quality. However,

participants highlighted a number of interesting situations

which may not seem so obvious. One such example involved

a team encountering a problem with a third-party library used

to develop a product. This problem was a show-stopper and

took three days to solve. Considering that the team was

working within a twenty day iteration, this resulted in the loss

of 15% of the total iteration time. During a postmortem

meeting, it was frustrating for the team to discover that one of

the other teams said they had encountered and solved the

same problem in a previous project. Had there been adequate

knowledge transfer between teams, the 15% of iteration time

spent fixing the problem would have instead gone towards

adding more functionality and/or improving overall quality.

With regards to resource-related information, opinions

initially varied as to the actual impact this had on product

quality. Beyond staff-project allocation, participants seemed

to be used to a fire-fighting approach when it came to

resources. If someone took some unplanned days off or was

out sick, the other team members would cover for him or the

person involved would work late nights to make the deadlines

upon returning to work. The same approach seems to be

applied to hardware availability. If for example an important

test server develops a fault, participants claimed they simply

do the best with whatever resources were left until the server

was fixed. These arguments seem to indicate that human

resourcefulness and sheer effort makes the need for high-

quality resource-related information unnecessary. However,

further discussion revealed otherwise. It transpired that in the

case of the sick engineer who worked late nights in order to

make up for lost time, the resulting module for which that

engineer was responsible for a large number of problems

discovered by the testing team. Similarly, in the case of a test

server failing, this sometimes resulted in a product release

being delayed or products being released without adequate

testing. Eventually, participants agreed that having high-

quality resource-related information at hand would facilitate

better project planning which in turn would have a positive

impact on product quality.

Finally, issues related to constraining information are

analysed. In this regard, participants acknowledged that not

having the right information at hand in this area would affect

product quality although there seemed to be a certain aura of

helplessness in the discussion and scenarios put forward. One

participant complained that he had worked for a company

which kept changing the priority of projects which were

worked upon. Consequently, she was forced to switch

between projects on a very regular basis. Project priorities are

a result of company goals and company policies, both of

which were identified as being types of constricting

information. This is because even though on a technical or

project management level, it makes more sense to finish an

item of work before moving on to the next, if project priorities

change you may be constricted to do otherwise. Another

participant described a scenario where a product had to be

considerably restructured because of a change in financial

legislation. It turns out that this change in legislation had been

announced more than a year before it actually came into

effect. Had this knowledge been available to engineers, the

product would have been done right the first time round.

From the research exercise carried out, it is clear that the

presence or absence of required information with the required

level of quality will impact the quality of the finished product.

Hence a development process should ensure that all

stakeholders have the all the information, with the right

characteristics (quantity, representation, and so on) at the right

time. The following section identifies a number of challenges

involved when maintaining a knowledge context in this

regard.

6 Challenges involved when maintaining

a Knowledge Context

Having shown the need for development processes to

maintain a knowledge context within an organisation, it is

worth exploring what challenges one is likely to face when

attempting this. Seven key challenges where identified and are

discussed in this section. Given that systems grow

increasingly larger in terms of the functionality they offer, the

amount of information associated with such systems is also

bound to grow. These circumstances, along with the temporal

properties of information which were discussed in section 2,

leads to the natural conclusion that electronic tool support

would be needed when it comes to maintaining a knowledge

context. This immediately gives rise to the challenges of how

one would capture and manage increasing amounts of

dynamic information relating to a project and the organisation

as a whole. Typically, a chunk of information would need to

be captured, associated or related to other information and

somehow tagged with attributes so that it can be easily

accessed in future.

Even if one develops a way of capturing and managing

information, there is still a matter of quality which needs to be

addressed. Before one allows a chunk of information to

somehow influence the development of a product, one needs

to be sufficiently sure of its quality. Lee et al [11] identified

fourteen attributes relating to the quality of information. The

third challenge surfaces here. How does one evaluate the

quality of information in a reliable manner without being

overly intrusive? Although knowing the quality of information

is important, one must strike a balance whereby information

quality can ascertained with a reasonable degree of certainty

without being counter productive to development effort. On a

related note, it would be desirable to quantitatively link

information quality to product quality. That is to say, by

evaluating the quality of an organisation's knowledge context

one would be able to reason about, or even measure the

quality of a product which is being developed at a particular

point in time. The establishment of such a link would enable

an organisation to take corrective measures from a knowledge

perspective should the product quality not be desirable.

Finally we identify three challenges related to the temporal

and dynamic quality of information. Over time, certain events

will occur which will result in one or more people needing

particular information. Such events may include a particular

milestone being reached, a change in requirements, a change

in relevant legislation, someone leaving the company, and so

on. The challenges here refer to knowing when a particular

information asset is needed, knowing who needs it and

knowing what characteristics it needs to exhibit. The latter

requirement is important because the same body of knowledge

may be represented in different ways. Furthermore, the chosen

representation has the potential to positively or negatively

influence the effective use of that knowledge. Representations

of a body of knowledge may differ in a number of ways such

as format, level of abstraction, type, and so on.

7 Product Focused Models

 The reasoning behind product focused development life

cycles is indeed logical and, at face value, completely correct.

In such models, the emphasis is on building a product of a

certain level of quality, usually within a stipulated time frame.

Typically, a product would go through a number of phases

(specification, design, development, testing, etc) before finally

being delivered. The main difference between different main

stream development life cycles is the way the product

transitions between these phases. In fact, existing life cycles

are classified into four groups: sequential, incremental,

evolutionary, and agile. The naming of these classifications

illustrates the way in which a product will be built if it were to

be developed using a life cycle in a particular group. Initially,

this makes perfect sense. A software development team is in

fact meant to develop software products. Hence it should

follow that such teams follow a process which is focused on

delivering products. However, having identified the need for a

knowledge context to be maintained by an organisation, how

well do existing development life cycles actually cope with

the challenges identified in section 6. Having conducted

research into a number of development life cycles, the authors

of this paper conclude that these challenges are not

comprehensively addressed by mainstream models. Even

though more recent life cycles such as extreme programming

(XP) [4], Scrum [5] and DSDM [12] cushion the effect

changing information by introducing iterations or sprints, they

still do not address most of the challenges identified in section

6. Of all existing life cycles, XP comes closest to achieving

what we are looking for. It acknowledges the existence of

institutional knowledge and promotes communication in

feedback so as to facilitate its dissemination among members

of a development team [4]. However, the development team

by no means constitutes all stake holders of an organisation.

Also, although the constant communication and feedback loop

will likely have a positive effect on maintaining a knowledge

context, it does not protect stakeholders against cognitive

overload and other pitfalls identified in section 2. That being

said, one is compelled to explore the possibility of there being

a better way to handle the challenges presented when

maintaining an information context.

8 The Information-Driven Approach

 It is being proposed that an information driven software

development life cycle be developed. This life cycle should

effectively tackle the challenges identified in section 6 and

produce a high-quality knowledge context as well as a high

quality finished product. Broadly speaking, the life cycle

should provide capabilities in two areas: Knowledge capture

and evaluation and Knowledge utilisation. The knowledge

capture and evaluation capabilities involve capturing real-

world knowledge, relating it to other knowledge, evaluating

its quality and storing it for later use. This aspect of an

information driven life cycle has the potential of being tedious

and prone to error so care must be taken to devise techniques

which utilise automation as much as possible and minimise

the risk of human error. Once knowledge of known quality is

stored, the life cycle will utilise it over time to achieve the

development of a high quality product. This will involve

disseminating the information to people who need at the time

they need it, monitoring the quality of the information as it

changes over time, allowing querying of information. Finally

it would be useful to be able to predict product quality based

on the quality of the information being used by the

development process. It is therefore perceived that the life

cycle consist of the components shown in the figure 1.

It is the intention of the authors of this paper to carry out

further research in this area so as to develop such a life cycle.

Preliminary work carried out in this area suggests that such a

life cycle will require interdisciplinary contributions from

areas such as computer science, psychology and educational

theory.

Figure 1 - Proposed Components of Life Cycle

9 References

[1] Standish Group International, The Chaos Report, 1994

[2] Jones A., Williams L., Public Services and ICT - Where

next for the transformational government?, Reasearch Report

for The Work Foundation, 2006

[3] Royce W.W., Managing the Development of Large

Software Systems: Concepts and Techniques, Proc.

WESCON, 1970

[4] Beck K., Extreme Programming Explained: Embrace

Changee, Addisson-Wesley, 1999

[5] Takeuchi H., Takeuchi I., The New New Product

Development Game, Harvard Business Review, January 1986

[6] Cachia E., Micallef M., Towards a RAD Framework for

e-commerce systems, Proceedings of the International

Conference on Web Information Systems, 2006

[7] Ho J., Tang R., Towards an optimal resolution of

information overload: an infomediary approach, Proceedings

of the 2001 International ACM SIGGROUP Conference on

Supporting Group Work, 2001

[8] Kirsh, D. A Few Thoughts on Cognitive Overload.

Intellectica, 2000

https://www.researchgate.net/publication/220724149_Towards_a_RAD_Framework_for_E-Commerce_Systems?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==
https://www.researchgate.net/publication/220724149_Towards_a_RAD_Framework_for_E-Commerce_Systems?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==
https://www.researchgate.net/publication/220724149_Towards_a_RAD_Framework_for_E-Commerce_Systems?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==
https://www.researchgate.net/publication/236005269_A_Few_Thoughts_on_Cognitive_Overload?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==
https://www.researchgate.net/publication/236005269_A_Few_Thoughts_on_Cognitive_Overload?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==
https://www.researchgate.net/publication/242350998_Extreme_Programming_Explained_Embrace_Change?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==
https://www.researchgate.net/publication/242350998_Extreme_Programming_Explained_Embrace_Change?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==
https://www.researchgate.net/publication/242350998_Extreme_Programming_Explained_Embrace_Change?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==
https://www.researchgate.net/publication/242350998_Extreme_Programming_Explained_Embrace_Change?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==
https://www.researchgate.net/publication/289771149_Towards_an_optimal_resolution_to_information_overload_An_infomediary_approach?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==
https://www.researchgate.net/publication/289771149_Towards_an_optimal_resolution_to_information_overload_An_infomediary_approach?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==
https://www.researchgate.net/publication/289771149_Towards_an_optimal_resolution_to_information_overload_An_infomediary_approach?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==
https://www.researchgate.net/publication/289771149_Towards_an_optimal_resolution_to_information_overload_An_infomediary_approach?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==

[9] Ang S., Slaughter S., Turnover of information

technology professionals: the effects of internal labor market

strategies, ACM SIGMIS Database, Volume 35 Issue 3, 2004

[10] DeMarco T., Lister T., Peopleware - Productive Projects

And Teams, 1999

[11] Lee et. al., AIMQ: a methodology for information

quality assessment, Information and Management Journal

(Issue 40), Elsevier, 2002

[12] Stapleton J., DSDM: Business Focused Development,

Pearson Education, 2003

View publication statsView publication stats

https://www.researchgate.net/publication/221644075_Internal_labor_market_strategies_and_turnover_of_information_technology_professionals?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==
https://www.researchgate.net/publication/221644075_Internal_labor_market_strategies_and_turnover_of_information_technology_professionals?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==
https://www.researchgate.net/publication/221644075_Internal_labor_market_strategies_and_turnover_of_information_technology_professionals?el=1_x_8&enrichId=rgreq-6c8d46fb0a699940097d346d1f65f656-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYxMDY0MTtBUzoxMDMxMzY2MDE1NzU0MzRAMTQwMTYwMTA5MDg1NA==
https://www.researchgate.net/publication/221610641

