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Abstract We consider the numerical solution, by finite differences, of second-order-in-time stochastic par-
tial differential equations (SPDEs) in one space dimension. New timestepping methods are introduced by
generalising recently-introduced methods for second-order-in-time stochastic differential equations to multi-
dimensional systems. These stochastic methods, based on leapfrog and Runge-Kutta methods, are designed
to give good approximations to the stationary variances and the correlations in the position and veloc-
ity variables. In particular, we introduce the reverse leapfrog method and stochastic Runge-Kutta Leapfrog
methods, analyse their performance applied to linear SPDEs and perform numerical experiments to examine
their accuracy applied to a type of nonlinear SPDE.
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1 Introduction

The dynamics of stochastic systems that are second order in time depends on the damping parameter, η.
As η → 0, the system exhibits properties similar to those of Hamiltonian systems. As η → ∞, the system
behaves similar to one that is first order in time. With the correct scaling of noise intensity, however, the
stationary density is independent of η. In the case of scalar second order stochastic differential equations
with additive noise and a damping term, it is possible to design numerical methods (Wang and Skeel, 2003;
Schurz, 1999, 2002; Burrage and Lythe, 2009; Voss, 2012) with some desirable properties, described below,
in all ranges of values of η (Burrage et al., 2007). While the analysis of these methods was given only in the
linear case, these properties were shown to hold numerically for nonlinear problems as well. In this paper,
we consider how to extend these ideas to second-order-in-time Stochastic Partial Differential Equations
(SPDEs) in one space dimension with additive space-time white noise.

In one-degree-of-freedom linear systems, it is possible to devise timestepping methods with one Gaussian
random variable per timestep, that have no systematic error in the position variable, and with a simple
expression for the error in the velocity variable as a function of ∆t (Burrage and Lythe, 2009). New methods
obtained from the analysis of linear equations were observed to perform well when applied to nonlinear
systems (Burrage and Burrage, 2012); whether they cope better with underdamped or overdamped systems,
or equally-well with any value of damping, can be understood from the dependence of the error in linear
systems on η. We shall follow this methodology here, producing timestepping methods for solution of systems
of stochastic differential equations, using one Gaussian random variable per degree of freedom per timestep,
from analysis of corresponding linear systems.

We shall consider the following second-order-in-time SPDE, known as φ4 or Allen-Cahn (Habib and
Lythe, 2000; Lythe and Habib, 2001, 2006; Bettencourt et al., 1999; Castro and Lythe, 2008; Katsoulakis
et al., 2007), that exhibits coherent structures called kinks:

∂2

∂t2
φt(x) + η

∂

∂t
φt(x) =

∂2

∂x2
φt(x) + f(φt(x)) + (2ηΘ)

1

2 ξt(x), (1)
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with periodic boundary conditions on [0, l]. The last term in (1) is space-time white noise:

IE(ξt(x)ξt′(x
′)) = δ(x− x′)δ(t− t′).

A configuration is a continuous function of x, φt(x), obtained by fixing t in one realization. At most values
of x, φt(x) is close to either −1 or +1. A narrow region where the configuration crosses through 0 from
below is called a kink; one where it crosses from above is called an antikink. In our scaling, the width of a
kink is order 1 and the spatial domain is [0, l]; it is also possible to scale the width of a kink to ǫ on the
spatial domain [0, 1](Shardlow, 2000; Kohn et al., 2006; Katsoulakis et al., 2007). Systematic computational
studies of the SPDE require low temperatures in order to unambiguously identify kinks (Habib and Lythe,
2000; Lythe and Habib, 2006); they are computationally costly because the steady-state density of kinks
decreases exponentially with temperature (so that l must be large) and the equilibration time increases
exponentially with temperature.

After a sufficiently long time, in both the continuum SPDEs and the discrete system, a statistically-
steady state is attained and maintained by a balance between continual nucleation of new domains and the
diffusion and annihilation of existing ones (Lothe and Hirth, 1959; Büttiker and Landauer, 1979; Büttiker
and Christen, 1995; Habib and Lythe, 2000; Maier and Stein, 2001; Berglund and Gentz, 2009). Many
steady-state quantities, such as the mean number of kinks per unit length, can be calculated from the
invariant density of the SPDE, by evaluating the partition function (Seeger and Schiller, 1966; Scalapino
et al., 1972; Alexander and Habib, 1993). Further insight has recently been obtained by demonstrating the
equivalence between the invariant density of paths of the SPDE, on the spatial domain, and the density of
paths of a suitable bridge process (Stuart et al., 2004; Reznikoff and Vanden-Eijnden, 2005; Weber, 2010).

2 Numerical solution

Consider the numerical solution of (1) in one space dimension (Walsh, 1986; Kunita, 1997; Prato and
Zabczyk, 1992; Prévôt and Röckner, 2007; Jentzen and Kloeden, 2009, 2011; Kloeden et al., 2011). We are
interested in the correlation functions

cq(x) = lim
t→∞

IE(φt(x0)φt(x0 + x)) and cp(x) = lim
t→∞

IE(
∂φt

∂t
(x0)

∂φt

∂t
(x0 + x)).

Note that cq(x) and cp(x) are independent of x0 and symmetric functions of x, taken modulo [0, l]. In a
numerical solution, cq(x) and cp(x) are measured by choosing one or more x0 and recording numerical means
over a long realisation.

The numerical solution of the SPDE (1), using the finite-difference approximation, gives, via the Method
of Lines applied to the spatial operator and the Brownian sheet, a set of N coupled stochastic differential
equations (Gyongy, 1998, 1999; Bettencourt et al., 1999):

dXt =INVtdt

dVt = − ηINVtdt+ INf(Xt)dt+ kCNXtdt+ ǫdWt,
(2)

where Xt and Vt are IRN -valued random variables, written as N×1 column vectors, IN is the N-dimensional
identity matrix and W = (W(1), . . . ,W(N))T, a column vector of N independent Wiener processes. The
parameters k, N , and ǫ are related to ∆x, l and Θ by

k = ∆x−2, N =
l

∆x
and ǫ2 =

2ηΘ

∆x
.

The N ×N symmetric matrix CN is the discretised Laplacian

CN =

0

B

B

B

B

B

B

B

B

@

−2 1 0 . . . 1
1 −2 1 0 . . .

0 1 −2 1
. . .

0 . . . 1 −2 1
1 0 . . . 1 −2

1

C

C

C

C

C

C

C

C

A

.

The limit N → 0 corresponds to the SPDE limit ∆x → 0. We typically use values of N of order 105. At
finite ∆x, the sets of random variables

Xt =

0

B

@

Xt(1)
...

Xt(N)

1

C

A
and Vt =

0

B

@

Vt(1)
...

Vt(N)

1

C

A
,
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Fig. 1 Three numerical velocity-velocity correlations: the mean-square at one point in space, cp(0), the product at neigh-
bouring sites, cp(∆x), and the product at a separation of two sites, cp(2∆x). The SPDE is solved using the leapfrog (leap),
reverse leapfrog (RL) and three-stage Runge-Kutta leapfrog (RKL3) methods, with η = 1.0, Θ = 0.2 and ∆x = 0.4. The
exact results are shown as dotted lines.

representing “position” and “velocity”, provide an approximation to φt(i∆x) and ∂φ
t

∂t (i∆x), i = 1, 2 . . . , N .
We shall study timestepping methods that produce approximate solutions of (2), seeking accurate correlation
functions for all values of η.

This work can be viewed as the extension, to N degrees of freedom, of recent results for the one-degree-of-
freedom case. There, we considered (Burrage et al., 2007; Burrage and Lythe, 2009) second-order differential
equations of the form ẍ = f(x) − ηẋ+ ǫξ(t), representing the motion of a particle subject to deterministic
forces f(x) and random forcing ξ(t),where IE(ξ(t)ξ(t′)) = δ(t− t′). The amplitude of the random forcing, ǫ, is
related to the temperature Θ and damping coefficient η by the fluctuation-dissipation relation ǫ2 = 2ηKΘ,
where K is Boltzman’s constant. The deterministic force defines a potential function U(x) via f(x) = −U ′(x).

Motivating examples Our main example will be the case f(x) = x − x3. The effects of finite difference
approximation are most easily explained in the case of the velocity-velocity correlations, cp(x). In the exact
solution of (2),

cp(x) =

8

<

:

0 x 6= 0

Θ

∆x
x = 0.

(3)

As long as a stationary density exists, the form (3) does not depend on f(x) and is exact even when ∆x 6= 0.
In Fig. 1, numerically-compiled averages of the velocity correlation function are displayed at three values

of x. Each dot is compiled from one numerical realisation, with N = 4 × 105, by averaging over samples
taken once per time interval at times up to t = 4 × 105. The value of cp(0) obtained at finite ∆t differs
from the exact value; the Runge-Kutta Leapfrog method shows the best convergence properties (left panel).
At finite ∆t, similarly, numerical mean values cp(i∆x), i = 1, 2, . . . are not, in general, zero. One property
of the reverse leapfrog method is that cp(i∆x), i = 2, . . . is zero for linear systems and close to zero for
nonlinear systems (right panel). The method also has the best convergence properties in cq(x), but we
postpone discussion of this to later sections. The goal of the analysis we present in Section 3 is to calculate
the convergence properties of timestepping methods.

3 Partitioned Runge-Kutta methods for systems of SDEs

Exact results can be obtained for linear systems, which serve as a testing ground for general, nonlinear,
systems. Accordingly, in this Section we consider N-degree-of-freedom linear systems described by

dXt =INVtdt

dVt = − ηINVtdt− gINXtdt+ kCNXtdt+ ǫdWt.
(4)
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Let
BN = gIN − kCN ,

then the set of SDEs (4) can be written as one matrix equation:

d

„

Xt

Vt

«

=

0

B

B

B

@

ON IN

−BN −ηIN

1

C

C

C

A

„

Xt

Vt

«

dt+ ǫ

0

B

B

B

@

ON

IN

1

C

C

C

A

dWt,

where ON is the N ×N zero matrix.
Our task is to examine how faithfully the stationary density is reproduced by standard and new timestep-

ping methods for SPDEs. These methods produce approximate values for the positions and velocities at
discrete times tn, n = 0, 1, 2, . . .. We denote these values by Xn(i) and Vn(j), i, j = 1, . . . , N . Usually tn+1−tn
is a fixed number ∆t. We consider the evolution of Xn and Vn and their statistical properties as tn → ∞,
and compare with the exact results

lim
t→∞

IE(Xt
T
Xt) =

ǫ2

2η
LN , lim

t→∞
IE(Xt

T
Vt) = ON and lim

t→∞
IE(VT

t Vt) =
ǫ2

2η
IN ,

where (Hairer et al., 2005)
LN = B−1

N .

3.1 Partitioned Runge–Kutta methods

Let

qn =

0

B

@

Xn(1)
...

Xn(N)

1

C

A
and pn =

0

B

@

Vn(1)
...

Vn(N)

1

C

A
.

When solving (2) under a partitioned Runge–Kutta (PRK) method (Leimkuhler and Reich, 2004) with s

stages, qn+1 and pn+1 are obtained from qn and pn via s intermediate vectors Yi and Zi:

pn+1 = pn +
s
X

j=1

bj(−ηZj + f(Yj) + kCNYj)∆t+ ǫ∆Wn,

qn+1 = qn +
s
X

j=1

b̂jZj∆t,

where ∆Wn = (∆Wn(1), . . . ,∆Wn(N))T, and each ∆Wn(i) is drawn independently from a Gaussian distri-
bution with mean zero and variance ∆t. The intermediate vectors satisfy

Zi = pn +
s
X

j=1

aij(−ηZj + f(Yj) + kCNYj)∆t+ ǫci∆Wn

Yi = qn +
s
X

j=1

âijZj∆t.

(5)

Note that N Gaussian random variables are required per timestep. We use the notation e = (1, 1, . . . , 1)T,
b = (b1, b2, . . . , bs)

T, b̂ = (b̂1, b̂2, . . . , b̂s)
T, c = (c1, c2, . . . , cs)

T and let A and Â be the s × s matrices whose
entries are the aij and âij in (5). We assume c = Ae and bTe = 1, and represent PRK methods by pairs of
Butcher tableaux (Hairer et al., 1993):

A

b⊤

Â

b̂⊤
.

Let Z = (Z1, Z2, . . . , Zs)
T, Y = (Y1, Y2, . . . , Ys)

T and f(Y ) = (f(Y1), f(Y2), . . . , f(Ys))
T. Then we can write

(5) as

(IS ⊗ IN + ηA⊗ IN∆t)Z = e⊗ pn + (A⊗ IN )f(Y )∆t+ (A⊗ CN )Y k∆t+ ǫc⊗∆Wn

Y = e⊗ qn + (Â⊗ IN )Z∆t.
(6)
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If a PRK method is applied to the linear system, f(Y ) = −gY , then (6) simplifies to

PZ = e⊗ pn − (c⊗BN )qn∆t+ ǫc⊗∆Wn

Y = e⊗ qn + ÂZ∆t,

where

P = IS ⊗ IN + ηA⊗ IN∆t+ (AÂ) ⊗BN∆t
2. (7)

Thus

pn+1 =pn − ηbT ⊗ INZ∆t− bT ⊗BNY ∆t+ ǫ∆Wn

qn+1 =qn + b̂T ⊗ INZ∆t
(8)

and we can write
„

qn+1

pn+1

«

= R⊗

„

qn
pn

«

+ ǫr ⊗∆Wn, (9)

where

R =

„

R11 R12

R21 R22

«

and r =

„

R1

R2

«

.

Comparing (8) with (9), we find

R11 = IN − (b̂T ⊗ IN )P−1(c⊗BN )∆t2

R12 = (b̂T ⊗ IN )P−1(e⊗ IN )∆t

R21 = −
“

IN − η(bT ⊗ IN )P−1(c⊗ IN )∆t+ (bTÂ⊗BN )P−1(c⊗ IN )∆t2
”

BN∆t

R22 = IN − η(bT ⊗ IN )P−1(e⊗ IN )∆t− (bTÂ⊗BN )P−1(e⊗ IN )∆t2

R1 = (b̂T ⊗ IN )P−1(c⊗ IN )∆t

R2 = IN − η(bT ⊗ IN )P−1(c⊗ IN )∆t− (bTÂ⊗BN )P−1(c⊗ IN )∆t2.

The Rij , as well as R1 and R2, are N ×N symmetric matrices and functions of ∆t.
Let

Σn = IE(

„

qTn
pTn

«

`

qTn pTn
´

).

The stationary density of the numerical method is characterised by Σ = lim
n→∞

Σn. We shall search for

methods such that

Σ =
ǫ2

2η

„

LN ON

ON JN

«

. (10)

Thus, while requiring exact statistics in the discretised positions, we describe the numerical error in the
velocities in terms of the difference between JN and the N ×N identity as a function of ∆t and η.

With a numerical update of the form (9), Σn+1 is related to Σn by

Σn+1 = RΣnR
T + ǫ2

„

RT
1

RT
2

«

`

RT
1 RT

2

´

∆t, where RT =

„

RT
11 R

T
21

RT
12 R

T
22

«

.

The required form (10) of the stationary correlation matrix will be found if S = 0 where

S = R

„

LN ON

ON JN

«

RT
−

„

LN ON

ON JN

«

+ 2η

„

R1R
T
1 R1R

T
2

R2R
T
1 R2R

T
2

«

.

The condition S = 0 is equivalent to the following three equations:

R11LNR11 − LN +R12JNR12 + 2ηR1R1∆t = 0

R11LNR21 +R12JNR22 + 2ηR1R2∆t = 0

R21LNR21 +R22JNR22 − JN + 2ηR2R2∆t = 0.

Notice that

R1BN∆t =IN −R11

R2BN∆t = −R21.
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3.2 Basic result on systems

It is convenient to define

TN = (b̂T ⊗ IN )P−1(c⊗ IN )

UN = (b̂T ⊗ IN )P−1(e⊗ IN )

ZN = (ηbT ⊗ IN +∆tbÂ⊗BN )P−1(c⊗ IN )

WN = (ηbT ⊗ IN +∆tbÂ⊗BN )P−1(e⊗ IN ),

(12)

with P given by (7). Then

R11 = IN − TNBN∆t
2 R12 = UN∆t

R21 = −(IN − ZN∆t)BN∆t R22 = IN −WN∆t

R1 = TN∆t R2 = IN − ZN∆t,

and

−(TNBNLN + LT
NBNT

T
N ) + TT

NBNB
T
NTN∆t

2 + UNJNU
T
N + 2η∆t2TTT

N = 0.

Since BN = BT
N , TN = TT

N , UN = UT
N and BnLN = IN , we find

JN = 2U−2

N TN

„

IN − (η∆t+
1

2
BN∆t

2)TN

«

. (13)

That is, JN = α(ηIN∆t,BN∆t
2), where α(η∆t, g∆t2) is the scalar function (1.19) in (Burrage and Lythe,

2009).

4 Timestepping methods for systems of SDEs

We now consider specific examples of timestepping methods, beginning with two-stage methods.

4.1 The implicit midpoint method

For reference, we give the Butcher tableaux and corresponding matrix P for the implicit midpoint method.
The tableaux are

0
1
2

0 0
0 1

2

0 1

0 0
0 1

2

0 1

,

and

P =

„

IN ON

ON IN (1 + 1
2
η∆t) + 1

4
BN∆t

2

«

.

Thus

R11 =

„

IN +
1

2
η∆tIN +

1

4
BN∆t

2

«−1„

IN +
1

2
η∆tIN −

1

4
BN∆t

2

«

R12 =

„

IN +
1

2
η∆tIN +

1

4
BN∆t

2

«−1

∆t

R21 =

„

IN +
1

2
η∆tIN +

1

4
BN∆t

2

«−1

BN∆t

R22 =

„

IN +
1

2
η∆tIN +

1

4
BN∆t

2

«−1„

IN −
1

2
η∆tIN −

1

4
BN∆t

2

«

.

and there is no error in the velocity-velocity correlations (Schurz, 1999, 2002; Burrage et al., 2007):

JN = IN .

However, this method is implicit and therefore not convenient for use on nonlinear systems.
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4.2 The leapfrog method

The leapfrog method is represented in Butcher tableaux as:

0
1

0 0
1 0

1 0

1/2 0
1/2 0

1/2 1/2

,

which gives, after some simplification, JN = (IN (1 − 1
2
η∆t) − 1

4
BN∆t

2)−1, thus generalising the result of
(Burrage et al., 2007).

4.3 Mannella’s method

Mannella’s modification of the leapfrog method (Mannella, 2004, 2006) is represented as:

0
1

0 0
1/2 1/2

1/2 1/2

1/2 0
1/2 0

1/2 1/2

;

it has JN = (IN − 1
4
BN∆t

2)−1. This is an improvement on the standard leapfrog method because JN − IN ,
the error in the velocity-velocity correlation function, is proportional to ∆t2 and independent of η.

4.4 The reverse leapfrog method

This is represented as
1
2
1
2

1
2

0
1
2

0

1
2

1
2

0 0
1
2

1
2

1
2

1
2

.

As AÂ = 0, we can show

P =

„

(1 + 1
2
η∆t)IN ON

1
2
η∆tIN IN

«

and

R11 = IN −
1

2

1

1 + 1
2
η∆t

BN∆t
2

R12 = (1 +
1

1 + 1
2
η∆t

)IN∆t

R21 =

 

IN −
1

2

η∆t

1 + 1
2
η∆t

IN +
1

2

∆t2

1 − 1
2
η∆t

BN

!

BN∆t
2

R22 =
1 − 1

2
η∆t

1 + 1
2
η∆t

IN +
1

2
BN

∆t2

1 + 1
2
η∆t

.

This yields

JN = IN −
1

4
BN∆t

2.

As with the Mannella method, the reverse leapfrog method is efficient and easily implemented and has
the virtues of giving the exact correlation function in the positions variable, and an error in the velocity
variables independent of η. In addition, the form of JN − IN means that the correlations introduced in the
velocity variable are only one ∆x step on either side, since BN = gIN − kCN .

The correlation introduced in the velocity variable is independent of η and only occurs between neigh-
bouring grid points:

cp(0) = 1 −
1

4
(2k + g)∆t2, cp(∆x) =

1

4
k∆t2 and cp(i∆x) = 0, for i > 1,

consistent with the results shown in Fig. 1.
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4.5 Runge-Kutta leapfrog methods

In this section we give a more detailed analysis of the class of Runge-Kutta leapfrog methods introduced in
(Burrage and Lythe, 2009). We first introduce the simplifying assumptions that were made in that paper.

Theorem 1 If the following conditions, known as property A, hold (Burrage and Lythe, 2009):

bT = b̂T bTA =
1

2
bT AÂe =

1

2
c bTe = 1.

Then

UN = IN − (η∆tIN +
1

2
∆t2BN )TN

and

JN = 2TNU
−1

N .

Proof The formula for JN is given by (12) and (13) with

JN = 2U−2

N TN

„

IN − (η∆t+
1

2
BN∆t

2)TN

«

,

where

TN = (b̂T ⊗ IN )P−1(c⊗ IN )

UN = (b̂T ⊗ IN )P−1(e⊗ IN )

P = IS ⊗ IN +A⊗ INη∆t+ (AÂ) ⊗BN∆t
2.

Expanding P−1 and repeatedly using Property A and Ae = c gives

UN = IN +
∞
X

j=1

(−1)j(bT ⊗ IN )(A⊗ INη∆t+AÂ⊗BN∆t
2)j−1(c⊗ INη∆t+

1

2
c⊗BN∆t

2)

= IN − (η∆tIN +
1

2
∆t2BN )TN .

Hence JN = 2TNU
−1

N .

This is the generalisation, to N-degree-of-freedom systems, of Lemma 3.2 in (Burrage and Lythe, 2009).
There, the strategy was to construct classes of PRK methods with high order.

Runge-Kutta leapfrog methods with s ≥ 3 stages and increasingly high order (Burrage and Lythe, 2009)
are constructed as follows. In addition to property A, let

Â =
1

2
I − esv

T, (14)

where v is chosen so that vTe = 0 and vT = (v1, v2, · · · ,
1
2
) and with a value k = s− 2 such that

vTAj−1c = 0, j = 1, . . . , k. (15)

Let

XN = η∆tIN +
1

2
∆t2BN

then (14) and (15) give

(bT ⊗ IN )(A⊗ INη∆t+AÂ⊗BN∆t
2)j(c⊗ IN ) = bTAjcXj

N j = 1, . . . , k,

and

(bT ⊗ IN )(A⊗ INη∆t+AÂ⊗BN∆t
2)k+1(c⊗ IN ) = bTAk+1cXk+1

N − (bTAes)(v
TAkc)∆t2BNX

k
N

so that

TN = bTcIN +
k+1
X

j=1

(−1)j(bTAjc)Xj
N +MN +O(∆tk+3),

where
MN = (−1)k+2(bTAes)(v

TAkc)∆t2BNX
k
N .
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Now, with property A,

bTAjc = (
1

2
)j+1, ∀j,

so

2TN = IN +
k+1
X

j=1

(−1)j(
1

2
XN )j + 2MN +O(∆tk+3).

Thus from Theorem 4.1

2TN = UN + 2MN +O(∆tk+3).

Hence

JN = 2TNU
−1

N

= IN + 2MNU
−1

N +O(∆tk+3),

and so the error in JN is

JN − IN = 2(−1)k+2(bTAes)(v
TAkc)∆tk+2ηkBN .

and this is consistent with the scalar result first given in (Burrage and Lythe, 2009) where k+ 2 = s. Thus
the lowest-order correlations introduced into the velocity variable, proportional to BN , are only one spatial
step on either side.

4.6 s=3

Example: The three-step Runge-Kutta leapfrog method, satisfying Property A, was first given in (Burrage
and Burrage, 2012) and takes the form

Y1 = qn +
1

2
∆tpn

Z2 = (1 −
1

2
η∆t)pn +

1

2
((f(Y1) + CNY1)∆t+ ǫ∆W )

Y2 = qn +
1

2
∆tZ2

Y3 = 2Y2 − Y1

pn+1 =
1

1 + 1
2
η∆t

„

(1 −
1

2
η∆t)pn −

1

4
(f(Y1) + 2f(Y2) + f(Y3) + CNY2)∆t+ ǫ∆W

«

qn+1 = qn +
1

2
(pn + pn+1).

We find

P =

0

@

IN ON ON
1
2
η∆tIN + 1

4
∆t2BN IN ON

−1
2
η∆tIN − 1

2
BN∆t

2 η∆tIN +BN∆t
2 (1 + 1

2
η)IN

1

A ,

TN =
1

2
IN −

1

4

„

η∆tIN +
1

2
BN∆t

2

«

+
1

8

„

η∆tIN +
1

2
BN∆t

2

«

η∆tIN + · · ·

UN = IN −
1

2

„

η∆tIN +
1

2
BN∆t

2

«

+
1

4

„

η∆tIN +
1

2
BN∆t

2

«2

+ · · ·

JN = IN −
1

8

„

η∆tIN +
1

2
BN∆t

2

«2

+
1

4

„

η∆tIN +
1

2
BN∆t

2

«

η∆tIN + · · ·

= IN −
1

8
η∆t3BN + · · · .

The error is proportional to η∆t3, consistent with the one-degree-of-freedom case (Burrage and Lythe, 2009).
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Fig. 2 The correlation function cq(x) and the corresponding b(x) constructed from a numerical solution with β = 5, k = 4,
η = 1.

5 Timestepping methods for the φ4 SPDE

We now return to our nonlinear example, the kink-bearing SPDE with f(x) = −U ′(x) where U(x) =
−1

2
x2 + 1

4
x4. Let us consider the functions cq(x) and cp(x) in the limit ∆x → 0. The nonlinearity of the

SPDE does not affect the exact velocity correlation function, cp(x), which is still zero if x 6= 0. The steady
state density of the field at a point is non-Gaussian with mean-square, cq(0), calculated as ∆x→ 0 as follows.
Let ǫn and ψn(u) be the eigenvalues, and corresponding normalised eigenfunctions, of the equation (Currie
et al., 1980; Bettencourt et al., 1999; Lythe and Habib, 2003)

„

−
1

2β2

∂2

∂u2
+ U(u)

«

ψn(u) = ǫnψn(u),

where β = Θ−1 and n = 0 corresponds to the eigenfunction with the smallest eigenvalue. Then

cq(x) =
X

n

s2n exp(−βx(ǫn − ǫ0)),

where sn =
R

∞

−∞
uψn(u)ψ0(u)du. The most important feature of the correlation function is the exponential

term with exponent β(ǫ1 − ǫ0), where ǫ1 is the next-to-smallest eigenvalue: as x → ∞, cq(x) ∝ exp(−x/λ),
where λ−1 = β(ǫ1 − ǫ0). To estimate λ from a numerical solution we plot the following function of x:

b(x) = ∆x

„

log

„

cq(x)

cq(x+∆x)

««−1

,

so that lim
x→∞

b(x) = λ. The numerical b(x) plateaus at the value λ (Figure 2). In our numerical runs, we

used N = 105 grid points and averaged over samples taken every 10 time units up to time t = 106.

In Figure 3, we compare the accuracy of cq(x), cp(x) and λ, measured numerically. In the quantity that
is the most challenging to measure numerically, λ, the reverse leapfrog method performs remarkably well.
The Runge-Kutta leapfrog method, however, is most accurate in cp(∆x). Timestepping methods included in
Figure 3 are the standard leapfrog and Mannella’s modification (Mannella, 2004, 2006), the Heun method,
and the reverse leapfrog method, all of which are two-stage methods using one Gaussian random variable
per timestep. Also shown is the the three-stage Runge-Kutta leapfrog method (Burrage and Lythe, 2009).
The code used to produce these results is given as supplementary material, along with a code that produces
an animated illustration of the dynamics and measurement of the density.

In Figure 4, we compare the accuracy of cq(0) (the mean-square of φ, where there is still error associated
with finite ∆x even as ∆t → 0) and of cp(x) at three values of x and two values of η. The reverse leapfrog
method performs best in the position variable (upper panel) and the velocity correlation function at a
separation of two grid points (lower panel). However, the three-stage and four-stage Runge-Kutta leapfrog
methods (Burrage and Lythe, 2009) are most accurate in the velocity correlation function at zero and one
grid point separation. Methods with five or more stages can be implemented similarly.
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Fig. 3 Performance of different algorithms as a function of ∆t. The values of β = 5, η = 1.0 and ∆x = 0.25 are fixed. In
the upper graph, the correlation length λ is shown as a function of ∆t; the reverse leapfrog method is most accurate. In
the lower left panel, |cp(∆x)| is plotted; the most accurate algorithm is the third-order Runge-Kutta leapfrog method. In
the lower right panel, |cp(2∆x)| is plotted; the error in this quantity with the reverse leapfrog method is smaller than the
statistical error.

6 Discussion

In this paper we have constructed classes of Runge-Kutta methods for solving second-order-in-time Stochas-
tic Partial Differential Equations (SPDEs) in one space dimension based on the finite difference approxima-
tion. Two-stage methods are available that improve on the standard leapfrog method in important ways.
A series of multistage methods, with increasing accuracy in the stationary density, have also been devised
and implemented. These methods are essentially those described in (Burrage and Lythe, 2009); here we
show how they behave in multidimensional systems, yielding good accuracy in the stationary variances
and the correlations in the position and velocity variables while using only one Wiener increment per step
irrespective of the number of stages.

Numerical methods satisfying weak convergence criteria have been constructed recently (Komori and
Burrage, 2012; Abdulle and Cirilli, 2008; Tretyakov and Zhang, 2013). The focus, usually on constructing
higher order methods and methods with good linear stability properties, is also shifting towards considera-
tion of methods that preserve the stationary density function(Abdulle et al., 2013). However, our approach
is still novel in its focus on second-order-in-time, or Langevin, dynamics.

A recent paper (Burrage and Burrage, 2012) considered the behaviour of Runge-Kutta methods applied
to nonlinear Hamiltonian problems with additive noise, with an independent Wiener increment added per
stage rather than per step. This approach is more expensive but it can be shown that it allows for better
dynamic properties associated with the method and, in particular, for the midpoint rule this preserves the
mean of the problem exactly at each step - this is not the case if just one Wiener process is used per step.
We will consider the extension of this idea to examples considered in this paper in future work.
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Fig. 4 Numerical means, as a function of ∆t, with ∆x = 0.2. Left column: cq(0). Central column: cp(0). Right column:
cp(∆x). Top row: η = 0.5. Bottom row: η = 2.0. The timestepping methods used are the standard leapfrog (leap), reverse
leapfrog (RL), three-stage and four-stage Runge-Kutta leapfrog (RKL3 and RKL4). Exact continuum results are shown as
dotted lines.
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